JP2004144550A - Nondestructive detection method of creep void - Google Patents

Nondestructive detection method of creep void Download PDF

Info

Publication number
JP2004144550A
JP2004144550A JP2002308129A JP2002308129A JP2004144550A JP 2004144550 A JP2004144550 A JP 2004144550A JP 2002308129 A JP2002308129 A JP 2002308129A JP 2002308129 A JP2002308129 A JP 2002308129A JP 2004144550 A JP2004144550 A JP 2004144550A
Authority
JP
Japan
Prior art keywords
creep
void
magnetization
amount
thermal aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002308129A
Other languages
Japanese (ja)
Other versions
JP3803314B2 (en
Inventor
Mitsuharu Shiba
志波 光晴
Ryoichi Kume
粂 亮一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HATSUDEN SETSUBI GIJUTSU KENSA
HATSUDEN SETSUBI GIJUTSU KENSA KYOKAI
Original Assignee
HATSUDEN SETSUBI GIJUTSU KENSA
HATSUDEN SETSUBI GIJUTSU KENSA KYOKAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HATSUDEN SETSUBI GIJUTSU KENSA, HATSUDEN SETSUBI GIJUTSU KENSA KYOKAI filed Critical HATSUDEN SETSUBI GIJUTSU KENSA
Priority to JP2002308129A priority Critical patent/JP3803314B2/en
Publication of JP2004144550A publication Critical patent/JP2004144550A/en
Application granted granted Critical
Publication of JP3803314B2 publication Critical patent/JP3803314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To easily and nondestructively detect a creep void on the spot by an AC magnetization measurement method in high-temperature equipment, such as a boiler being in service. <P>SOLUTION: A creep void is available as a representative high-temperature creep damage mechanism. The nondestructive measurement method for easily detecting the occurrence of the creep void on the spot is obtained. Excitation and detection waveforms are analyzed in AC magnetization by using a compact probe to a ferromagnetic metal material for a high-temperature structure, such as a low-alloy steel. Influence by thermal aging is removed from the measurement result, thus easily detecting the occurrence of the creep void on the spot. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、一般にクリープボイドの非破壊検出方法に関し、さらに詳しく言えば、供用中のボイラ等の高温機器において、交流磁化法により非破壊測定された量を用いて、クリープボイドを検出する方法に関する。
【0002】
【従来の技術】
クリープ損傷を非破壊評価するにあたり、供用中の材料の金属組織を観察し、クリープボイドの発生率により損傷量を評価する方法が多く用いられてきた。この方法は、実機の金属組織の一部(数mm)をレプリカに写し取り、光学顕微鏡または電子走査型顕微鏡を用いて、ボイド率、炭化物の析出、結晶粒性状等の組織状態を評価し、損傷率と対応させている。
【0003】
レプリカ採取のために、測定時に実機の表面を鏡面研磨し、腐食させる前処理が必要である。また、写し取ったレプリカの評価においては、ラボ等に持ち帰り材料の損傷機構に応じて解析しなければならない。そのため、測定と評価には高度の熟練と多大な時間が要求される。その結果、時間とコストとの関係を勘案して、測定個所を選択しなければならなかった。従来は、運転時間が同じ場合は、温度および応力が高い部位を中心に測定が行われていた。しかし、実機において必ずしもその部位の損傷が高いとは限らず、詳細な観察を行う前に、簡便に損傷の可能性がある部位を探し出す方法が求められていた。
【0004】
交流磁化法によれば、小型プローブを強磁性試験体に接触させて交流磁化し、そのときの磁化波形を解析することで溶接後熱処理温度の推定(例えば、下記特許文献1)、クリープ損傷の検出(例えば、下記特許文献2)等ができることが、提案された。しかし、この交流磁化法では、クリープ温度および時間ならびに負荷応力ごとに、交流磁化特性のマスターカーブを作成して損傷との対応を行わなければならず、現地において簡便にクリープボイドの検出を行うことはできなかった。
【0005】
【特許文献1】
特開2001−252785号公報
【特許文献2】
特開2001−255305号公報
【0006】
【発明が解決しようとする課題】
本発明は、供用中のボイラ等の高温機器において、交流磁化測定より、現地において簡便かつ非破壊的にクリープボイドを検出する方法を提供することを課題にしている。
【0007】
【課題を解決するための手段】
クリープボイドは、熱時効による組織の変化を基にして負荷応力の影響により生じる。このことから、本発明では、クリープ試験体に対する交流磁化の測定結果から熱時効の影響を除くことにより、クリープボイド発生を簡便に検出する方法を提案する。
【0008】
本発明のクリープボイドの非破壊検出方法は、実機と同等な熱時効測定量を予めマスターカーブとして求めること、実機の測定量から引き算をすることでクリープボイド損傷量を抽出することからなる。ボイド検出評価を行うに当たり、クリープ途中止め試験時の組織観察を行い、クリープボイド損傷量の閾値を求めることができる。実機において同じ供用温度で、応力負荷がある部位と、応力負荷がないと見なせる部位とがあれば、これを熱時効測定量として用いることができる。
【0009】
【発明の実施の形態】
図1−4を参照して、本発明に基づくクリープボイドの非破壊検出方法の実施形態について説明する。
【0010】
図1は、本発明の方法の概要を示す概略説明図である。本発明の方法では、熱時効試験体の交流磁化法によって測定したデータに基づいてマスターカーブを作成し、そのマスターカーブを用いて、ボイラ等の磁性体高温構造材料の供用中に生じたクリープボイドを現地で簡便に検出する。
【0011】
ボイラ等の高温機器の実機は、運転温度および時間が管理され、記録として残されている。部位による損傷の違いは、部位による設計応力の差、想定されていなかった応力変動等に起因すると考えられる。
【0012】
ここで、応力負荷を受けていない金属組織の温度と時間とによる変化は、熱時効として表される。材料の高温クリープ損傷が、熱時効と応力損傷の独立変数として取り扱うことができ、実用的な供用範囲における温度や応力状態において相互作用がなく、線形的な結合として表すことができる場合を考える。
【0013】
交流磁化法によるクリープ時の測定量M(T,t,σ)は、下記(1)式に示すように、熱時効量M(T,t)とクリープボイド損傷量B(σ)の和に比例するとすれば、下記(2)式に示すように非破壊測定されたM(t)から、熱時効量を引き算することでクリープボイド損傷量を抽出することが可能となる。ただし、Tは温度、tは時間、σは応力である。
【0014】
【数1】

Figure 2004144550
【0015】
【数2】
Figure 2004144550
【0016】
測定可能な量は、クリープ測定量と熱時効測定量であるから、予めT、t、σが既知の場合、実機の測定量から、実機と同等な熱時効測定量をマスターカーブとして求めておき、実機の測定量から引き算をすることでクリープボイド損傷量を抽出することが可能となる。
【0017】
次に、ボイド検出評価を行うに当たり、B(σ)の閾値を決定しなければならない。閾値の決定は、クリープ途中止め試験時の組織観察を行い、ボイド発生時点のB(σ)より求める。
【0018】
これにより、予め熱時効による交流磁化信号の変化(マスターカーブ)およびその材料におけるボイド発生における交流磁化量の変化を求めておくことで、予め運転時間と温度とが既知である部位について、現地測定時においてクリープボイドの発生の有無を判断できる。
【0019】
なお、実機において同じ供用温度で、応力負荷がある部位と、応力負荷がないと見なせる部位とがあれば、これを熱時効測定量として用いることもできる。
【0020】
図6は、本発明の方法において用いられる交流磁化測定装置の一例の概略構成線図である。
【0021】
図6において、交流磁化プローブ1は、強磁性体のクリープボイド材である試験片2を交流磁化しかつ交流磁化された波形を検出する。周波数発生器3は試験片2に印加される交流磁束を交流磁化プローブ1に発生させるため、その交流磁化プローブ1に励磁電圧(または電流)を印加する。前置増幅器4は、交流磁化プローブ1で検出された交流磁化波形を増幅すると共に、周波数発生器3からの励磁電圧(または電流)を増幅する。波形収録解析装置5は、前置増幅器4からの信号(x1、x2)を受けて交流磁化測定値を記録、解析する。
【0022】
【実施例1】
2.25Cr―1Mo鋼のクリープボイド検出
図2は、2.25Cr―1Mo鋼の再現熱影響部材における熱時効試験時およびクリープ試験時の交流磁化特性(ヒステリシスロスの変化)を示す。図3は、2.25Cr―1Mo鋼の再現熱影響部材における熱時効試験時およびクリープ試験時の交流磁化特性(第三高調波比の変化)を示す。図2、3において横軸はラーソンミラーパラメータでそれぞれ表示されている。クリープ温度は873Kで、応力は39MPaおよび54MPaである。
【0023】
ヒステリシスロスおよび第三高調波比は、共にLMPが大きくなる(クリープ時間または熱時効時間が長くなる)に従って低下し、破断材の値が一番小さくなった。
【0024】
ヒステリシスロスでは、熱時効試験片のLMP21以降において、測定値が急速に低下したのに比べて、クリープ試験片では徐々に低下し、破断近傍のLMPにおいて急速に低下した。
【0025】
第三高調波比では、熱時効試験片はLMP共に測定値は徐々に低下している。クリープ試験片ではLMP21以降において、測定値が急速に低下した。
【0026】
【実施例2】
図4は、2.25Cr―1Mo鋼の再現熱影響部材におけるヒステリシスロス比のマスターカーブによるボイド検出例を示す。マスターカーブは、図2のクリープ測定値から熱時効測定値を除いて作成された。ヒステリシスロス比は、図2の初期材の値を1として規格化したときの値である。マスターカーブは、39MPaおよび54MPaの負荷応力ごとに求めた。ヒステリシスロス比が0.8以上では、いずれも組織観察においてクリープボイドは検出されず、また、ヒステリシスロス比が0.8未満において、クリープボイドが観察された。これより、ヒステリシスロス比における2.25Cr―1Mo鋼の再現熱影響部におけるクリープボイド判定値は、0.8といえる。
【0027】
【実施例3】
図5は、2.25Cr―1Mo鋼の再現熱影響部材における第三高調波比のマスターカーブによるボイド検出例を示す。マスターカーブは、図3のクリープ測定値から熱時効測定値を除いて作成された。第三高調波比は、励磁周波数の強度と第三高調波の強度の比をdBとして表したものである。第三高調波比のマスターカーブは、39MPaおよび54MPaの負荷応力ごとに求めたが、いずれも第三高調波比2.0dB以上では、組織観察においてクリープボイドは検出されず、2.0dB未満において、クリープボイドが観察された。これより、2.25Cr―1Mo鋼の再現熱影響部の第三高調波比におけるクリープボイド判定値は、2.0dBといえる。
【0028】
【発明の効果】
本発明によれば、供用中のボイラ等の高温機器において、交流磁化測定法により、簡便かつ非破壊的に現地においてクリープボイドを検出することができる。
【図面の簡単な説明】
【図1】本発明の方法の概要を示す概略説明図である。
【図2】2.25Cr―1Mo鋼の再現熱影響部材における熱時効試験時およびクリープ試験時の交流磁化特性(ヒステリシスロスの変化)を示すグラフである。
【図3】2.25Cr―1Mo鋼の再現熱影響部材における熱時効試験時およびクリープ試験時の交流磁化特性(第三高調波比の変化)を示すグラフである。
【図4】2.25Cr―1Mo鋼の再現熱影響部材におけるヒステリシスロス比のマスターカーブによるボイド検出例を示すグラフである。
【図5】2.25Cr―1Mo鋼の再現熱影響部材における第三高調波比のマスターカーブによるボイド検出例を示す
【図6】本発明の方法を実施するさいに用いる交流磁化測定装置の概略構成線図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention generally relates to a method for non-destructive detection of creep voids, and more particularly, to a method for detecting creep voids in a high-temperature equipment such as a boiler in service by using a non-destructively measured amount by an AC magnetization method. .
[0002]
[Prior art]
In non-destructive evaluation of creep damage, a method of observing a metal structure of a material in operation and evaluating a damage amount based on a creep void generation rate has been often used. In this method, a part (several mm 2 ) of the metal structure of the actual machine is copied to a replica, and the structure state such as void fraction, carbide precipitation, and crystal grain properties is evaluated using an optical microscope or an electron scanning microscope. , Damage rate.
[0003]
In order to obtain a replica, it is necessary to perform a pre-treatment in which the surface of the actual machine is mirror-polished and corroded during measurement. In the evaluation of the copied replica, it must be taken back to a laboratory or the like and analyzed according to the damage mechanism of the material. Therefore, a high degree of skill and a great amount of time are required for measurement and evaluation. As a result, it was necessary to select a measurement location in consideration of the relationship between time and cost. Conventionally, when the operation time is the same, the measurement has been performed mainly on a portion where the temperature and the stress are high. However, the damage of the site is not always high in the actual machine, and a method of easily searching for a site that may be damaged before performing detailed observation has been required.
[0004]
According to the AC magnetization method, a small probe is brought into contact with a ferromagnetic specimen to perform AC magnetization, and the magnetization waveform at that time is analyzed to estimate the post-weld heat treatment temperature (for example, Patent Literature 1 below), It has been proposed that detection (for example, Patent Document 2 below) can be performed. However, in this AC magnetization method, a master curve of AC magnetization characteristics must be created for each creep temperature, time, and load stress to deal with damage, and creep voids must be easily detected on site. Could not.
[0005]
[Patent Document 1]
JP 2001-252785 A [Patent Document 2]
JP 2001-255305 A
[Problems to be solved by the invention]
It is an object of the present invention to provide a simple and non-destructive method for detecting creep voids on site in a high-temperature device such as a boiler in service from AC magnetization measurement.
[0007]
[Means for Solving the Problems]
Creep voids are generated by the influence of applied stress on the basis of structural changes due to thermal aging. Accordingly, the present invention proposes a method for easily detecting the generation of creep voids by removing the influence of thermal aging from the measurement results of the AC magnetization of the creep test specimen.
[0008]
The method for non-destructively detecting creep voids of the present invention includes obtaining a measured amount of thermal aging equivalent to that of an actual machine in advance as a master curve, and extracting a creep void damage amount by subtracting the measured amount from the measured amount of the actual machine. In performing the void detection evaluation, the microstructure is observed during a creep stoppage test, and the threshold value of the creep void damage amount can be obtained. If there is a portion where a stress load is applied and a portion where it can be considered that there is no stress load at the same service temperature in the actual machine, these can be used as the thermal aging measurement amounts.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a method for non-destructively detecting creep voids according to the present invention will be described with reference to FIGS.
[0010]
FIG. 1 is a schematic explanatory diagram showing an outline of the method of the present invention. In the method of the present invention, a master curve is created on the basis of data measured by the AC magnetization method of the thermal aging test specimen, and the creep void generated during the operation of the magnetic high-temperature structural material such as a boiler using the master curve. Is easily detected on-site.
[0011]
The operating temperature and time of high-temperature equipment such as boilers are managed and recorded as records. It is considered that the difference in damage depending on the part is caused by a difference in design stress depending on the part, an unexpected fluctuation in stress, and the like.
[0012]
Here, a change in temperature and time of a metal structure that is not subjected to a stress load is expressed as thermal aging. Consider the case where the high-temperature creep damage of a material can be treated as an independent variable of thermal aging and stress damage, and can be expressed as a linear combination without any interaction at a temperature or stress state in a practical service range.
[0013]
The amount of measurement M c (T, t, σ) at the time of creep by the AC magnetization method is, as shown in the following equation (1), the amount of thermal aging M A (T, t) and the amount of creep void damage B (σ). If it is proportional to the sum, the amount of creep void damage can be extracted by subtracting the amount of thermal aging from M C (t) measured nondestructively as shown in the following equation (2). Here, T is temperature, t is time, and σ is stress.
[0014]
(Equation 1)
Figure 2004144550
[0015]
(Equation 2)
Figure 2004144550
[0016]
The measurable amounts are the creep measurement amount and the thermal aging measurement amount. Therefore, if T, t, and σ are known in advance, the thermal aging measurement amount equivalent to that of the actual device is obtained as the master curve from the measurement amount of the actual device. Then, the amount of creep void damage can be extracted by subtracting from the measured amount of the actual machine.
[0017]
Next, in performing the void detection evaluation, a threshold value of B (σ) must be determined. The threshold value is determined by observing the structure at the time of the creep stoppage test, and obtaining it from B (σ) at the time of void generation.
[0018]
In this way, a change in the AC magnetization signal due to thermal aging (master curve) and a change in the AC magnetization amount due to void generation in the material are obtained in advance, so that a site where the operation time and temperature are known in advance is measured on site. At times, it can be determined whether or not creep voids have occurred.
[0019]
In addition, if there is a part where there is a stress load and a part where it can be considered that there is no stress load at the same service temperature in the actual machine, these can be used as the thermal aging measurement amount.
[0020]
FIG. 6 is a schematic configuration diagram of an example of an AC magnetization measuring device used in the method of the present invention.
[0021]
In FIG. 6, an AC magnetization probe 1 AC-magnetizes a test piece 2 which is a ferromagnetic creep void material, and detects an AC-magnetized waveform. The frequency generator 3 applies an excitation voltage (or current) to the AC magnetization probe 1 in order to generate the AC magnetic flux applied to the test piece 2 in the AC magnetization probe 1. The preamplifier 4 amplifies the AC magnetization waveform detected by the AC magnetization probe 1 and amplifies the excitation voltage (or current) from the frequency generator 3. The waveform recording / analyzing device 5 receives the signals (x1, x2) from the preamplifier 4 and records and analyzes the AC magnetization measurement values.
[0022]
Embodiment 1
2. Creep void detection of 2.25Cr-1Mo steel FIG. 2 shows AC magnetization characteristics (changes in hysteresis loss) at the time of a thermal aging test and a creep test of a reproduced heat-affected member of 2.25Cr-1Mo steel. FIG. 3 shows the AC magnetization characteristics (change of the third harmonic ratio) during the thermal aging test and the creep test of the reproducible heat-affected member of 2.25Cr-1Mo steel. 2 and 3, the abscissa represents the Larson mirror parameters. Creep temperature is 873K and stress is 39MPa and 54MPa.
[0023]
Both the hysteresis loss and the third harmonic ratio decreased as LMP increased (creep time or thermal aging time increased), and the value of the fractured material became the smallest.
[0024]
In the hysteresis loss, the measured value rapidly decreased after LMP21 of the heat-aged test piece, but gradually decreased in the creep test piece, and rapidly decreased in the LMP near the fracture.
[0025]
At the third harmonic ratio, the measured value of the LMP in the thermal aging test specimen gradually decreased. In the creep test piece, the measured value rapidly decreased after LMP21.
[0026]
Embodiment 2
FIG. 4 shows an example of void detection based on a master curve of a hysteresis loss ratio in a reproduced heat-affected member made of 2.25Cr-1Mo steel. The master curve was created by removing the thermal aging measurement from the creep measurement in FIG. The hysteresis loss ratio is a value when the value of the initial material in FIG. The master curve was determined for each of the applied stresses of 39 MPa and 54 MPa. When the hysteresis loss ratio was 0.8 or more, no creep void was detected in any of the microscopic observations, and when the hysteresis loss ratio was less than 0.8, creep voids were observed. From this, it can be said that the creep void determination value in the reproductive heat affected zone of the 2.25Cr-1Mo steel at the hysteresis loss ratio is 0.8.
[0027]
Embodiment 3
FIG. 5 shows an example of void detection by the master curve of the third harmonic ratio in the reproduced heat-affected member of 2.25Cr-1Mo steel. The master curve was created by removing the thermal aging measurement from the creep measurement in FIG. The third harmonic ratio expresses the ratio between the intensity of the excitation frequency and the intensity of the third harmonic as dB. The master curve of the third harmonic ratio was obtained for each of the applied stresses of 39 MPa and 54 MPa. However, when the third harmonic ratio was 2.0 dB or more, no creep void was detected in the structure observation, and when the third harmonic ratio was less than 2.0 dB, , Creep voids were observed. From this, it can be said that the creep void determination value at the third harmonic ratio of the reproduced heat-affected zone of the 2.25Cr-1Mo steel is 2.0 dB.
[0028]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, in a high temperature apparatus, such as a boiler in service, creep void can be easily and nondestructively detected on site by the alternating current magnetization measurement method.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing an outline of a method of the present invention.
FIG. 2 is a graph showing AC magnetization characteristics (changes in hysteresis loss) during a thermal aging test and a creep test of a reproduced heat-affected member of 2.25Cr-1Mo steel.
FIG. 3 is a graph showing AC magnetization characteristics (change in third harmonic ratio) during a thermal aging test and a creep test in a reproduced heat-affected member of 2.25Cr-1Mo steel.
FIG. 4 is a graph showing an example of void detection based on a master curve of a hysteresis loss ratio in a reproduced heat-affected member of 2.25Cr-1Mo steel.
FIG. 5 shows an example of void detection based on a master curve of a third harmonic ratio in a reproduced heat-affected member of 2.25Cr-1Mo steel. FIG. 3 is a configuration diagram.

Claims (3)

実機と同等な熱時効測定量を予めマスターカーブとして求めること、実機の測定量から引き算をすることでクリープボイド損傷量を抽出することからなるクリープボイドの非破壊検出方法。A method for non-destructively detecting creep voids, which comprises obtaining a measured amount of thermal aging equivalent to that of an actual machine in advance as a master curve and subtracting the amount of creep void damage from the measured amount of the actual machine. ボイド検出評価を行うに当たり、クリープ途中止め試験時の組織観察を行い、クリープボイド損傷量の閾値を求めることからさらになる、請求項1に記載の方法。The method according to claim 1, further comprising, in performing the void detection evaluation, observing a structure during a creep stoppage test and obtaining a threshold value of a creep void damage amount. 実機において同じ供用温度で、応力負荷がある部位と、応力負荷がないと見なせる部位とがあれば、これを熱時効測定量として用いることからさらになる、請求項1に記載の方法。The method according to claim 1, further comprising using, as a thermal aging measurement amount, a portion having a stress load and a portion that can be regarded as having no stress load at the same service temperature in an actual machine.
JP2002308129A 2002-10-23 2002-10-23 Creep void non-destructive detection method Expired - Fee Related JP3803314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002308129A JP3803314B2 (en) 2002-10-23 2002-10-23 Creep void non-destructive detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002308129A JP3803314B2 (en) 2002-10-23 2002-10-23 Creep void non-destructive detection method

Publications (2)

Publication Number Publication Date
JP2004144550A true JP2004144550A (en) 2004-05-20
JP3803314B2 JP3803314B2 (en) 2006-08-02

Family

ID=32454349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002308129A Expired - Fee Related JP3803314B2 (en) 2002-10-23 2002-10-23 Creep void non-destructive detection method

Country Status (1)

Country Link
JP (1) JP3803314B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103439473A (en) * 2013-07-15 2013-12-11 河北省电力建设调整试验所 Assessment method for state of heating surface of 12Cr1MoV steel
US8991241B1 (en) 2013-10-30 2015-03-31 General Electric Company Gas turbine component monitoring

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106290775A (en) * 2016-08-05 2017-01-04 国网河北省电力公司电力科学研究院 A kind of Power Station Boiler Heating Surface SA210C Steel material state evaluating method
CN109142905A (en) * 2018-06-12 2019-01-04 四川斐讯信息技术有限公司 A kind of method for testing temperature rise and system of communication apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103439473A (en) * 2013-07-15 2013-12-11 河北省电力建设调整试验所 Assessment method for state of heating surface of 12Cr1MoV steel
CN103439473B (en) * 2013-07-15 2016-01-20 河北省电力建设调整试验所 A kind of 12Cr1MoV steel heating surface state evaluating method
US8991241B1 (en) 2013-10-30 2015-03-31 General Electric Company Gas turbine component monitoring

Also Published As

Publication number Publication date
JP3803314B2 (en) 2006-08-02

Similar Documents

Publication Publication Date Title
Helifa et al. Detection and measurement of surface cracks in ferromagnetic materials using eddy current testing
JP4998820B2 (en) Eddy current inspection method and eddy current inspection apparatus for implementing the eddy current inspection method
JP5017038B2 (en) Eddy current inspection apparatus and eddy current inspection method
KR101732494B1 (en) Method for detecting crack using nonlinear utrasound modulations schemes
JP3300810B2 (en) Non-destructive method for measuring the aging of the strength of ferromagnetic structural materials
JP3728286B2 (en) Nondestructive high temperature creep damage evaluation method
Artetxe et al. Analysis of the voltage drop across the excitation coil for magnetic characterization of skin passed steel samples
JP3803314B2 (en) Creep void non-destructive detection method
JP2002372519A (en) Non-destructive measuring method of secular deterioration associated with change in brittleness of ferromagnetic structure material
JP3461781B2 (en) Method and apparatus for evaluating creep damage of ferromagnetic structure using alternating current magnetization
JP2009168556A (en) Quenching inspection apparatus and quenching inspection method
US6563309B2 (en) Use of eddy current to non-destructively measure crack depth
Szielasko et al. Early detection of critical material degradation by means of electromagnetic multi-parametric NDE
JP2001133441A (en) Non-destructive hardness measurement method
WO2005074349A2 (en) Non-destructive method for the detection of creep damage in ferromagnetic parts with a device consisting of an eddy current coil and a hall sensor
JP5794927B2 (en) Carburizing depth evaluation method and piping life evaluation method
JPS59112257A (en) Method and device for nondestructive inspection of ferromagnetic material
RU2457478C1 (en) Method of detecting pre-destruction zones in welded joints of heat-resistant steels
Shenoy et al. Fatigue Detection and Estimation in Martensitic Stainless-Steel Using Magnetic Nondestructive Evaluation Technique
RU2818648C1 (en) Device for determining homogeneity of mechanical properties of articles made from ferromagnetic materials and detecting zones with abnormal hardness therein
Dai et al. Fatigue crack growth measurements in TMF testing of titanium alloys using an ACPD technique
Hernas et al. Degradation of superheater tubes made of austenitic T321H steel after long term service
Polanschütz Inverse magnetostrictive effect and electromagnetic non-destructive testing methods
Dobmann et al. First attempts towards the early detection of fatigued substructures using cyclic-loaded 20 MnMoNi 5 5 steel
Sekino et al. Study on the Fundamental Characteristics of the Θ Probe and Crack Monitoring Using This Probe Combined with the Caustic Method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050815

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3803314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees