JP2003065921A - Method for evaluating integrity in structure material, and program - Google Patents

Method for evaluating integrity in structure material, and program

Info

Publication number
JP2003065921A
JP2003065921A JP2001261210A JP2001261210A JP2003065921A JP 2003065921 A JP2003065921 A JP 2003065921A JP 2001261210 A JP2001261210 A JP 2001261210A JP 2001261210 A JP2001261210 A JP 2001261210A JP 2003065921 A JP2003065921 A JP 2003065921A
Authority
JP
Japan
Prior art keywords
hardness
evaluation
structural material
evaluation method
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001261210A
Other languages
Japanese (ja)
Other versions
JP4112830B2 (en
Inventor
Kazuo Ogawa
和夫 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001261210A priority Critical patent/JP4112830B2/en
Publication of JP2003065921A publication Critical patent/JP2003065921A/en
Application granted granted Critical
Publication of JP4112830B2 publication Critical patent/JP4112830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To evaluate the integrity of a structure material without greatly damaging an evaluation site. SOLUTION: The method for evaluating integrity in structure materials comprises a process (S2) for measuring hardness at a site to be evaluated or the corresponding hardness, a process (S3) for calculating at least one of material characteristic values other than hardness by fitting a hardness measurement value obtained in the hardness measurement process to a master curve where the material characteristic value other than hardness is expressed as a function of hardness to the material characteristic value (breakdown stress, tensile strength, and the like) obtained for a material having the equivalent material characteristic as a site to be evaluated, and a process (S4) for evaluating the breakdown of equipment by a material characteristic value other than hardness obtained in the material characteristic value calculation process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、時間の経過ととも
に構成材料の強度等が変化するような条件で使用される
機器で、機器の表面あるいは内部に、割れ、き裂等の欠
陥を有する場合の構造材料健全性評価方法、およびその
評価プログラムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus used under conditions such that the strength of constituent materials changes with the passage of time and has defects such as cracks and cracks on the surface or inside of the apparatus. Structural material integrity evaluation method and its evaluation program.

【0002】[0002]

【従来の技術】化学プラント、発電プラント等を構成す
る材料においては、実機運転中の時間経過とともに、機
器の表面あるいは内部に蓄積される材料損傷の結果、き
裂が発生することがある。さらに、このような実機運転
負荷に起因して発生するき裂に加え、プラント建設時に
検査で検出できないような微小なき裂が元々存在してい
て、それがプラント運転中に徐々に成長する場合もあ
る。これらき裂を有する機器に対し、地震などによる過
大な外部荷重が加わると、き裂が急速に進行し破壊に至
る恐れがある。
2. Description of the Related Art In materials constituting chemical plants, power plants, etc., cracks may occur as a result of material damage accumulated on the surface or inside of equipment as time passes during actual operation. In addition to such cracks that occur due to the operating load of actual equipment, there are originally small cracks that cannot be detected by inspection during plant construction, and they may grow gradually during plant operation. is there. If an excessive external load due to an earthquake or the like is applied to a device having these cracks, the cracks may rapidly progress and may be destroyed.

【0003】また、上記プラント等を構成する材料は、
実機運転中の温度、応力の負荷等により、強度等の材料
特性値が時間とともに変化し、プラント建設時の初期値
とは異なる値になることがある。
The materials constituting the above-mentioned plant are
Material characteristic values such as strength may change with time due to temperature, stress load, etc. during actual operation, and may be different from the initial values at the time of plant construction.

【0004】このように材質変化を伴うような運転条件
下におかれるプラント機器に対して、き裂が存在する場
合の破壊強度を計算し構造健全性を精度良く評価するた
めには、材質変化した部材の材料特性値を知ることが不
可欠である。
In order to accurately evaluate the structural soundness by accurately calculating the fracture strength in the presence of cracks in plant equipment under operating conditions involving such material changes, the material changes It is essential to know the material property values of the formed members.

【0005】この材質変化は、プラント建設時の材料特
性値の初期値ならびにその後の運転状態に依存するもの
である。一般に機器の運転履歴は分かる場合であって
も、機器の局所的な負荷履歴を把握または測定すること
は難しく、正確な材質変化を推定することは困難なこと
から、何らかの別の安全対策を施すかあるいは材質変化
を過大に見積もった安全側の構造材料健全性評価を行う
ことになる。
This material change depends on the initial value of the material characteristic value at the time of plant construction and the subsequent operating state. Generally, even if the operation history of the equipment is known, it is difficult to grasp or measure the local load history of the equipment, and it is difficult to estimate the accurate material change. Or, the structural material soundness on the safety side is evaluated by overestimating the material change.

【0006】また、評価機器ならびに部位によっては、
き裂などの欠陥が発見あるいは想定された部位、もしく
はその近傍から部材の一部を切り出すことが可能な場合
があり、そのサンプリング材(試料)から、降伏応力、
引張強さ、応力ひずみ関係、破壊靭性値、あるいはJR
曲線等、構造材料健全性評価に必要な材料特性値に応じ
た様々な形状寸法の材料試験片を製作し、それらの値を
求めることができる。この方法によれば、材質変化が生
じても、その変化を材料特性値の値として捕らえること
ができ、正確な構造材料健全性評価が可能である。
[0006] Further, depending on the evaluation equipment and parts,
In some cases, it may be possible to cut out a part of the member from the site where a defect such as a crack was discovered or assumed, or its vicinity.
Tensile strength, stress-strain relationship, fracture toughness value, or JR
It is possible to produce material test pieces of various shapes and dimensions according to material characteristic values required for structural material soundness evaluation such as curves, and obtain those values. According to this method, even if the material changes, the change can be captured as the value of the material characteristic value, and the soundness of the structural material can be accurately evaluated.

【0007】[0007]

【発明が解決しようとする課題】プラント運転時間の経
過とともに構成材料に生じる材質変化を考慮した精度の
高い構造材料健全性評価を行うための従来のサンプリン
グ法では、評価に必要な材料特性値に応じて様々な形状
寸法の材料試験片を機器の表面あるいは内部から採取す
る必要がある。そのため機器表面部を著しく破壊するこ
とになり、採取後のプラント再運転開始前に、埋め戻し
等の補修が必要となる。
In the conventional sampling method for highly accurate structural material soundness evaluation in consideration of the material change occurring in the constituent materials with the passage of plant operation time, the material characteristic values required for the evaluation are Accordingly, it is necessary to collect material test pieces of various shapes and sizes from the surface or inside of the equipment. As a result, the surface of the equipment will be significantly destroyed, and repair such as backfilling is required before the plant restarts after the collection.

【0008】本発明は、評価部位に大きな損傷を与えず
に高精度の構造材料健全性評価を行う方法およびそのた
めのプログラムを提供することを目的とする。なお、硬
さ、降伏応力、引張強さ、あるいは応力ひずみ関係は変
化しても、それが必ずしも破壊が起こりやすい変化であ
るかどうかは、破壊形態に依存する。すなわち、プラン
ト構成材料の経年劣化が予想される条件で運転される機
器に対し、正確な構造材料健全性評価を行うためには、
それぞれの材料特性値の変化を定量的に捉え、機器の使
用条件、破壊形態に合わせた構造材料健全性評価が必要
となる。
It is an object of the present invention to provide a method and a program therefor for performing a highly accurate structural material integrity evaluation without giving a large damage to an evaluation site. Even if the hardness, the yield stress, the tensile strength, or the stress-strain relationship changes, whether or not the change is liable to cause a failure depends on the failure mode. That is, in order to perform an accurate structural material integrity evaluation for equipment that is operated under conditions where deterioration of plant constituent materials over time is expected,
It is necessary to quantitatively grasp the changes in each material property value and evaluate the structural material integrity according to the usage conditions and fracture mode of the equipment.

【0009】ここで、上記の材料特性値はいずれも材料
のミクロな変形抵抗が関係する事象であることから、そ
れぞれの値の間に相関性がある。特に、硬さは、測定が
比較的容易であることから、硬さと他の材料特性値との
間の相関を求めマスターカーブ化しておき、実機部材で
の硬さ測定値から機器の損傷診断に必要な材料データを
前記マスターカーブを用いて算出し、その材料データを
用い実機の経年状態に応じた正確な寿命診断を行う方法
がある。
Here, since the above-mentioned material characteristic values are events related to the microscopic deformation resistance of the material, there is a correlation between the respective values. In particular, since hardness is relatively easy to measure, the correlation between hardness and other material property values is calculated and made into a master curve, and the hardness measurement value of actual equipment is used for equipment damage diagnosis. There is a method of calculating necessary material data using the master curve, and using the material data to perform accurate life diagnosis according to the aged state of the actual machine.

【0010】特に高温機器の場合、構成材料の金属組織
的な変化が大きく、硬さとクリープ強度が大きく変わる
ことが多く、両者の関係を式化しておくことにより、硬
さ測定値からクリープ強度を推定する方法等が知られて
いる(例えば、特開昭60−67838号公報、特開平
11−326578号公報参照)。
Particularly in the case of high temperature equipment, the metallographic changes of the constituent materials are large and the hardness and creep strength often change greatly. By formulating the relationship between the two, the creep strength can be calculated from the measured hardness value. A method of estimating is known (see, for example, JP-A-60-67838 and JP-A-11-326578).

【0011】本発明の評価対象はクリープによる損傷は
想定しない温度、荷重等で運転される機器であって、本
発明は、割れ、き裂等の欠陥が存在する場合の構造健全
性を評価する場合に、その計算に必要な降伏応力、引張
強さ、応力ひずみ関係、破壊靭性値、およびJR曲線等
を硬さ測定値から推定し、それらの値を用いて機器の構
造健全性を評価する方法およびプログラムを提案する。
The object of evaluation of the present invention is a device which is operated at a temperature, load, etc., which does not assume damage due to creep, and the present invention evaluates the structural soundness in the presence of defects such as cracks and cracks. In this case, yield stress, tensile strength, stress-strain relationship, fracture toughness value, JR curve, etc. required for the calculation are estimated from hardness measurement values, and the structural integrity of the equipment is evaluated using those values. Suggest methods and programs.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明は、構造材料に欠陥を有する可能性
のある機器の構造材料健全性評価方法において、評価対
象部位の硬さに相当する硬さを測定する硬さ測定工程
と、前記評価対象部位と同等の材料特性を有する材料に
ついて求めた硬さ以外の材料特性値に対し、その硬さ以
外の材料特性値を硬さの関数として表したマスターカー
ブに、前記硬さ測定工程で得られた硬さ測定値を当ては
め、前記硬さ以外の材料特性値のうちの少なくとも一つ
を算出する材料特性値算出工程と、前記材料特性値算出
工程で得られた前記硬さ以外の材料特性値を用いて前記
機器の破壊評価を行う破壊評価工程と、を有することを
特徴とする。
In order to achieve the above object, the invention of claim 1 provides a method for evaluating the integrity of a structural material of a device which may have a defect in the structural material. Hardness measurement step of measuring the hardness corresponding to, the material property value other than the hardness obtained for the material having the same material properties as the evaluation target site, the material property value other than the hardness To the master curve represented as a function of, the hardness measurement value obtained in the hardness measurement step is applied, a material property value calculation step of calculating at least one of the material property values other than the hardness, and And a destructive evaluation step of performing destructive evaluation of the device by using the material characteristic values other than the hardness obtained in the material characteristic value calculating step.

【0013】請求項1の発明によれば、精度の高い構造
材料健全性評価に必要なプラント機器構成材料の材料特
性値が、硬さ測定値から算出できる。これにより、評価
対象部位に大きな損傷を与えずに、プラント機器運転中
に生じる構成材料の材質変化を直接反映した高精度の構
造材料健全性評価を行うことが可能となる。
According to the first aspect of the present invention, the material characteristic value of the plant equipment constituent material required for highly accurate structural material integrity evaluation can be calculated from the hardness measurement value. As a result, it becomes possible to perform a highly accurate structural material soundness evaluation that directly reflects the material change of the constituent material that occurs during the operation of the plant equipment, without seriously damaging the evaluation target part.

【0014】また、請求項2に記載の発明は、請求項1
に記載の構造材料健全性評価方法において、前記硬さ以
外の材料特性値には、降伏応力、引張強さ、応力ひずみ
関係、破壊靭性値、およびJR曲線のうちの少なくとも
一つを含むこと、を特徴とする。
The invention described in claim 2 is the same as claim 1
In the structural material integrity evaluation method according to, the material property values other than the hardness include at least one of yield stress, tensile strength, stress-strain relationship, fracture toughness value, and JR curve, Is characterized by.

【0015】請求項2の発明によれば、請求項1の発明
の作用・効果を得られるほか、降伏応力、引張強さ、応
力ひずみ関係、破壊靭性値、およびJR曲線等を利用す
ることができる。
According to the invention of claim 2, in addition to the effects and advantages of the invention of claim 1, yield stress, tensile strength, stress-strain relationship, fracture toughness value, JR curve, etc. can be utilized. it can.

【0016】また、請求項3に記載の発明は、請求項1
または2に記載の構造材料健全性評価方法において、前
記評価対象部位の硬さに相当する硬さは、前記評価対象
部位の硬さであること、を特徴とする。
The invention described in claim 3 is the same as claim 1
Alternatively, in the structural material soundness evaluation method according to the second aspect, the hardness corresponding to the hardness of the evaluation target site is the hardness of the evaluation target site.

【0017】請求項3の発明によれば、請求項1の発明
の作用・効果を得られるほか、評価対象部位の硬さを直
接測定するので精度が高い。なお、評価対象機器には硬
さ測定用の圧子の痕が残ることがあるが、これは微小で
あり、測定後の補修は不要あるいは必要としても非常に
軽微で容易である。
According to the third aspect of the invention, in addition to obtaining the action and effect of the first aspect of the invention, the hardness of the evaluation target portion is directly measured, so that the accuracy is high. In some cases, the indentation mark for hardness measurement may remain on the device to be evaluated, but this is minute, and repair after measurement is unnecessary or necessary, but very slight and easy.

【0018】また、請求項4に記載の発明は、請求項1
または2に記載の構造材料健全性評価方法において、前
記評価対象部位の硬さに相当する硬さは、前記評価対象
部位とは異なる前記機器の部位の硬さであって、前記評
価対象部位の硬さを推定できる部位の硬さであること、
を特徴とする。
The invention described in claim 4 is the same as claim 1.
Alternatively, in the structural material integrity evaluation method according to the second aspect, the hardness corresponding to the hardness of the evaluation target part is a hardness of a part of the device different from the evaluation target part, The hardness of the part where the hardness can be estimated,
Is characterized by.

【0019】請求項4の発明によれば、請求項1または
2の発明の作用・効果を得られるほか、評価対象部位の
硬さ測定が困難な場合、それとは異なる位置での硬さ値
から、評価対象部の硬さが推定できる。
According to the invention of claim 4, in addition to obtaining the action and effect of the invention of claim 1 or 2, when it is difficult to measure the hardness of the evaluation target portion, the hardness value at a position different from that is determined. The hardness of the evaluation target part can be estimated.

【0020】また、請求項5に記載の発明は、請求項1
ないし4のいずれかに記載の構造材料健全性評価方法に
おいて、前記評価対象部位の硬さに相当する硬さは、前
記機器から採取した試料の硬さであること、を特徴とす
る。
The invention described in claim 5 is the same as claim 1.
In the structural material soundness evaluation method according to any one of items 1 to 4, the hardness corresponding to the hardness of the evaluation target portion is the hardness of the sample collected from the device.

【0021】請求項5の発明によれば、請求項1ないし
4のいずれかの発明の作用・効果を得られるほか、実機
プラントの現場で、硬さ測定器を持ち込み硬さ測定を行
うことに比べ、測定用の試料を環境の整った実験室等に
持ち帰り測定することができるので、より正確な硬さ測
定が可能で、結果的に構造材料健全性評価の精度を上げ
ることができる。
According to the invention of claim 5, in addition to obtaining the operation and effect of the invention of any one of claims 1 to 4, it is possible to bring in a hardness measuring instrument and measure the hardness at the actual plant site. On the other hand, since the sample for measurement can be brought back to a laboratory or the like in which the environment is prepared and measured, more accurate hardness measurement can be performed, and as a result, the accuracy of structural material integrity evaluation can be improved.

【0022】また、請求項6に記載の発明は、請求項1
ないし5のいずれかに記載の構造材料健全性評価方法に
おいて、前記破壊評価工程で、前記欠陥の形状を仮想的
に設定し、その仮想欠陥の形状寸法を表す数値を用いる
こと、を特徴とする。
The invention according to claim 6 is the same as claim 1.
5. The structural material soundness evaluation method according to any one of 1 to 5, wherein the shape of the defect is virtually set in the fracture evaluation step, and a numerical value representing the shape dimension of the virtual defect is used. .

【0023】請求項6の発明によれば、請求項1ないし
5のいずれかの発明の作用・効果を得られるほか、検査
で割れ、き裂等が検出できない場合、検査等を省略した
場合、あるいは解析等で割れ、き裂の発生が予想される
場合に対しても、構造材料健全性評価が可能となる。
According to the invention of claim 6, in addition to the effects and advantages of the invention of claims 1 to 5, when cracks, cracks or the like cannot be detected by inspection, or when inspection is omitted, Alternatively, the structural material integrity can be evaluated even when cracks and cracks are expected to occur by analysis or the like.

【0024】また、請求項7に記載の発明は、請求項1
ないし6のいずれかに記載の構造材料健全性評価方法に
おいて、前記破壊評価工程で、前記欠陥の形状寸法を実
際より大きめの値に設定すること、を特徴とする。
The invention described in claim 7 is the same as claim 1.
7. The structural material integrity evaluation method according to any one of 1 to 6 is characterized in that, in the destruction evaluation step, the shape dimension of the defect is set to a value larger than an actual value.

【0025】請求項7の発明によれば、請求項1ないし
6のいずれかの発明の作用・効果を得られるほか、安全
側すなわち保守的な構造材料健全性評価が可能となる。
According to the invention of claim 7, the operation and effect of any one of the inventions of claims 1 to 6 can be obtained, and in addition, the soundness of the structural material, that is, the conservative evaluation, can be evaluated.

【0026】また、請求項8に記載の発明は、請求項1
ないし7のいずれかに記載の構造材料健全性評価方法に
おいて、前記硬さ測定工程で、硬さ試験機の圧子の押込
み深さと荷重を用いて硬さを算出すること、を特徴とす
る。
The invention described in claim 8 is the same as claim 1.
In the structural material soundness evaluation method according to any one of 1 to 7, the hardness is calculated by using the indentation depth and the load of the indenter of the hardness tester in the hardness measurement step.

【0027】請求項8の発明によれば、請求項1ないし
7のいずれかの発明の作用・効果を得られるほか、圧子
の押込み深さと荷重を用いて求める硬さ(ユニバーサル
硬さと呼ばれる)を利用することによって、圧子除荷後
の圧痕の大きさを測る従来の硬さ測定法に比べ、材料の
機械的性質をより反映した、評価対象機器部材の材質変
化により敏感に対応した精度の高い構造材料健全性評価
が可能となる。
According to the invention of claim 8, in addition to obtaining the action and effect of the invention of any one of claims 1 to 7, the hardness (called universal hardness) obtained by using the pushing depth and the load of the indenter is obtained. Compared to the conventional hardness measurement method that measures the size of the indentation after unloading the indenter by using it, it is more accurate and more sensitive to the changes in the material of the equipment to be evaluated, which better reflects the mechanical properties of the material. It enables structural material integrity evaluation.

【0028】また、請求項9に記載の発明は、請求項1
ないし8のいずれかに記載の構造材料健全性評価方法に
おいて、前記材料特性値算出工程では、少なくとも破壊
靭性値、JR曲線および応力ひずみ関係を算出し、前記
破壊評価工程では、脆性パラメータと延性パラメータの
関係を座標平面とする破壊評価線図の上で、前記破壊靭
性値およびJR曲線を用いて計算される破壊評価点が前
記応力ひずみ関係を用いて計算される破壊評価曲線を下
回ることを、破壊しないことの判定基準とすること、を
特徴とする。請求項9の発明によれば、請求項1ないし
8のいずれかの発明の作用・効果を得られるほか、材質
変化を反映した精度の高い構造材料健全性評価が可能と
なる。
The invention described in claim 9 is the same as claim 1.
In the structural material soundness evaluation method according to any one of 1 to 8, at least the fracture toughness value, the JR curve and the stress-strain relationship are calculated in the material characteristic value calculating step, and the brittleness parameter and the ductility parameter are calculated in the fracture evaluating step. On a fracture evaluation diagram with the relationship of as a coordinate plane, the fracture evaluation point calculated using the fracture toughness value and the JR curve is below the fracture evaluation curve calculated using the stress-strain relationship, It is characterized in that it is used as a criterion for not breaking. According to the invention of claim 9, the action and effect of the invention of any one of claims 1 to 8 can be obtained, and in addition, it becomes possible to evaluate the structural material soundness with high accuracy reflecting the material change.

【0029】また、請求項10に記載の発明は、コンピ
ュータに、構造材料に欠陥を有する可能性のある機器の
評価対象部位と同等の材料特性を有する材料について求
めた硬さ以外の少なくとも一つの材料特性値を硬さの関
数として表したマスターカーブを記憶する機能と、前記
評価対象部位の硬さに相当する硬さの測定値を入力する
機能と、前記マスターカーブと前記硬さの測定値とから
前記評価対象部位の前記少なくとも一つの材料特性値を
算出する機能と、前記少なくとも一つの材料特性値を用
いて前記機器の破壊評価を行う機能と、を実現させるた
めのプログラムである。
According to a tenth aspect of the present invention, a computer is provided with at least one of the hardnesses other than the hardness determined for a material having the same material properties as the evaluation target site of the device which may have a defect in the structural material. A function of storing a master curve representing a material characteristic value as a function of hardness, a function of inputting a measured value of hardness corresponding to the hardness of the evaluation target site, and the measured value of the master curve and the hardness It is a program for realizing the function of calculating the at least one material characteristic value of the evaluation target region from the above and the function of performing the destructive evaluation of the device using the at least one material characteristic value.

【0030】請求項10発明によれば、プラント機器運
転中に生じる構成材料の材質変化を直接反映した高精度
の構造材料健全性評価を、コンピュータによって実現す
ることができる。
According to the tenth aspect of the present invention, it is possible to realize a highly accurate structural material soundness evaluation by a computer, which directly reflects the material changes of the constituent materials that occur during the operation of the plant equipment.

【0031】[0031]

【発明の実施の形態】以下本発明の実施の形態を図面を
参照して説明する。 [第1の実施の形態]図1は本発明の第1の実施の形態
に係わるフロー図である。初めに評価部位の条件設定を
行う(工程S1)。本実施の形態では、評価部位形状を
管状とし、欠陥は周方向き裂で、曲げ負荷が与えられる
場合を例として説明する。欠陥形状は、半楕円形状ある
いは配管の内表面に存在する扇型形状、あるいは配管板
厚を貫通した扇型形状のようにモデル化したものとし、
これらのモデル欠陥の欠陥深さ、欠陥長さの値を用い
て、構造材料健全性評価を実行する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. [First Embodiment] FIG. 1 is a flow chart according to the first embodiment of the present invention. First, the conditions of the evaluation site are set (step S1). In the present embodiment, the case where the shape of the evaluation site is tubular, the defect is a circumferential crack, and a bending load is applied will be described as an example. The defect shape shall be modeled as a semi-elliptical shape or a fan shape existing on the inner surface of the pipe, or a fan shape penetrating the pipe plate thickness,
The structural material integrity evaluation is executed using the values of the defect depth and the defect length of these model defects.

【0032】なお、モデル化は、実機の欠陥検査で計測
された欠陥形状に基づき行うことになるが、欠陥が発見
されなかった場合でも、仮想的に欠陥の存在を仮定しそ
の形状を設定することも含める。例えば、欠陥検出装置
の検出精度以下の微小欠陥の存在を想定するような場
合、あるいは空間的に欠陥検出装置が近づけない部位に
対し解析等により欠陥寸法を予測する場合が、それらに
該当する。また、欠陥が実測された場合でも、その実測
寸法より大きめの値を評価に用いれば、実際より低い荷
重でも評価上の欠陥は進展することになり、評価上は安
全側であることから保守的な構造材料健全性評価を行う
ことができる。次に、硬さ測定または設定を行う(工程
S2)。硬さの測定または設定は次のまたはのいず
れかの方法にて行う。
The modeling is performed based on the defect shape measured by the defect inspection of the actual machine. Even if the defect is not found, the existence of the defect is virtually assumed and the shape is set. Also include things. For example, these cases are applicable when it is assumed that a minute defect having a detection accuracy of the defect detection apparatus or less is present, or when the defect size is predicted by analysis or the like for a portion that the defect detection apparatus cannot spatially approach. Even if a defect is actually measured, if a larger value than the actually measured dimension is used for evaluation, the defect in the evaluation will progress even if the load is lower than it actually is, and it is conservative from the viewpoint of safety. It is possible to perform various structural material integrity evaluations. Next, hardness measurement or setting is performed (step S2). The hardness is measured or set by any of the following methods.

【0033】硬さ計測装置を評価機器表面に接触ある
いは近接させ、硬さ測定用の圧子を被測定表面に押し付
けることにより、評価対象部位の硬さを直接測定する。 評価対象部位から離れた部位の硬さを測定し、別途求
めた評価部位の硬さとの換算関係を用い、直接評価対象
部位の硬さを測定することなく、評価対象部位の硬さを
算出する。
The hardness of the site to be evaluated is directly measured by bringing the hardness measuring device into contact with or close to the surface of the evaluation device and pressing an indenter for measuring hardness against the surface to be measured. The hardness of the evaluation target site is calculated without measuring the hardness of the evaluation target site directly by measuring the hardness of the site away from the evaluation site and using the conversion relationship with the hardness of the evaluation site obtained separately. .

【0034】ここで、測定に用いる硬さ試験法として
は、ビッカース硬さで代表される従来の硬さ試験のよう
に測定用圧子の除荷後に被測定物表面に残る圧痕の大き
さを測る方法、あるいはユニバーサル硬さと呼ばれる圧
子の押込み深さと荷重を用いて求める方法の何れでも良
い。
Here, as the hardness test method used for measurement, the size of the indentation left on the surface of the object to be measured after unloading the indenter for measurement is measured as in the conventional hardness test represented by Vickers hardness. Any of a method and a method called universal hardness, which is obtained by using an indenter indentation depth and a load, may be used.

【0035】後者のユニバーサル硬さは、ビッカース硬
さのような従来法に比べ材料の機械的性質をより反映し
た測定法であることが報告されている(文献:Yasuda
ら, Anew method for evaluating stress-strain prope
rties of metals using ultra-microhardness techniqu
e,Journal of Nuclear Materials,Vol.187,p.109,1
992年)。
The latter universal hardness has been reported to be a measuring method that more reflects the mechanical properties of the material than the conventional method such as Vickers hardness (Reference: Yasuda).
Et al, A new method for evaluating stress-strain prope
rties of metals using ultra-microhardness techniqu
e, Journal of Nuclear Materials, Vol.187, p.109, 1
992).

【0036】次に、降伏応力、引張強さ、応力ひずみ関
係、破壊靭性値、およびJR曲線等の算出を行う(工程
S3)。硬さと降伏応力σyおよび引張強さσの関係
は、温度も変数に含める関数で表せる。すなわち、硬さ
試験は一般に室温で行うが、評価対象とする機器の状態
はその運転温度が室温とは異なる場合が多く、その温度
を変数に含める以下の(1)式および(2)式の形とする。 σy = f(硬さ,温度) (1) σu = g(硬さ,温度) (2)
Next, the yield stress, tensile strength, stress-strain relationship, fracture toughness value, JR curve, etc. are calculated (step S3). The relationship between the hardness and the yield stress σ y and the tensile strength σ u can be expressed by a function that includes temperature as a variable. That is, the hardness test is generally carried out at room temperature, but the operating temperature of the equipment to be evaluated is often different from room temperature, and the temperature is included in the variables (1) and (2) below. Form. σ y = f (hardness, temperature) (1) σ u = g (hardness, temperature) (2)

【0037】ここで、硬さ試験を評価対象機器の温度と
等しい高温で実施し、高温硬さを求める方法もある。さ
らに、評価対象状態が常に一定温度であれば、その温度
での降伏応力σyおよび引張強さσを、次式(3),(4)
のように単純に硬さのみの関数として表すこともでき
る。 σy = f(硬さ) (3) σu = g(硬さ) (4)
Here, there is also a method in which the hardness test is carried out at a high temperature equal to the temperature of the equipment to be evaluated to obtain the high temperature hardness. Furthermore, if the evaluation target state is always a constant temperature, the yield stress σ y and tensile strength σ u at that temperature are calculated by the following equations (3), (4)
It can also be expressed simply as a function of hardness only. σ y = f (hardness) (3) σ u = g (hardness) (4)

【0038】本実施の形態では、説明の単純化のため、
応力ひずみ関係、破壊靭性値、およびJR曲線も含め
て、上式のように温度の因子を省略して説明する。破壊
靭性値JICも、上記の降伏応力σyおよび引張強さσu
同様に、次式(5)のように硬さの関数で表せる。 JIC = h(硬さ) (5)
In the present embodiment, in order to simplify the explanation,
Including the stress-strain relationship, the fracture toughness value, and the JR curve, the temperature factor will be omitted as in the above equation. The fracture toughness value J IC can also be expressed as a function of hardness as in the following equation (5), like the yield stress σ y and the tensile strength σ u . J IC = h (hardness) (5)

【0039】これに対し、応力ひずみ関係およびJR曲
線は、前者が応力σとひずみεの関係、後者が弾塑性破
壊靭性値Jとき裂進展量Δaの関係を表す式で、それぞ
れ例えば以下(6)式、(7)式のようなべき乗則で近似すれ
ば良い。 σ= α(ε)n (6) J= β(Δa)m (7)
On the other hand, regarding the stress-strain relationship and the JR curve, the former is the relationship between the stress σ and the strain ε, and the latter is the relationship between the elasto-plastic fracture toughness value J and the crack growth amount Δa. ) And equation (7) may be used for approximation. σ = α (ε) n (6) J = β (Δa) m (7)

【0040】ここで、上式の係数α、βおよび指数n、
mを以下(8)式〜(11)式のように硬さの関数として表せ
る。 α= i(硬さ) (8) n = j(硬さ) (9) β= k(硬さ) (10) m = l(硬さ) (11)
Here, the coefficients α and β and the index n in the above equation,
m can be expressed as a function of hardness like the following expressions (8) to (11). α = i (hardness) (8) n = j (hardness) (9) β = k (hardness) (10) m = l (hardness) (11)

【0041】最後に、破壊評価の実行を行う(工程S
4)。破壊評価方法は、例えば、英国中央電力庁が開発
したR6法(例えば 文献:I.Milne et al., CEGB Re
p., R/H/R6-Rev.3, 1986)あるいは日本機会学会の維持
規格(発電用原子力設備規格 JSME S NA1-2000,2000年
5月)に規定された2パラメータ法に従えば良い。2パ
ラメータ法は線形破壊力学クライテリオンと塑性崩壊ク
ライテリオンを組み合わせ、破壊評価線図上で破壊評価
を行う方法である。
Finally, destructive evaluation is performed (step S
4). The destructive evaluation method is, for example, the R6 method developed by the Central Electricity Authority of the United Kingdom (for example, reference: I. Milne et al., CEGB Re
p., R / H / R6-Rev.3, 1986) or the Japan Society for Opportunity Society maintenance standard (Nuclear Power Generation Equipment Standard JSME S NA1-2000, 2000)
May follow the two-parameter method stipulated in (May). The two-parameter method is a method in which a linear fracture mechanics criterion and a plastic collapse criterion are combined to perform fracture evaluation on a fracture evaluation diagram.

【0042】2パラメータ法による破壊評価を行うまで
のフローを図2に示す。前述の図1で説明した評価部位
形状として配管の半径と肉厚、欠陥の寸法、および荷重
条件(ここでは曲げモーメントとする)を入力する(工
程S21)。次に、同じく前述の図1で説明した硬さの
測定値を用い、降伏応力、引張強さおよび応力ひずみ曲
線を算出する(工程S22)。なお、これらの値の一部
または全てを硬さから算出する代わりに、文献あるいは
解析等で得られた値を用いても良い。
FIG. 2 shows the flow until the destructive evaluation by the two-parameter method. The radius and wall thickness of the pipe, the size of the defect, and the load condition (here, the bending moment) are input as the shape of the evaluation portion described in FIG. 1 (step S21). Next, the yield stress, the tensile strength and the stress-strain curve are calculated using the measured values of hardness similarly described in FIG. 1 (step S22). Instead of calculating some or all of these values from the hardness, values obtained by literature or analysis may be used.

【0043】次に、以上の値より評価対象機器の破壊の
限界を表す破壊評価曲線を求める(工程S23)。破壊
評価曲線を表示する関係式は数種類ある。一例として、
前記2パラメータ法であるR6法オプション2で定めら
れた式を以下(12)式に示す。 Kr=[(E・εref)/( Lr・σy) +(Lr3σy)/(2E・εref)]−1/2 (12)
Next, a destruction evaluation curve showing the limit of destruction of the equipment to be evaluated is obtained from the above values (step S23). There are several types of relational expressions that display the fracture evaluation curve. As an example,
The equation defined by the R6 method option 2 which is the two-parameter method is shown in the following equation (12). Kr = [(E · ε ref ) / (Lr · σ y ) + (Lr 3 σ y ) / (2E · ε ref )] −1/2 (12)

【0044】ここで、Krは脆性パラメータ、Lrは延
性パラメータである。また、Eは縦弾性係数で、この値
は本実施の形態では硬さの関数として扱わないので文献
等の値を引用する必要がある。εrefは応力ひずみ曲線
上で応力Lr・σyに相当するひずみ、σyは降伏応力で
ある。上式でLrは塑性崩壊基準のσf/σyで打ち切ら
れる。ここでσfは、(降伏応力+引張強さ)/2で求
められる流動応力である。
Here, Kr is a brittleness parameter and Lr is a ductility parameter. Further, E is a longitudinal elastic modulus, and since this value is not treated as a function of hardness in the present embodiment, it is necessary to cite a value in literatures or the like. ε ref is the strain corresponding to the stress Lr · σ y on the stress-strain curve, and σ y is the yield stress. In the above equation, Lr is discontinued by the plastic collapse criterion σ f / σ y . Here, σ f is a flow stress obtained by (yield stress + tensile strength) / 2.

【0045】次に、本発明に係る硬さを用い、破壊靭性
値およびJR曲線を算出する(工程S24)。ここで
も、これらの値の一部または全てを硬さから算出する代
わりに、文献あるいは解析等で得られた値を用いても良
い。以上の値から、破壊評価点を求める(工程S2
5)。ここでは曲げを受ける貫通き裂付の配管の場合を
示す。 Lr=M/MC(a0, σy) (13) Kr=[Je(a0)/JIC1/2 (14)
Next, the fracture toughness value and the JR curve are calculated using the hardness according to the present invention (step S24). Here, instead of calculating some or all of these values from the hardness, the values obtained by literature or analysis may be used. Destruction evaluation points are obtained from the above values (step S2
5). Here, the case of a pipe with a through crack that undergoes bending is shown. Lr = M / M C (a 0, σ y) (13) Kr = [J e (a 0) / J IC] 1/2 (14)

【0046】ここで、Mは負荷モーメント、MCは完全
弾塑性体を仮定した長さ2a0の貫通き裂を有する配管
の限界モーメントである。Je(a0)はJ積分の弾性成
分であり、JICは破壊靭性値である。
Here, M is a load moment, and M C is a limiting moment of a pipe having a through crack of length 2a 0 assuming a perfect elasto-plastic body. J e (a 0 ) is the elastic component of the J integral, and J IC is the fracture toughness value.

【0047】さらに、モーメント一定で、き裂をΔaだ
け進展させた場合の破壊評価点を(13)式および(14)式に
より求める。ただし、(14)式のJICはJR曲線上のき裂
進展量Δaに対応するJ積分に置き換える。前記の仮想
進展前の破壊評価点と結ぶことにより、破壊評価線図上
で破壊評価点は曲線(き裂進展軌跡)で表示される。以
上のように求めた破壊評価曲線と破壊評価点を比較し、
破壊評価点の1つ以上が破壊評価曲線を下回れば欠陥の
進展は止まると判定する(工程S26)。
Further, the fracture evaluation points when the crack propagates by Δa with a constant moment are obtained by the equations (13) and (14). However, J IC in the equation (14) is replaced with J integral corresponding to the crack growth amount Δa on the JR curve. By connecting with the fracture evaluation point before the virtual propagation, the fracture evaluation point is displayed as a curve (crack propagation locus) on the fracture evaluation diagram. Compare the fracture evaluation curve obtained as above and the fracture evaluation points,
If one or more of the fracture evaluation points is below the fracture evaluation curve, it is determined that the defect progresses (step S26).

【0048】本実施の形態によれば、割れ、き裂等の欠
陥が存在する機器の破壊評価に必要な材料物性値が、評
価対象機器部材の硬さを測定することで取得できる。プ
ラント機器運転中に材質変化が起こるような場合、材質
変化を反映した精度の高い当該機器の構造健全化評価を
行うことができる。
According to the present embodiment, the physical property value of the material required for the fracture evaluation of the device having the defects such as cracks and cracks can be obtained by measuring the hardness of the evaluation target member. When the material changes during the operation of the plant equipment, the structural integrity evaluation of the equipment can be performed with high accuracy reflecting the material change.

【0049】なお、上記実施の形態において、硬さの測
定値とマスターカーブとから材料特性値を算出するこ
と、およびこの材料特性値に基づいて機器の破壊評価を
行うことは、プログラムを用いてコンピュータにより実
行することができる。
In the above embodiment, a program is used to calculate the material characteristic value from the hardness measurement value and the master curve and to perform the destructive evaluation of the equipment based on the material characteristic value. It can be executed by a computer.

【0050】[第2の実施の形態]本発明の第2の実施
の形態を図3を参照しながら説明する。ここで、第1の
実施の形態と同じまたは類似の部分には同じ符号を付し
て重複説明を省略する。
[Second Embodiment] A second embodiment of the present invention will be described with reference to FIG. Here, parts that are the same as or similar to those in the first embodiment are assigned the same reference numerals and duplicate explanations are omitted.

【0051】この第2の実施の形態では、第1の実施の
形態と同様に、硬さに基づき材料特性値を算出するが、
この硬さ測定を評価対象機器の対象部位で行うのではな
く、硬さ測定用に評価対象機器からサンプリングした試
料について行う。よって、硬さ測定用試料のサンプリン
グ工程(工程S31)を、硬さ測定(工程S2)の前に
設ける。その他は第1の実施の形態と同様である。
In the second embodiment, similar to the first embodiment, the material characteristic value is calculated based on the hardness.
This hardness measurement is not performed on the target site of the evaluation target device, but is performed on a sample sampled from the evaluation target device for hardness measurement. Therefore, the sampling step of the hardness measurement sample (step S31) is provided before the hardness measurement (step S2). Others are the same as those in the first embodiment.

【0052】実機プラントの現場に硬さ計測装置を持ち
込み測定作業を行うことに比べ、サンプリングした試料
を環境の整った実験室等に持ち帰り測定することができ
るので、より正確な硬さ測定が可能で、結果的に構造材
料健全性評価の精度を上げることができる。また、硬さ
以外の物性値の測定が、そのサンプリング試料の大きさ
で行えるのであれば、必要に応じそれも実施できる。
Compared to carrying out the measurement work by bringing in a hardness measuring device to the site of the actual plant, the sampled sample can be taken back to a laboratory or the like in an environment where it can be measured, so that more accurate hardness measurement is possible. As a result, the accuracy of structural material integrity evaluation can be improved. In addition, if physical property values other than hardness can be measured with the size of the sampling sample, it can be carried out as necessary.

【0053】[0053]

【発明の効果】本発明によれば、使用中に材質変化を伴
うような条件で運転された機器に対し、その製造時ある
いは使用中に機器構成材料の表面あるいは内部に、割
れ、き裂等の欠陥が存在した場合の機器の構造健全性を
評価する場合、材質変化の指標としての硬さ測定値か
ら、硬さと相関のある材料特性値を算出することがで
き、それらの値を用いることによって、実機での材質変
化が複雑であってもその変化を反映した精度の高い構造
材料健全性評価を行うことができる。
According to the present invention, with respect to a device that is operated under conditions where the material changes during use, cracks, cracks, etc. on the surface or inside of the device constituent material during its manufacture or use When assessing the structural integrity of a device in the presence of defects, it is possible to calculate material property values that correlate with hardness from the measured hardness values as indicators of material changes, and use those values. Thus, even if the material change in the actual machine is complicated, it is possible to accurately evaluate the structural material soundness reflecting the change.

【0054】硬さ試験は、測定時に被測定物に与える損
傷が小さい半非破壊的な試験法であることから、被測定
物の表面を大きく破壊することがない。仮に測定用の試
料を評価対象機器からサンプリングする必要が生じて
も、その試料の大きさは、従来の試験方法により硬さ以
外の材料特性値を求める場合に必要とされる試験片に比
べ、非常に小さくすることが可能である。よって、サン
プリングによる切出し跡を溶接、埋め戻し等で補修する
必要が生じても、その作業は非常に軽微である。以上説
明したように、本発明によれば、安価で高精度の構造材
料健全性評価を行うことができる。
Since the hardness test is a semi-non-destructive test method in which damage to the object to be measured during measurement is small, the surface of the object to be measured is not largely destroyed. Even if it is necessary to sample a sample for measurement from the device to be evaluated, the size of the sample is larger than that of a test piece required when determining material property values other than hardness by a conventional test method. It can be very small. Therefore, even if it is necessary to repair the cutout traces due to sampling by welding, backfilling, etc., the work is extremely minor. As described above, according to the present invention, inexpensive and highly accurate structural material soundness evaluation can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る構造材料健全性評価方法の第1の
実施の形態のフロー図。
FIG. 1 is a flow chart of a first embodiment of a structural material soundness evaluation method according to the present invention.

【図2】図1における破壊評価工程を2パラメータ法に
よって行う場合のフロー図。
FIG. 2 is a flow chart when the fracture evaluation step in FIG. 1 is performed by a two-parameter method.

【図3】本発明に係る構造材料健全性評価方法の第2の
実施の形態のフロー図。
FIG. 3 is a flow chart of a second embodiment of a structural material soundness evaluation method according to the present invention.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 構造材料に欠陥を有する可能性のある機
器の構造材料健全性評価方法において、 評価対象部位の硬さに相当する硬さを測定する硬さ測定
工程と、 前記評価対象部位と同等の材料特性を有する材料につい
て求めた硬さ以外の材料特性値に対し、その硬さ以外の
材料特性値を硬さの関数として表したマスターカーブ
に、前記硬さ測定工程で得られた硬さ測定値を当ては
め、前記硬さ以外の材料特性値のうちの少なくとも一つ
を算出する材料特性値算出工程と、 前記材料特性値算出工程で得られた前記硬さ以外の材料
特性値を用いて前記機器の破壊評価を行う破壊評価工程
と、 を有することを特徴とする構造材料健全性評価方法。
1. A hardness measuring step of measuring hardness corresponding to hardness of a portion to be evaluated in a structural material soundness evaluation method for a device having a possibility that a structural material has a defect; For material property values other than the hardness obtained for materials having equivalent material properties, a master curve expressing the material property values other than the hardness as a function of the hardness is added to the hardness obtained in the hardness measurement step. Material characteristic value calculation step of applying at least one of the material characteristic values other than the hardness, and the material characteristic values other than the hardness obtained in the material characteristic value calculation step are used. And a destructive evaluation step of performing destructive evaluation of the device.
【請求項2】 請求項1に記載の構造材料健全性評価方
法において、前記硬さ以外の材料特性値には、降伏応
力、引張強さ、応力ひずみ関係、破壊靭性値、およびJ
R曲線のうちの少なくとも一つを含むこと、を特徴とす
る構造材料健全性評価方法。
2. The structural material soundness evaluation method according to claim 1, wherein the material property values other than the hardness include yield stress, tensile strength, stress-strain relationship, fracture toughness value, and J
A structural material integrity evaluation method comprising at least one of R curves.
【請求項3】 請求項1または2に記載の構造材料健全
性評価方法において、前記評価対象部位の硬さに相当す
る硬さは、前記評価対象部位の硬さであること、を特徴
とする構造材料健全性評価方法。
3. The structural material soundness evaluation method according to claim 1 or 2, wherein the hardness corresponding to the hardness of the evaluation target portion is the hardness of the evaluation target portion. Structural material integrity evaluation method.
【請求項4】 請求項1または2に記載の構造材料健全
性評価方法において、前記評価対象部位の硬さに相当す
る硬さは、前記評価対象部位とは異なる前記機器の部位
の硬さであって、前記評価対象部位の硬さを推定できる
部位の硬さであること、を特徴とする構造材料健全性評
価方法。
4. The structural material integrity evaluation method according to claim 1, wherein the hardness corresponding to the hardness of the evaluation target site is a hardness of a site of the device different from the evaluation target site. Then, the structural material soundness evaluation method is characterized in that it is the hardness of a portion where the hardness of the evaluation target portion can be estimated.
【請求項5】 請求項1ないし4のいずれかに記載の構
造材料健全性評価方法において、前記評価対象部位の硬
さに相当する硬さは、前記機器から採取した試料の硬さ
であること、を特徴とする構造材料健全性評価方法。
5. The structural material integrity evaluation method according to claim 1, wherein the hardness corresponding to the hardness of the evaluation target portion is the hardness of a sample collected from the device. A structural material integrity evaluation method characterized by:
【請求項6】 請求項1ないし5のいずれかに記載の構
造材料健全性評価方法において、前記破壊評価工程で、
前記欠陥の形状を仮想的に設定し、その仮想欠陥の形状
寸法を表す数値を用いること、を特徴とする構造材料健
全性評価方法。
6. The structural material integrity evaluation method according to claim 1, wherein in the destruction evaluation step,
A structural material soundness evaluation method, wherein the shape of the defect is virtually set and a numerical value representing the shape dimension of the virtual defect is used.
【請求項7】 請求項1ないし6のいずれかに記載の構
造材料健全性評価方法において、前記破壊評価工程で、
前記欠陥の形状寸法を実際より大きめの値に設定するこ
と、を特徴とする構造材料健全性評価方法。
7. The structural material integrity evaluation method according to claim 1, wherein in the destruction evaluation step,
A structural material soundness evaluation method, characterized in that the shape dimension of the defect is set to a value larger than an actual value.
【請求項8】 請求項1ないし7のいずれかに記載の構
造材料健全性評価方法において、前記硬さ測定工程で、
硬さ試験機の圧子の押込み深さと荷重を用いて硬さを算
出すること、を特徴とする構造材料健全性評価方法。
8. The structural material soundness evaluation method according to claim 1, wherein in the hardness measuring step,
A method for evaluating the integrity of a structural material, wherein hardness is calculated using the indentation depth of an indenter of a hardness tester and a load.
【請求項9】 請求項1ないし8のいずれかに記載の構
造材料健全性評価方法において、 前記材料特性値算出工程では、少なくとも破壊靭性値、
JR曲線および応力ひずみ関係を算出し、 前記破壊評価工程では、脆性パラメータと延性パラメー
タの関係を座標平面とする破壊評価線図の上で、前記破
壊靭性値およびJR曲線を用いて計算される破壊評価点
が前記応力ひずみ関係を用いて計算される破壊評価曲線
を下回ることを、破壊しないことの判定基準とするこ
と、を特徴とする構造材料健全性評価方法。
9. The structural material soundness evaluation method according to claim 1, wherein in the material characteristic value calculating step, at least a fracture toughness value,
A JR curve and a stress-strain relationship are calculated, and in the fracture evaluation step, a fracture calculated using the fracture toughness value and the JR curve on a fracture evaluation diagram having a relationship between brittleness parameter and ductility parameter as a coordinate plane. A structural material integrity evaluation method, characterized in that the evaluation point is below a fracture evaluation curve calculated using the stress-strain relationship as a criterion of non-destruction.
【請求項10】 コンピュータに、 構造材料に欠陥を有する可能性のある機器の評価対象部
位と同等の材料特性を有する材料について求めた硬さ以
外の少なくとも一つの材料特性値を硬さの関数として表
したマスターカーブを記憶する機能と、 前記評価対象部位の硬さに相当する硬さの測定値を入力
する機能と、 前記マスターカーブと前記硬さの測定値とから前記評価
対象部位の前記少なくとも一つの材料特性値を算出する
機能と、 前記少なくとも一つの材料特性値を用いて前記機器の破
壊評価を行う機能と、 を実現させるためのプログラム。
10. A computer is provided with at least one material characteristic value other than the hardness obtained for a material having the same material characteristics as an evaluation target part of an equipment which may have a defect in a structural material, as a function of hardness. A function of storing the master curve represented, a function of inputting a measurement value of hardness corresponding to the hardness of the evaluation target portion, the at least the evaluation target portion from the master curve and the measurement value of the hardness A program for realizing a function of calculating one material characteristic value, and a function of performing destructive evaluation of the device using the at least one material characteristic value.
JP2001261210A 2001-08-30 2001-08-30 Structural material soundness evaluation method and program Expired - Fee Related JP4112830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001261210A JP4112830B2 (en) 2001-08-30 2001-08-30 Structural material soundness evaluation method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001261210A JP4112830B2 (en) 2001-08-30 2001-08-30 Structural material soundness evaluation method and program

Publications (2)

Publication Number Publication Date
JP2003065921A true JP2003065921A (en) 2003-03-05
JP4112830B2 JP4112830B2 (en) 2008-07-02

Family

ID=19088286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001261210A Expired - Fee Related JP4112830B2 (en) 2001-08-30 2001-08-30 Structural material soundness evaluation method and program

Country Status (1)

Country Link
JP (1) JP4112830B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195460A (en) * 2004-01-07 2005-07-21 Toshiba Corp Method for modifying surface of structure in reactor
JP2006194604A (en) * 2005-01-11 2006-07-27 Matsushita Electric Works Ltd Mechanical characteristic calculating program and mechanical characteristic measuring instrument
JP2009250689A (en) * 2008-04-02 2009-10-29 Future-Tech Corp Yield stress measuring method
JP2010101876A (en) * 2008-09-29 2010-05-06 Ihi Corp Material property specification method of elastoplastic material by indentor indentation test
JP2010160028A (en) * 2009-01-07 2010-07-22 Toshiba Corp Method for evaluating breaking strength of different material joint part
KR100988518B1 (en) 2003-05-23 2010-10-20 두산중공업 주식회사 Bearing babbitt sample getting method
JP2012117995A (en) * 2010-12-03 2012-06-21 Jfe Steel Corp Deformation state evaluation method for cold-forming square steel pipe
JP7362550B2 (en) 2020-06-09 2023-10-17 株式会社神戸製鋼所 Insulation board inspection method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100988518B1 (en) 2003-05-23 2010-10-20 두산중공업 주식회사 Bearing babbitt sample getting method
JP2005195460A (en) * 2004-01-07 2005-07-21 Toshiba Corp Method for modifying surface of structure in reactor
JP2006194604A (en) * 2005-01-11 2006-07-27 Matsushita Electric Works Ltd Mechanical characteristic calculating program and mechanical characteristic measuring instrument
JP2009250689A (en) * 2008-04-02 2009-10-29 Future-Tech Corp Yield stress measuring method
JP2010101876A (en) * 2008-09-29 2010-05-06 Ihi Corp Material property specification method of elastoplastic material by indentor indentation test
JP2010160028A (en) * 2009-01-07 2010-07-22 Toshiba Corp Method for evaluating breaking strength of different material joint part
JP2012117995A (en) * 2010-12-03 2012-06-21 Jfe Steel Corp Deformation state evaluation method for cold-forming square steel pipe
JP7362550B2 (en) 2020-06-09 2023-10-17 株式会社神戸製鋼所 Insulation board inspection method

Also Published As

Publication number Publication date
JP4112830B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
JP2016509670A (en) Probabilistic modeling and sizing of internal defects in nondestructive inspection for fatigue damage prediction and structural integrity assessment
CN107843510B (en) Method for estimating residual endurance life of supercritical unit T/P91 heat-resistant steel based on room-temperature Brinell hardness prediction
CN102353595A (en) Test method for J-R resistance curve of high-toughness material
CN108897946B (en) Material equivalent stress-strain relation prediction method based on ball and cone integrated pressure head
Ainsworth et al. Failure assessment diagrams for high temperature defect assessment
JP6976894B2 (en) Material life evaluation method, evaluation device, and evaluation program
JP2003065921A (en) Method for evaluating integrity in structure material, and program
JP4676323B2 (en) Method for measuring fracture toughness value of metallic materials
JP3728286B2 (en) Nondestructive high temperature creep damage evaluation method
JP2012032333A (en) Method for evaluating generation of ductile crack and device for the same
JP2007057325A (en) Remaining lifetime prediction method
JP5492057B2 (en) Damage prediction method for heat-resistant steel welds
JPH1123776A (en) Composite diagnostic system of reactor internal equipment
KR100305723B1 (en) Method for Automatic Life Assessment of Mechanical Equipments under Complex Loads Using Strain
JP4672616B2 (en) Evaluation method of stress corrosion crack growth rate
Kharchenko et al. Analysis of the methods for determination of strength characteristics of NPP main equipment metal from the results of hardness and indentation measurements
JP2007108095A (en) Method and device for diagnosing member irradiated with neutron
JP2003294880A (en) Irradiation damage evaluation method
JP6430220B2 (en) Structure life diagnosis method and structure life diagnosis apparatus
JP6523816B2 (en) Life evaluation method of structure
JP6739986B2 (en) Life assessment device and life assessment method
Tahir Creep-Fatigue Damage Investigation and Modeling of Alloy 617 at High Temperatures
Ren et al. Experiment-Based Reliability Analysis of Girth Welds on Different Grade Steel Pipelines
JP4434631B2 (en) Diagnosis method for neutron irradiated components
JP2003028978A (en) Method and program for determining inspection timing for in-vessel structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060817

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060822

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees