JP2010203812A - Method for evaluating life time of high strength ferritic steel - Google Patents

Method for evaluating life time of high strength ferritic steel Download PDF

Info

Publication number
JP2010203812A
JP2010203812A JP2009047354A JP2009047354A JP2010203812A JP 2010203812 A JP2010203812 A JP 2010203812A JP 2009047354 A JP2009047354 A JP 2009047354A JP 2009047354 A JP2009047354 A JP 2009047354A JP 2010203812 A JP2010203812 A JP 2010203812A
Authority
JP
Japan
Prior art keywords
hardness
ferritic steel
strength ferritic
evaluation
life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009047354A
Other languages
Japanese (ja)
Inventor
Masatsugu Shimizu
正嗣 清水
Nobuyoshi Komai
伸好 駒井
Seiji Sasaki
清治 佐々木
Eiji Ozaki
英史 尾崎
Akihiro Sakaki
明裕 榊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2009047354A priority Critical patent/JP2010203812A/en
Publication of JP2010203812A publication Critical patent/JP2010203812A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a life evaluation method capable of accurately evaluating the life time even of a high strength ferritic steel regardless thermal history thereof. <P>SOLUTION: The life time of a high strength ferritic steel is evaluated by measuring hardness of a first evaluation part suffered from creep damage by temperature and a stress applied with a lapse of time and a second evaluation part free from creep damage without a stress applied thereto, in the high strength ferritic steel; calculating the difference between the hardness of the first evaluation part and the hardness of the second evaluation part; and estimating the creep life time consumption rate of the first evaluation part based on the difference between the hardness of the first evaluation part and the hardness of the second evaluation part. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高強度フェライト鋼の寿命評価方法であって、特に、火力発電や原子力発電設備などの高温耐圧部に用いられるクロム(Cr)含有量が9%以上のフェライト系高強度耐熱鋼、すなわち、高強度フェライト鋼の寿命評価方法に関する。   The present invention is a method for evaluating the life of high-strength ferritic steel, and in particular, a ferritic high-strength heat-resistant steel having a chromium (Cr) content of 9% or more used in high-temperature pressure-resistant parts such as thermal power generation and nuclear power generation facilities, That is, the present invention relates to a method for evaluating the life of high-strength ferritic steel.

火力発電や原子力発電設備において使用されるボイラチューブ等の高温部材やその溶接部分は、高温(クリープ温度域)かつ高圧下で外力を受けながら長時間に亘って使用されるため、クリープ損傷が進行してボイドが発生し、さらに発生したボイドの連結によって亀裂が生じ、最終的に破断に至る。   High temperature members such as boiler tubes used in thermal power generation and nuclear power generation facilities and their welded parts are used for a long time while receiving external force at high temperature (creep temperature range) and high pressure, so that creep damage progresses. As a result, voids are generated, and cracks are generated due to the connection of the generated voids.

そこで、高温部材のクリープボイド生成量や硬さがクリープ損傷の進行に伴って変化することを利用して、図5に示すような予め確認した寿命消費率(使用時間/破断時間)とボイド生成量との関係、及び図6に示すような寿命消費率と硬さとの関係を、実際の組織観察によるクリープボイドの計測結果と照らし合わせることで高温部材の寿命を評価し、その交換時期を定めていた。しかし、変化の基準となる初期硬さは、規格の範囲内での化学成分のばらつきや製鋼時の熱処理等ロット毎の差に加え部品製造工程で受けた様々な熱履歴によって、一般的に製品ごとに異なった値となっている。そのため、この初期の硬さを考慮しなければ正確な寿命評価ができない。   Therefore, utilizing the fact that the amount of creep voids generated and the hardness of the high temperature member change as the creep damage progresses, the life consumption rate (use time / breaking time) and void generation confirmed in advance as shown in FIG. The life of a high-temperature member is evaluated by comparing the relationship between the amount and the relationship between the life consumption rate and hardness as shown in FIG. 6 with the measurement result of the creep void by actual structure observation, and the replacement time is determined. It was. However, the initial hardness, which is the standard for changes, generally depends on the various thermal histories received in the part manufacturing process, as well as variations in chemical composition within the range of the standard and differences between lots such as heat treatment during steelmaking. Each has a different value. For this reason, accurate life evaluation cannot be performed without considering the initial hardness.

特開2001−208654号公報(特許文献1)には、高温部材の初期の硬さを測定しなくても正確に寿命を予測するために、時間間隔をおいて複数回測定してこの測定結果の差からクリープ損傷による硬さ低下量を算出し、さらに時間間隔分のクリープ損傷蓄積率を求めて寿命を予測する旨が開示されている。   Japanese Patent Laid-Open No. 2001-208654 (Patent Document 1) discloses a measurement result obtained by measuring a plurality of times at time intervals in order to accurately predict the life without measuring the initial hardness of the high temperature member. It is disclosed that the amount of decrease in hardness due to creep damage is calculated from the difference between the two, and the lifetime is predicted by obtaining the creep damage accumulation rate for a time interval.

特開2001−208654号公報JP 2001-208654 A

しかしながら、高温で使用される部材の使用による硬さの低下は、クリープ損傷のみならず熱履歴にも起因する。すなわち、高強度フェライト鋼の硬さは、高温下で応力が負荷されてクリープ損傷が進行することによって低下するだけでなく、無負荷状態であっても長時間高温に曝されることによっても低下する。このように、高強度フェライト鋼の使用に伴う硬さ変化には、クリープ損傷以外の要因によるものも含まれるため、クリープ損傷の進行に伴って硬さが変化することを利用した上記手法をそのまま用いて寿命評価を行うと、評価結果の寿命と実際の寿命とに差が生じ、寿命評価の精度が低下するという問題がある。   However, the decrease in hardness due to the use of members used at high temperatures is caused not only by creep damage but also by thermal history. That is, the hardness of high-strength ferritic steel not only decreases due to stress being applied at high temperatures and creep damage, but also decreases due to prolonged exposure to high temperatures even in no-load conditions. To do. As described above, the change in hardness associated with the use of high-strength ferritic steel also includes factors due to factors other than creep damage, so the above-described method using the fact that hardness changes with the progress of creep damage remains unchanged. When the life evaluation is performed using this, there is a problem that a difference occurs between the life of the evaluation result and the actual life, and the accuracy of the life evaluation is lowered.

本発明は、上記問題を解決するためになされたもので、高強度フェライト鋼であっても熱履歴に拘わらず精度よく寿命を評価することのできる高強度フェライト鋼の寿命評価方法を提供することを目的とする。   The present invention has been made to solve the above problems, and provides a life evaluation method for high-strength ferritic steel that can accurately evaluate the life regardless of thermal history even for high-strength ferritic steel. With the goal.

上記課題を解決するために、本発明は以下の手段を採用する。
本発明は、評価対象の高強度フェライト鋼のうち、温度及び時間の経過と共に応力が負荷されることによってクリープ損傷を受ける第一の評価部位と、応力が負荷されずクリープ損傷を受けない第二の評価部位との硬さをそれぞれ測定し、前記第一の評価部位の硬さと前記第二の評価部位の硬さの差を算出し、前記差に基づいて前記第一の評価部位のクリープ寿命消費率を推定することにより前記高強度フェライト鋼の寿命を評価する高強度フェライト鋼の寿命評価方法を提供する。
In order to solve the above problems, the present invention employs the following means.
The present invention relates to a first evaluation portion that is subject to creep damage due to stress being applied with the passage of temperature and time among the high-strength ferritic steels to be evaluated, and a second that is not subjected to creep damage due to stress being not applied. And measuring the difference between the hardness of the first evaluation part and the hardness of the second evaluation part, and based on the difference, the creep life of the first evaluation part Provided is a life evaluation method for high strength ferritic steel that evaluates the life of the high strength ferritic steel by estimating a consumption rate.

評価対象である高強度フェライト鋼は、温度及び時間の経過と共に応力が負荷されるとクリープ損傷が進行しその硬さが低下する。また、応力が負荷されなくとも、高温下に長時間曝されることによってもその硬さが低下する。そこで、例えば、発電設備等のボイラチューブ等に用いられる高強度フェライト鋼において、温度及び時間の経過と共に応力が負荷されることによってクリープ損傷を受ける第一の評価部位と、応力が負荷されずクリープ損傷を受けない第二の評価部位とを選定し、この第一の評価部位と第二の評価部位の硬さをそれぞれ測定する。この測定結果から、第一の評価部位の硬さと第二の評価部位の硬さの差を算出することで、応力が負荷されて生じたクリープ損傷に起因する硬さの低下量のみを抽出することができる。そして、第一の評価部位の硬さと第二の評価部位の硬さの差に基づいて第一の評価部位のクリープ寿命消費率を推定することにより、精度よく高強度フェライト鋼の寿命を評価することができる。   The high strength ferritic steel to be evaluated undergoes creep damage and decreases its hardness when stress is applied with the passage of temperature and time. Moreover, even if stress is not loaded, the hardness falls also by being exposed to high temperature for a long time. Therefore, for example, in high-strength ferritic steel used for boiler tubes of power generation facilities, etc., the first evaluation site that undergoes creep damage due to stress being applied over time and with time, A second evaluation part that is not damaged is selected, and the hardness of the first evaluation part and the second evaluation part are measured. From this measurement result, by calculating the difference between the hardness of the first evaluation site and the hardness of the second evaluation site, only the amount of decrease in hardness due to creep damage caused by stress is extracted. be able to. Then, by estimating the creep life consumption rate of the first evaluation part based on the difference between the hardness of the first evaluation part and the hardness of the second evaluation part, the life of the high strength ferritic steel is accurately evaluated. be able to.

上記した高強度フェライト鋼の寿命評価方法において、所定の負荷を加えた高強度フェライト鋼と、負荷を加えない高強度フェライト鋼とを所定温度で所定時間加熱し、それぞれの硬さを所定時間間隔で複数回計測し、クリープ寿命消費率と、所定の負荷を加えた高強度フェライト鋼の硬さと負荷を加えない高強度フェライト鋼の硬さの差との関係を示すマスターカーブを予め生成し、前記マスターカーブと、前記第一の評価部位の硬さと前記第二の評価部位の硬さの差とに基づいて前記第一の評価部位のクリープ寿命消費率を推定することにより高強度フェライト鋼の寿命を評価することが好ましい。   In the life evaluation method for the high strength ferritic steel described above, a high strength ferritic steel with a predetermined load and a high strength ferritic steel without a load are heated at a predetermined temperature for a predetermined time, and the respective hardnesses are set at predetermined time intervals. Measured multiple times in, and generate a master curve in advance showing the relationship between the creep life consumption rate and the difference in hardness of high-strength ferritic steel with a predetermined load and high-strength ferritic steel without load, By estimating the creep life consumption rate of the first evaluation site based on the master curve and the difference between the hardness of the first evaluation site and the hardness of the second evaluation site, high strength ferritic steel It is preferable to evaluate the lifetime.

評価対象の高強度フェライト鋼と同一の高強度フェライト鋼を用いて、所定の負荷を加えた高強度フェライト鋼と、負荷を加えない高強度フェライト鋼とを所定温度で所定時間加熱し、それぞれの硬さを所定時間間隔で複数回計測し、クリープ寿命消費率と、所定の負荷を加えた高強度フェライト鋼の硬さと負荷を加えない高強度フェライト鋼の硬さの差との関係を示すマスターカーブを予め生成しておくことで、第一の評価部位の硬さと第二の評価部位の硬さの差をマスターカーブに当てはめることができ、簡便にクリープ寿命消費率を推定することができる。   Using the same high-strength ferritic steel as the high-strength ferritic steel to be evaluated, a high-strength ferritic steel with a predetermined load and a high-strength ferritic steel without a load are heated at a predetermined temperature for a predetermined time, Hardness is measured multiple times at specified time intervals, and the master shows the relationship between the creep life consumption rate and the difference in hardness between high-strength ferritic steel with a given load and high-strength ferritic steel without any load. By generating the curve in advance, the difference between the hardness of the first evaluation site and the hardness of the second evaluation site can be applied to the master curve, and the creep life consumption rate can be estimated easily.

ここで、所定温度、所定時間、及び所定の負荷とは、評価対象の高強度フェライト鋼が適用された製品の使用環境に応じて定め、使用環境に応じたマスターカーブを生成することが好ましい。例えば、高強度フェライト鋼が発電設備のボイラチューブである場合には、その発電設備の運転条件に応じて決定される。一般に、高強度フェライト鋼によって形成された発電設備用のボイラチューブは、発電設備における使用で50MPa程度の応力負荷がかかることが想定され、600°程度の温度で運用されることが考えられる。また、所定時間としては、予想されるクリープ破断時間が約1千〜3万時間程度の温度加速条件や、予想破断時間が約10万時間以上の実際の発電設備と略同等の時間等に設定することができる。   Here, the predetermined temperature, the predetermined time, and the predetermined load are preferably determined according to the use environment of the product to which the high-strength ferritic steel to be evaluated is applied, and a master curve corresponding to the use environment is preferably generated. For example, when the high-strength ferritic steel is a boiler tube of a power generation facility, it is determined according to the operating conditions of the power generation facility. In general, a boiler tube for power generation equipment formed of high-strength ferritic steel is assumed to be subjected to a stress load of about 50 MPa when used in the power generation equipment, and is considered to be operated at a temperature of about 600 °. In addition, the predetermined time is set to a temperature acceleration condition in which an expected creep rupture time is about 1,000 to 30,000 hours, a time substantially equivalent to that of an actual power generation facility having an expected rupture time of about 100,000 hours or more, etc. can do.

また、上記した高強度フェライト鋼の寿命評価方法において、前記第二の評価部位は、第一の評価部位と同一の高強度フェライト鋼で形成され、かつ、同一温度で同一時間加熱された試験片であることが好ましい。   In the above-described method for evaluating the life of high-strength ferritic steel, the second evaluation site is formed of the same high-strength ferritic steel as the first evaluation site, and is heated at the same temperature for the same time. It is preferable that

高強度フェライト鋼は、その使用形態、使用状況によって、負荷される応力がことなる。例えば、高強度フェライト鋼がボイラチューブに適用された場合、ボイラチューブに曲げ加工がなされている場合がある。従って、そのような場合には、最も応力が作用しクリープ損傷が最も進行すると想定される曲げ加工がなされた部位を第一の評価部位とし、応力が殆ど作用せずクリープ損傷が進行しないと想定される曲げ加工がなされていない部位を第二の評価部とすることができる。   High-strength ferritic steel has different stresses depending on its usage and usage conditions. For example, when high-strength ferritic steel is applied to a boiler tube, the boiler tube may be bent. Therefore, in such a case, it is assumed that the most stressed part and the bending part where the creep damage is assumed to progress most are set as the first evaluation part, and the stress hardly acts and the creep damage does not proceed. The site | part which is not made | formed by the bending process made can be made into a 2nd evaluation part.

一方、評価対象のボイラチューブ等に応力が負荷しない箇所がない場合等も想定されるため、ボイラチューブ等の高強度フェライト鋼を用いた製品の製造時に、予め、応力が負荷しない試験部位を形成しておき、この試験部位を第二の評価部位とすることもできる。また、ボイラチューブ等の高強度フェライト鋼を用いた製品の製造時に試験部位を形成できない場合には、第一の評価部位と同一の高強度フェライト鋼で形成された試験片に対して、評価対象の高強度フェライト鋼と同一温度で同一時間加熱し、これを第二の評価部位とすることができる。   On the other hand, it is assumed that there is no place where stress is not applied to the boiler tube to be evaluated, etc., so when manufacturing products using high-strength ferritic steel such as boiler tube, a test site where stress is not applied is formed in advance. In addition, this test site can be used as the second evaluation site. In addition, if the test site cannot be formed during the manufacture of products using high-strength ferritic steel such as boiler tubes, the test object is to be evaluated against the test piece formed of the same high-strength ferritic steel as the first evaluation site. The high-strength ferritic steel is heated at the same temperature for the same time, and this can be used as the second evaluation site.

本発明によれば、高強度フェライト鋼であっても、その熱履歴に拘わらず精度よく寿命評価を行うことができる。   According to the present invention, even if it is high strength ferritic steel, life evaluation can be performed accurately regardless of its thermal history.

本発明の実施形態のマスターカーブを生成するための高強度フェライト鋼における応力負荷部の硬さと応力無負荷部の硬さとクリープ破断寿命消費率との関係を示す説明図である。It is explanatory drawing which shows the relationship between the hardness of the stress load part of the high strength ferritic steel for producing | generating the master curve of embodiment of this invention, the hardness of a stress no load part, and a creep rupture lifetime consumption rate. 本発明の実施形態のマスターカーブを生成するための高強度フェライト鋼における応力負荷部と応力無負荷部の硬さ変化量とクリープ破断寿命消費率との関係を示す説明図である。It is explanatory drawing which shows the relationship between the hardness variation | change_quantity of a stress load part and a stress no load part, and a creep rupture life consumption rate in the high strength ferritic steel for producing | generating the master curve of embodiment of this invention. 本発明の実施形態にかかる高強度フェライト鋼の寿命評価方法を示すフローチャートである。It is a flowchart which shows the lifetime evaluation method of the high strength ferritic steel concerning embodiment of this invention. 高強度フェライト鋼からなるボイラチューブの例を示す説明図である。It is explanatory drawing which shows the example of the boiler tube which consists of high strength ferritic steel. クリープボイド個数密度とクリープ破断寿命消費率との関係を示す説明図である。It is explanatory drawing which shows the relationship between a creep void number density and a creep rupture lifetime consumption rate. 金属材料のビッカース硬さとクリープ破断寿命消費率との関係を示す説明図である。It is explanatory drawing which shows the relationship between the Vickers hardness of a metal material, and a creep rupture lifetime consumption rate.

以下に、本発明に係る高強度フェライト鋼の寿命評価方法の実施形態について、図面を参照して説明する。   Embodiments of a method for evaluating the life of high-strength ferritic steel according to the present invention will be described below with reference to the drawings.

本発明に係る高強度フェライト鋼の寿命評価方法は、例えば、火力発電や原子力発電設備において使用され、高強度フェライト鋼からなるボイラチューブ等に適用される。従って、以下、発電設備における高強度フェライト鋼からなるボイラチューブを寿命評価の対象として説明する。   The life evaluation method for high-strength ferritic steel according to the present invention is used in, for example, thermal power generation and nuclear power generation facilities and is applied to boiler tubes made of high-strength ferritic steel. Therefore, hereinafter, a boiler tube made of high-strength ferritic steel in a power generation facility will be described as a life evaluation target.

寿命評価に先立って、評価対象のボイラチューブに用いられた高強度フェライト鋼からなる未使用の試験片を用いて、クリープ破断試験及び中断試験を行い、この試験結果に基づいて寿命評価の基準となるマスターカーブを予め生成する。具体的には、評価対象のボイラチューブと同一の高強度フェライト鋼からなる2つの試験片を準備し、この2つの試験片に対して、加熱前の硬さを計測する。なお、この試験片は、実際の発電設備の運用時にボイラチューブにかかる応力と試験時に試験片にかかる応力の方向が同一となるように採取する必要がある。   Prior to the life evaluation, a creep rupture test and an interruption test were conducted using unused test pieces made of high-strength ferritic steel used for the boiler tube to be evaluated. A master curve is generated in advance. Specifically, two test pieces made of the same high-strength ferritic steel as the boiler tube to be evaluated are prepared, and the hardness before heating is measured for the two test pieces. In addition, it is necessary to extract this test piece so that the stress applied to the boiler tube during the operation of the actual power generation equipment is the same as the direction of the stress applied to the test piece during the test.

続いて、一方の試験片Aに対しては負荷を加えずに、また他方の試験片Bに対しては所定の負荷Pを加えて、所定の温度で所定の時間加熱し、一定の時間間隔でその硬さを複数回計測する。この際、2つの試験片A,Bに対して同一温度で加熱する必要がある。所定の負荷Pとしては、例えば、実際の発電設備における作用応力を考慮して65MPa程度の負荷を加えた試験を行うことが考えられる。所定の温度とは、実際の発電設備と同等の温度であり、温度任意に定めることができるが、高強度フェライト鋼に対しては、600°程度が想定される。所定の時間は、予想されるクリープ破断時間が約1千時間〜3万時間程度の温度加速条件や、予想破断時間が約10万時間以上の実際の発電設備と略同等の時間等に設定することができる。   Subsequently, a load is not applied to one test piece A, and a predetermined load P is applied to the other test piece B, and the test piece A is heated at a predetermined temperature for a predetermined time. Measure the hardness multiple times. At this time, it is necessary to heat the two test pieces A and B at the same temperature. As the predetermined load P, for example, it is conceivable to perform a test in which a load of about 65 MPa is applied in consideration of an action stress in an actual power generation facility. The predetermined temperature is a temperature equivalent to that of actual power generation equipment, and can be arbitrarily determined. However, for high-strength ferritic steel, about 600 ° is assumed. The predetermined time is set to a temperature acceleration condition in which an expected creep rupture time is about 1,000 to 30,000 hours, a time substantially equivalent to an actual power generation facility having an expected rupture time of about 100,000 hours or more, and the like. be able to.

無負荷の試験片Aの硬さ及び負荷Pを加えた試験片Bの硬さの測定結果に基づいて、図1に示すように、試験片Aの硬さとクリープ破断寿命消費率(t/tr)との関係、及び試験片Bの硬さとクリープ破断寿命消費率(t/tr)との関係を夫々求める。なお、tは試験時間、trは金属材料のクリープ破断時間を示す。無負荷の試験片Aは、負荷がかかっておらずクリープ損傷による破断が生じていないものの、高温下に所定時間曝されることでその硬さが変化したものである。一方、負荷Pを加えた試験片Bは、高温下に所定時間曝され、かつ、負荷Pが加わったことによりクリープ損傷が進行したことでその硬さが変化している。すなわち、負荷Pが加わった試験片Bは、図1に示すように、加熱及び応力が負荷されたことによってその硬さが低下している。このため、図2に示すように、試験片Bの硬さの測定結果と試験片Aの硬さの測定結果との差をとることで、応力負荷に起因する硬さ変化量(低下量)とクリープ破断寿命消費率との関係を求めることが出来る。従って、この応力負荷に起因する硬さ変化量とクリープ破断寿命消費率との関係をマスターカーブとする。   Based on the measurement results of the hardness of the unloaded specimen A and the hardness of the specimen B to which the load P is applied, as shown in FIG. 1, the hardness of the specimen A and the creep rupture life consumption rate (t / tr ) And the relationship between the hardness of the specimen B and the creep rupture life consumption rate (t / tr). Here, t represents the test time, and tr represents the creep rupture time of the metal material. The unloaded specimen A is not loaded and does not break due to creep damage, but its hardness changes when exposed to a high temperature for a predetermined time. On the other hand, the test piece B to which the load P is applied is exposed to a high temperature for a predetermined time, and the hardness changes due to the progress of creep damage due to the load P being applied. That is, as shown in FIG. 1, the hardness of the test piece B to which the load P is applied is reduced by being heated and stressed. For this reason, as shown in FIG. 2, by taking the difference between the measurement result of the hardness of the test piece B and the measurement result of the hardness of the test piece A, the amount of change in hardness due to the stress load (reduction amount). And the creep rupture life consumption rate. Therefore, the relationship between the amount of change in hardness due to this stress load and the creep rupture life consumption rate is taken as the master curve.

次に、例えば、火力発電や原子力発電設備における高強度フェライト鋼からなるボイラチューブの寿命を評価する方法を図3を参照して説明する。図3は、本実施形態に係る高強度フェライト鋼の寿命評価方法のフローチャートである。   Next, for example, a method for evaluating the life of a boiler tube made of high-strength ferritic steel in thermal power generation or nuclear power generation equipment will be described with reference to FIG. FIG. 3 is a flowchart of the life evaluation method for high-strength ferritic steel according to the present embodiment.

発電設備が所定時間運転されることにより、高温下で所定時間使用されたボイラチューブの寿命を評価するにあたり、まず、このボイラチューブの評価部位を決定する。具体的には、ステップS11で、応力の負荷状態を調査し、ボイラチューブのうち、応力が最も作用する箇所、すなわち、高負荷がかかり損傷の程度が高いと推定される箇所を応力負荷部(第一の評価部位)として選定する。また、ボイラチューブのうち、応力がかからないもしくは最も作用しない箇所、すなわち、無負荷もしくは低負荷であって損傷の程度が低いと推定される箇所を応力無負荷部(第二の評価部位)として選定する。   In evaluating the life of a boiler tube that has been used for a predetermined time at a high temperature by operating the power generation facility for a predetermined time, first, an evaluation part of the boiler tube is determined. Specifically, in step S11, the stress load state is investigated, and a portion of the boiler tube where the stress is most applied, that is, a portion where a high load is applied and the degree of damage is estimated to be high is designated as the stress load portion ( Select as the first evaluation site. In addition, a portion of the boiler tube where stress is not applied or is least affected, that is, a portion that is assumed to be unloaded or low loaded and that the degree of damage is low is selected as a stress unloaded portion (second evaluation portion). To do.

ここで、応力負荷部及び応力無負荷部は、例えば、図4(A)に示すように、ボイラチューブ10に曲げ加工がなされている場合には、この曲げ加工がなされた部分が最も応力負荷がかかると想定されため、曲げ加工された部分を応力負荷部11とし、曲げ加工がなされていない部分を応力無負荷部12とすることができる。また、図4(B)に示すように、負荷部11をボイラチューブの応力が最も負荷される部位から選定すると共に、ボイラチューブ10の製造時に、同一ロットの高強度フェライト鋼を用いて応力無負荷部12を予め形成しておくこともできる。さらに、図4(C)に示すように、ボイラチューブの、応力が最も作用する箇所を応力負荷部11とし、このボイラチューブと同一の高強度フェライト鋼からなり、ボイラチューブと同一温度で同時間加熱した試験片を予め作成し、この試験片を応力無負荷部12とすることもできる。   Here, as shown in FIG. 4A, for example, when the boiler tube 10 is bent, the stress-loaded portion and the stress-unloaded portion are the most stress-loaded portions. Therefore, the bent part can be used as the stress load part 11, and the non-bent part can be used as the stress unload part 12. Further, as shown in FIG. 4B, the load portion 11 is selected from the portion where the stress of the boiler tube is most loaded, and at the time of manufacturing the boiler tube 10, no stress is generated using high-strength ferritic steel of the same lot. The load part 12 can also be formed in advance. Further, as shown in FIG. 4 (C), the portion of the boiler tube where the stress is most applied is the stress load portion 11 and is made of the same high strength ferritic steel as the boiler tube, and at the same temperature as the boiler tube for the same time. A heated test piece may be prepared in advance, and this test piece may be used as the stress-unloaded portion 12.

続いて、ステップS12では、ステップS11で決定した応力負荷部及び応力無負荷部の硬さを夫々計測し、ステップS13で応力負荷部の硬さと応力無負荷部の硬さとの差をとり、この差をボイラチューブの応力負荷に起因する硬さ変化量とする。次のステップS14では、ステップS13で算出され硬さの変化量を、先に求めたマスターカーブにプロットすることでボイラチューブの破断寿命消費率を求め、これによりボイラチューブの寿命評価を行う。   Subsequently, in step S12, the hardness of the stress loading part and the stress unloading part determined in step S11 is measured, respectively, and in step S13, the difference between the hardness of the stress loading part and the hardness of the stress unloading part is taken. The difference is the amount of change in hardness due to the stress load on the boiler tube. In the next step S14, the fracture life consumption rate of the boiler tube is obtained by plotting the amount of change in hardness calculated in step S13 on the master curve obtained earlier, thereby evaluating the life of the boiler tube.

以上述べたように、高強度フェライト鋼の硬さの低下は、クリープ損傷のみならず熱履歴にも起因するものであるため、高強度フェライト鋼に対して、応力負荷部と応力無負荷部とを設け、これらの硬さを計測してその差をとることで、簡便に応力負荷部のクリープ損傷にのみ起因する硬さの変化量を求めることができ、この変化量からクリープ破断寿命消費率を把握することで、精度よく高強度フェライト鋼の寿命を評価することができる。   As described above, the decrease in the hardness of the high-strength ferritic steel is caused not only by creep damage but also by the thermal history. By measuring the hardness and taking the difference, it is possible to easily determine the amount of change in hardness caused solely by creep damage in the stress-loaded portion, and from this amount of change, the creep rupture life consumption rate By grasping, it is possible to accurately evaluate the life of high-strength ferritic steel.

上記した本実施形態においては、応力負荷部及び応力無負荷部の硬さ計測を夫々1回飲み行っているが、これに限られることはなく複数回計測してその計測結果に基づいて寿命を評価することもできる。この場合には、評価結果の精度が向上する。一方、硬さを計測するためには、計測部位に対して表面の研磨等所定の準備を要するが、それに先立って、例えば、測定部位が狭隘区画にあってアクセスが困難な場合、保護カバーが設けられておりこれをはずす必要が生じる場合、測定箇所が高所であって作業員の足場架設を要する場合なども考えられる。このため、本実施形態のように一度の硬さ計測で精度よく寿命評価を行うと、作業時間及び作業コストを削減できるという効果がある。   In the above-described embodiment, the hardness measurement of the stress load part and the stress no load part is performed once, but the present invention is not limited to this, and the life is determined based on the measurement result without being limited to this. It can also be evaluated. In this case, the accuracy of the evaluation result is improved. On the other hand, in order to measure the hardness, a predetermined preparation such as surface polishing is required for the measurement site, but prior to that, for example, when the measurement site is in a narrow section and difficult to access, a protective cover is When it is necessary to remove it, there may be cases where the measurement location is high and it is necessary to build a scaffold for the worker. For this reason, when the life evaluation is performed accurately with one hardness measurement as in this embodiment, there is an effect that the working time and the working cost can be reduced.

なお、ボイラチューブに無負荷部がなく、何れの部位においても応力が作用している場合等、無負荷部の硬さを計測できない場合には、予め無負荷状態で同一温度で同一時間で加熱した試験片の硬さを計測しておき、この硬さをボイラチューブの無負荷部の硬さとして用いることもできる。   If the boiler tube does not have an unloaded part and stress is applied at any part, such as when the hardness of the unloaded part cannot be measured, it is heated in advance at the same temperature for the same time in the unloaded state. It is also possible to measure the hardness of the test piece and use this hardness as the hardness of the unloaded portion of the boiler tube.

また、ボイラチューブの使用前はいずれの箇所においても硬さの変化量は0である。従って、例えば、応力負荷部の硬さを使用前に予め計測しておき、使用後に計測した応力負荷部の硬さとの差をとることで、ボイラチューブに応力無負荷部がないなど、応力無負荷部の硬さ計測が出来ない場合であっても、応力負荷状態の硬さ変化を示す曲線を用いることで大雑把な寿命評価を行うことができる。   Moreover, before the boiler tube is used, the amount of change in hardness is zero at any location. Therefore, for example, by measuring the hardness of the stress-loaded portion in advance before use and taking the difference from the hardness of the stress-loaded portion measured after use, the boiler tube has no stress-free portion. Even if it is a case where the hardness of a load part cannot be measured, rough life evaluation can be performed by using the curve which shows the hardness change of a stress load state.

10 ボイラチューブ
11 応力負荷部
12 応力無負荷部
10 Boiler tube 11 Stress loading part 12 Stress unloading part

Claims (3)

評価対象の高強度フェライト鋼のうち、温度及び時間の経過と共に応力が負荷されることによってクリープ損傷を受ける第一の評価部位と、応力が負荷されずクリープ損傷を受けない第二の評価部位との硬さをそれぞれ測定し、
前記第一の評価部位の硬さと前記第二の評価部位の硬さの差を算出し、
前記差に基づいて前記第一の評価部位のクリープ寿命消費率を推定することにより前記高強度フェライト鋼の寿命を評価する高強度フェライト鋼の寿命評価方法。
Among the high-strength ferritic steels to be evaluated, a first evaluation site that undergoes creep damage due to stress being applied with the passage of temperature and time, and a second evaluation site that undergoes no creep damage without being stressed Measure the hardness of each
Calculate the difference between the hardness of the first evaluation site and the hardness of the second evaluation site,
A life evaluation method for high-strength ferritic steel, wherein the life of the high-strength ferritic steel is evaluated by estimating a creep life consumption rate of the first evaluation site based on the difference.
所定の負荷を加えた高強度フェライト鋼と、負荷を加えない高強度フェライト鋼とを所定温度で所定時間加熱し、それぞれの硬さを所定時間間隔で複数回計測し、クリープ寿命消費率と、所定の負荷を加えた高強度フェライト鋼の硬さと負荷を加えない高強度フェライト鋼の硬さの差との関係を示すマスターカーブを予め生成し、
前記マスターカーブと、前記第一の評価部位の硬さと前記第二の評価部位の硬さの差とに基づいて前記第一の評価部位のクリープ寿命消費率を推定することにより高強度フェライト鋼の寿命を評価する請求項1に記載の高強度フェライト鋼の寿命評価方法。
A high-strength ferritic steel with a predetermined load and a high-strength ferritic steel without a load are heated at a predetermined temperature for a predetermined time, and each hardness is measured a plurality of times at predetermined time intervals. A master curve indicating the relationship between the hardness of high-strength ferritic steel with a predetermined load and the difference in hardness of high-strength ferritic steel without load is generated in advance,
By estimating the creep life consumption rate of the first evaluation site based on the master curve and the difference between the hardness of the first evaluation site and the hardness of the second evaluation site, high strength ferritic steel The life evaluation method for high-strength ferritic steel according to claim 1, wherein the life is evaluated.
前記第二の評価部位は、第一の評価部位と同一の高強度フェライト鋼で形成され、かつ、同一温度で同一時間加熱された試験片であることを特徴とする請求項1又は請求項2に記載の高強度フェライト鋼の寿命評価方法。   The second evaluation part is a test piece formed of the same high strength ferritic steel as the first evaluation part and heated at the same temperature for the same time. The life evaluation method of high strength ferritic steel described in 1.
JP2009047354A 2009-02-27 2009-02-27 Method for evaluating life time of high strength ferritic steel Pending JP2010203812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009047354A JP2010203812A (en) 2009-02-27 2009-02-27 Method for evaluating life time of high strength ferritic steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009047354A JP2010203812A (en) 2009-02-27 2009-02-27 Method for evaluating life time of high strength ferritic steel

Publications (1)

Publication Number Publication Date
JP2010203812A true JP2010203812A (en) 2010-09-16

Family

ID=42965450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009047354A Pending JP2010203812A (en) 2009-02-27 2009-02-27 Method for evaluating life time of high strength ferritic steel

Country Status (1)

Country Link
JP (1) JP2010203812A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004558A (en) * 2013-06-20 2015-01-08 三菱日立パワーシステムズ株式会社 Remaining life diagnostic method of heat-resistant steel member
JP2016006389A (en) * 2014-06-20 2016-01-14 株式会社Ihi Ferrite steel creep remaining life evaluation method
CN105606439A (en) * 2014-11-17 2016-05-25 国家电网公司 P91 steel long-time strength evaluation method and P91 steel long-time strength evaluation apparatus
JP2017009439A (en) * 2015-06-22 2017-01-12 株式会社東芝 Life evaluation method of structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892952A (en) * 1981-11-30 1983-06-02 Hitachi Ltd Estimating method for service life of high temperature member
JPS63115046A (en) * 1986-10-31 1988-05-19 Babcock Hitachi Kk Damage detecting method for weld zone
JP2004144549A (en) * 2002-10-23 2004-05-20 Hatsuden Setsubi Gijutsu Kensa Kyokai Non-breaking high-temperature creep damage evaluation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892952A (en) * 1981-11-30 1983-06-02 Hitachi Ltd Estimating method for service life of high temperature member
JPH0254514B2 (en) * 1981-11-30 1990-11-21 Hitachi Ltd
JPS63115046A (en) * 1986-10-31 1988-05-19 Babcock Hitachi Kk Damage detecting method for weld zone
JP2004144549A (en) * 2002-10-23 2004-05-20 Hatsuden Setsubi Gijutsu Kensa Kyokai Non-breaking high-temperature creep damage evaluation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004558A (en) * 2013-06-20 2015-01-08 三菱日立パワーシステムズ株式会社 Remaining life diagnostic method of heat-resistant steel member
JP2016006389A (en) * 2014-06-20 2016-01-14 株式会社Ihi Ferrite steel creep remaining life evaluation method
CN105606439A (en) * 2014-11-17 2016-05-25 国家电网公司 P91 steel long-time strength evaluation method and P91 steel long-time strength evaluation apparatus
JP2017009439A (en) * 2015-06-22 2017-01-12 株式会社東芝 Life evaluation method of structure

Similar Documents

Publication Publication Date Title
EP2757362B1 (en) Damage evaluation method and maintenance evaluation index policy
WO2016045024A1 (en) Method for measuring and determining fracture toughness of structural material in high-temperature environment
Zhang et al. P92 steel creep-fatigue interaction responses under hybrid stress-strain controlled loading and a life prediction model
US20140192837A1 (en) System and method for generating a combined model for isothermal and anisothermal fatigue life
WO2014155558A1 (en) Method for predicting remaining creep life of heat- and pressure-degraded product, and standard curve preparation method using this prediction method
JP2008122345A (en) Method of evaluating life by creep elongation in high-strength steel welded part, and method of evaluating life of high-strength steel welded part
JP2010203812A (en) Method for evaluating life time of high strength ferritic steel
JP2020003373A (en) Lifetime prediction method, lifetime prediction device, and lifetime prediction device program
Nikbin et al. Probabilistic analysis of creep crack initiation and growth in pipe components
JP3728286B2 (en) Nondestructive high temperature creep damage evaluation method
JP6582753B2 (en) Life prediction method for heat-resistant steel
Kamaya et al. Fatigue damage management based on postulated crack growth curve
JP2007225333A (en) Damage evaluation method by metal texture as to creep fatigue damage
JP5492057B2 (en) Damage prediction method for heat-resistant steel welds
Sanjay et al. A failure analysis and remaining life assessment of boiler water wall tube
JP6523816B2 (en) Life evaluation method of structure
JP6721273B2 (en) Determination method, determination device, and determination program for chemical cleaning time of boiler water cooling wall pipe material
Kamaya Performance based maintenance concept to optimize inspection schedule
JP3533517B2 (en) Life prediction method for high temperature parts
JP2015165187A (en) Safety evaluation method of two-phase stainless steel
JP5859710B2 (en) Prediction method for creep remaining life of product deteriorated by heating and pressurization, and calibration curve creation method used for this prediction method
RU2731478C2 (en) Method of determining reliability of lining of high-temperature units
Furtado et al. Remaining life evaluation of power plant based on strain deformation monitoring and computational diagnosis
RU2724135C2 (en) Method for determination of residual life of thermal enclosures of high-temperature units
Planques et al. Creep Life Prediction Using Creep Tests and Omega Method: Practical Application to a 2.25 Cr-1Mo Steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110121

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120911