JP4672616B2 - Evaluation method of stress corrosion crack growth rate - Google Patents

Evaluation method of stress corrosion crack growth rate Download PDF

Info

Publication number
JP4672616B2
JP4672616B2 JP2006225050A JP2006225050A JP4672616B2 JP 4672616 B2 JP4672616 B2 JP 4672616B2 JP 2006225050 A JP2006225050 A JP 2006225050A JP 2006225050 A JP2006225050 A JP 2006225050A JP 4672616 B2 JP4672616 B2 JP 4672616B2
Authority
JP
Japan
Prior art keywords
load
crack
growth rate
displacement
test piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006225050A
Other languages
Japanese (ja)
Other versions
JP2008051513A (en
Inventor
達也 久保
幹郎 伊藤
正明 菊池
徳彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006225050A priority Critical patent/JP4672616B2/en
Publication of JP2008051513A publication Critical patent/JP2008051513A/en
Application granted granted Critical
Publication of JP4672616B2 publication Critical patent/JP4672616B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、異方質材料の応力腐食割れ亀裂進展特性を評価する際、適正な応力拡大係数を用いて評価を行う応力腐食割れ亀裂進展速度の評価方法に関する。   The present invention relates to a method for evaluating a stress corrosion crack growth rate, which is evaluated using an appropriate stress intensity factor when evaluating the stress corrosion crack growth characteristics of an anisotropic material.

従来、材料の応力腐食割れ(以下、SCCと記す)進展特性の評価を行うときには、予め亀裂を持った試験片を腐食環境に晒し、荷重を加えたときの材料の亀裂がどのように進展するのかの挙動を観察してデータを得ている。   Conventionally, when evaluating the development characteristics of stress corrosion cracking (hereinafter referred to as SCC) of a material, how the crack of the material develops when a test piece having a crack in advance is exposed to a corrosive environment and a load is applied. The data is obtained by observing the behavior.

また、得られたデータを基に亀裂進展特性を評価する場合、応力拡大係数(以下、K値と記す)と腐食電位、導電率等の腐食データとの相関について評価し、種々の環境条件における材料の亀裂進展速度の参照線図(マスターカーブ)が作成されている。   In addition, when evaluating the crack growth characteristics based on the obtained data, the correlation between the stress intensity factor (hereinafter referred to as the K value) and the corrosion data such as the corrosion potential and conductivity is evaluated, and under various environmental conditions. A reference diagram (master curve) of the crack growth rate of the material is created.

特に、沸騰水型原子炉(BWR;Boiling Water Reactor)に使用する材料のSCC進展速度を評価する場合には、主に小型引張(CT;Compact Tension)試験片を用いた定荷重の負荷の下、SCC進展試験によって採取したデータが使用されていた。   In particular, when evaluating the SCC progress rate of materials used in boiling water reactors (BWRs), the test is mainly performed under a constant load using compact tensile (CT) specimens. Data collected from the SCC progress test were used.

また、上述亀裂進展速度の参照線図も、一定の荷重を加えた負荷の下、つまりK値増加条件の下で得られた試験結果により構築されたものが多い。   In addition, the above-mentioned reference diagram of the crack growth rate is often constructed by test results obtained under a load with a certain load applied, that is, under the K value increasing condition.

このような理由には、荷重制御型試験における試験条件把握の容易性が挙げられる。例えば、原子炉の炉水を模擬し、SCC進展速度を評価するには、高温・高圧の純水に試験片を収容する必要がある。この場合、荷重伝達のための連絡軸の取出し部を備える、例えばオートクレーブ等の耐熱・耐圧性の圧力容器中に試験片が収容される。   Such reasons include the ease of grasping the test conditions in the load control type test. For example, in order to simulate the reactor water of a nuclear reactor and evaluate the SCC progress rate, it is necessary to store a test piece in high-temperature and high-pressure pure water. In this case, the test piece is housed in a heat-resistant / pressure-resistant pressure vessel such as an autoclave, which is provided with a connecting shaft take-out portion for load transmission.

このような試験装置においては、亀裂付き試験片を用い、この試験片の開口変位量などを容器外から確認することが難しい。   In such a test apparatus, it is difficult to confirm the amount of opening displacement of the test piece from outside the container using a test piece with a crack.

その一方、荷重条件について、従来の試験装置では、荷重伝達のための連結軸に設けたロードセルによって比較的精度が高いので、荷重を制御するときに適している。   On the other hand, regarding the load condition, the conventional test apparatus is suitable for controlling the load because the load cell provided on the connecting shaft for load transmission has a relatively high accuracy.

ところで、実際の構造物である炉心シュラウドやシュラウドサポート等の原子炉内の非耐圧部材として適用する炉内構造物の欠陥を想定する場合、応力面では、溶接による残留応力が支配的になり、より定変位に近付き、残留応力分布によってはSCC進展に伴いK値が増加する場合、あるいは逆に減少する場合もあることが指摘されてきている。   By the way, when assuming defects in the reactor internal structure to be applied as a non-pressure-resistant member in a nuclear reactor such as a core shroud or shroud support that are actual structures, the residual stress due to welding becomes dominant on the stress surface. It has been pointed out that the K value increases as the SCC progresses or decreases as the SCC progresses depending on the residual stress distribution.

最近のSCC試験では、WOL(Wedge Operating Lord)型の試験片が用いられている。この試験片は、亀裂開口部に予め一定変位を与えておき、亀裂進展に伴いK値を減少させることができるようになっている。   In the recent SCC test, a WOL (Wedge Operating Lord) type test piece is used. In this test piece, a constant displacement is given to the crack opening in advance, and the K value can be reduced as the crack progresses.

すなわち、図4は、WOL型試験装置を示す概念図である。   That is, FIG. 4 is a conceptual diagram showing a WOL type test apparatus.

このWOL型試験装置は、試験片1に形成した亀裂2の開口変位を調整する負荷用ボルト3と、亀裂2の開口変位値を電気的に検出する開口変位計測センサ(クリップゲージ)4と、この開口変位計測センサ4で検出した電気信号を開口変位(寸法値)に変換する電圧モニタ5とを備えている。   This WOL type test apparatus includes a load bolt 3 for adjusting the opening displacement of the crack 2 formed in the test piece 1, an opening displacement measuring sensor (clip gauge) 4 for electrically detecting the opening displacement value of the crack 2, A voltage monitor 5 that converts an electrical signal detected by the opening displacement measuring sensor 4 into opening displacement (size value) is provided.

このような構成を備えるWOL型試験装置から計測したデータを基に、予測K値を算出する亀裂2の開口変位寸法値を測定する場合、図5に示すように、試験片1を、予め定められた形状に加工切断するとともに、亀裂2を形成させた後、負荷用ボルト3を装着させる(ステップ1)。   When measuring the opening displacement dimension value of the crack 2 for calculating the predicted K value based on the data measured from the WOL type test apparatus having such a configuration, as shown in FIG. After cutting into the formed shape and forming the crack 2, the load bolt 3 is attached (step 1).

次に、WOL型試験装置は、負荷用ボルト3を、例えば、矢印ARで示す回転方向に増締めし、亀裂2の先端を矢印AR方向に向って拡開させるとともに、亀裂2の開口入口Qまたは荷重線PLの位置での開口変位Vを開口変位計測センサ4と電圧モニタ5とで計測し(ステップ2)、計測した開口変位Vを下記に示す予測K値を求める際、式(1)に代入して予測K値の初期値を設定する(ステップ3)。 Next, WOL type test apparatus, a load bolt 3, for example, tightening in the direction of rotation indicated by the arrow AR 1, with is widened toward the tip of the crack 2 in the arrow AR 2 direction, the crack 2 opening When the opening displacement V at the position of the entrance Q or the load line PL is measured by the opening displacement measuring sensor 4 and the voltage monitor 5 (step 2), and the measured opening displacement V is obtained as a predicted K value shown below, an equation ( Substituting into 1), the initial value of the predicted K value is set (step 3).

予測K値の初期値が設定されると、WOL型試験手法は、SCC割れを起す環境にした溶液に浸漬し、負荷用ボルト3の荷重を維持したまま予測K値の減少の下、SCC割れの長さの進展状況を観察し、SCC割れを評価する(ステップ4)。   When the initial value of the predicted K value is set, the WOL type test method is immersed in a solution in an environment that causes SCC cracking, and the SCC crack is reduced under the decrease of the predicted K value while maintaining the load of the load bolt 3. The progress of the length is observed, and the SCC crack is evaluated (step 4).

一方、試験片から予測K値を算出する場合、FEM解析等によって求められており、K値は、
[数1]
K=V×E/√a×f(a・W)/f(a・W) ……(1)
として表わされている。
On the other hand, when calculating the predicted K value from the test piece, it is obtained by FEM analysis or the like,
[Equation 1]
K = V × E / √a × f 1 (a · W) / f 2 (a · W) (1)
It is expressed as

ここに、Vは試験片の荷重線の変位、Eは試験材料の縦弾性率、aは亀裂長さ、Wは試験片厚さである。   Here, V is the displacement of the load line of the test piece, E is the longitudinal elastic modulus of the test material, a is the crack length, and W is the thickness of the test piece.

上式(1)を要約すると、試験時のK値は、開口変位量、縦弾性率と亀裂長さで表わされる。このうち、縦弾性率は材料に依存して一定値を採り、開口変位量も設定時から緩和しないと仮定すると、結局、K値は亀裂長さaの関数である。   To summarize the above equation (1), the K value at the time of the test is expressed by the opening displacement amount, the longitudinal elastic modulus, and the crack length. Of these, assuming that the longitudinal elastic modulus takes a constant value depending on the material and the opening displacement is not relaxed from the time of setting, the K value is a function of the crack length a after all.

ここで、f(a・W)/f(a・W)は亀裂長さaの増加に連れてK値は減少を示すことが知られており、この試験片によりK値減少条件を設定できることが分かる。 Here, it is known that f 1 (a · W) / f 2 (a · W) shows a decrease in the K value as the crack length a increases. You can see that it can be set.

なお、WOL型試験片を用い、K値減少条件を設定できる技術には、例えば特許文献1が開示されている。
特開2004−340571号公報
For example, Patent Document 1 discloses a technique that can set a K value reduction condition using a WOL type test piece.
JP 2004-340571 A

ところで、上述開口変位タイプのSCC用の試験片を用いてK値を設定する場合、上式(1)に示されているように、材料の変形特性については、縦弾性率Eのみが、これを代表するパラメータ(因子)になっている。   By the way, when the K value is set by using the above-mentioned opening displacement type SCC test piece, as shown in the above equation (1), only the longitudinal elastic modulus E is used for the deformation characteristics of the material. It is a parameter (factor) that represents.

その一方、溶接金属による施工冷間圧延などを含めて金属組織に異方質を持つ材料では、試験片の採取方向、切欠きの設定方向によっては、試験片の荷重−変位線(応力−ひずみ線)が異なる可能性がある。   On the other hand, for materials with anisotropy in the metal structure, including cold rolling with weld metal, the load-displacement line (stress-strain) of the specimen depends on the specimen sampling direction and notch setting direction. Line) may be different.

しかし、上式(1)からも確認されているように、従来のWOL試験におけるK値評価式では、材料の異方質の影響を考慮しておらず、異方質を持つ材料の予測K値設定の誤差が大きくなり、SCC試験を行っても実際の状況から大きく懸け離れることが多かった。   However, as confirmed from the above equation (1), the K value evaluation formula in the conventional WOL test does not consider the influence of the anisotropic material, and the prediction K of the material having the anisotropic property The error of value setting became large, and even when the SCC test was conducted, it was often far from the actual situation.

本発明は、このような事情を考慮してなされたものであり、異方質を持つ材料であっても、適正なK値を用いて材料のSCC亀裂進展速度の評価ができる応力腐食割れ亀裂進展速度の評価方法を提供することを目的とする。   The present invention has been made in consideration of such circumstances, and stress corrosion cracking that can evaluate the SCC crack growth rate of a material using an appropriate K value even if the material has anisotropy. The purpose is to provide a method for evaluating the progress rate.

本発明に係る応力腐食割れ亀裂進展速度の評価方法は、上述の目的を達成するために、異方質の試験片に亀裂を与え、この亀裂に負荷用手段からの荷重を加えるとともに、腐食環境下に収容し、前記異方質の試験片の亀裂進展速度を求めて亀裂度合を評価する応力腐食割れ亀裂進展速度の評価方法において、前記試験片において試験荷重を100%荷重としてこの100%荷重よりも低率に予め定められた荷重までの亀裂長さの変位から荷重−変位線を求める一方、前記予め定められた荷重から試験荷重の100%荷重までの荷重−変位線を外挿法で求め、この外挿法で求めた荷重−変位線上の前記試験荷重100%荷重に対応する変位を算出し、算出した前記変位を試験片に付与して前記試験荷重の100%荷重から応力拡大係数を算出することを特徴とする応力腐食割れ亀裂進展速度の評価方法である。 In order to achieve the above-mentioned purpose, the stress corrosion cracking crack growth rate evaluation method according to the present invention gives a crack to an anisotropic test piece, applies a load from a loading means to the crack, and corrosive environment. In the method for evaluating the stress corrosion crack growth rate, which is housed underneath and evaluates the degree of cracking by determining the crack growth rate of the anisotropic test piece, the test load is 100% load on the test piece. load from crack length of the displacement to the load that low rate to a predetermined than - while obtaining a displacement line, load from said predetermined load to 100% load of the load - displacement line in extrapolation calculated, the load is determined by extrapolation - calculates the corresponding displacement of 100% load of the test load displacement line, the stress intensity after applying the calculated the displacement on the test piece 100% load of the test load Calculate coefficient A stress corrosion cracking evaluation method of crack growth rate, wherein Rukoto.

本発明に係る応力腐食割れ亀裂進展速度の評価方法は、変形異方性を有する素材においても、精度の高い応力腐食割れ亀裂進展速度を評価することができる。   The stress corrosion crack crack growth rate evaluation method according to the present invention can evaluate a stress corrosion crack crack growth rate with high accuracy even for a material having deformation anisotropy.

以下、本発明に係る応力腐食割れ亀裂進展速度の評価方法の実施形態を図面および図面に付した符号を引用して説明する。   Hereinafter, an embodiment of a method for evaluating a stress corrosion crack growth rate according to the present invention will be described with reference to the drawings and reference numerals attached to the drawings.

図1に示す本発明に係る応力腐食割れ亀裂進展速度の評価方法に適用するSCC試験機は、試験片10に形成された亀裂11の開口変位を調整する負荷用ボルト12と、亀裂11の開口変位値を電気的に検出する開口変位計測センサ(クリップゲージ)13と、この開口変位計測センサ13で検出した電気信号を開口変位に変換する電圧モニタ14とを備えている。   The SCC tester applied to the stress corrosion cracking crack growth rate evaluation method according to the present invention shown in FIG. 1 includes a load bolt 12 for adjusting the opening displacement of the crack 11 formed in the test piece 10, and the opening of the crack 11. An opening displacement measuring sensor (clip gauge) 13 that electrically detects a displacement value and a voltage monitor 14 that converts an electric signal detected by the opening displacement measuring sensor 13 into opening displacement are provided.

次に、このような構成を備えるSCC試験機を用いて本発明に係る応力腐食割れ亀裂進展速度の評価方法を図2を引用して説明する。   Next, the evaluation method of the stress corrosion crack growth rate according to the present invention will be described with reference to FIG. 2 using an SCC testing machine having such a configuration.

図2は、本発明に係る応力腐食割れ亀裂進展速度の評価方法を示す手順ブロック図である。   FIG. 2 is a procedure block diagram showing a method for evaluating the stress corrosion crack growth rate according to the present invention.

本実施形態に係る応力腐食割れ亀裂進展速度の評価方法は、まず、試験片10を予め定められた形状に加工、切断するとともに、亀裂11を強制的に設けた後、負荷用ボルト12を装着させる(ステップ11)。   The evaluation method of the stress corrosion crack growth rate according to the present embodiment is as follows. First, the test piece 10 is processed and cut into a predetermined shape, the crack 11 is forcibly provided, and then the load bolt 12 is attached. (Step 11).

次に、本実施形態は、負荷用ボルト12を、例えば、矢印ARで示す回転方向に増締めし、荷重線PLを基点に亀裂11の先端を矢印ARの方向に向って拡開させるとともに、亀裂11の開口変位Vを開口変位計測センサ13と電圧モニタ14とで計測する。 Next, the present embodiment, the load bolts 12, for example, tightening in the direction of rotation indicated by the arrow AR 1, thereby expanding towards the tip of the crack 11 a load line PL in the base point in the direction of arrow AR 2 At the same time, the opening displacement V of the crack 11 is measured by the opening displacement measuring sensor 13 and the voltage monitor 14.

その後、試験片10は、負荷用ボルト12によって荷重が加えられ、原子炉炉水に模擬した溶液に浸漬される。   Thereafter, the test piece 10 is loaded with a load bolt 12 and immersed in a solution simulated in reactor water.

他方、本実施形態では、図3に示すように、試験片10の荷重−変位線(応力−ひずみ線)PVを、例えば、疲労試験機(引張試験機)を用いてデータを採り、線図化する(ステップ12)。   On the other hand, in the present embodiment, as shown in FIG. 3, the load-displacement line (stress-strain line) PV of the test piece 10 is taken using, for example, a fatigue tester (tensile tester), and a diagram is obtained. (Step 12).

この場合、荷重−変位線PVは、荷重(P)が材料にも影響するが試験荷重P1:(0.8〜0.9)×P0を超えると、以下に示す予測K値に誤差があらわれ、実施と大きく懸け離れることもあるため、試験荷重P1から試験荷重の100%荷重P0まで破線で示す荷重−変位線P1V1を外挿法で求め、実験近似式として作成する(ステップ13)。ここで試験荷重P1は予め試験等で大きく懸け離れる可能性のある範囲を定め、通常材料においては試験荷重の100荷重P0の0.8〜0.9と定めておく。 In this case, the load-displacement line PV affects the material, but if the test load P1: (0.8 to 0.9) × P0 is exceeded, an error appears in the predicted K value shown below. Therefore, the load-displacement line P1V1 indicated by the broken line from the test load P1 to the 100% load P0 of the test load is obtained by extrapolation and created as an experimental approximate expression (step 13). Here, the test load P1 is determined in advance in a range that may be greatly separated by a test or the like, and is set to 0.8 to 0.9 of a 100 % load P0 of the test load in a normal material.

なお、荷重−変位線PVは、荷重間または変位間を求めるときに内挿法で求めてもよい。   The load-displacement line PV may be obtained by an interpolation method when obtaining between loads or between displacements.

図3に示すように、実験近似式線Pと疲労試験機からの荷重−変位線PVが作成されると、図1で示したSCC試験機から求めた変位Vを設定し(ステップ14)、設定した変位Vから図3に示す荷重Pを算出する。 As shown in FIG. 3, when the approximate equation line P 1 V 1 and the load-displacement line PV from the fatigue tester are created, the displacement V obtained from the SCC tester shown in FIG. 14) The load P shown in FIG. 3 is calculated from the set displacement V.

例えば、SCC試験機からの変位の計測値がVであるとき、試験荷重の100%荷重はPになる。 For example, when the measured value of displacement from the SCC testing machine is V 0 , the 100% load of the test load is P 0 .

このように、図3から示した荷重−変位線PVから荷重Pが求められると、本実施形態では、以下に示す(2)式の実験式からK値が算出される(ステップ15)。
[数2]
K=P×[√W×{F(a/W)}]/B ……(2)
ここに、Pは荷重、Bは試験片の厚み、Wは試験片の長さ、aは亀裂の長さ、F(a/W)は試験片の形状に依存するa/Wの関数である。
As described above, when the load P is obtained from the load-displacement line PV shown in FIG. 3, in this embodiment, the K value is calculated from the following experimental formula (2) (step 15).
[Equation 2]
K = P × [√W × {F 1 (a / W)}] / B (2)
Where P is the load, B is the thickness of the test piece, W is the length of the test piece, a is the length of the crack, and F 1 (a / W) is a function of a / W depending on the shape of the test piece. is there.

なお、上式(2)は、縦弾性係数Eに無関係であるから、異方質の材料にも十分適用することができる。   In addition, since the above formula (2) is irrelevant to the longitudinal elastic modulus E, it can be sufficiently applied to anisotropic materials.

このように、本実施形態は、強制的に与えた亀裂11を備えた試験片の荷重P以下の試験荷重Pを例えば(0.8〜0.9)PをPと定めてこの試験荷重Pまでの荷重変位PV値のデータを採って荷重−変位線PVとして線図化するとともに(ステップ11,12)、試験荷重P((0.8〜0.9)P)から荷重Pまでの荷重−変位線Pを外挿法で求め(ステップ13)、外挿法で求めた荷重−変位線Pと実験データから求められた荷重−変位線PVとから、試験荷重100%に対応する変位Vを求め(ステップ14)、この変位Vを試験片に付与して荷重Pを求め、求めた荷重Pを式(2)に与えてK値を算出する(ステップ5)ので、異方質を持つ材料であっても適正なK値を用いて精度のより一層高いSCC亀裂進展速度の評価を行うことができる。 As described above, in the present embodiment, the test load P 1 equal to or lower than the load P 0 of the test piece having the forcibly applied crack 11 is defined as (0.8 to 0.9) P 0 as P 1 , for example. load takes the data of the load-displacement PV value of the up test load P 1 - as well as the diagram as a displacement line PV (step 11, 12), test load P 1 ((0.8~0.9) P 0 ) To the load P 0 , the load-displacement line P 1 V 1 is obtained by extrapolation (step 13), and the load-displacement obtained from the load-displacement line P 1 V 1 obtained by the extrapolation method and experimental data is obtained. and a line PV, the displacement V 0 determined corresponding to a test load of 100% (step 14), obtains a load P 0 by applying the displacement V 0 to the test piece, a load P 0 determined by formula (2) Since the K value is calculated by giving (Step 5), use an appropriate K value even for materials with anisotropic properties. Evaluation of even higher SCC crack growth rate of accuracy Te can be performed.

本発明に係る応力腐食割れ亀裂進展速度の評価方法に適用する応力腐食割れ試験機を示す概念図。The conceptual diagram which shows the stress corrosion cracking testing machine applied to the evaluation method of the stress corrosion cracking crack growth rate which concerns on this invention. 本発明に係る応力腐食割れ亀裂進展速度の評価方法の手順を示すブロック図。The block diagram which shows the procedure of the evaluation method of the stress corrosion crack crack growth rate which concerns on this invention. 本発明に係る応力腐食割れ亀裂進展速度の評価方法に適用する荷重−変位線図。The load-displacement diagram applied to the evaluation method of the stress corrosion crack growth rate according to the present invention. 従来の応力腐食割れ亀裂進展速度の評価方法に適用する応力腐食割れ試験機を示す概念図。The conceptual diagram which shows the stress corrosion cracking testing machine applied to the evaluation method of the conventional stress corrosion cracking crack growth rate. 従来の応力腐食割れ亀裂進展速度の評価方法の手順を示すブロック図。The block diagram which shows the procedure of the evaluation method of the conventional stress corrosion cracking crack growth rate.

符号の説明Explanation of symbols

1 試験片
2 亀裂
3 負荷用ボルト
4 開口変位計測センサ
5 電圧モニタ
10 試験片
11 亀裂
12 負荷用ボルト
13 開口変位計測センサ
14 電圧モニタ
DESCRIPTION OF SYMBOLS 1 Test piece 2 Crack 3 Load bolt 4 Opening displacement measurement sensor 5 Voltage monitor 10 Test piece 11 Crack 12 Load bolt 13 Opening displacement measurement sensor 14 Voltage monitor

Claims (4)

異方質の試験片に亀裂を与え、この亀裂に負荷用手段からの荷重を加えるとともに、腐食環境下に収容し、前記異方質の試験片の亀裂進展速度を求めて亀裂度合を評価する応力腐食割れ亀裂進展速度の評価方法において、前記試験片において試験荷重を100%荷重としてこの100%荷重よりも低率に予め定められた荷重までの亀裂長さの変位から荷重−変位線を求める一方、前記予め定められた荷重から試験荷重の100%荷重までの荷重−変位線を外挿法で求め、この外挿法で求めた荷重−変位線上の前記試験荷重100%荷重に対応する変位を算出し、算出した前記変位を試験片に付与して前記試験荷重の100%荷重から応力拡大係数を算出することを特徴とする応力腐食割れ亀裂進展速度の評価方法。 A crack is given to an anisotropic specimen, and the load from the loading means is applied to the crack, and the specimen is accommodated in a corrosive environment, and the crack progress rate of the anisotropic specimen is obtained to evaluate the crack degree. In the stress corrosion cracking crack growth rate evaluation method, the load-displacement line is determined from the displacement of the crack length up to a predetermined load lower than the 100% load with the test load as 100% load in the test piece. Meanwhile, the load from said predetermined load to 100% load of the load - calculated displacement line in extrapolation, the load was determined by the extrapolation - corresponds to 100% load of the test load displacement line It calculates the displacement, calculated stress corrosion cracking evaluation method of crack growth rate, wherein the calculating the stress intensity factor of 100% load of displaced by applying to the test piece the test load. 前記予め定められた荷重と亀裂長さに基づく荷重−変位線は疲労試験機から求めることを特徴とする請求項1記載の応力腐食割れ亀裂進展速度の評価方法。 2. The stress corrosion crack growth rate evaluation method according to claim 1, wherein the load-displacement line based on the predetermined load and crack length is obtained from a fatigue tester. 腐食環境下に置かれた試験片は、負荷用手段によって荷重が加えられたまま原子炉炉水に模擬した溶液に浸漬させることを特徴とする請求項1記載の応力腐食割れ亀裂進展速度の評価方法。 2. The stress corrosion crack growth rate evaluation according to claim 1, wherein the test piece placed in a corrosive environment is immersed in a solution simulated in reactor water while being loaded by means for loading. Method. 応力拡大係数Kは、下記式から算出することを特徴とする請求項1記載の応力腐食割れ亀裂進展速度の評価方法。
[数1]
K=P×[√W×{F(a/W)}]/B
ここで、Pは荷重、Bは試験片の厚み、Wは試験片の長さ、aは亀裂の長さ、F(a/W)は試験片の形状に依存するa/Wの関数である。
2. The stress corrosion crack crack growth rate evaluation method according to claim 1, wherein the stress intensity factor K is calculated from the following equation.
[Equation 1]
K = P × [√W × {F 1 (a / W)}] / B
Here, P is the load, B is the thickness of the test piece, W is the length of the test piece, a is the length of the crack, and F 1 (a / W) is a function of a / W depending on the shape of the test piece. is there.
JP2006225050A 2006-08-22 2006-08-22 Evaluation method of stress corrosion crack growth rate Expired - Fee Related JP4672616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006225050A JP4672616B2 (en) 2006-08-22 2006-08-22 Evaluation method of stress corrosion crack growth rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006225050A JP4672616B2 (en) 2006-08-22 2006-08-22 Evaluation method of stress corrosion crack growth rate

Publications (2)

Publication Number Publication Date
JP2008051513A JP2008051513A (en) 2008-03-06
JP4672616B2 true JP4672616B2 (en) 2011-04-20

Family

ID=39235731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006225050A Expired - Fee Related JP4672616B2 (en) 2006-08-22 2006-08-22 Evaluation method of stress corrosion crack growth rate

Country Status (1)

Country Link
JP (1) JP4672616B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190074391A (en) * 2017-12-20 2019-06-28 주식회사 포스코 Test device for repair material for furnace
CN110595742A (en) * 2019-09-18 2019-12-20 广东产品质量监督检验研究院(国家质量技术监督局广州电气安全检验所、广东省试验认证研究院、华安实验室) Method for detecting long-term potential influence of mechanical load on performance of photovoltaic module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6740176B2 (en) * 2017-05-30 2020-08-12 日本電信電話株式会社 Hydrogen permeation test device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634786A (en) * 1992-07-15 1994-02-10 Hitachi Ltd Method of estimating life expectancy of component constituting light water reactor and device therefor
JP2002181691A (en) * 2000-12-11 2002-06-26 Yukio Fujimoto Method and apparatus for diagnosing risk of cracking
JP2004154807A (en) * 2002-11-05 2004-06-03 Toshiba Corp Welding method for structure and welding support system
JP2004340591A (en) * 2003-05-13 2004-12-02 Toshiba Corp Method of testing stress corrosion cracking

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634786A (en) * 1992-07-15 1994-02-10 Hitachi Ltd Method of estimating life expectancy of component constituting light water reactor and device therefor
JP2002181691A (en) * 2000-12-11 2002-06-26 Yukio Fujimoto Method and apparatus for diagnosing risk of cracking
JP2004154807A (en) * 2002-11-05 2004-06-03 Toshiba Corp Welding method for structure and welding support system
JP2004340591A (en) * 2003-05-13 2004-12-02 Toshiba Corp Method of testing stress corrosion cracking

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190074391A (en) * 2017-12-20 2019-06-28 주식회사 포스코 Test device for repair material for furnace
CN110595742A (en) * 2019-09-18 2019-12-20 广东产品质量监督检验研究院(国家质量技术监督局广州电气安全检验所、广东省试验认证研究院、华安实验室) Method for detecting long-term potential influence of mechanical load on performance of photovoltaic module

Also Published As

Publication number Publication date
JP2008051513A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
Jayadevan et al. Fracture response of pipelines subjected to large plastic deformation under tension
FI96994C (en) Device for calculating the crack length of conductive sensors
Sarzosa et al. J–CTOD relations in clamped SE (T) fracture specimens including 3-D stationary and growth analysis
NO323931B1 (en) Painting of the state in stable structures by the pressure of a pulse-shaped electric current and analysis of the voltage drop
JP2008003009A (en) Lifetime diagnosis device for high-temperature equipment, and lifetime diagnosis method and program for high-temperature equipment
JP5050873B2 (en) Remaining life evaluation method for machine parts
Arsene et al. A new approach to measuring transverse properties of structural tubing by a ring test—experimental investigation
JP4672616B2 (en) Evaluation method of stress corrosion crack growth rate
JP4676323B2 (en) Method for measuring fracture toughness value of metallic materials
RU2536783C1 (en) Method of determining operating life of metal of pipeline
JP3728286B2 (en) Nondestructive high temperature creep damage evaluation method
Sarzosa et al. Relationship between J and CTOD in SE (T) and SE (B) specimens for stationary and growing cracks
Kalyanam et al. Why conduct SEN (T) tests and considerations in conducting/analyzing SEN (T) testing
JP4112830B2 (en) Structural material soundness evaluation method and program
Verstraete et al. Comparison of girth weld tearing resistance obtained from Curved Wide Plate and Single Edge Notch Tensile testing
JP2000234986A (en) System and method for evaluating crack development
Plata et al. Effect of compression precracking on the near threshold fatigue crack propagation in an AISI 316L stainless steel
Davies et al. Continuous creep damage monitoring using a novel potential drop technique
JPH0635971B2 (en) Method for predicting remaining life of metallic materials
Prakash et al. Fatigue response evaluation of stainless steel SS 304 L (N) and SS 316 L (N) through cyclic ball indentation studies
Williams et al. Specimen Curvature and Size Effects on Crack Growth Resistance From Compact Tension Specimens of CANDU Pressure Tubes
Pala et al. Influence of delamination on the parameters of triaxial state of stress before the front of the main crack
Gioielli et al. Characterization of the stable tearing during pipeline strain capacity tests
Bassi et al. Experimental and simulated displacement in cracked specimen of P91 steel under creep conditions
Georgy Experiment for determination of residual stresses in pipes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110119

R151 Written notification of patent or utility model registration

Ref document number: 4672616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees