JP4112830B2 - Structural material soundness evaluation method and program - Google Patents

Structural material soundness evaluation method and program Download PDF

Info

Publication number
JP4112830B2
JP4112830B2 JP2001261210A JP2001261210A JP4112830B2 JP 4112830 B2 JP4112830 B2 JP 4112830B2 JP 2001261210 A JP2001261210 A JP 2001261210A JP 2001261210 A JP2001261210 A JP 2001261210A JP 4112830 B2 JP4112830 B2 JP 4112830B2
Authority
JP
Japan
Prior art keywords
hardness
evaluation
value
structural material
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001261210A
Other languages
Japanese (ja)
Other versions
JP2003065921A (en
Inventor
和夫 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001261210A priority Critical patent/JP4112830B2/en
Publication of JP2003065921A publication Critical patent/JP2003065921A/en
Application granted granted Critical
Publication of JP4112830B2 publication Critical patent/JP4112830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【0001】
【発明の属する技術分野】
本発明は、時間の経過とともに構成材料の強度等が変化するような条件で使用される機器で、機器の表面あるいは内部に、割れ、き裂等の欠陥を有する場合の構造材料健全性評価方法、およびその評価プログラムに関する。
【0002】
【従来の技術】
化学プラント、発電プラント等を構成する材料においては、実機運転中の時間経過とともに、機器の表面あるいは内部に蓄積される材料損傷の結果、き裂が発生することがある。さらに、このような実機運転負荷に起因して発生するき裂に加え、プラント建設時に検査で検出できないような微小なき裂が元々存在していて、それがプラント運転中に徐々に成長する場合もある。これらき裂を有する機器に対し、地震などによる過大な外部荷重が加わると、き裂が急速に進行し破壊に至る恐れがある。
【0003】
また、上記プラント等を構成する材料は、実機運転中の温度、応力の負荷等により、強度等の材料特性値が時間とともに変化し、プラント建設時の初期値とは異なる値になることがある。
【0004】
このように材質変化を伴うような運転条件下におかれるプラント機器に対して、き裂が存在する場合の破壊強度を計算し構造健全性を精度良く評価するためには、材質変化した部材の材料特性値を知ることが不可欠である。
【0005】
この材質変化は、プラント建設時の材料特性値の初期値ならびにその後の運転状態に依存するものである。一般に機器の運転履歴は分かる場合であっても、機器の局所的な負荷履歴を把握または測定することは難しく、正確な材質変化を推定することは困難なことから、何らかの別の安全対策を施すかあるいは材質変化を過大に見積もった安全側の構造材料健全性評価を行うことになる。
【0006】
また、評価機器ならびに部位によっては、き裂などの欠陥が発見あるいは想定された部位、もしくはその近傍から部材の一部を切り出すことが可能な場合があり、そのサンプリング材(試料)から、降伏応力、引張強さ、応力ひずみ関係、破壊靭性値、あるいはJR曲線等、構造材料健全性評価に必要な材料特性値に応じた様々な形状寸法の材料試験片を製作し、それらの値を求めることができる。この方法によれば、材質変化が生じても、その変化を材料特性値の値として捕らえることができ、正確な構造材料健全性評価が可能である。
【0007】
【発明が解決しようとする課題】
プラント運転時間の経過とともに構成材料に生じる材質変化を考慮した精度の高い構造材料健全性評価を行うための従来のサンプリング法では、評価に必要な材料特性値に応じて様々な形状寸法の材料試験片を機器の表面あるいは内部から採取する必要がある。そのため機器表面部を著しく破壊することになり、採取後のプラント再運転開始前に、埋め戻し等の補修が必要となる。
【0008】
本発明は、評価部位に大きな損傷を与えずに高精度の構造材料健全性評価を行う方法およびそのためのプログラムを提供することを目的とする。
なお、硬さ、降伏応力、引張強さ、あるいは応力ひずみ関係は変化しても、それが必ずしも破壊が起こりやすい変化であるかどうかは、破壊形態に依存する。すなわち、プラント構成材料の経年劣化が予想される条件で運転される機器に対し、正確な構造材料健全性評価を行うためには、それぞれの材料特性値の変化を定量的に捉え、機器の使用条件、破壊形態に合わせた構造材料健全性評価が必要となる。
【0009】
ここで、上記の材料特性値はいずれも材料のミクロな変形抵抗が関係する事象であることから、それぞれの値の間に相関性がある。特に、硬さは、測定が比較的容易であることから、硬さと他の材料特性値との間の相関を求めマスターカーブ化しておき、実機部材での硬さ測定値から機器の損傷診断に必要な材料データを前記マスターカーブを用いて算出し、その材料データを用い実機の経年状態に応じた正確な寿命診断を行う方法がある。
【0010】
特に高温機器の場合、構成材料の金属組織的な変化が大きく、硬さとクリープ強度が大きく変わることが多く、両者の関係を式化しておくことにより、硬さ測定値からクリープ強度を推定する方法等が知られている(例えば、特開昭60−67838号公報、特開平11−326578号公報参照)。
【0011】
本発明の評価対象はクリープによる損傷は想定しない温度、荷重等で運転される機器であって、本発明は、割れ、き裂等の欠陥が存在する場合の構造健全性を評価する場合に、その計算に必要な降伏応力、引張強さ、応力ひずみ関係、破壊靭性値、およびJR曲線等を硬さ測定値から推定し、それらの値を用いて機器の構造健全性を評価する方法およびプログラムを提案する。
【0012】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明は、構造材料に欠陥を有する可能性のある機器の構造材料健全性評価方法において、評価対象部位の形状および欠陥形状をモデル化し、欠陥寸法および荷重条件の設定を行う条件設定工程と、前記評価対象部位の硬さに相当する硬さを測定する硬さ測定工程と、前記評価対象部位と同等の材料特性を有する材料について求めた硬さ以外の材料特性値に対し、その硬さ以外の材料特性値を硬さの関数として表したマスターカーブに、前記硬さ測定工程で得られた硬さ測定値を当てはめ、前記硬さ以外の材料特性値として降伏応力、引張強さ、応力ひずみ関係、破壊靭性値、およびJR曲線のうちの少なくとも一つを含む材料特性値を算出する材料特性値算出工程と、前記条件設定工程で設定したモデル化形状、欠陥寸法および荷重条件と前記材料特性値算出工程で得られた材料特性値から前記機器の破壊限界を表す破壊評価曲線を求め、前記材料特性値算出工程で得られた前記硬さ以外の材料特性値を用いて破壊評価点を求め、破壊評価点が前記破壊評価曲線を下回ることを、破壊しないことの判定基準とする前記機器の破壊評価を行う破壊評価工程と、を有することを特徴とする。
【0013】
請求項1の発明によれば、精度の高い構造材料健全性評価に必要なプラント機器構成材料の材料特性値が、硬さ測定値から算出できる。これにより、評価対象部位に大きな損傷を与えずに、プラント機器運転中に生じる構成材料の材質変化を直接反映した高精度の構造材料健全性評価を行うことが可能となる。また、構造材料健全性評価に降伏応力、引張強さ、応力ひずみ関係、破壊靭性値、およびJR曲線等を利用することができる。
【0016】
また、請求項に記載の発明は、請求項1に記載の構造材料健全性評価方法において、前記評価対象部位の硬さに相当する硬さは、前記評価対象部位の硬さであること、を特徴とする。
【0017】
請求項の発明によれば、請求項1の発明の作用・効果を得られるほか、評価対象部位の硬さを直接測定するので精度が高い。なお、評価対象機器には硬さ測定用の圧子の痕が残ることがあるが、これは微小であり、測定後の補修は不要あるいは必要としても非常に軽微で容易である。
【0018】
また、請求項に記載の発明は、請求項1に記載の構造材料健全性評価方法において、前記評価対象部位の硬さに相当する硬さは、前記評価対象部位とは異なる前記機器の部位の硬さであって、前記評価対象部位の硬さを推定できる部位の硬さであること、を特徴とする。
【0019】
請求項の発明によれば、請求項1の発明の作用・効果を得られるほか、評価対象部位の硬さ測定が困難な場合、それとは異なる位置での硬さ値から、評価対象部の硬さが推定できる。
【0020】
また、請求項に記載の発明は、請求項1ないしのいずれかに記載の構造材料健全性評価方法において、前記評価対象部位の硬さに相当する硬さは、前記機器から採取した試料の硬さであること、を特徴とする。
【0021】
請求項の発明によれば、請求項1ないしのいずれかの発明の作用・効果を得られるほか、実機プラントの現場で、硬さ測定器を持ち込み硬さ測定を行うことに比べ、測定用の試料を環境の整った実験室等に持ち帰り測定することができるので、より正確な硬さ測定が可能で、結果的に構造材料健全性評価の精度を上げることができる。
【0022】
また、請求項に記載の発明は、請求項1ないしのいずれかに記載の構造材料健全性評価方法において、前記破壊評価工程で、前記欠陥の形状を仮想的に設定し、その仮想欠陥の形状寸法を表す数値を用いること、を特徴とする。
【0023】
請求項の発明によれば、請求項1ないしのいずれかの発明の作用・効果を得られるほか、検査で割れ、き裂等が検出できない場合、検査等を省略した場合、あるいは解析等で割れ、き裂の発生が予想される場合に対しても、構造材料健全性評価が可能となる。
【0024】
また、請求項に記載の発明は、請求項1ないしのいずれかに記載の構造材料健全性評価方法において、前記破壊評価工程で、前記欠陥の形状寸法を実際より大きめの値に設定すること、を特徴とする。
【0025】
請求項の発明によれば、請求項1ないしのいずれかの発明の作用・効果を得られるほか、安全側すなわち保守的な構造材料健全性評価が可能となる。
【0026】
また、請求項に記載の発明は、請求項1ないしのいずれかに記載の構造材料健全性評価方法において、前記硬さ測定工程で、硬さ試験機の圧子の押込み深さと荷重を用いて硬さを算出すること、を特徴とする。
【0027】
請求項の発明によれば、請求項1ないしのいずれかの発明の作用・効果を得られるほか、圧子の押込み深さと荷重を用いて求める硬さ(ユニバーサル硬さと呼ばれる)を利用することによって、圧子除荷後の圧痕の大きさを測る従来の硬さ測定法に比べ、材料の機械的性質をより反映した、評価対象機器部材の材質変化により敏感に対応した精度の高い構造材料健全性評価が可能となる。
【0028】
また、請求項に記載の発明は、請求項1ないしのいずれかに記載の構造材料健全性評価方法において、前記材料特性値算出工程では、少なくとも破壊靭性値、JR曲線および応力ひずみ関係を算出し、前記破壊評価工程では、脆性パラメータと延性パラメータの関係を座標平面とする破壊評価線図の上で、前記破壊靭性値およびJR曲線を用いて計算される破壊評価点が前記応力ひずみ関係を用いて計算される破壊評価曲線を下回ることを、破壊しないことの判定基準とすること、を特徴とする。
請求項の発明によれば、請求項1ないしのいずれかの発明の作用・効果を得られるほか、材質変化を反映した精度の高い構造材料健全性評価が可能となる。
【0029】
また、請求項に記載の発明は、コンピュータに、構造材料に欠陥を有する可能性のある機器の評価対象部位と同等の材料特性を有する材料について求めた硬さ以外の少なくとも一つの材料特性値を硬さの関数として表したマスターカーブを記憶する機能と、前記評価対象部位の硬さに相当する硬さの測定値を入力する機能と、前記マスターカーブと前記硬さの測定値とから前記評価対象部位の前記少なくとも一つの材料特性値として降伏応力、引張強さ、応力ひずみ関係、破壊靭性値、およびJR曲線のうちの少なくとも一つを含む材料特性値を算出する機能と、前記評価対象部位のモデル化形状、欠陥寸法および荷重条件と前記少なくとも一つの材料特性値を用いて前記機器の破壊評価を行う機能と、を実現させるためのプログラムである。
【0030】
請求項発明によれば、プラント機器運転中に生じる構成材料の材質変化を直接反映した高精度の構造材料健全性評価を、コンピュータによって実現することができる。
【0031】
【発明の実施の形態】
以下本発明の実施の形態を図面を参照して説明する。
[第1の実施の形態]
図1は本発明の第1の実施の形態に係わるフロー図である。初めに評価部位の条件設定を行う(工程S1)。本実施の形態では、評価部位形状を管状とし、欠陥は周方向き裂で、曲げ負荷が与えられる場合を例として説明する。欠陥形状は、半楕円形状あるいは配管の内表面に存在する扇型形状、あるいは配管板厚を貫通した扇型形状のようにモデル化したものとし、これらのモデル欠陥の欠陥深さ、欠陥長さの値を用いて、構造材料健全性評価を実行する。
【0032】
なお、モデル化は、実機の欠陥検査で計測された欠陥形状に基づき行うことになるが、欠陥が発見されなかった場合でも、仮想的に欠陥の存在を仮定しその形状を設定することも含める。例えば、欠陥検出装置の検出精度以下の微小欠陥の存在を想定するような場合、あるいは空間的に欠陥検出装置が近づけない部位に対し解析等により欠陥寸法を予測する場合が、それらに該当する。また、欠陥が実測された場合でも、その実測寸法より大きめの値を評価に用いれば、実際より低い荷重でも評価上の欠陥は進展することになり、評価上は安全側であることから保守的な構造材料健全性評価を行うことができる。
次に、硬さ測定または設定を行う(工程S2)。硬さの測定または設定は次の▲1▼または▲2▼のいずれかの方法にて行う。
【0033】
▲1▼硬さ計測装置を評価機器表面に接触あるいは近接させ、硬さ測定用の圧子を被測定表面に押し付けることにより、評価対象部位の硬さを直接測定する。
▲2▼評価対象部位から離れた部位の硬さを測定し、別途求めた評価部位の硬さとの換算関係を用い、直接評価対象部位の硬さを測定することなく、評価対象部位の硬さを算出する。
【0034】
ここで、測定に用いる硬さ試験法としては、ビッカース硬さで代表される従来の硬さ試験のように測定用圧子の除荷後に被測定物表面に残る圧痕の大きさを測る方法、あるいはユニバーサル硬さと呼ばれる圧子の押込み深さと荷重を用いて求める方法の何れでも良い。
【0035】
後者のユニバーサル硬さは、ビッカース硬さのような従来法に比べ材料の機械的性質をより反映した測定法であることが報告されている(文献:Yasudaら, A new method for evaluating stress-strain properties of metals using ultra-microhardness technique,Journal of Nuclear Materials,Vol.187,p.109,1992年)。
【0036】
次に、降伏応力、引張強さ、応力ひずみ関係、破壊靭性値、およびJR曲線等の算出を行う(工程S3)。硬さと降伏応力σyおよび引張強さσの関係は、温度も変数に含める関数で表せる。すなわち、硬さ試験は一般に室温で行うが、評価対象とする機器の状態はその運転温度が室温とは異なる場合が多く、その温度を変数に含める以下の(1)式および(2)式の形とする。
σy = f(硬さ,温度) (1)
σu = g(硬さ,温度) (2)
【0037】
ここで、硬さ試験を評価対象機器の温度と等しい高温で実施し、高温硬さを求める方法もある。さらに、評価対象状態が常に一定温度であれば、その温度での降伏応力σyおよび引張強さσを、次式(3),(4)のように単純に硬さのみの関数として表すこともできる。
σy = f(硬さ) (3)
σu = g(硬さ) (4)
【0038】
本実施の形態では、説明の単純化のため、応力ひずみ関係、破壊靭性値、およびJR曲線も含めて、上式のように温度の因子を省略して説明する。
破壊靭性値JICも、上記の降伏応力σyおよび引張強さσuと同様に、次式(5)のように硬さの関数で表せる。
IC = h(硬さ) (5)
【0039】
これに対し、応力ひずみ関係およびJR曲線は、前者が応力σとひずみεの関係、後者が弾塑性破壊靭性値Jとき裂進展量Δaの関係を表す式で、それぞれ例えば以下(6)式、(7)式のようなべき乗則で近似すれば良い。
σ= α(ε)n (6)
J= β(Δa)m (7)
【0040】
ここで、上式の係数α、βおよび指数n、mを以下(8)式〜(11)式のように硬さの関数として表せる。
α= i(硬さ) (8)
n = j(硬さ) (9)
β= k(硬さ) (10)
m = l(硬さ) (11)
【0041】
最後に、破壊評価の実行を行う(工程S4)。破壊評価方法は、例えば、英国中央電力庁が開発したR6法(例えば 文献:I.Milne et al., CEGB Rep., R/H/R6-Rev.3, 1986)あるいは日本機会学会の維持規格(発電用原子力設備規格 JSME S NA1-2000,2000年5月)に規定された2パラメータ法に従えば良い。2パラメータ法は線形破壊力学クライテリオンと塑性崩壊クライテリオンを組み合わせ、破壊評価線図上で破壊評価を行う方法である。
【0042】
2パラメータ法による破壊評価を行うまでのフローを図2に示す。前述の図1で説明した評価部位形状として配管の半径と肉厚、欠陥の寸法、および荷重条件(ここでは曲げモーメントとする)を入力する(工程S21)。次に、同じく前述の図1で説明した硬さの測定値を用い、降伏応力、引張強さおよび応力ひずみ曲線を算出する(工程S22)。なお、これらの値の一部または全てを硬さから算出する代わりに、文献あるいは解析等で得られた値を用いても良い。
【0043】
次に、以上の値より評価対象機器の破壊の限界を表す破壊評価曲線を求める(工程S23)。破壊評価曲線を表示する関係式は数種類ある。一例として、前記2パラメータ法であるR6法オプション2で定められた式を以下(12)式に示す。

Figure 0004112830
【0044】
ここで、Krは脆性パラメータ、Lrは延性パラメータである。また、Eは縦弾性係数で、この値は本実施の形態では硬さの関数として扱わないので文献等の値を引用する必要がある。εrefは応力ひずみ曲線上で応力Lr・σyに相当するひずみ、σyは降伏応力である。上式でLrは塑性崩壊基準のσf/σyで打ち切られる。ここでσfは、(降伏応力+引張強さ)/2で求められる流動応力である。
【0045】
次に、本発明に係る硬さを用い、破壊靭性値およびJR曲線を算出する(工程S24)。ここでも、これらの値の一部または全てを硬さから算出する代わりに、文献あるいは解析等で得られた値を用いても良い。以上の値から、破壊評価点を求める(工程S25)。ここでは曲げを受ける貫通き裂付の配管の場合を示す。
Lr=M/MC(a0, σy) (13)
Kr=[Je(a0)/JIC1/2 (14)
【0046】
ここで、Mは負荷モーメント、MCは完全弾塑性体を仮定した長さ2a0の貫通き裂を有する配管の限界モーメントである。Je(a0)はJ積分の弾性成分であり、JICは破壊靭性値である。
【0047】
さらに、モーメント一定で、き裂をΔaだけ進展させた場合の破壊評価点を(13)式および(14)式により求める。ただし、(14)式のJICはJR曲線上のき裂進展量Δaに対応するJ積分に置き換える。前記の仮想進展前の破壊評価点と結ぶことにより、破壊評価線図上で破壊評価点は曲線(き裂進展軌跡)で表示される。
以上のように求めた破壊評価曲線と破壊評価点を比較し、破壊評価点の1つ以上が破壊評価曲線を下回れば欠陥の進展は止まると判定する(工程S26)。
【0048】
本実施の形態によれば、割れ、き裂等の欠陥が存在する機器の破壊評価に必要な材料物性値が、評価対象機器部材の硬さを測定することで取得できる。プラント機器運転中に材質変化が起こるような場合、材質変化を反映した精度の高い当該機器の構造健全化評価を行うことができる。
【0049】
なお、上記実施の形態において、硬さの測定値とマスターカーブとから材料特性値を算出すること、およびこの材料特性値に基づいて機器の破壊評価を行うことは、プログラムを用いてコンピュータにより実行することができる。
【0050】
[第2の実施の形態]
本発明の第2の実施の形態を図3を参照しながら説明する。ここで、第1の実施の形態と同じまたは類似の部分には同じ符号を付して重複説明を省略する。
【0051】
この第2の実施の形態では、第1の実施の形態と同様に、硬さに基づき材料特性値を算出するが、この硬さ測定を評価対象機器の対象部位で行うのではなく、硬さ測定用に評価対象機器からサンプリングした試料について行う。よって、硬さ測定用試料のサンプリング工程(工程S31)を、硬さ測定(工程S2)の前に設ける。その他は第1の実施の形態と同様である。
【0052】
実機プラントの現場に硬さ計測装置を持ち込み測定作業を行うことに比べ、サンプリングした試料を環境の整った実験室等に持ち帰り測定することができるので、より正確な硬さ測定が可能で、結果的に構造材料健全性評価の精度を上げることができる。また、硬さ以外の物性値の測定が、そのサンプリング試料の大きさで行えるのであれば、必要に応じそれも実施できる。
【0053】
【発明の効果】
本発明によれば、使用中に材質変化を伴うような条件で運転された機器に対し、その製造時あるいは使用中に機器構成材料の表面あるいは内部に、割れ、き裂等の欠陥が存在した場合の機器の構造健全性を評価する場合、材質変化の指標としての硬さ測定値から、硬さと相関のある材料特性値を算出することができ、それらの値を用いることによって、実機での材質変化が複雑であってもその変化を反映した精度の高い構造材料健全性評価を行うことができる。
【0054】
硬さ試験は、測定時に被測定物に与える損傷が小さい半非破壊的な試験法であることから、被測定物の表面を大きく破壊することがない。仮に測定用の試料を評価対象機器からサンプリングする必要が生じても、その試料の大きさは、従来の試験方法により硬さ以外の材料特性値を求める場合に必要とされる試験片に比べ、非常に小さくすることが可能である。よって、サンプリングによる切出し跡を溶接、埋め戻し等で補修する必要が生じても、その作業は非常に軽微である。
以上説明したように、本発明によれば、安価で高精度の構造材料健全性評価を行うことができる。
【図面の簡単な説明】
【図1】本発明に係る構造材料健全性評価方法の第1の実施の形態のフロー図。
【図2】図1における破壊評価工程を2パラメータ法によって行う場合のフロー図。
【図3】本発明に係る構造材料健全性評価方法の第2の実施の形態のフロー図。[0001]
BACKGROUND OF THE INVENTION
The present invention is a device for use in conditions where the strength of the constituent material changes with the passage of time, and the structural material soundness evaluation method when the surface or the inside of the device has defects such as cracks and cracks. , And its evaluation program.
[0002]
[Prior art]
In a material constituting a chemical plant, a power plant, etc., cracks may occur as a result of material damage accumulated on the surface or inside of the equipment with the passage of time during actual machine operation. Furthermore, in addition to the cracks generated due to the actual machine operation load, there are also micro cracks that cannot be detected by inspection during plant construction, and they may gradually grow during plant operation. is there. If an excessive external load due to an earthquake or the like is applied to equipment having these cracks, the cracks may rapidly progress and lead to destruction.
[0003]
In addition, the material constituting the plant or the like may have a material characteristic value such as strength that changes with time due to temperature, stress load, etc. during actual operation, and may be different from the initial value at the time of plant construction. .
[0004]
In order to accurately evaluate structural integrity by calculating the fracture strength when cracks exist for plant equipment that is subject to operating conditions that involve material changes in this way, It is essential to know the material property values.
[0005]
This material change depends on the initial value of the material characteristic value at the time of plant construction and the subsequent operating state. In general, even if the operating history of the equipment is known, it is difficult to grasp or measure the local load history of the equipment, and it is difficult to estimate the exact material change. In other words, the structural material soundness evaluation on the safe side is performed by overestimating the material change.
[0006]
In addition, depending on the evaluation equipment and part, it may be possible to cut out a part of the member from the part where a defect such as a crack is found or assumed, or the vicinity thereof, and the yield stress from the sampling material (sample) Manufacturing material test pieces with various shapes and dimensions according to the material property values necessary for structural material soundness evaluation, such as tensile strength, stress-strain relationship, fracture toughness value, or JR curve Can do. According to this method, even if a material change occurs, the change can be captured as a value of a material characteristic value, and an accurate structural material soundness evaluation can be performed.
[0007]
[Problems to be solved by the invention]
The conventional sampling method for highly accurate structural material soundness assessment that takes into account the material changes that occur in the constituent materials over the course of the plant operation time is a material test of various shapes and dimensions according to the material property values required for the evaluation. Pieces need to be taken from the surface or inside of the instrument. For this reason, the surface portion of the equipment is remarkably destroyed, and repair such as backfilling is required before starting plant re-operation after sampling.
[0008]
An object of this invention is to provide the method and program for performing structural material soundness evaluation with high precision, without giving large damage to an evaluation site | part.
Note that even if the hardness, yield stress, tensile strength, or stress-strain relationship changes, whether or not it is a change that is likely to cause fracture depends on the fracture mode. In other words, in order to perform an accurate structural material soundness assessment for equipment that operates under conditions where aging of plant components is expected to occur, it is necessary to quantitatively capture changes in each material property value and use the equipment. It is necessary to evaluate the soundness of structural materials in accordance with conditions and fracture modes.
[0009]
Here, since all of the above-mentioned material characteristic values are events related to the micro deformation resistance of the material, there is a correlation between the respective values. In particular, since the hardness is relatively easy to measure, the correlation between the hardness and other material property values is obtained to create a master curve, and the hardness measurement value of the actual machine member is used to diagnose equipment damage. There is a method in which necessary material data is calculated using the master curve, and an accurate life diagnosis according to the aged state of the actual machine is performed using the material data.
[0010]
Especially in the case of high-temperature equipment, the metallographic change of the constituent material is large, and the hardness and creep strength often change greatly. By formulating the relationship between the two, a method for estimating the creep strength from the hardness measurement value Etc. are known (for example, see JP-A-60-67838 and JP-A-11-326578).
[0011]
The object of evaluation of the present invention is a device that is operated at a temperature, load, etc. that does not assume damage due to creep, and the present invention evaluates the structural integrity when defects such as cracks and cracks exist. A method and program for estimating yield strength, tensile strength, stress-strain relationship, fracture toughness value, JR curve, etc. necessary for the calculation from hardness measurement values and using these values to evaluate the structural integrity of equipment Propose.
[0012]
[Means for Solving the Problems]
To achieve the above object, a first aspect of the invention, the structural material soundness evaluation method of a device that may have a defect in the structure material, to model the shape and defect shape of the evaluation target region, defect size and A condition setting step for setting a load condition, a hardness measurement step for measuring hardness corresponding to the hardness of the evaluation target portion, and hardness obtained for a material having material properties equivalent to those of the evaluation target portion The material characteristic value other than the hardness is applied to the master curve representing the material characteristic value other than the hardness as a function of the hardness, and the material characteristic value other than the hardness is applied to the master curve. yield stress as a value, tensile strength, stress-strain relationship, fracture toughness, and a material characteristic value calculating step of calculating a material property value includes at least one of JR curve set by the condition setting step model Of shape, determine the failure assessment curve from a material characteristic values obtained by the defect size and loading conditions the material characteristic value calculating step represents the breakdown limit of the device, other than the hardness obtained in the material property value calculating step A destructive evaluation step for determining a destructive evaluation point using the material characteristic value of the material, and performing a destructive evaluation of the device with the destructive evaluation point being lower than the destructive evaluation curve as a criterion for not destructing. Features.
[0013]
According to the first aspect of the present invention, the material characteristic value of the plant equipment constituent material necessary for highly accurate structural material soundness evaluation can be calculated from the hardness measurement value. As a result, it is possible to perform a highly accurate structural material soundness evaluation that directly reflects the material change of the constituent material that occurs during operation of the plant equipment, without damaging the evaluation target part. In addition, yield stress, tensile strength, stress-strain relationship, fracture toughness value, JR curve, and the like can be used for structural material soundness evaluation.
[0016]
Further, the invention according to claim 2 is the structural material soundness evaluation method according to claim 1 , wherein the hardness corresponding to the hardness of the evaluation target portion is the hardness of the evaluation target portion. It is characterized by.
[0017]
According to the invention of claim 2 , in addition to obtaining the action and effect of the invention of claim 1, the hardness of the evaluation target part is directly measured, so that the accuracy is high. In addition, although the indentation mark for a hardness measurement may remain in the evaluation object apparatus, this is very small, and repair after measurement is unnecessary or very light and easy even if necessary.
[0018]
The invention according to claim 3 is the structural material soundness evaluation method according to claim 1 , wherein the hardness corresponding to the hardness of the evaluation target part is different from the evaluation target part. It is the hardness of the site | part which can estimate the hardness of the said evaluation object site | part, It is characterized by the above-mentioned.
[0019]
According to the invention of claim 3 , in addition to obtaining the operation and effect of the invention of claim 1, when it is difficult to measure the hardness of the evaluation target part, the hardness value of the evaluation target part is determined from the hardness value at a different position. Hardness can be estimated.
[0020]
Moreover, the invention according to claim 4 is the structural material soundness evaluation method according to any one of claims 1 to 3 , wherein the hardness corresponding to the hardness of the evaluation target portion is a sample collected from the device. It is characterized by having a hardness of.
[0021]
According to the invention of claim 4 , in addition to obtaining the function and effect of any of the inventions of claims 1 to 3 , it is measured in comparison with the measurement of hardness by bringing a hardness measuring instrument at the actual plant site. Can be taken back to a laboratory or the like with a good environment, so that more accurate hardness measurement is possible, and as a result, the accuracy of structural material soundness evaluation can be improved.
[0022]
Further, the invention according to claim 5 is the structural material soundness evaluation method according to any one of claims 1 to 4 , wherein in the destructive evaluation step, the shape of the defect is virtually set, and the virtual defect It is characterized by using a numerical value representing the shape dimension.
[0023]
According to the invention of claim 5 , in addition to obtaining the function and effect of any of the inventions of claims 1 to 4 , when inspection cannot detect cracks, cracks, etc., inspection is omitted, analysis, etc. It is possible to evaluate the structural material soundness even when cracks and cracks are expected to occur.
[0024]
Further, in the structural material soundness evaluation method according to any one of claims 1 to 5 , the invention described in claim 6 sets the shape dimension of the defect to a value larger than the actual value in the destructive evaluation step. It is characterized by this.
[0025]
According to the invention of claim 6 , in addition to the effects and advantages of any of the inventions of claims 1 to 5 , safety side, that is, conservative structural material soundness evaluation can be performed.
[0026]
The invention according to claim 7 is the structural material soundness evaluation method according to any one of claims 1 to 6 , wherein the indentation depth and the load of the indenter of the hardness tester are used in the hardness measurement step. And calculating the hardness.
[0027]
According to the invention of claim 7 , in addition to obtaining the function and effect of any of the inventions of claims 1 to 6 , the hardness (referred to as universal hardness) obtained using the indentation depth and load of the indenter is utilized. Compared to the conventional hardness measurement method that measures the size of the indentation after unloading the indenter, it reflects the mechanical properties of the material and reflects the mechanical properties of the target device with higher accuracy and more sensitive structural materials. Sex assessment is possible.
[0028]
The invention according to claim 8 is the structural material soundness evaluation method according to any one of claims 1 to 7 , wherein at least the fracture toughness value, the JR curve, and the stress-strain relationship in the material property value calculation step. In the fracture evaluation step, the fracture evaluation point calculated using the fracture toughness value and the JR curve on the fracture evaluation diagram with the relationship between the brittleness parameter and the ductility parameter as the coordinate plane is the stress-strain relationship. It is characterized in that being below the destruction evaluation curve calculated by using as a criterion for not breaking.
According to the invention of claim 8 , in addition to the effects and effects of the invention of any one of claims 1 to 7 , it is possible to evaluate the structural material soundness with high accuracy reflecting the material change.
[0029]
Further, the invention according to claim 9 is a computer in which at least one material characteristic value other than the hardness obtained for a material having a material characteristic equivalent to an evaluation target part of a device that may have a defect in a structural material is obtained. From the function of storing a master curve representing the hardness as a function of hardness, the function of inputting a measured value of hardness corresponding to the hardness of the evaluation target part, the master curve and the measured value of hardness yield stress as the at least one material characteristic value of the evaluation object portion, the tensile strength, the function of calculating stress-strain relationship, fracture toughness, and the material characteristic values including at least one of the JR curve, before Symbol evaluation program der for implementing modeled shape of the target site, and a function of performing failure assessment of the device with the defect size and loading conditions said at least one material characteristic value .
[0030]
According to the ninth aspect of the present invention, high-accuracy structural material soundness evaluation that directly reflects the material change of the constituent material that occurs during operation of the plant equipment can be realized by a computer.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[First Embodiment]
FIG. 1 is a flowchart according to the first embodiment of the present invention. First, conditions for an evaluation part are set (step S1). In the present embodiment, an example will be described in which the evaluation site shape is tubular, the defect is a circumferential crack, and a bending load is applied. The defect shape is modeled as a semi-elliptical shape, a fan-shaped shape existing on the inner surface of the pipe, or a fan-shaped shape penetrating the pipe plate thickness, and the defect depth and defect length of these model defects. The structural material soundness evaluation is executed using the value of.
[0032]
Modeling is performed based on the defect shape measured in the defect inspection of the actual machine. However, even if no defect is found, it is assumed that the defect is virtually assumed and the shape is set. . For example, this is the case when it is assumed that there is a microdefect less than the detection accuracy of the defect detection device, or when the defect size is predicted by analysis or the like for a portion where the defect detection device cannot be spatially approached. Even if a defect is actually measured, if a value larger than the actually measured dimension is used for evaluation, the evaluation defect will progress even at a lower load than the actual size. Structural material soundness evaluation can be performed.
Next, hardness measurement or setting is performed (step S2). The measurement or setting of hardness is performed by either of the following methods (1) or (2).
[0033]
(1) The hardness of the evaluation target part is directly measured by bringing the hardness measuring device into contact with or close to the surface of the evaluation device and pressing a hardness measuring indenter against the surface to be measured.
(2) The hardness of the evaluation target part is measured without measuring the hardness of the evaluation target part directly by measuring the hardness of the part away from the evaluation target part and using the conversion relationship with the hardness of the evaluation part separately obtained. Is calculated.
[0034]
Here, as a hardness test method used for the measurement, a method of measuring the size of the indentation remaining on the surface of the object to be measured after unloading of the measurement indenter as in a conventional hardness test represented by Vickers hardness, or Any method may be used which uses the indenter indentation depth and load called universal hardness.
[0035]
The latter universal hardness has been reported to be a measurement method that more reflects the mechanical properties of materials than conventional methods such as Vickers hardness (reference: Yasuda et al., A new method for evaluating stress-strain). properties of metals using ultra-microhardness technique, Journal of Nuclear Materials, Vol.187, p.109, 1992).
[0036]
Next, yield stress, tensile strength, stress-strain relationship, fracture toughness value, JR curve, etc. are calculated (step S3). The relationship between the hardness, the yield stress σ y, and the tensile strength σ u can be expressed by a function including temperature as a variable. In other words, the hardness test is generally performed at room temperature, but the state of the equipment to be evaluated often has its operating temperature different from room temperature, and the following equations (1) and (2) that include that temperature as a variable are included. Form.
σ y = f (hardness, temperature) (1)
σ u = g (hardness, temperature) (2)
[0037]
Here, there is also a method in which the hardness test is performed at a high temperature equal to the temperature of the evaluation target device and the high temperature hardness is obtained. Furthermore, if the evaluation target state is always a constant temperature, the yield stress σ y and the tensile strength σ u at that temperature are simply expressed as a function of hardness only as in the following equations (3) and (4). You can also.
σ y = f (hardness) (3)
σ u = g (hardness) (4)
[0038]
In the present embodiment, for simplification of description, the temperature factor is omitted as in the above formula including the stress-strain relationship, the fracture toughness value, and the JR curve.
The fracture toughness value J IC can also be expressed as a function of hardness as in the following equation (5), similarly to the yield stress σ y and the tensile strength σ u described above.
J IC = h (hardness) (5)
[0039]
On the other hand, the stress-strain relationship and the JR curve are equations that express the relationship between the stress σ and the strain ε in the former and the relationship in the crack propagation amount Δa when the latter is the elastoplastic fracture toughness value J, for example, the following equation (6): What is necessary is just to approximate by the power law like (7) Formula.
σ = α (ε) n (6)
J = β (Δa) m (7)
[0040]
Here, the coefficients α and β and the indices n and m in the above equation can be expressed as a function of hardness as in the following equations (8) to (11).
α = i (hardness) (8)
n = j (hardness) (9)
β = k (hardness) (10)
m = l (hardness) (11)
[0041]
Finally, destruction evaluation is performed (step S4). Destructive evaluation methods include, for example, the R6 method developed by the UK Central Electricity Authority (eg, literature: I. Milne et al., CEGB Rep., R / H / R6-Rev. 3, 1986) or the maintenance standard of the Japan Opportunity Society The two-parameter method specified in (Nuclear Power Equipment Standard JSME S NA1-2000, May 2000) may be followed. The two-parameter method is a method of performing fracture evaluation on a fracture evaluation diagram by combining a linear fracture mechanics criterion and a plastic collapse criterion.
[0042]
FIG. 2 shows a flow until the fracture evaluation by the two-parameter method is performed. As the evaluation part shape described with reference to FIG. 1, the radius and thickness of the pipe, the size of the defect, and the load condition (here, the bending moment) are input (step S21). Next, yield stress, tensile strength, and stress-strain curve are calculated using the hardness measurement values described with reference to FIG. 1 (step S22). Instead of calculating part or all of these values from the hardness, values obtained by literature or analysis may be used.
[0043]
Next, a destructive evaluation curve representing the destructive limit of the device to be evaluated is obtained from the above values (step S23). There are several types of relational expressions for displaying the fracture evaluation curve. As an example, the formula defined by the R6 method option 2 which is the two-parameter method is shown in the following formula (12).
Figure 0004112830
[0044]
Here, Kr is a brittle parameter and Lr is a ductility parameter. Further, E is a longitudinal elastic modulus, and since this value is not treated as a function of hardness in the present embodiment, it is necessary to quote a value in literature or the like. ε ref is a strain corresponding to the stress Lr · σ y on the stress strain curve, and σ y is a yield stress. In the above equation, Lr is censored at the plastic collapse criterion σ f / σ y . Here, σ f is a flow stress obtained by (yield stress + tensile strength) / 2.
[0045]
Next, a fracture toughness value and a JR curve are calculated using the hardness according to the present invention (step S24). Here, instead of calculating part or all of these values from the hardness, values obtained by literature or analysis may be used. A fracture evaluation point is obtained from the above values (step S25). Here, the case of a pipe with a through crack subjected to bending is shown.
Lr = M / M C (a 0 , σ y ) (13)
Kr = [J e (a 0 ) / J IC ] 1/2 (14)
[0046]
Here, M is a load moment, and M C is a limit moment of a pipe having a through crack having a length of 2a 0 assuming a completely elastic-plastic body. J e (a 0 ) is an elastic component of J integral, and J IC is a fracture toughness value.
[0047]
Further, the fracture evaluation point when the moment is constant and the crack is propagated by Δa is obtained by equations (13) and (14). However, J IC in the equation (14) is replaced with a J integral corresponding to the crack growth amount Δa on the JR curve. By connecting the fracture evaluation point before the virtual growth, the fracture evaluation point is displayed as a curve (crack propagation locus) on the fracture evaluation diagram.
The destructive evaluation curve obtained as described above is compared with the destructive evaluation point, and if one or more of the destructive evaluation points falls below the destructive evaluation curve, it is determined that the progress of the defect stops (step S26).
[0048]
According to the present embodiment, the material property value necessary for the fracture evaluation of the device having defects such as cracks and cracks can be obtained by measuring the hardness of the device member to be evaluated. When a material change occurs during operation of plant equipment, it is possible to perform a structural soundness evaluation of the equipment with high accuracy reflecting the material change.
[0049]
In the above embodiment, the calculation of the material characteristic value from the measured value of the hardness and the master curve and the evaluation of the destruction of the device based on the material characteristic value are executed by a computer using a program. can do.
[0050]
[Second Embodiment]
A second embodiment of the present invention will be described with reference to FIG. Here, the same or similar parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
[0051]
In the second embodiment, as in the first embodiment, the material characteristic value is calculated based on the hardness. However, the hardness measurement is not performed at the target portion of the evaluation target device, but the hardness. For samples sampled from the target device for measurement. Therefore, the sampling process (process S31) of the sample for hardness measurement is provided before the hardness measurement (process S2). Others are the same as in the first embodiment.
[0052]
Compared to bringing a hardness measurement device to the actual plant site and performing measurement work, the sampled sample can be taken back to a laboratory with a good environment, and more accurate hardness measurement is possible. In particular, the accuracy of structural material soundness evaluation can be improved. Moreover, if the measurement of physical property values other than hardness can be performed with the size of the sampling sample, it can be performed as necessary.
[0053]
【The invention's effect】
According to the present invention, there was a defect such as a crack or a crack on the surface or inside of the device constituent material at the time of manufacture or during use of the device operated under conditions that involve material changes during use. When evaluating the structural integrity of equipment, the material property values that correlate with hardness can be calculated from the hardness measurement value as an index of material change, and by using these values, Even if the material change is complicated, the structural material soundness can be evaluated with high accuracy reflecting the change.
[0054]
Since the hardness test is a semi-nondestructive test method that causes little damage to the object under measurement, the surface of the object to be measured is not greatly destroyed. Even if a sample for measurement needs to be sampled from the device to be evaluated, the size of the sample is compared with the test piece required for obtaining material property values other than hardness by the conventional test method. It can be made very small. Therefore, even if it becomes necessary to repair the cut-out trace by sampling by welding, backfilling, etc., the work is very light.
As described above, according to the present invention, it is possible to perform a structural material soundness evaluation with high accuracy at low cost.
[Brief description of the drawings]
FIG. 1 is a flowchart of a first embodiment of a structural material soundness evaluation method according to the present invention.
FIG. 2 is a flowchart when the fracture evaluation process in FIG. 1 is performed by a two-parameter method.
FIG. 3 is a flowchart of a second embodiment of the structural material soundness evaluation method according to the present invention.

Claims (9)

構造材料に欠陥を有する可能性のある機器の構造材料健全性評価方法において、
評価対象部位の形状および欠陥形状をモデル化し、欠陥寸法および荷重条件の設定を行う条件設定工程と、
前記評価対象部位の硬さに相当する硬さを測定する硬さ測定工程と、
前記評価対象部位と同等の材料特性を有する材料について求めた硬さ以外の材料特性値に対し、その硬さ以外の材料特性値を硬さの関数として表したマスターカーブに、前記硬さ測定工程で得られた硬さ測定値を当てはめ、前記硬さ以外の材料特性値として降伏応力、引張強さ、応力ひずみ関係、破壊靭性値、およびJR曲線のうちの少なくとも一つを含む材料特性値を算出する材料特性値算出工程と、
前記条件設定工程で設定したモデル化形状、欠陥寸法および荷重条件と前記材料特性値算出工程で得られた材料特性値から前記機器の破壊限界を表す破壊評価曲線を求め、前記材料特性値算出工程で得られた前記硬さ以外の材料特性値を用いて破壊評価点を求め、破壊評価点が前記破壊評価曲線を下回ることを、破壊しないことの判定基準とする前記機器の破壊評価を行う破壊評価工程と、
を有することを特徴とする構造材料健全性評価方法。
In the structural material soundness evaluation method for equipment that may have defects in the structural material,
A condition setting process that models the shape of the evaluation target part and the defect shape, and sets the defect size and load condition,
A hardness measurement step of measuring the hardness corresponding to the hardness of the evaluation target part,
For the material characteristic value other than the hardness obtained for the material having the material characteristic equivalent to the evaluation target part, the hardness measurement step in the master curve representing the material characteristic value other than the hardness as a function of the hardness By applying the measured hardness value obtained in Step 1, a material property value including at least one of yield stress, tensile strength, stress-strain relationship, fracture toughness value, and JR curve as a material property value other than the hardness is used. A material property value calculation step to calculate,
A fracture evaluation curve representing the fracture limit of the device is obtained from the modeled shape, defect size and load condition set in the condition setting step and the material property value obtained in the material property value calculation step, and the material property value calculation step Destructive evaluation is performed using the material characteristic value other than the hardness obtained in the above , and the destructive evaluation of the device is performed with a criterion for determining that the destructive evaluation point is lower than the destructive evaluation curve. An evaluation process;
The structural material soundness evaluation method characterized by having.
請求項1に記載の構造材料健全性評価方法において、前記評価対象部位の硬さに相当する硬さは、前記評価対象部位の硬さであること、を特徴とする構造材料健全性評価方法。The structural material soundness evaluation method according to claim 1 , wherein the hardness corresponding to the hardness of the evaluation target part is the hardness of the evaluation target part. 請求項1に記載の構造材料健全性評価方法において、前記評価対象部位の硬さに相当する硬さは、前記評価対象部位とは異なる前記機器の部位の硬さであって、前記評価対象部位の硬さを推定できる部位の硬さであること、を特徴とする構造材料健全性評価方法。The structural material soundness evaluation method according to claim 1 , wherein the hardness corresponding to the hardness of the evaluation target part is a hardness of the part of the device different from the evaluation target part, and the evaluation target part The structural material soundness evaluation method characterized by being the hardness of the site | part which can estimate the hardness of this. 請求項1ないしのいずれかに記載の構造材料健全性評価方法において、前記評価対象部位の硬さに相当する硬さは、前記機器から採取した試料の硬さであること、を特徴とする構造材料健全性評価方法。The structural material soundness evaluation method according to any one of claims 1 to 3 , wherein the hardness corresponding to the hardness of the evaluation target part is a hardness of a sample collected from the device. Structural material soundness evaluation method. 請求項1ないしのいずれかに記載の構造材料健全性評価方法において、前記破壊評価工程で、前記欠陥の形状を仮想的に設定し、その仮想欠陥の形状寸法を表す数値を用いること、を特徴とする構造材料健全性評価方法。The structural material soundness evaluation method according to any one of claims 1 to 4 , wherein, in the fracture evaluation step, the shape of the defect is virtually set, and a numerical value representing the shape dimension of the virtual defect is used. A structural material integrity evaluation method. 請求項1ないしのいずれかに記載の構造材料健全性評価方法において、前記破壊評価工程で、前記欠陥の形状寸法を実際より大きめの値に設定すること、を特徴とする構造材料健全性評価方法。The structural material soundness evaluation method according to any one of claims 1 to 5 , wherein, in the destructive evaluation step, the shape dimension of the defect is set to a value larger than the actual value. Method. 請求項1ないしのいずれかに記載の構造材料健全性評価方法において、前記硬さ測定工程で、硬さ試験機の圧子の押込み深さと荷重を用いて硬さを算出すること、を特徴とする構造材料健全性評価方法。The structural material soundness evaluation method according to any one of claims 1 to 6 , wherein, in the hardness measurement step, the hardness is calculated using an indentation depth and a load of a hardness tester. Structural material soundness evaluation method. 請求項1ないしのいずれかに記載の構造材料健全性評価方法において、
前記材料特性値算出工程では、少なくとも破壊靭性値、JR曲線および応力ひずみ関係を算出し、
前記破壊評価工程では、脆性パラメータと延性パラメータの関係を座標平面とする破壊評価線図の上で、前記破壊靭性値およびJR曲線を用いて計算される破壊評価点が前記応力ひずみ関係を用いて計算される破壊評価曲線を下回ることを、破壊しないことの判定基準とすること、
を特徴とする構造材料健全性評価方法。
In the structural material soundness evaluation method according to any one of claims 1 to 7 ,
In the material property value calculation step, at least the fracture toughness value, the JR curve and the stress strain relationship are calculated,
In the fracture evaluation step, a fracture evaluation point calculated using the fracture toughness value and a JR curve on the fracture evaluation diagram with the relationship between the brittleness parameter and the ductility parameter as a coordinate plane is obtained using the stress-strain relationship. Being below the calculated destruction evaluation curve is a criterion for not breaking,
Structural material soundness evaluation method characterized by this.
コンピュータに、
構造材料に欠陥を有する可能性のある機器の評価対象部位と同等の材料特性を有する材料について求めた硬さ以外の少なくとも一つの材料特性値を硬さの関数として表したマスターカーブを記憶する機能と、
前記評価対象部位の硬さに相当する硬さの測定値を入力する機能と、
前記マスターカーブと前記硬さの測定値とから前記評価対象部位の前記少なくとも一つの材料特性値として降伏応力、引張強さ、応力ひずみ関係、破壊靭性値、およびJR曲線のうちの少なくとも一つを含む材料特性値を算出する機能と、
記評価対象部位のモデル化形状、欠陥寸法および荷重条件と前記少なくとも一つの材料特性値を用いて前記機器の破壊評価を行う機能と、
を実現させるためのプログラム。
On the computer,
Function to store a master curve that represents at least one material characteristic value other than the hardness obtained for a material having the same material characteristics as the evaluation target part of the equipment that may have a defect in the structural material as a function of the hardness When,
A function of inputting a measurement value of hardness corresponding to the hardness of the evaluation target part;
From the master curve and the measured value of the hardness, at least one of yield stress, tensile strength, stress-strain relationship, fracture toughness value, and JR curve as the at least one material characteristic value of the evaluation target portion. A function for calculating material property values including :
Modeling shape before SL evaluated the site, a function of performing failure assessment of the device using the defect size and loading conditions at least one material characteristic value,
A program to realize
JP2001261210A 2001-08-30 2001-08-30 Structural material soundness evaluation method and program Expired - Fee Related JP4112830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001261210A JP4112830B2 (en) 2001-08-30 2001-08-30 Structural material soundness evaluation method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001261210A JP4112830B2 (en) 2001-08-30 2001-08-30 Structural material soundness evaluation method and program

Publications (2)

Publication Number Publication Date
JP2003065921A JP2003065921A (en) 2003-03-05
JP4112830B2 true JP4112830B2 (en) 2008-07-02

Family

ID=19088286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001261210A Expired - Fee Related JP4112830B2 (en) 2001-08-30 2001-08-30 Structural material soundness evaluation method and program

Country Status (1)

Country Link
JP (1) JP4112830B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100988518B1 (en) 2003-05-23 2010-10-20 두산중공업 주식회사 Bearing babbitt sample getting method
JP4786132B2 (en) * 2004-01-07 2011-10-05 株式会社東芝 Surface modification method for reactor internals
JP2006194604A (en) * 2005-01-11 2006-07-27 Matsushita Electric Works Ltd Mechanical characteristic calculating program and mechanical characteristic measuring instrument
JP4733159B2 (en) * 2008-04-02 2011-07-27 株式会社フューチュアテック Yield stress measurement method
JP5207075B2 (en) * 2008-09-29 2013-06-12 株式会社Ihi Material property identification method of elasto-plastic material by indentation test
JP5087015B2 (en) * 2009-01-07 2012-11-28 株式会社東芝 Fracture strength evaluation method for dissimilar joints
JP5644436B2 (en) * 2010-12-03 2014-12-24 Jfeスチール株式会社 Deformation state evaluation method of cold-formed square steel pipe
JP7362550B2 (en) 2020-06-09 2023-10-17 株式会社神戸製鋼所 Insulation board inspection method

Also Published As

Publication number Publication date
JP2003065921A (en) 2003-03-05

Similar Documents

Publication Publication Date Title
KR100418700B1 (en) Ball indenter based on FEA solutions for property evaluation
US4852397A (en) Field indentation microprobe for structural integrity evaluation
WO2016045024A1 (en) Method for measuring and determining fracture toughness of structural material in high-temperature environment
CN107843510B (en) Method for estimating residual endurance life of supercritical unit T/P91 heat-resistant steel based on room-temperature Brinell hardness prediction
Ainsworth et al. Failure assessment diagrams for high temperature defect assessment
CN104655505B (en) Instrumented-ball-pressing-technology-based residual stress detection method
JP4112830B2 (en) Structural material soundness evaluation method and program
CN110907475A (en) Method for evaluating residual life of martensite heat-resistant steel
Lord et al. 25 year perspective Aspects of strain and strength measurement in miniaturised testing for engineering metals and ceramics
Gromyka et al. Method of state and residual resource assessment of excavator bucket tooth caps
Kulka et al. Fracture toughness evaluation in C (T) specimens with reduced out-of-plane constraint
JP6061767B2 (en) Method and apparatus for exploring delamination inside concrete
Khor Crack tip opening displacement (CTOD) in single edge notched bend (SEN (B))
JP2007057325A (en) Remaining lifetime prediction method
JP5492057B2 (en) Damage prediction method for heat-resistant steel welds
JP4672616B2 (en) Evaluation method of stress corrosion crack growth rate
JP2007225333A (en) Damage evaluation method by metal texture as to creep fatigue damage
Schwalbe et al. Classical fracture mechanics methods
Kharchenko et al. Analysis of the methods for determination of strength characteristics of NPP main equipment metal from the results of hardness and indentation measurements
JP2007108095A (en) Method and device for diagnosing member irradiated with neutron
JP6430220B2 (en) Structure life diagnosis method and structure life diagnosis apparatus
Abbadi et al. Fatigue crack growth in nickel-based superalloys at elevated temperatures
WO1990010857A1 (en) Field indentation microprobe for structural integrity evaluation
JP2003294880A (en) Irradiation damage evaluation method
Ren et al. Experiment-Based Reliability Analysis of Girth Welds on Different Grade Steel Pipelines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060817

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060822

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees