JP5644436B2 - Deformation state evaluation method of cold-formed square steel pipe - Google Patents

Deformation state evaluation method of cold-formed square steel pipe Download PDF

Info

Publication number
JP5644436B2
JP5644436B2 JP2010269959A JP2010269959A JP5644436B2 JP 5644436 B2 JP5644436 B2 JP 5644436B2 JP 2010269959 A JP2010269959 A JP 2010269959A JP 2010269959 A JP2010269959 A JP 2010269959A JP 5644436 B2 JP5644436 B2 JP 5644436B2
Authority
JP
Japan
Prior art keywords
steel pipe
cold
square steel
curve
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010269959A
Other languages
Japanese (ja)
Other versions
JP2012117995A (en
JP2012117995A5 (en
Inventor
中川 佳
佳 中川
加村 久哉
久哉 加村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010269959A priority Critical patent/JP5644436B2/en
Publication of JP2012117995A publication Critical patent/JP2012117995A/en
Publication of JP2012117995A5 publication Critical patent/JP2012117995A5/ja
Application granted granted Critical
Publication of JP5644436B2 publication Critical patent/JP5644436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、曲げを受けた際に破断で終局を迎える、幅厚比の小さい冷間成形角形鋼管が終局変形状態に達したかどうかを判定する変形状態評価方法に関し、特に国土交通省住宅局建築指導課、建築物の構造関係技術基準解説書 2007年版、全国官報販売協同組合(ISBN:978−4−915392−09−2)、200805に記載されているFAランクに属する断面(幅厚比33×√(235/(素材の設計基準強度))以下)を有する冷間成形角形鋼管に適用して好適なものに関する。   The present invention relates to a deformation state evaluation method for determining whether or not a cold-formed square steel pipe having a small width-to-thickness ratio that has reached the end when it is bent reaches a final deformation state. Cross-section (width-to-thickness ratio) belonging to the FA rank described in the Building Guidance Division, Structure-Related Technical Standards for Buildings 2007, National Gazette Sales Cooperative (ISBN: 978-4-915392-09-2), 200805 The present invention relates to a material suitable for application to a cold-formed square steel pipe having 33 × √ {square root over (235 / (material design standard strength))}.

建築物の構造関係技術基準解説書(2007年版)第6章保有水平耐力計算等の構造計算には、架構の変形能力は、接合部が破断しない限りにおいて、構成部材の変形能力は座屈によって限界付けられていると記載され、部材の終局が座屈となる場合の、部材の塑性変形能力を構造特性係数Dsであらわし、部材寸法と変形能力の関係に基づき、筋かいの有無や種別および柱及びはりの種別によってその数値を定めている。   In the structural calculation such as Chapter 6 possessed horizontal strength calculation, the structural related technical standard manual for buildings (2007 version), the deformation capacity of the frame is determined by buckling as long as the joint does not break. It is described as being limited, and the plastic deformation capacity of the member in the case where the end of the member is buckled is represented by the structural characteristic coefficient Ds. Based on the relationship between the member size and the deformation capacity, the presence or absence of the brace, the type, The numerical value is determined according to the type of pillar and beam.

しかし、地震の水平力に対して、建築物や部材が実際に限界状態にあるかどうかの判定は、限界塑性率(破断時における塑性率(部材の変形角と降伏時の変形角の比))や、建築物の層間変形角を限界値と比較しなければならないところ、正確な判定は困難とされている。   However, to determine whether a building or member is actually in a limit state against the horizontal force of an earthquake, the limit plasticity ratio (the plasticity ratio at break (ratio of the deformation angle of the member to the deformation angle at yield)) ) And where the interlaminar deformation angle of the building must be compared with the limit value, making accurate determination difficult.

その理由として、国土交通省から部材の限界変形角を求める数式が告示(平12建告第1457号第3)されているものの、一般的には限界塑性率や変形角を求めることは困難で、得られたとしても安定した値とならない。なお、部材の変形角や塑性率だけで限界状態を判定すること自体が必ずしも妥当でないとの考え方もある。   The reason for this is that the Ministry of Land, Infrastructure, Transport and Tourism has announced a mathematical formula for determining the critical deformation angle of a member (Hei 12 No. 1457 No. 3), but in general, it is difficult to determine the critical plasticity ratio and the deformation angle. Even if it is obtained, it does not become a stable value. There is also an idea that it is not always appropriate to determine the limit state based only on the deformation angle and plasticity factor of the member.

一方、柱梁剛節架構の限界状態が、部材の座屈でなく、柱梁接合部の破断で終了する場合の判定指針は明らかにされておらず、その理由として、構造物の応力やひずみとして実験値に近似する値を得る重要な手法であるFEM解析が、部材の破断現象を予測することに必ずしも適当でないことが挙げられている。   On the other hand, there is no clear guideline for determining whether the critical state of a column-beam rigid frame is not a buckling of a member but ends with a fracture of a beam-column joint. It is mentioned that FEM analysis, which is an important method for obtaining a value approximating the value, is not necessarily suitable for predicting the fracture phenomenon of a member.

FEM解析は構造物の応力やひずみとして実験値に近似する値を得る重要な手法として種々の構造物の応力解析に利用されているが(例えば、非特許文献1、2)、部材の破断現象の解析を取り扱った先行文献はない。例えば、特許文献1〜3は、FEM解析が、計算量が膨大で結果を得るまでに長時間を要することを解決するため、FEM解析を行わずに所望する部位の応力やひずみを推定する方法を提案するもので、部材の破断現象の解析への適用を示唆するものではない。   FEM analysis is used for stress analysis of various structures as an important technique for obtaining values approximate to experimental values as stress and strain of structures (for example, Non-Patent Documents 1 and 2). There is no prior literature dealing with the analysis of. For example, Patent Documents 1 to 3 describe a method for estimating stress and strain of a desired part without performing FEM analysis in order to solve the fact that FEM analysis requires a large amount of calculation and takes a long time to obtain a result. This is not intended to suggest application to the analysis of the fracture phenomenon of members.

特開2002−81134号公報JP 2002-81134 A 特開2008−31818号公報JP 2008-31818 A 特開2008−31819号公報JP 2008-31819 A

上場輝康、径厚比の小さい高強度円形鋼管の短柱圧縮挙動、日本建築学会構造系論文集(507)、123−129、19980530Listed Teruyasu, short column compression behavior of high strength round steel pipe with small diameter-thickness ratio, Architectural Institute of Japan (507), 123-129, 199880530 下野直人ら、ロングスティフナー形円形鋼管コンクリート柱・梁フランジ接合部の単調引張試験、日本建築学会大会学術講演概要集 1998年9月Naoto Shimono et al., Monotonic Tensile Test of Long Stiffener-Shaped Circular Steel Pipe Concrete Column / Beam Flange Joints, Annual Conference of Architectural Institute of Japan, September 1998

FEM解析で破断現象をシミュレートしようとすると、「応力−ひずみ関係で応力がピークに達した後の負勾配時の挙動」や「急激な断面の変化」を再現することが極めて困難で、また、破断現象に先行して生じる、き裂の発生をシミュレートすることも難しく、き裂先端部の応力状態や伝播経路の推定、素材靭性の影響など理論的に推定することも困難とされている。   When trying to simulate the fracture phenomenon by FEM analysis, it is extremely difficult to reproduce “behavior during negative gradient after stress reaches its peak due to stress-strain relationship” and “abrupt cross-sectional change”. It is difficult to simulate the occurrence of a crack that precedes the fracture phenomenon, and it is difficult to theoretically estimate the stress state and propagation path of the crack tip and the influence of material toughness. Yes.

そこで、本発明は、冷間成形角形鋼管の破断現象をFEM解析で直接シミュレーションして限界変形能力を求めるのでなく、FEM解析により破断が予想される部位の応力ーひずみ関係を求めて、そのひずみ量から終局変形状態にあることを判定する方法を提供することを目的とする。   Therefore, the present invention does not directly obtain the limit deformation capacity by directly simulating the fracture phenomenon of a cold-formed square steel pipe by FEM analysis, but obtains the stress-strain relationship of the part where fracture is expected by FEM analysis. It is an object of the present invention to provide a method for determining whether or not a final deformation state exists from a quantity.

本発明者らは、破断で終局を迎えると考えられる、幅厚比が33×√(235/(素材の設計基準強度))以下の冷間成形角形鋼管からなる部材について、部材(冷間成形角形鋼管)全体や部材における溶接部の形状を忠実に再現してFEM解析を行い、部材の母材部、前記母材の溶接熱影響部および溶接材料の応力−ひずみ関係を再現し、冷間成形角形鋼管からなる部材の曲げ破断実験結果と比較した。   The present inventors consider that a member (cold forming) is a member formed of a cold-formed square steel pipe having a width-to-thickness ratio of 33 × √ (235 / (design standard strength of material)) or less, which is considered to end with a break. Square steel pipe) FEM analysis is performed by faithfully reproducing the shape of the welded part in the whole and the member, reproducing the stress-strain relationship of the base material part of the member, the weld heat affected zone of the base material and the welding material, and cold It was compared with the bending fracture test result of the member made of the formed square steel pipe.

その結果、部材の母材部、前記母材の溶接熱影響部および溶接金属部のそれぞれについて求めた応力ーひずみ関係において、ひずみが最も早く進行する部分を最危険部位とし、相当ひずみが、当該最危険部位を構成する素材試験での応力ーひずみ関係における一様伸びに達する時点を部材変形の終局時と判断すれば、実機部材の曲げ破断実験における破断位置と精度よく対応するという知見を得た。   As a result, in the stress-strain relationship obtained for each of the base material part of the member, the weld heat-affected part of the base material and the weld metal part, the part where the strain proceeds most rapidly is the most dangerous part, and the equivalent strain is If it is judged that the point of time when the uniform elongation in the stress-strain relationship in the material test that constitutes the most dangerous part is reached is the end of the deformation of the member, the knowledge that it corresponds to the fracture position in the bending fracture experiment of the actual machine member with high accuracy is obtained. It was.

本発明は、上記知見を基に更に検討を加えてなされたもので、すなわち、本発明は、
1.曲げにより破断する冷間成形角形鋼管の変形状態判定方法であって、曲げが作用した際の前記冷間成形角形鋼管各部位の応力ーひずみ関係をFEM解析により求め、局所ひずみが最も早く進行する部位を最危険部位と見做して、当該最危険部位における相当ひずみが、素材の一様伸びに達した時点を終局変形状態と判定することを特徴とする冷間成形角形鋼管の変形状態判定方法。
2.FEM解析を行う際、前記冷間成形角形鋼管の溶接熱影響部における応力ーひずみ関係を、当該溶接熱影響部の硬さ試験結果と母材部の応力ーひずみ関係を用いて決定することを特徴とする1記載の冷間成形角形鋼管の変形状態判定方法。
3.冷間成形角形鋼管を含み、1または2記載の変形状態判定方法に基づいて変形性能を評価された構造物。
The present invention has been made by further study based on the above knowledge, that is, the present invention,
1. This is a method for determining the deformation state of a cold-formed square steel pipe that breaks by bending. The stress-strain relationship of each part of the cold-formed square steel pipe when bending acts is obtained by FEM analysis, and the local strain progresses the fastest. Determining the deformation state of a cold-formed square steel pipe, considering that the part is regarded as the most dangerous part, and determining when the equivalent strain at the most dangerous part reaches the uniform elongation of the material as the ultimate deformation state Method.
2. When performing FEM analysis, the stress-strain relationship in the weld heat affected zone of the cold-formed square steel pipe is determined using the hardness test result of the weld heat affected zone and the stress-strain relationship of the base metal. 2. The method for determining a deformation state of a cold-formed square steel pipe according to 1, wherein
3. A structure which includes a cold-formed square steel pipe and whose deformation performance is evaluated based on the deformation state determination method described in 1 or 2.

本発明によれば、曲げが作用した際の冷間成形角形鋼管の変形状態を、多くの時間と費用を要する実物大試験体による試験を行わずに、判定可能で、産業上極めて有用である。   INDUSTRIAL APPLICABILITY According to the present invention, the deformation state of a cold-formed square steel pipe when bending acts can be determined without performing a test using a full-scale test body that requires a lot of time and cost, and is extremely useful industrially. .

曲げ試験機を説明する図。The figure explaining a bending tester. 試験体1の構造を模式的に示す図で、(a)は試験体1の側面図、(b)は試験体1の中央部の断面図((a)のA−A断面図)。It is a figure which shows the structure of the test body 1 typically, (a) is a side view of the test body 1, (b) is sectional drawing of the center part of the test body 1 (AA sectional drawing of (a)). 図2に示す試験体1のFEM解析モデルを示す図。The figure which shows the FEM analysis model of the test body 1 shown in FIG. 図3に示したFEM解析モデルにおける冷間成形角型鋼管と通しダイアフラムの溶接部の拡大図。FIG. 4 is an enlarged view of a cold-formed square steel pipe and a welded portion of a through diaphragm in the FEM analysis model shown in FIG. 3. 鋼管母材(平板部・角部)、溶接部DEPOの各要素における応力−ひずみ関係を示す図。The figure which shows the stress-strain relationship in each element of a steel pipe base material (a flat plate part and a corner | angular part) and the welding part DEPO. 溶接部の硬さ試験結果の一例を示す図。The figure which shows an example of the hardness test result of a welding part. 溶接部の硬さ試験結果を用いた強度推定結果を踏まえた、溶接熱影響部の応力−ひずみ関係の設定方法を説明する図。The figure explaining the setting method of the stress-strain relationship of a welding heat affected zone based on the strength estimation result using the hardness test result of a weld. 図2の試験体1において特定された最危険部位14を示す図。The figure which shows the most dangerous part 14 specified in the test body 1 of FIG. 鋼管断面における、図8に示した最危険部位14の拡大図。The enlarged view of the most dangerous part 14 shown in FIG. 8 in a steel pipe cross section. 実施例の実機試験結果とFEM解析結果の相関を示す図。The figure which shows the correlation of the actual machine test result of an Example, and a FEM analysis result. 本発明のフロー図。The flowchart of this invention.

本発明は、FEM解析により冷間成形角形鋼管に曲げ応力が作用した際に、局所ひずみが最も早く進行する部位を特定して、最危険部位とし、当該最危険部位における相当ひずみが、素材の一様伸びに達した時点を終局変形状態と判定することを特徴とする。以下、柱を模擬した試験体を対象に本発明を詳細に説明する。   In the present invention, when a bending stress is applied to a cold-formed square steel pipe by FEM analysis, a site where the local strain proceeds most quickly is designated as the most dangerous site, and the equivalent strain in the most dangerous site is The point in time when the uniform elongation is reached is determined as the ultimate deformation state. Hereinafter, the present invention will be described in detail with reference to a test body simulating a column.

図11は、本発明の手順を示すフロー図で、まず、FEM解析の対象となる部材を、溶接部形状を含めて、各要素にメッシュ分割する(STEP1)。   FIG. 11 is a flowchart showing the procedure of the present invention. First, a member to be subjected to FEM analysis is divided into elements including a welded portion shape (STEP 1).

図2に本発明の説明に用いる試験体1の構造を模式的に示す(a)は試験体1の側面図、(b)は試験体1の中央部の断面図((a)のA−A断面図)を示す。試験体1は、冷間成形角形鋼管を本体とし、その中央部に通しダイアフラムを2枚溶接して、実構造の柱と同様の形状を再現している。   FIG. 2 schematically shows the structure of the test body 1 used for explaining the present invention. FIG. 2A is a side view of the test body 1, and FIG. 2B is a cross-sectional view of the central portion of the test body 1 (A- A sectional view) is shown. The test body 1 has a cold-formed square steel pipe as a main body and welds two diaphragms through its central portion to reproduce a shape similar to that of an actual structure column.

図3は、図2に示す試験体1のFEM解析モデル、図4は、図3に示したFEM解析モデルにおける冷間成形角形鋼管と通しダイアフラムの溶接部の拡大図を示し、鋼管母材4に ダイヤフラム5が取り付けられ、取り付け部において溶接部は溶接部(DEPO)、溶接熱影響部6で構成される。母材とダイヤフラムの取り付け部は裏当て金7付溶接されている。   3 shows an FEM analysis model of the test body 1 shown in FIG. 2, FIG. 4 shows an enlarged view of a cold-formed square steel pipe and a welded portion of the through diaphragm in the FEM analysis model shown in FIG. A diaphragm 5 is attached to the welded portion, and the welded portion is composed of a welded portion (DEPO) and a weld heat affected zone 6. The base material and the attachment part of the diaphragm are welded with a backing metal 7.

FEM解析モデルは試験体の対称性を利用してその一部分について作成しても良い。図3に示した試験体1のFEM解析モデルは、試験体1が上下左右対称であることより、1/4解析モデルとした。溶接部をFEM解析モデル化する際は、溶接部における応力集中部、例えば、アンダーカットが要素(メッシュ)として正確に再現されるように実際の試験体における溶接部の形状を3次元レーザ形状測定装置などで計測してモデル化する。   The FEM analysis model may be created for a part of the specimen using the symmetry of the specimen. The FEM analysis model of the specimen 1 shown in FIG. 3 is a 1/4 analysis model because the specimen 1 is vertically and horizontally symmetrical. When modeling a welded part with FEM analysis, three-dimensional laser shape measurement is performed on the shape of the welded part in the actual specimen so that the stress-concentrated part in the welded part, for example, the undercut is accurately reproduced as an element (mesh). Measure and model with equipment.

次にFEM解析により、曲げ応力作用時における各要素(メッシュ)毎の応力―ひずみ関係より、曲げ応力の増大に伴う、ひずみの進行速度を各要素(メッシュ)で比較し(STEP2)、最もひずみの増大が大きい、すなわち、変形の進行速度が最も速い箇所を最危険部位とする(STEP3)。図8に図2の試験体1において特定された最危険部位14を、図9に鋼管断面における最危険部位14の拡大図を示す。   Next, by FEM analysis, the progress of strain with increasing bending stress is compared with each element (mesh) from the stress-strain relationship for each element (mesh) when bending stress is applied (STEP2). The area where the increase of the deformation is large, that is, the place where the deformation speed is the fastest is set as the most dangerous place (STEP 3). FIG. 8 shows the most dangerous part 14 specified in the test body 1 of FIG. 2, and FIG. 9 shows an enlarged view of the most dangerous part 14 in the steel pipe cross section.

最危険部位を判定する際の各要素における応力―ひずみ関係は、予め、当該要素を構成する素材について引張試験を行って求めておく。なお、FEM解析で用いる応力―ひずみ関係は、公称応力―公称ひずみ関係でなく、公称応力―公称ひずみ関係から換算して求めた真応力―真ひずみ関係とする。   The stress-strain relationship in each element when determining the most dangerous part is obtained in advance by conducting a tensile test on the material constituting the element. Note that the stress-strain relationship used in the FEM analysis is not the nominal stress-nominal strain relationship, but the true stress-true strain relationship obtained by conversion from the nominal stress-nominal strain relationship.

図5は鋼管母材(平板部・角部)、溶接部DEPOの各要素における応力−ひずみ関係を示す図で、図において応力−ひずみ線9は鋼管母材(平板部)、応力−ひずみ線10は鋼管母材(角部)、応力−ひずみ線11は溶接部DEPOの各要素における応力−ひずみ関係を示す。   FIG. 5 is a view showing a stress-strain relationship in each element of the steel pipe base material (flat plate portion / corner portion) and the welded portion DEPO. In the figure, the stress-strain line 9 is the steel pipe base material (flat plate portion), the stress-strain line. Reference numeral 10 denotes a steel pipe base material (corner portion), and a stress-strain line 11 denotes a stress-strain relationship in each element of the welded portion DEPO.

溶接熱影響部は実際の試験体における領域が狭く、引張試験片を採取して応力−ひずみ関係を求めることができないため、硬さと引張り強さの相関関係から応力―ひずみ関係を求める。   Since the weld heat-affected zone has a narrow area in the actual specimen and cannot obtain the stress-strain relationship by collecting a tensile specimen, the stress-strain relationship is determined from the correlation between hardness and tensile strength.

図6に溶接部の硬さ試験結果の一例を示す。図の硬さ試験結果は母材の硬さで基準化した結果を示す。硬さ換算表(SAE−J−417)で規定する線形性(ビッカース硬さの3倍が素材の強度)より、溶接熱影響部は母材よりも「ビッカース硬さ」が平均16%低下しているので、溶接熱影響部の「強度」は母材強度より平均16%低下しているとみなすことが可能である。   FIG. 6 shows an example of the hardness test result of the weld. The hardness test results in the figure show the results normalized by the hardness of the base material. Due to the linearity specified in the hardness conversion table (SAE-J-417) (3 times the Vickers hardness is the strength of the material), the "Vickers hardness" of the weld heat affected zone is 16% lower than the base metal on average. Therefore, it can be considered that the “strength” of the weld heat affected zone is 16% lower than the base material strength on average.

図7に強度推定結果を踏まえた、溶接熱影響部の応力−ひずみ関係の設定方法を示す。
説明では、溶接熱影響部での硬さの低下率をαと定義し、降伏耐力をYS、強度をTS、応力−ひずみ関係の曲線をSSカーブと呼ぶ。
(1)応力が、母材YS×(1−α)×0.6(図中、点A)までは母材SSカーブ9を使用する。
(2)母材SSカーブのひずみをそのままとし、応力×(1−α)によってTSの低い曲線12を作成する。
(3)母材SSカーブの傾きで0.2%オフセットの直線13が曲線12と交差する点を点Bと定める。
(4)点Aと点Bをスプライン補間によって補間する。
(5)原点―点A―点Bを結び、点B以降は曲線12と重なる曲線を溶接熱影響部のSSカーブとする。
FIG. 7 shows a method for setting the stress-strain relationship of the weld heat affected zone based on the strength estimation result.
In the description, the rate of decrease in hardness at the weld heat affected zone is defined as α, the yield strength is YS, the strength is TS, and the stress-strain relationship curve is called the SS curve.
(1) The base material SS curve 9 is used up to the base material YS × (1-α) × 0.6 (point A in the figure).
(2) The distortion of the base material SS curve is left as it is, and a curve 12 with a low TS is created by stress × (1−α).
(3) A point where a straight line 13 with a 0.2% offset intersects the curve 12 with the slope of the base material SS curve is defined as a point B.
(4) Interpolate point A and point B by spline interpolation.
(5) The origin-point A-point B is connected, and after point B, the curve overlapping the curve 12 is taken as the SS curve of the welding heat affected zone.

上述した方法によらず、溶接熱影響部の再現熱サイクル試験片を用いて引張り試験を行い、直接、応力―ひずみ関係を求めても良い。   Regardless of the method described above, a tensile test may be performed using a reproducible thermal cycle specimen of the weld heat affected zone to directly obtain the stress-strain relationship.

次に、最危険部位と特定された要素(メッシュ)についての、FEM解析でひずみが、素材の引張り試験での一様伸びに達したかどうかを判定し(STEP4)、一様伸びとなった場合を終局と判断する。   Next, for the element (mesh) identified as the most dangerous part, it is determined whether or not the strain has reached a uniform elongation in the tensile test of the material by FEM analysis (STEP 4). Judgment is over.

図2に示した冷間成形角形鋼管の試験体1を対象に実機実験とFEM解析を行い終局時の変形を比較した。試験体1とする冷間成形角形鋼管は、破断で終局を迎える、幅厚比が33×√(235/(素材の設計基準強度))以下の各部の寸法を有する。   The actual machine experiment and FEM analysis were performed on the specimen 1 of the cold-formed square steel pipe shown in FIG. 2, and the deformation at the end was compared. The cold-formed square steel pipe used as the test body 1 has the dimensions of each part, which has a width-to-thickness ratio of 33 × √ {square root over (235 / (material design standard strength))}, which ends with fracture.

図1に実機試験に用いた曲げ試験機3の構造を示す。曲げ試験は、試験体1の両端をピン2で支持し、中央部を載荷し破壊するまでの変形性能を評価した。   FIG. 1 shows the structure of the bending tester 3 used in the actual machine test. In the bending test, both ends of the test body 1 were supported by the pins 2, and the deformation performance until the center portion was loaded and broken was evaluated.

表1に試験体1の概略寸法と試験結果を、図10に、実験試験結果とFEM解析結果の相関を示す。図より、本発明により、破断で終局を迎える幅厚比の小さい冷間成形角形鋼管の終局時変形性能が精度よく予測できていることが認められる。   Table 1 shows the schematic dimensions of the test body 1 and the test results, and FIG. 10 shows the correlation between the experimental test results and the FEM analysis results. From the figure, it can be seen that according to the present invention, the ultimate deformation performance of a cold-formed square steel pipe having a small width-to-thickness ratio, which ends with fracture, can be accurately predicted.

1 試験体
2 ピン
3 曲げ試験機
4 鋼管母材
5 ダイヤフラム
6 溶接部(DEPO)
7 溶接熱影響部
8 裏当て金
9、10、11、12、 応力―ひずみ線
13 直線
14 最危険部位
DESCRIPTION OF SYMBOLS 1 Test body 2 Pin 3 Bending test machine 4 Steel pipe base material 5 Diaphragm 6 Welding part (DEPO)
7 Welding heat affected zone 8 Backing metal 9, 10, 11, 12, Stress-strain line 13 Straight line 14 Most dangerous part

Claims (3)

曲げにより破断する冷間成形角形鋼管の変形状態判定方法であって、前記冷間成形角形鋼管は通しダイアフラム溶接部を有するとともに、断面の幅厚比が33×√(235/(素材の設計基準強度))以下であり、曲げが作用した際の前記冷間成形角形鋼管と前記通しダイアフラム溶接部近傍の各部位の応力−ひずみ関係をFEM解析により求め、引張側局所ひずみが最も早く進行する部位を最危険部位と見做して、当該最危険部位における相当ひずみが、素材の一様伸びに達した時点を終局変形状態と判定することを特徴とする冷間成形角形鋼管の変形状態判定方法。 A method for determining a deformation state of a cold-formed square steel pipe that is broken by bending, wherein the cold-formed square steel pipe has a through-diaphragm weld and a cross-sectional width-thickness ratio of 33 × √ (235 / (material design criteria Strength)) The following is a stress-strain relationship between the cold-formed square steel pipe and the through-diaphragm welded portion when bending is applied by FEM analysis, and the portion where the local strain on the tensile side proceeds the fastest The deformation state determination method for a cold-formed square steel pipe, characterized in that the time when the equivalent strain in the most dangerous region reaches the uniform elongation of the material is determined as the ultimate deformation state . FEM解析を行う際、前記冷間成形角形鋼管の溶接熱影響部における応力−ひずみ関係は、当該溶接熱影響部の硬さ試験結果と母材部の応力−ひずみ関係を用いて、下記(1)〜(5)の手順によって決定することを特徴とする請求項1記載の冷間成形角形鋼管の変形状態判定方法。
ここで、溶接熱影響部での硬さの低下率をαと定義し、降伏耐力をYS、強度をTS、応力−ひずみ関係の曲線をSSカーブと呼ぶ。
(1)応力が、母材YS×(1−α)×0.6となる点Aまでは母材SSカーブを使用する。
(2)母材SSカーブのひずみをそのままとし、応力×(1−α)によってTSの低い曲線を作成する。
(3)母材SSカーブの傾きで0.2%オフセットの直線が前記TSの低い曲線と交差する点を点Bと定める。
(4)点Aと点Bをスプライン補間によって補間する。
(5)原点―点A―点Bを結び、点B以降は前記TSの低い曲線と重なる曲線を溶接熱影響部のSSカーブとする。
When performing FEM analysis, the stress-strain relationship in the weld heat-affected zone of the cold-formed square steel pipe is as follows (1) using the hardness test result of the weld heat-affected zone and the stress-strain relationship of the base metal. The method of determining a deformation state of a cold-formed square steel pipe according to claim 1 , wherein the determination is made according to the procedure of (5) to (5) .
Here, the rate of decrease in hardness at the weld heat affected zone is defined as α, the yield strength is called YS, the strength is TS, and the stress-strain relationship curve is called the SS curve.
(1) The base material SS curve is used up to the point A where the stress is the base material YS × (1-α) × 0.6.
(2) The distortion of the base material SS curve is left as it is, and a curve with a low TS is created by stress × (1−α).
(3) A point where a straight line with a 0.2% offset in the inclination of the base material SS curve intersects the curve with a low TS is defined as a point B.
(4) Interpolate point A and point B by spline interpolation.
(5) The origin-point A-point B are connected, and after the point B, the curve that overlaps with the low TS curve is taken as the SS heat affected zone SS curve.
請求項1または請求項2に記載の冷間成形角形鋼管の変形状態判定方法に基づいて変形性能を評価された冷間成形角形鋼管を含む、構造物。 A structure including a cold-formed square steel pipe whose deformation performance is evaluated based on the method for determining a deformation state of a cold-formed square steel pipe according to claim 1 or 2.
JP2010269959A 2010-12-03 2010-12-03 Deformation state evaluation method of cold-formed square steel pipe Active JP5644436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010269959A JP5644436B2 (en) 2010-12-03 2010-12-03 Deformation state evaluation method of cold-formed square steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010269959A JP5644436B2 (en) 2010-12-03 2010-12-03 Deformation state evaluation method of cold-formed square steel pipe

Publications (3)

Publication Number Publication Date
JP2012117995A JP2012117995A (en) 2012-06-21
JP2012117995A5 JP2012117995A5 (en) 2013-12-12
JP5644436B2 true JP5644436B2 (en) 2014-12-24

Family

ID=46500981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010269959A Active JP5644436B2 (en) 2010-12-03 2010-12-03 Deformation state evaluation method of cold-formed square steel pipe

Country Status (1)

Country Link
JP (1) JP5644436B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108152159A (en) * 2017-12-28 2018-06-12 哈尔滨锅炉厂有限责任公司 The performance characterization method of station boiler stainless steel elbow
CN109891209A (en) * 2016-10-26 2019-06-14 杰富意钢铁株式会社 The intensity estimating method of sintering processes molded product

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6008691B2 (en) * 2012-10-26 2016-10-19 三菱重工業株式会社 Piping system weld shape analysis system
CN103593493B (en) * 2013-06-26 2017-02-08 东北大学 Reducer quality prediction method based on integrated gradient data ELM-PLS method
CN104573206B (en) * 2014-12-26 2017-12-01 山东钢铁股份有限公司 A kind of hot geomery design method of sectional shape based on finite element Thermal-mechanical Coupling
CN105181461B (en) * 2015-10-13 2018-05-22 国家电网公司 A kind of electric power steel pipe axial direction bending test centralising device
CN109499502B (en) * 2018-11-23 2020-11-13 合肥通用机械研究院有限公司 Design method of cold hydrogen connecting pipe structure of cold wall hydrogenation reactor
JP7356109B2 (en) * 2020-04-23 2023-10-04 株式会社神戸製鋼所 Evaluation method for deformation performance of square steel pipes
CN114839066B (en) * 2022-06-30 2022-11-11 江苏华程工业制管股份有限公司 Compression resistance monitoring method and system for straightened steel pipe

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4112830B2 (en) * 2001-08-30 2008-07-02 株式会社東芝 Structural material soundness evaluation method and program
CA2566425A1 (en) * 2004-05-11 2005-11-17 Sumitomo Metal Industries, Ltd. Ultrahigh strength uoe steel pipe and a process for its manufacture
JP2006004258A (en) * 2004-06-18 2006-01-05 Kobe Steel Ltd Simulation method
JP2006309306A (en) * 2005-04-26 2006-11-09 Takenaka Komuten Co Ltd Method for analyzing shearing force and deformation of post and method for analyzing all plastic bending moment of post
JP5053164B2 (en) * 2008-04-28 2012-10-17 新日本製鐵株式会社 Fracture prediction method and apparatus, program, and recording medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109891209A (en) * 2016-10-26 2019-06-14 杰富意钢铁株式会社 The intensity estimating method of sintering processes molded product
CN109891209B (en) * 2016-10-26 2021-06-22 杰富意钢铁株式会社 Method for estimating strength of sintered molded article
CN108152159A (en) * 2017-12-28 2018-06-12 哈尔滨锅炉厂有限责任公司 The performance characterization method of station boiler stainless steel elbow
CN108152159B (en) * 2017-12-28 2020-11-20 哈尔滨锅炉厂有限责任公司 Performance characterization method of stainless steel bent pipe for power station boiler

Also Published As

Publication number Publication date
JP2012117995A (en) 2012-06-21

Similar Documents

Publication Publication Date Title
JP5644436B2 (en) Deformation state evaluation method of cold-formed square steel pipe
CN110501224B (en) Test and calculation method for measuring true stress-strain curve of material
Yuan et al. Residual stress distributions in welded stainless steel sections
JP6414374B1 (en) Analysis method, design method, manufacturing method, and program
JP4748131B2 (en) Calculation method for fracture strain of spot welds, calculation method for standard fracture strain
Kövesdi et al. Fatigue life of girders with trapezoidally corrugated webs: An experimental study
Twigden et al. Experimental response and design of O-connectors for rocking wall systems
Yousuf et al. Behaviour and resistance of hollow and concrete-filled mild steel columns due to transverse impact loading
JP2013253441A (en) Reinforcement structure
Lee et al. Structural performance of welded built-up square CFST stub columns
JP2015090673A (en) Method for predicting fatigue life of laser lap-welded joint
Song et al. Performance of unstiffened welded steel I-beam to hollow tubular column connections under seismic loading
Tong et al. Formulae for hot-spot stress concentration factors of concrete-filled CHS T-joints based on experiments and FE analysis
JP6350270B2 (en) Fracture prediction method for adhesive joints
Yu et al. Seismic performance and working mechanism of innovate bottom-flange-bolted type through-diaphragm connections
Cheng et al. Hot spot stress and fatigue behavior of bird-beak SHS X-joints subjected to brace in-plane bending
Liao et al. Fracture analysis of high-strength steel beam-column connections with initial defects
Iwashita et al. Prediction of brittle fracture initiating at ends of CJP groove welded joints with defects: study into applicability of failure assessment diagram approach
JP6544337B2 (en) Cold formed square steel pipe and beam-to-column connection
JP7356109B2 (en) Evaluation method for deformation performance of square steel pipes
JP6432155B2 (en) Beam-column joint structure
Barnat et al. Experimental Analysis of Lateral Torsional Buckling of Beams with Selected Cross-Section Types
Gu et al. Numerical analysis of fatigue behavior of welded cfchs t-joints
JP4898374B2 (en) Strength evaluation method of steel pipe concrete column / beam joint
Wang et al. Local buckling analysis of axially compressed welded box-section stub columns using Q420–Q960 steel

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141020

R150 Certificate of patent or registration of utility model

Ref document number: 5644436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250