JP4676323B2 - Method for measuring fracture toughness value of metallic materials - Google Patents

Method for measuring fracture toughness value of metallic materials Download PDF

Info

Publication number
JP4676323B2
JP4676323B2 JP2005352228A JP2005352228A JP4676323B2 JP 4676323 B2 JP4676323 B2 JP 4676323B2 JP 2005352228 A JP2005352228 A JP 2005352228A JP 2005352228 A JP2005352228 A JP 2005352228A JP 4676323 B2 JP4676323 B2 JP 4676323B2
Authority
JP
Japan
Prior art keywords
toughness value
fracture toughness
test piece
test
fracture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005352228A
Other languages
Japanese (ja)
Other versions
JP2007155540A (en
Inventor
章宏 金谷
淳一 楠元
樹美博 木庭
健一 田中
敏夫 網田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Sumitomo Metal Technology Inc
Original Assignee
Kyushu Electric Power Co Inc
Sumitomo Metal Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Sumitomo Metal Technology Inc filed Critical Kyushu Electric Power Co Inc
Priority to JP2005352228A priority Critical patent/JP4676323B2/en
Publication of JP2007155540A publication Critical patent/JP2007155540A/en
Application granted granted Critical
Publication of JP4676323B2 publication Critical patent/JP4676323B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は金属材料の破壊靭性値を測定する方法に係り、特に、火力発電用蒸気タービンなどの高温で長時間使用される部材の余寿命を診断する方法として有用な金属材料の破壊靭性値(き裂の進展抵抗値)を測定する方法に関する。   The present invention relates to a method for measuring the fracture toughness value of a metal material, and in particular, the fracture toughness value of a metal material useful as a method for diagnosing the remaining life of a member used for a long time at a high temperature such as a steam turbine for thermal power generation ( The present invention relates to a method for measuring a crack propagation resistance value.

破壊靱性値を測定するには、疲労予き裂を付与したCT試験片を用いて、その荷重および変形曲線からき裂発生までに要する破壊エネルギーを求め、この破壊エネルギーから「Kc」または「Jc」と呼ばれる物性値を求めるのが一般的である。しかし、この測定方法では、用いられるCT試験片のサイズが大きいため、被測定物から小さな試験片しか取れない場合は評価ができないという欠点がある。 In order to measure the fracture toughness value, using a CT specimen with a fatigue crack, the fracture energy required for crack initiation is obtained from the load and deformation curve, and from this fracture energy, “K c ” or “J It is common to obtain a physical property value called “ c ”. However, this measurement method has a drawback that evaluation is not possible when only a small test piece can be taken from the object to be measured because the size of the CT test piece used is large.

このため、小さな試験片によって破壊靱性値を求める方法が種々検討されており、その一つとしてスモールパンチ試験が知られている(日本原子力研究所JAERI−M88−172。以下、この試験を「SP試験」と呼ぶ。)。SP試験法は、原子力分野で中性子照射脆化を評価するために開発された方法であり、タービン材料の靱性劣化、火力設備配管材の劣化などの評価に用いられる。SP試験法については、例えば、非特許文献1に詳しく説明されている。   For this reason, various methods for obtaining the fracture toughness value with a small test piece have been studied, and one of them is known as a small punch test (JAERI-M88-172, hereinafter referred to as “SP”). Called "test".) The SP test method is a method developed for evaluating neutron irradiation embrittlement in the nuclear field, and is used for evaluating toughness deterioration of turbine materials, deterioration of thermal equipment piping materials, and the like. The SP test method is described in detail in Non-Patent Document 1, for example.

図5は、SP試験法の概要を示す模式図であり、図6は、任意の材料についてのSP試験法における荷重および試験片の変位の関係をプロットした図であり、図7は、任意の材料についてのSPエネルギーおよび試験温度の関係をプロットした図である。   FIG. 5 is a schematic diagram showing an outline of the SP test method, FIG. 6 is a diagram plotting the relationship between the load and the displacement of the test piece in the SP test method for an arbitrary material, and FIG. It is the figure which plotted the relationship of SP energy and test temperature about material.

図5に示すように、SP試験法においては、試験片1(10mm角、0.5mm厚さ程度の試験片)を上部ダイ2および下部ダイ3で固定し、その中央部に球圧子4を介して荷重Pを負荷し、そのときの荷重および試験片の変位を測定する。このとき、荷重と変位との間には、図6に示すような関係がある。図6において、破壊までの荷重−変位曲線から破壊エネルギー(SPエネルギー)を求め、これを試験温度との関係で整理すると、図7に示す関係がある。   As shown in FIG. 5, in the SP test method, a test piece 1 (10 mm square, 0.5 mm thick test piece) is fixed with an upper die 2 and a lower die 3 and a ball indenter 4 is interposed at the center thereof. Load P and measure the load and the displacement of the test piece. At this time, there is a relationship as shown in FIG. 6 between the load and the displacement. In FIG. 6, when the fracture energy (SP energy) is obtained from the load-displacement curve until fracture and this is arranged in relation to the test temperature, there is a relationship shown in FIG. 7.

靭性を評価する具体的な方法としては下記のようなものが挙げられる。   Specific methods for evaluating toughness include the following.

(1)図7に示されるSPエネルギー−試験温度の関係において、SPエネルギーが大きく減少する温度(SP遷移温度)を求め、これとシャルピー遷移温度との関係から被試験材の破壊靭性値を評価する方法。   (1) In the SP energy-test temperature relationship shown in FIG. 7, the temperature at which the SP energy is greatly reduced (SP transition temperature) is obtained, and the fracture toughness value of the material under test is evaluated from the relationship between this and the Charpy transition temperature. how to.

(2)図7に示されるSPエネルギー−試験温度の関係において、SPエネルギーの最小値を求め、これとシャルピー遷移温度との関係から被試験材の破壊靭性値を評価する方法。   (2) A method of obtaining the minimum SP energy value in the SP energy-test temperature relationship shown in FIG. 7 and evaluating the fracture toughness value of the material under test from the relationship between this and the Charpy transition temperature.

(3)下記式により破断時のひずみεqfを求め、これとJcとの相関から、被試験材の破壊靭性値を評価する方法。
εqf=ln(t0/t*)=β(δ*/t02
(3) A method in which the strain ε qf at the time of fracture is obtained by the following formula, and the fracture toughness value of the material under test is evaluated from the correlation between this and J c .
ε qf = ln (t 0 / t * ) = β (δ * / t 0 ) 2

ただし、式中の各記号の意味は下記の通りである。
0:試験片の初期厚さ
*:破壊した試験片の最小厚さ
δ*:最大荷重を超えて荷重が急減するときの変位
β:実験的に求めた材料により異なる係数
=0.09 (フェライト鋼)
=0.43 (オーステナイト鋼)
However, the meaning of each symbol in the formula is as follows.
t 0 : Initial thickness of test piece t * : Minimum thickness of broken test piece δ * : Displacement when load suddenly decreases beyond maximum load β: Coefficient depending on experimentally determined material = 0.09 (Ferrite steel)
= 0.43 (Austenitic steel)

村山 勝明、外3名、微小パンチ(SP)試験による脆化診断技術の開発、火力原子力発電Vol.401、51〜57頁、1990年2月、社団法人火力原子力発電技術協会Katsuaki Murayama, 3 others, Development of embrittlement diagnosis technology by micro punch (SP) test, Thermal Nuclear Power Vol.401, 51-57, February 1990, Thermal Nuclear Power Technology Association

上記の(1)および(2)に示す評価方法は、いずれも破壊靱性値とある程度の相関のある値を用いる方法であるが、測定精度の点で問題が残る。しかも、これらの方法では、火力設備で必要になるような、ある特定の使用温度における靱性値を求めることは不可能である。   Each of the evaluation methods shown in the above (1) and (2) is a method using a value having a certain degree of correlation with the fracture toughness value, but there remains a problem in terms of measurement accuracy. Moreover, with these methods, it is impossible to determine a toughness value at a specific use temperature, which is necessary for a thermal power facility.

上記の(3)に示す評価方法においては得られる破断時のひずみεqfは、破壊靱性値と一対一に相関のある量ではないため、この方法においても、測定精度が低いという問題がある。 In the evaluation method shown in the above (3), the strain ε qf at break obtained is not an amount having a one-to-one correlation with the fracture toughness value, and this method also has a problem that the measurement accuracy is low.

これらの方法よりさらに進んだ靱性評価法として、米国電力研究所(EPRI)が提唱する評価方法がある。この方法では、SP試験時の破壊部における破壊時の局所ひずみエネルギーE1を解析で求めるとともに、CT試験片の解析を行い、その局所ひずみエネルギーがE1になったときにCT試験片に負荷されている荷重からASTMに規定されている簡易評価式を用いて破壊靱性値を求める。   As a toughness evaluation method further advanced than these methods, there is an evaluation method proposed by the US Electric Power Research Institute (EPRI). In this method, the local strain energy E1 at the time of the fracture at the SP test is obtained by analysis, and the CT test piece is analyzed. When the local strain energy becomes E1, the CT test piece is loaded. The fracture toughness value is determined from the load being applied using a simple evaluation formula defined in ASTM.

しかし、この評価方法もき裂の無いSP試験片の破壊ひずみエネルギーを基に評価しているためき裂材の靱性評価とは隔たりがある。また、この方法では、き裂の発生を目視で観察し、き裂の発生荷重を求め、破壊発生時のひずみエネルギーを求めるため、目視観察が困難な、高温の破壊靱性値を得るのは困難である。   However, since this evaluation method is also evaluated based on the fracture strain energy of the SP test piece without a crack, there is a difference from the toughness evaluation of the cracked material. Also, with this method, it is difficult to obtain high-temperature fracture toughness values that are difficult to visually observe because the crack initiation is visually observed to determine the crack initiation load and the strain energy at the time of fracture occurrence. It is.

本発明者らは、このような従来の手法に対してSP試験片の中央部に放電加工によるスリットを入れ、そのスリットの破壊力学パラメータから靱性を評価することを考えた。しかし、本発明者らの研究によって、放電加工によりSP試験片の中央部にスリットを形成させるだけでは、破壊靭性値を正確に評価できないことが判明した。これは、放電加工により形成させたスリットでは、き裂(すなわち、破壊)が発生するまでに塑性変形を伴い、不安定破壊発生に要するエネルギーと同程度またはそれ以上の大きなエネルギーが塑性変形のために消費されるからである。   The inventors of the present invention considered that a slit by electric discharge machining was inserted at the center of the SP test piece and the toughness was evaluated from the fracture mechanics parameter of the slit compared to the conventional method. However, the inventors' research has revealed that the fracture toughness value cannot be accurately evaluated only by forming a slit at the center of the SP test piece by electric discharge machining. This is because slits formed by electric discharge machining involve plastic deformation until a crack (that is, fracture) occurs, and energy that is equal to or greater than that required for unstable fracture occurs due to plastic deformation. It is because it is consumed.

本発明は、従来の評価方法における問題を解決するためになされたものであり、正確な破壊靱性値を求めることができる金属材料の破壊靭性値測定方法を提供することを目的とする。   The present invention has been made to solve the problems in the conventional evaluation method, and an object of the present invention is to provide a method for measuring the fracture toughness value of a metal material capable of obtaining an accurate fracture toughness value.

本発明は、「金属材料の破壊靭性値を測定する方法であって、測定対象の金属材料から微小平板を切り出し、この微小平板の中央部にスリットを形成させた後、スリットの両端に疲労き裂を形成させたものを試験片とし、この試験片の端部を固定した状態で、その中央部に球圧子を介して荷重を負荷し、荷重および試験片の変位を検出し、試験開始から不安定破壊発生までのひずみエネルギーから破壊靭性値を求めることを特徴とする金属材料の破壊靭性値測定方法」を要旨とする。   The present invention is a method for measuring the fracture toughness value of a metal material. After a fine flat plate is cut out from a metal material to be measured and a slit is formed at the center of the fine flat plate, fatigue is caused at both ends of the slit. The test piece is the one with the crack formed, and with the end of this test piece fixed, a load is applied to the center of the test piece via a ball indenter, and the load and displacement of the test piece are detected. The gist is "a method for measuring the fracture toughness value of a metal material characterized in that the fracture toughness value is obtained from strain energy until the occurrence of unstable fracture".

なお、微小平板の中央部に形成させるスリットの幅bおよびスリットの長さlと球圧子の直径Dとの関係が0.04≦b/D≦0.13および0.15≦l/D≦0.65を満足し、且つスリットの両端に形成させる疲労き裂の長さが0.2〜2.0mmであることが望ましい。また、不安定破壊の発生は、電気的に検出するのが望ましく、試験開始から不安定破壊発生までのひずみエネルギーを有限要素法により求めるのがよい。さらに、試験開始から不安定破壊発生までのひずみエネルギーをマスターカーブに当てはめることにより破壊靭性値を求めることが望ましい。
The relationship between the width b of the slit and the length l of the slit formed at the center of the micro flat plate and the diameter D of the ball indenter satisfies 0.04 ≦ b / D ≦ 0.13 and 0.15 ≦ l / D ≦ 0.65, and The length of the fatigue crack formed at both ends of the slit is preferably 0.2 to 2.0 mm. The occurrence of unstable fracture is preferably detected electrically, and the strain energy from the start of the test to the occurrence of unstable fracture is preferably obtained by the finite element method. Furthermore, it is desirable to obtain the fracture toughness value by applying the strain energy from the start of the test to the occurrence of unstable fracture to the master curve.

本発明によれば、金属材料から切り出した微小なサンプルを用いて正確に破壊靱性値を測定することができるので、火力発電用蒸気タービン等の操業中に各部材の余寿命診断、特に脆化診断を正確に行うことができる。   According to the present invention, since the fracture toughness value can be accurately measured using a minute sample cut out from a metal material, the remaining life diagnosis of each member during operation of a steam turbine for thermal power generation, particularly embrittlement Diagnosis can be made accurately.

本発明に係る金属材料の破壊靭性値測定方法においては、測定対象である金属材料から微小平板を切り出し、この微小平板の中央部にスリットを形成させた後、スリットの両端に疲労き裂を形成させたものを試験片として用いる。   In the fracture toughness value measurement method for a metal material according to the present invention, a fine flat plate is cut out from the metal material to be measured, a slit is formed at the center of the fine flat plate, and then fatigue cracks are formed at both ends of the slit. What was made to use is used as a test piece.

これは、試験片の中央部に、単に放電加工などによりスリットを形成させるだけでは、試験中、破壊が発生するまでに塑性変形が生じ、この塑性変形に要するエネルギーは、不安定破壊発生に要するエネルギーと同程度またはそれ以上の大きなエネルギーであるため、破壊靭性値の測定を正確におこなうのが難しいからである。すなわち、微小平板の中央部にスリットを形成させた後、スリットの両端に疲労き裂を形成させた試験片であれば、試験開始から破壊が発生するまでの間における塑性変形の影響を極限まで低減できるので、不安定破壊発生に要するエネルギーを正確に測定できるのである。   This is because if a slit is simply formed in the center of the test piece by electric discharge machining or the like, plastic deformation occurs until the failure occurs during the test, and the energy required for this plastic deformation is required for the occurrence of unstable fracture. This is because it is difficult to accurately measure the fracture toughness value because it is a large energy equivalent to or higher than the energy. That is, if the test piece has a slit formed at the center of a small flat plate and then a fatigue crack is formed at both ends of the slit, the effect of plastic deformation from the start of the test to the occurrence of fracture is minimized. Since it can be reduced, the energy required for the occurrence of unstable fracture can be accurately measured.

なお、微小平板とは、金属材料で構成される使用部材から直接切り出せる程度の薄肉の平板を意味する。   In addition, a micro flat plate means the thin flat plate which can be directly cut out from the use member comprised with a metal material.

図1および図2は、本発明に係る金属材料の破壊靭性値測定方法に用いられる試験片の作製方法を説明する図であり、図1(a)は疲労き裂を形成させる前の状態を示す上面図、図1(b)はその側面図であり、図2(a)は疲労き裂を形成させた後の状態を示す上面図、図2(b)は試験片に形成させたスリットおよび疲労き裂の拡大図である。   FIG. 1 and FIG. 2 are diagrams for explaining a method for producing a test piece used in the method for measuring the fracture toughness value of a metal material according to the present invention. FIG. 1 (a) shows a state before a fatigue crack is formed. FIG. 1 (b) is a side view, FIG. 2 (a) is a top view showing a state after forming a fatigue crack, and FIG. 2 (b) is a slit formed on a test piece. It is an enlarged view of a fatigue crack.

図1(a)および(b)に示すように、切り出された微小平板は、例えば、試験片となる平板部分と、つかみ部6とを形成させた後、放電加工により、スリット7を形成させる。そして、例えば、このようにして得られた平板5のつかみ部6を掴んだ状態で両端に繰り返し引っ張り荷重を負荷することにより、図2(a)および(b)に示すようなスリット7の両端に疲労き裂9を形成させて試験片8を得ることができる。   As shown in FIGS. 1 (a) and 1 (b), the cut out micro flat plate is formed with a slit 7 by electric discharge machining after forming a flat plate portion to be a test piece and a grip portion 6, for example. . Then, for example, both ends of the slit 7 as shown in FIGS. 2 (a) and 2 (b) are applied by repeatedly applying a tensile load to both ends in a state where the grip portion 6 of the flat plate 5 obtained in this way is gripped. A test piece 8 can be obtained by forming a fatigue crack 9.

試験片のサイズは、試験装置、被測定物のサイズ等との関係で決定すればよいので、特に制限はないが、例えば、一辺の長さが10mm程度の正方形で、厚さが0.5〜1.0mm程度のものを用いるのが一般的である。   The size of the test piece may be determined according to the relationship with the size of the test apparatus, the object to be measured, etc., and is not particularly limited. For example, it is a square with a side length of about 10 mm and a thickness of 0.5 to 1.0. It is common to use the one of about mm.

スリット幅が球圧子の直径との関係で狭すぎると、荷重負荷時にスリットの一部が閉じて、不安定破壊の発生に影響を及ぼすおそれがある。一方で、スリット幅が球圧子の直径との関係で広すぎると、ひずみエネルギーの弾性分が大きくなり試験評価精度に悪影響を及ぼすことがある。従って、スリットの幅は0.1〜0.3mmとするのが望ましい。
If the slit width is too small in relation to the diameter of the ball indenter, a part of the slit may be closed when a load is applied, which may affect the occurrence of unstable fracture. On the other hand, if the slit width is too wide in relation to the diameter of the ball indenter, the elastic component of the strain energy increases, which may adversely affect the test evaluation accuracy. Therefore, it is desirable that the width of the slit is 0.1 to 0.3 mm.

スリット長さが球圧子の直径との関係で短すぎると、疲労き裂を導入するのに大きな荷重を要し、き裂先端に塑性変形が生じる場合がある。塑性変形が生じると、靭性値を正確に評価できないことがある。一方、スリット長さが球圧子の直径との関係で長すぎると、疲労き裂形成時に、試験片の拘束部付近にまでき裂が及ぶ場合がある。試験片の拘束部付近ではき裂の進展が不規則となるため、このような試験片では靭性値を正確に評価できない。また、荷重負荷時にスリットの開きが大きくなり、球圧子がはまり込んで、き裂先端に十分な荷重が負荷できなくなるという問題が生じる。   If the slit length is too short in relation to the diameter of the ball indenter, a large load is required to introduce a fatigue crack, and plastic deformation may occur at the crack tip. When plastic deformation occurs, the toughness value may not be accurately evaluated. On the other hand, if the slit length is too long in relation to the diameter of the ball indenter, a crack may reach the vicinity of the restraint portion of the test piece when forming a fatigue crack. Since the crack growth is irregular in the vicinity of the restraint portion of the test piece, the toughness value cannot be accurately evaluated with such a test piece. Further, when the load is applied, the opening of the slit becomes large, the ball indenter gets stuck, and there arises a problem that a sufficient load cannot be applied to the crack tip.

従って、微小平板の中央部に形成させるスリットの幅b、球圧子の直径Dおよびスリットの長さlの関係は、0.04≦b/D≦0.13および0.15≦l/D≦0.65を満足するのが望ましい。   Therefore, the relationship between the width b of the slit formed at the center of the micro flat plate, the diameter D of the spherical indenter and the length l of the slit satisfies 0.04 ≦ b / D ≦ 0.13 and 0.15 ≦ l / D ≦ 0.65. desirable.

スリットの両端に形成させる疲労き裂の長さは、短すぎると、スリット端の応力集中が試験結果に影響を与えるおそれがある。一方、疲労き裂の長さが長すぎると、疲労き裂形成時に、試験片の拘束部付近にまでき裂が及ぶ場合がある。試験片の拘束部付近ではき裂の進展が不規則となるため、このような試験片では靭性値を正確に評価できない。また、荷重負荷時にスリットの開きが大きくなり、球圧子がはまり込んで、き裂先端に十分な荷重が負荷できなくなるという問題が生じる。従って、スリットの両端に形成させる疲労き裂の長さは、それぞれ0.2〜2.0mmとするのが望ましい。   If the length of the fatigue crack formed at both ends of the slit is too short, the stress concentration at the slit end may affect the test result. On the other hand, if the length of the fatigue crack is too long, the crack may reach the vicinity of the restraint portion of the test piece when the fatigue crack is formed. Since the crack growth is irregular in the vicinity of the restraint portion of the test piece, the toughness value cannot be accurately evaluated with such a test piece. Further, when the load is applied, the opening of the slit becomes large, the ball indenter gets stuck, and there arises a problem that a sufficient load cannot be applied to the crack tip. Therefore, it is desirable that the length of the fatigue crack formed at both ends of the slit is 0.2 to 2.0 mm.

このようにして作製した試験片は、前掲の図5の場合と同様に、上部ダイ2および下部ダイ3で固定し、その中央部にボール(球圧子)4を介して荷重Pを負荷し、そのときの荷重および変位を測定する。
なお、球圧子の直径には制限はないが、小さすぎると、球圧子がスリット端に局部的に集中荷重を加え変形させそのためのエネルギーが試験結果に誤差として現れてくる、という不具合が生じるおそれがある。一方、大きすぎると、試験片全体の塑性変形範囲が大きくなると同時に、スリットが開く方向の荷重が低下し、き裂先端の不安定破壊をさせる場合の誤差が大きくなるという問題が発生する場合がある。また微小な試験片による破壊靱性試験の実施が目的であるため試験片寸法は20mm以下であることが望ましい。これらの事から球圧子の直径は、0.8〜10mmとするのが望ましい。
The test piece produced in this way is fixed with the upper die 2 and the lower die 3 as in the case of FIG. 5 described above, and a load P is applied to the center via a ball (ball indenter) 4, The load and displacement at that time are measured.
The diameter of the ball indenter is not limited, but if it is too small, the ball indenter may deform by applying a concentrated load locally at the slit end, and the resulting energy may appear as an error in the test results. There is. On the other hand, if the size is too large, the plastic deformation range of the entire specimen increases, and at the same time, the load in the direction in which the slit opens decreases, which may cause a problem of increased error when causing unstable fracture of the crack tip. is there. Further, since the purpose is to perform a fracture toughness test using a minute test piece, the test piece size is desirably 20 mm or less. For these reasons, it is desirable that the diameter of the ball indenter is 0.8 to 10 mm.

本発明に係る金属材料の破壊靭性値測定方法においては、このようにして得られた荷重および試験片の変位に基づき、試験開始から不安定破壊発生までのひずみエネルギーを求め、これをマスターカーブに当てはめることにより破壊靭性値を求めることができる。
In the fracture toughness value measurement method for metal materials according to the present invention, based on the load and the displacement of the test piece obtained in this way, the strain energy from the start of the test to the occurrence of unstable fracture is obtained, and this is used as the master curve. Fracture toughness values can be determined by fitting.

ここで、不安定破壊の発生は、目視による観察でも行うことができるが、き裂発生時を正確に把握するためには、これを電気的に検出するのが望ましい。   Here, although the occurrence of unstable fracture can be performed by visual observation, it is desirable to detect this electrically in order to accurately grasp the occurrence of a crack.

図3は、不安定破壊の発生を電気的に検出するための電極を配置した試験片を示す模式図であり、(a)は背面図、(b)は側面図である。図3に示すように、試験片8の疲労き裂の両端には、例えば、電流入力電極10および電位出力電極11が点溶接され、さらに、温度測定用熱電対12が点溶接される。これらの端子間電圧の変化からき裂の進展が開始する荷重を検出することができる。   FIG. 3 is a schematic view showing a test piece in which an electrode for electrically detecting occurrence of unstable fracture is arranged, (a) is a rear view, and (b) is a side view. As shown in FIG. 3, for example, the current input electrode 10 and the potential output electrode 11 are spot welded to both ends of the fatigue crack of the test piece 8, and the temperature measuring thermocouple 12 is spot welded. The load at which crack growth starts can be detected from the change in the voltage between these terminals.

なお、温度測定用熱電対は、常温における疲労き裂を測定する際には設置する必要はない。しかし、高温環境下における破壊靭性値を測定するべく、試験装置自体を加熱炉内に入れて試験を実施する場合には、試験片の温度を正確に測定するために設置するのが望ましい。   Note that the thermocouple for temperature measurement need not be installed when measuring a fatigue crack at room temperature. However, in order to measure the fracture toughness value in a high temperature environment, it is desirable to install the test apparatus itself in order to accurately measure the temperature of the test piece when the test apparatus is placed in a heating furnace.

図4は、図3に示す試験片を用いた試験における荷重および電位差と試験片の変位との関係を示す図である。図4に示すように、電位差(図中の破線)は、変位に従って徐々に増加する曲線をたどるが、この曲線には変曲点がある。これが試験片に不安定破壊が発生した時を意味する。これによって、不安定き裂発生時の荷重および試験片の変位を正確に特定することができるので、試験開始から不安定破壊の発生までのひずみエネルギーを正確に求めることができる。すなわち、荷重変化曲線において、試験開始から不安定破壊発生までを積分することでひずみエネルギーを求めることができる。破壊靱性値を求めるときには、不安定き裂発生時の荷重を用いて以下の有限要素法解析を用いた手法によるのがよい。
FIG. 4 is a diagram showing the relationship between the load and potential difference and the displacement of the test piece in the test using the test piece shown in FIG. As shown in FIG. 4, the potential difference (broken line in the figure) follows a curve that gradually increases with displacement, and this curve has an inflection point. This means when unstable fracture occurs in the specimen. This makes it possible to accurately specify the load and the displacement of the test piece when an unstable crack occurs, so that the strain energy from the start of the test to the occurrence of unstable fracture can be accurately obtained. That is, in the load change curve, the strain energy can be obtained by integrating from the start of the test to the occurrence of unstable fracture. When obtaining the fracture toughness value, it is preferable to use the following finite element method analysis using the load at the time of unstable crack initiation.

そして、例えば、有限要素法により試験開始から不安定破壊発生までのひずみエネルギーを求め、これをE0とする。一方で、疲労き裂を有するCT試験片についても有限要素法で解析を行い、試験開始から不安定破壊発生までのひずみエネルギーがE0 となる荷重Pを求める。この荷重Pで不安定破壊が発生するものとして、ASTM E813に基づく計算式によってCT試験片の破壊靱性値を求めることができる。   Then, for example, the strain energy from the start of the test to the occurrence of unstable fracture is obtained by the finite element method, and this is defined as E0. On the other hand, CT specimens with fatigue cracks are also analyzed by the finite element method to determine the load P at which the strain energy from the start of the test to the occurrence of unstable fracture becomes E0. Assuming that unstable fracture occurs with this load P, the fracture toughness value of the CT specimen can be obtained by a calculation formula based on ASTM E813.

すなわち、CT試験片の破壊靭性値Jは、下記の式により求めることができる。
J={A/(Bn×b)}×f(a0/W)
f(a0/W)=2(1+α)/(1+α2
α={(2a0/b)2+2(2a0/b)+2}1/2−(2a0/b+1)
ただし、上記の式中の記号の意味は下記の通りである。
A:荷重−荷重点変位下の面積 (mm2)
Bn:試験片の厚さ (mm)
b:リガメント長さ(=W×a0) (mm)
a0:き裂長さ (mm)
W:試験片の幅 (mm)
That is, the fracture toughness value J of the CT test piece can be obtained by the following equation.
J = {A / (B n × b)} × f (a 0 / W)
f (a 0 / W) = 2 (1 + α) / (1 + α 2 )
α = {(2a 0 / b) 2 +2 (2a 0 / b) +2} 1/2 − (2a 0 / b + 1)
However, the meanings of the symbols in the above formula are as follows.
A: Load-Area under load point displacement (mm 2 )
B n : Test specimen thickness (mm)
b: Length of ligament (= W × a 0 ) (mm)
a 0 : Crack length (mm)
W: Specimen width (mm)

なお、不安定破壊の発生を電気的に検出する場合には、試験片と試験装置とを絶縁することが望ましい。この場合、電極を接続した試験片は、絶縁材料を介して上部ダイおよび下部ダイに挟まれた状態で、球圧子により荷重が負荷される。絶縁材料としては、特に制限はないが、例えば、Si3N4等のセラミックス製のものを用いることができる。また、球圧子4としては、Al2O3製のものを用いることができる。 In addition, when electrically detecting the occurrence of unstable fracture, it is desirable to insulate the test piece from the test apparatus. In this case, the test piece to which the electrode is connected is loaded by the ball indenter while being sandwiched between the upper die and the lower die via the insulating material. The insulating material is not particularly limited, and for example, a ceramic material such as Si 3 N 4 can be used. As the ball indenter 4, one made of Al 2 O 3 can be used.

球圧子に荷重を与える荷重負荷ロッドの形状には、特に制限はなく、図5に示すように下面は平坦なものであっても良いが、例えば、球圧子と接触する部分を球状に凹ませるなどして、球圧子が軸心からずれるのを防止するのが望ましい。   The shape of the load rod for applying a load to the ball indenter is not particularly limited, and the lower surface may be flat as shown in FIG. 5, but for example, the portion in contact with the ball indenter is recessed in a spherical shape. Thus, it is desirable to prevent the ball indenter from deviating from the axial center.

金属材料〔C:0.15%(質量%。以下同じ。)、Si:0.30%、Mn:0.87%、P:0.012%、S:0.10%、Cr:1.34%、Mo:1.00%、V:0.25%およびNi:0.06%を含み、残部はFeおよび不純物からなる金属材料〕を各種の環境に曝して得た供試材から試験片を採取し、破壊靭性値を測定する実験を行った。なお、以下の説明において、材料aは、上記の金属材料を538℃の蒸気環境に17万時間曝した材料、材料bは、566℃の蒸気環境に15万時間曝した材料、材料cは、538℃の蒸気環境に15万時間曝した材料、材料dは、新材である。   Metal material [C: 0.15% (mass%; the same applies hereinafter), Si: 0.30%, Mn: 0.87%, P: 0.012%, S: 0.10%, Cr: 1.34%, Mo: 1.00%, V: 0.25% And Ni: 0.06% in balance, the balance being a metal material composed of Fe and impurities] was subjected to an experiment in which specimens were collected from specimens obtained by exposure to various environments and the fracture toughness value was measured. In the following description, material a is a material obtained by exposing the above metal material to a steam environment at 538 ° C. for 170,000 hours, material b is a material exposed to a steam environment at 566 ° C. for 150,000 hours, and material c is: Material d, which has been exposed to a steam environment at 538 ° C. for 150,000 hours, is a new material.

本発明例として、材料a〜dから、厚さ1.0mm、10mm角で、スリット幅0.1mm、スリット長さ0.7mm、疲労き裂長さΔ2a=0.2〜0.4mm、スリットと疲労き裂を合わせたき裂長さ2a=0.9〜1.1mmの試験片をそれぞれ4片ずつ切り出し、550℃の温度で、直径2.38mmの球圧子を用いて、SP試験を行った。   As an example of the present invention, from materials a to d, a thickness of 1.0 mm, a 10 mm square, a slit width of 0.1 mm, a slit length of 0.7 mm, a fatigue crack length Δ2a = 0.2 to 0.4 mm, a slit and a fatigue crack are combined. Four test pieces each having a crack length of 2a = 0.9 to 1.1 mm were cut out and subjected to SP test at a temperature of 550 ° C. using a ball indenter having a diameter of 2.38 mm.

このとき、試験片の背面側に図3に示すような電流入力電極、電位出力電極および温度測定用熱電対を点溶接して、不安定破壊の発生を電気的に検出するとともに、試験片温度を測定した。試験開始から不安定破壊発生までのひずみエネルギーを求め、これをマスターカーブに当てはめて破壊靭性値を求めた。
At this time, a current input electrode, a potential output electrode and a temperature measuring thermocouple as shown in FIG. 3 are spot-welded on the back side of the test piece to electrically detect the occurrence of unstable fracture, and the test piece temperature. Was measured. The strain energy from the start of the test to the occurrence of unstable fracture was determined, and this was applied to the master curve to determine the fracture toughness value.

一方、比較例として、厚さ1.0mm、10mm角で、スリット幅0.1mm、スリット長さ0.7mmの試験片(疲労き裂なし試験片)をそれぞれ4片ずつ切り出し、550℃の温度で、直径2.38mmの球圧子を用いて、SP試験を行った。このとき、試験片の背面側に図3に示すような電位入力電極、電位出力電極および温度測定用熱電対を点溶接して、不安定破壊の発生を電気的に検出するとともに、試験片温度を測定した。試験開始から不安定破壊発生までのひずみエネルギーを求め、これをマスターカーブに当てはめて破壊靭性値を求めた。

On the other hand, as a comparative example, four test pieces each having a thickness of 1.0 mm, a 10 mm square, a slit width of 0.1 mm, and a slit length of 0.7 mm (test pieces without fatigue cracks) were cut out at a temperature of 550 ° C. The SP test was performed using a 2.38 mm ball indenter. At this time, a potential input electrode, a potential output electrode and a temperature measuring thermocouple as shown in FIG. 3 are spot-welded on the back side of the test piece to electrically detect the occurrence of unstable fracture, and the test piece temperature. Was measured. The strain energy from the start of the test to the occurrence of unstable fracture was determined, and this was applied to the master curve to determine the fracture toughness value.

なお、これらのSP試験法の測定精度を検証するために、上記の材料a〜dについて、ASTM E813に規定される方法に準拠し、CT試験片を用いて破壊靭性値を求めた。   In addition, in order to verify the measurement accuracy of these SP test methods, fracture toughness values were obtained for the materials a to d using CT test pieces in accordance with the method specified in ASTM E813.

図8は、本発明例の方法および比較例の方法と、CT試験片を用いて求めた破壊靭性値とをプロットした図である。図8に示すように、本発明例に係る方法で推定した破壊靭性値は、CT試験法とほぼ線形関係を有し、その値もほぼ同等であるのに対し、疲労き裂の無い試験片から推定した比較例の破壊靭性値は、CT試験片から得られた破壊靱性値とは線形関係(図中の破線参照。)に無く、約1.6倍も大きな破壊靱性値を推定する場合もあり、バラツキが大きい。また、疲労き裂の無い試験片ではここで用いたような延性の高い材料では破壊靱性値を非常に高く評価してしまい推定が困難である。   FIG. 8 is a graph plotting the method of the present invention and the method of the comparative example and the fracture toughness value obtained using the CT specimen. As shown in FIG. 8, the fracture toughness value estimated by the method according to the example of the present invention has a substantially linear relationship with the CT test method, and the value thereof is almost the same, but the test piece without fatigue cracks. The fracture toughness value of the comparative example estimated from the above is not linearly related to the fracture toughness value obtained from the CT specimen (see the broken line in the figure), and a fracture toughness value about 1.6 times larger may be estimated. The variation is large. In addition, with a test piece having no fatigue crack, a material having high ductility such as that used here evaluates the fracture toughness value very high, and it is difficult to estimate.

本発明によれば、金属材料から切り出した微小なサンプルを用いて正確に破壊靱性値を測定することができるので、火力発電用蒸気タービン等の操業中に各部材の余寿命診断、特に脆化診断を正確に行うことができる。   According to the present invention, since the fracture toughness value can be accurately measured using a minute sample cut out from a metal material, the remaining life diagnosis of each member during operation of a steam turbine for thermal power generation, particularly embrittlement Diagnosis can be made accurately.

本発明に係る金属材料の破壊靭性値測定方法に用いられる試験片の作製方法を説明する図。(a)は疲労き裂を形成させる前の状態を示す上面図、(b)はその側面図である。The figure explaining the preparation methods of the test piece used for the fracture toughness value measuring method of the metal material which concerns on this invention. (a) is a top view showing a state before forming a fatigue crack, and (b) is a side view thereof. 本発明に係る金属材料の破壊靭性値測定方法に用いられる試験片の作製方法を説明する図。(a)は疲労き裂を形成させた後の状態を示す上面図、(b)は試験片に形成させたスリットおよび疲労き裂の拡大図である。The figure explaining the preparation methods of the test piece used for the fracture toughness value measuring method of the metal material which concerns on this invention. (a) is a top view showing a state after forming a fatigue crack, and (b) is an enlarged view of a slit and a fatigue crack formed on a test piece. 不安定破壊の発生を電気的に検出するための電極を配置した試験片を示す模式図。(a)は背面図、(b)は側面図である。The schematic diagram which shows the test piece which has arrange | positioned the electrode for electrically detecting generation | occurrence | production of unstable fracture. (a) is a rear view, (b) is a side view. 図3に示す試験片を用いた試験における荷重および電位差と変位との関係を示す図。The figure which shows the relationship between the load and electric potential difference, and displacement in the test using the test piece shown in FIG. SP試験法の概要を示す模式図。The schematic diagram which shows the outline | summary of SP test method. 任意の材料についてのSP試験法における荷重および変位の関係をプロットした図。The figure which plotted the relationship of the load and displacement in SP test method about arbitrary materials. 任意の材料についてのSPエネルギーおよび試験温度の関係をプロットした図。The figure which plotted the relationship of SP energy and test temperature about arbitrary materials. 本発明例の方法および比較例の方法と、CT試験片を用いて求めた破壊靭性値とをプロットした図である。It is the figure which plotted the method of the example of this invention, the method of a comparative example, and the fracture toughness value calculated | required using CT test piece.

符号の説明Explanation of symbols

1.試験片、
2.上部ダイ、
3.下部ダイ、
4.球圧子、
5.平板、
6.つかみ部、
7.スリット
8.試験片
9.疲労き裂
10.電流入力電極
11.電位出力電極
12.温度測定用熱電対
1. Test pieces,
2. Upper die,
3. Lower die,
4). Ball indenter,
5. Flat plate,
6). Grasping part,
7). Slit 8. Test piece 9. Fatigue crack
Ten. Current input electrode
11. Potential output electrode
12. Thermocouple for temperature measurement

Claims (5)

金属材料の破壊靭性値を測定する方法であって、測定対象の金属材料から微小平板を切り出し、この微小平板の中央部にスリットを形成させた後、スリットの両端に疲労き裂を形成させたものを試験片とし、この試験片の端部を固定した状態で、その中央部に球圧子を介して荷重を負荷し、荷重および試験片の変位を検出し、試験開始から不安定破壊発生までのひずみエネルギーから破壊靭性値を求めることを特徴とする金属材料の破壊靭性値測定方法。   A method for measuring the fracture toughness value of a metal material, in which a fine flat plate is cut out from a metal material to be measured, a slit is formed at the center of the fine flat plate, and fatigue cracks are formed at both ends of the slit. Using a test piece as a test piece, with the end of the test piece fixed, a load is applied to the center of the test piece via a ball indenter, and the load and displacement of the test piece are detected. A method for measuring the fracture toughness value of a metal material, wherein the fracture toughness value is obtained from the strain energy of the metal. 微小平板の中央部に形成させるスリットの幅bおよびスリットの長さlと球圧子の直径Dとの関係が0.04≦b/D≦0.13および0.15≦l/D≦0.65を満足し、且つスリットの両端に形成させる疲労き裂の長さが0.2〜2.0mmであることを特徴とする請求項1に記載の金属材料の破壊靭性値測定方法。   The relationship between the slit width b and slit length l formed in the center of the micro flat plate and the diameter D of the ball indenter satisfies 0.04 ≦ b / D ≦ 0.13 and 0.15 ≦ l / D ≦ 0.65, and The method for measuring a fracture toughness value of a metal material according to claim 1, wherein the length of the fatigue crack formed at both ends is 0.2 to 2.0 mm. 不安定破壊の発生を電気的に検出することを特徴とする請求項1または請求項2に記載の金属材料の破壊靭性値測定方法。   The method for measuring fracture toughness value of a metal material according to claim 1 or 2, wherein the occurrence of unstable fracture is electrically detected. 上記の試験における試験開始から不安定破壊発生までのひずみエネルギーを有限要素法により求め、別途実施したCT試験片のFEM解析から得られるひずみエネルギーと比較し、両者が一致する荷重でCT試験片が不安定破壊すると仮定して破壊靱性値を求めることを特徴とする請求項1から請求項3までのいずれかに記載の金属材料の破壊靭性値測定方法。   The strain energy from the start of the test to the occurrence of unstable fracture in the above test is obtained by the finite element method, and compared with the strain energy obtained from the FEM analysis of the CT test piece separately conducted. The fracture toughness value measuring method for a metal material according to any one of claims 1 to 3, wherein the fracture toughness value is obtained on the assumption that unstable fracture occurs. 試験開始から不安定破壊発生までのひずみエネルギーをマスターカーブに当てはめることにより破壊靭性値を求めることを特徴とする請求項1から請求項4までのいずれかに記載の金属材料の破壊靭性値測定方法。 The fracture toughness value measurement method for a metal material according to any one of claims 1 to 4, wherein the fracture toughness value is obtained by applying strain energy from the start of the test to the occurrence of unstable fracture to a master curve. .
JP2005352228A 2005-12-06 2005-12-06 Method for measuring fracture toughness value of metallic materials Expired - Fee Related JP4676323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005352228A JP4676323B2 (en) 2005-12-06 2005-12-06 Method for measuring fracture toughness value of metallic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005352228A JP4676323B2 (en) 2005-12-06 2005-12-06 Method for measuring fracture toughness value of metallic materials

Publications (2)

Publication Number Publication Date
JP2007155540A JP2007155540A (en) 2007-06-21
JP4676323B2 true JP4676323B2 (en) 2011-04-27

Family

ID=38240109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005352228A Expired - Fee Related JP4676323B2 (en) 2005-12-06 2005-12-06 Method for measuring fracture toughness value of metallic materials

Country Status (1)

Country Link
JP (1) JP4676323B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2613133B1 (en) * 2012-01-03 2015-03-18 Siemens Aktiengesellschaft Production of comparative test bodies for non-destructive testing with representative fissures regarding their orientation and test method
CN111678816B (en) * 2020-08-14 2020-12-08 潍坊衡益复合装甲研究院有限公司 Toughness and strength detection device of toughened bulletproof material
CN113776963B (en) * 2021-08-04 2023-07-28 中国石油大学(华东) Method for calculating fracture toughness by spherical indentation method
CN113504043B (en) * 2021-09-10 2021-12-07 深圳大学 Testing device for testing mechanical property of solid oxide fuel cell
CN114813411A (en) * 2022-07-01 2022-07-29 常州市宏发纵横新材料科技股份有限公司 Fatigue cracking test method for wind power blade bonding structure
JP2024016559A (en) * 2022-07-26 2024-02-07 三菱造船株式会社 Tank toughness reliability evaluation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63317740A (en) * 1987-06-22 1988-12-26 Toshiba Corp Method and apparatus for measuring embrittlement
JPH02107943A (en) * 1988-10-17 1990-04-19 Toshiba Corp Embrittlement measuring apparatus
JPH0682350A (en) * 1992-09-03 1994-03-22 Kawasaki Steel Corp Method for introducing fatigue crack into test piece to be evaluated in fracture toughness
JP2000241323A (en) * 1999-02-24 2000-09-08 Kobe Steel Ltd Toughness evaluation method of welding structure and welding structure with superior toughness

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63317740A (en) * 1987-06-22 1988-12-26 Toshiba Corp Method and apparatus for measuring embrittlement
JPH02107943A (en) * 1988-10-17 1990-04-19 Toshiba Corp Embrittlement measuring apparatus
JPH0682350A (en) * 1992-09-03 1994-03-22 Kawasaki Steel Corp Method for introducing fatigue crack into test piece to be evaluated in fracture toughness
JP2000241323A (en) * 1999-02-24 2000-09-08 Kobe Steel Ltd Toughness evaluation method of welding structure and welding structure with superior toughness

Also Published As

Publication number Publication date
JP2007155540A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
JP4676323B2 (en) Method for measuring fracture toughness value of metallic materials
Luo et al. Energy-based prediction of low cycle fatigue life of high-strength structural steel
Hyde et al. Some considerations on specimen types for small sample creep tests
Ohtani et al. Acoustic damping characterization and microstructure evolution in nickel-based superalloy during creep
JP2010223939A (en) Method for estimating range of breaking stress
Masuyama Advances in creep damage/life assessment technology for creep strength enhanced ferritic steels
JP2003065921A (en) Method for evaluating integrity in structure material, and program
Sanyal et al. Investigation of fracture behavior of steam generator tubes of Indian PHWR using PLT specimens
JP4672616B2 (en) Evaluation method of stress corrosion crack growth rate
Ozeki et al. Effect of overload on creep deformation, crack initiation and growth behaviors of a C (T) specimen for 12Cr steel
Arora et al. Evaluation of the ASTM and ISO J initiation procedures by applying the unloading compliance technique to reactor pressure vessel steels
Chvostová et al. Creep test with use of miniaturized specimens
Seok et al. Evaluation of material degradation of 1Cr-1Mo-0.25 V steel by ball indentation and resistivity
Karthik et al. Small specimen test techniques for estimating the tensile property degradation of mod 9Cr-1Mo steel on thermal aging
JP2007108095A (en) Method and device for diagnosing member irradiated with neutron
Acosta et al. Microstructure-based Lifetime Assessment of Austenitic Steel AISI 347 Exposed to Corrosion and Fatigue
JP4434631B2 (en) Diagnosis method for neutron irradiated components
Bubphachot et al. Creep-Fatigue Strength Evaluation of Perforated Plate at Elevated Temperature Using Stress Redistribution Locus Method
Konopik et al. Compatibility of fracture toughness results in the upper shelf region
Lee et al. Small punch test and simulation of HR3C steel
Shan et al. Residual Life Assessment of In-Service High Temperature Components by Small Punch Creep Test
Ekmekci et al. Investigation of residual stresses on electrical discharge machined surfaces
Shazly et al. Dynamic fracture initiation toughness of a gamma (Met-PX) titanium aluminide at elevated temperatures
Grinevich et al. Improved method for determining the stress relaxation at the crack tip
Chernyavsky et al. Microstructural Damage Mapping on Heat-Resistant Steel Due to High-Temperature Fatigue

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees