JPH08160035A - Method and apparatus for controlling life of high temperature part of gas turbine - Google Patents

Method and apparatus for controlling life of high temperature part of gas turbine

Info

Publication number
JPH08160035A
JPH08160035A JP29927094A JP29927094A JPH08160035A JP H08160035 A JPH08160035 A JP H08160035A JP 29927094 A JP29927094 A JP 29927094A JP 29927094 A JP29927094 A JP 29927094A JP H08160035 A JPH08160035 A JP H08160035A
Authority
JP
Japan
Prior art keywords
life
high temperature
damage
gas turbine
temperature component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29927094A
Other languages
Japanese (ja)
Inventor
Shigeo Sakurai
茂雄 桜井
Nobuhiro Isobe
展宏 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29927094A priority Critical patent/JPH08160035A/en
Publication of JPH08160035A publication Critical patent/JPH08160035A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To ensure the reliability to keep operation by determining the load condition of heat stress analysis on the basis of damage distribution at the time of periodic inspection and executing heat cut-off coating on the basis of the result of proper residual life evaluation to control the life of the high temp. part of a gas turbine. CONSTITUTION: Temp. analysis and heat stress analysis by a finite-element method are performed with respect to the high temp. part of a gas turbine by setting a planning condition such as a shape dimension or the like and operation history such as the number of times of start and stop or operation temp. as fundamental boundary conditions. The analytical results are converted into damage distribution on the basis of the stress distribution of the analytical results and the corresponding material strength data to evaluate the life of the high temp. part. A region large in damage cumulation is made clear from the damage analysis of the number of surface cracks and the length and region of the surface cracks and effective life control can be performed by setting a region to be monitored. The image of the surface damage of a determined region is magnified by a video camera to be subjected to image processing by a computer to evaluate the whole life. When it is diagnosed that there is no residual life, the replacement of the part or life extending treatment such as heat cut-off coating is performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガスタービンを用いた発
電設備の予防保全技術に係わり、特に高温で長期間稼働
するガスタービン動静翼や燃焼器などの高温部品の寿命
管理方法及びその装置に関わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a preventive maintenance technique for power generation equipment using a gas turbine, and more particularly to a life management method and apparatus for high temperature parts such as gas turbine moving vanes and combustors operating at high temperature for a long time. Get involved.

【0002】[0002]

【従来の技術】高温機器の主要部材は、長期間の使用に
伴い材料脆化や疲労損傷およびクリープ損傷が進行す
る。これらの経年劣化の診断および材料損傷の予測は高
温部材の強度信頼性の検討をするうえで、また高温部品
の余寿命を評価するうえでも最も重要な課題である。こ
れに対する劣化診断技術の一例としては、蒸気タービン
に関しては従来多くの提案がなされており、例えば低合
金耐熱鋼では粒界腐食法に基づくレプリカ法あるいは電
気分極法から材料の脆化の指標である破面遷移温度(F
ATT)を推定し、これから経年劣化した部材の最大許
容欠陥寸法を評価するものが提案されている(タービン
部材の劣化診断方法 特開平1−110259 号,低合金鋼の
劣化判定法 特開昭62−222155号)。
2. Description of the Related Art Embrittlement, fatigue damage, and creep damage of main components of high-temperature equipment progress with long-term use. Diagnosis of these aging deterioration and prediction of material damage are the most important issues in considering the strength reliability of high temperature parts and in evaluating the remaining life of high temperature parts. As an example of deterioration diagnosis technology for this, many proposals have been made in the past regarding steam turbines, and for example, in low alloy heat-resistant steel, an index of material embrittlement is obtained from a replica method based on an intergranular corrosion method or an electric polarization method. Fracture transition temperature (F
It has been proposed to estimate the ATT) and evaluate the maximum allowable defect size of the aged member (deterioration diagnosis method for turbine member JP-A-1-110259, deterioration determination method for low alloy steel JP-A-62). -222155).

【0003】ガスタービンに関しては高温部品の表層部
の劣化を物理定数の変化から検出して、寿命予測をする
方法が提案されている(ガスタービン 特開平5−26054
号)。
Regarding a gas turbine, a method has been proposed in which deterioration of the surface layer of a high temperature component is detected from changes in physical constants to predict the life (gas turbine Japanese Patent Laid-Open No. 5-26054).
issue).

【0004】[0004]

【発明が解決しようとする課題】上記従来の方法では、
低合金鋼に対しては非破壊的に劣化度は評価できるがガ
スタビーンに使用される超合金の高温部品に対しては劣
化度は評価できない。また材料の物理定数からガスター
ビン部材の寿命予測するだけでは、ガスタービンの保全
管理や長寿命化を提案すること困難で、従って定期点検
時、補修あるいはリプレース時期の適正化を行うことが
難しい。ところでガスタービンは、起動が容易で建設期
間が短く、また高温排ガスを利用して蒸気タービンと組
み合わせた複合(コンバインド)プラントが高い熱効率
であることから、近年の環境エネルギー問題を背景とし
て設備建設が積極的に進んでいる。この発電設備の主要
機器であるガスタービンには高効率化が要求され、ター
ビン入口ガス温度は年々急速に上昇してきている。これ
に伴い主要高温機器である燃焼器,タービン翼の負荷条
件は従来になく苛酷になっている。しかしながらこれら
高温部品には安定した設備稼働のためには高い信頼性が
要請されている。ところで、ガスタービンの構成材料で
あるNi基やCo基の超合金は高温高強度であるが、高
温長時間負荷や起動停止の繰り返しによって材質劣化や
損傷の累積が生じる恐れがある。したがって、高い信頼
性でガスタービンを運転するためには、これらの高温部
材の劣化損傷を定期点検時に的確に把握し、これらの結
果に基づき点検時期や補修および部品交換などの保全管
理をする必要がある。ガスタービン高温部品の劣化損傷
のなかで高温腐食と疲労が極めて重要である。ガスター
ビンの多くはその起動特性が優れているため電力需要に
応じて頻繁な起動停止を行う。このためタービン動翼や
静翼は厳しい熱疲労損傷を受けることになる。ところで
一般に動翼はコーティングを施されており、このコーテ
ィング翼におけるき裂発生機構は次のように考えられて
いる。先ずコーティング層の劣化、すなわち層組織が2
相(βとγ′)に変化し脆くなりスポーリングが生じる。
その次にコーティングにき裂が発生し、酸化あるいは硫
化腐食が相互拡散層、そして母材に及び、き裂はその腐
食を受けた部分を成長する。き裂成長は環境に著しく影
響されることが組織観察により確認されている。ところ
がガスタービンに一般に用いられるコーティングを施さ
れた動翼に関しては現在この劣化損傷にたいする有効な
診断方法はない。従来の電気化学法ではプラント現場で
の電気的ノイズの影響または環境温度および腐食時間の
設定が困難で劣化度の評価に大きな誤差を与える可能性
という問題がある。さらに、プラントの稼働条件が変化
し、それに伴いプラントの起動停止頻度が増加し、従来
の運転データに基づくトレンドカーブでの余寿命予測も
困難になっている。これらの状況に際して、ガスタービ
ン発電プラント機器の稼働条件における劣化の高精度な
診断を行う手法および保全管理を行う方法とその装置の
開発が強く望まれている。本発明の目的は、発電プラン
ト用のガスタービンで問題となっている高温部品でコー
ティング界面の偏析や、高温で繰り返し負荷を受けるこ
とにより表面微小き裂が発生する高温部品、例えば静翼
において、より合理的な保全管理を行うためのガスター
ビンの寿命管理法とその装置を提供することである。
In the above conventional method,
Degradation can be evaluated non-destructively for low alloy steels, but degradation cannot be evaluated for high temperature superalloy parts used in gas tabines. Further, it is difficult to propose maintenance management and a longer life of the gas turbine only by predicting the life of the gas turbine member from the physical constants of the materials, and therefore it is difficult to perform proper maintenance, replacement or replacement at the time of regular inspection. By the way, gas turbines are easy to start up, have a short construction period, and have high thermal efficiency in a combined plant that combines high-temperature exhaust gas with a steam turbine. It is actively moving forward. Gas turbines, which are the main equipment of this power generation facility, are required to have high efficiency, and the turbine inlet gas temperature is rapidly increasing year by year. As a result, the load conditions on the combustor and turbine blades, which are the main high-temperature equipment, have become more severe than ever before. However, these high temperature parts are required to have high reliability for stable equipment operation. By the way, the Ni-based and Co-based superalloys, which are constituent materials of the gas turbine, have high temperature and high strength, but there is a possibility that material deterioration and accumulation of damage may occur due to high temperature long time load and repeated start and stop. Therefore, in order to operate the gas turbine with high reliability, it is necessary to accurately grasp the deterioration and damage of these high-temperature members at the time of regular inspection, and perform maintenance management such as inspection time and repair and parts replacement based on these results. There is. High temperature corrosion and fatigue are extremely important among the deterioration damage of gas turbine high temperature parts. Since many gas turbines have excellent start-up characteristics, they are frequently started and stopped according to power demand. As a result, turbine blades and vanes are subject to severe thermal fatigue damage. By the way, the moving blade is generally coated, and the crack initiation mechanism in this coating blade is considered as follows. First, the deterioration of the coating layer, that is, the layer structure is 2
It changes into phases (β and γ '), becomes brittle, and spalling occurs.
Next, a crack is generated in the coating, and oxidation or sulfide corrosion extends to the interdiffusion layer and the base material, and the crack grows in the corrosion-affected portion. It has been confirmed by microscopic observation that crack growth is significantly affected by the environment. However, for coated blades commonly used in gas turbines, there is currently no effective diagnostic method for this degradation damage. The conventional electrochemical method has a problem in that it is difficult to set the environmental temperature and the corrosion time due to the influence of electrical noise at the plant site, which may cause a large error in the evaluation of the deterioration degree. Furthermore, the operating conditions of the plant change, and the frequency of starting and stopping the plant increases accordingly, making it difficult to predict the remaining life based on the conventional trend curve based on operation data. Under these circumstances, there is a strong demand for the development of a method for highly accurately diagnosing deterioration under operating conditions of gas turbine power plant equipment, a method for maintenance management, and an apparatus therefor. The object of the present invention is the segregation of the coating interface in high-temperature parts that is a problem in gas turbines for power plants, and high-temperature parts in which surface microcracks are generated by repeated loading at high temperatures, for example, in a stationary blade, It is an object of the present invention to provide a gas turbine life management method and apparatus for more rational maintenance management.

【0005】[0005]

【課題を解決するための手段】本発明は、定期点検でえ
られるデータである損傷分布であるき裂に着目して熱応
力解析の負荷条件である熱伝達係数を決定し、適正な余
寿命評価を行い、その結果により長寿命化処理である熱
応力低減のための遮熱コーティングや部品交換を実施し
てガスタービンの高温部品の寿命管理を行うことを特徴
とする。
According to the present invention, a heat transfer coefficient, which is a load condition of thermal stress analysis, is determined by paying attention to a crack which is a damage distribution which is data obtained by a periodic inspection, and an appropriate residual life evaluation is performed. Is performed, and as a result, the life control of the high temperature parts of the gas turbine is performed by performing thermal barrier coating for replacing the thermal stress, which is a life extension process, and part replacement.

【0006】[0006]

【作用】ガスタービンの高温部品、例えば静翼の場合は
使用中に熱疲労を主因として表面に微小なき裂が分布し
て発生成長することが多い。これらは各定期点検時に検
出され記録されることにより損傷の発達が傾向的に把握
できる。これらの記録を高温部品の部位により観察記録
の領域を決め、その領域での損傷状態を最大き裂長さに
よって代表させことにより高温部品の劣化状態を定量的
に評価する。また一方、設計条件と運転履歴データを用
いて有限要素法などによる熱応力解析に基づく部品の余
寿命評価において、前記のき裂長さに基づく損傷分布に
対応する応力分布になるように熱伝達係数などの境界条
件を繰り返し損傷分布に一致するように熱応力解析を実
施し応力分布を決定することで評価の高精度化が図られ
る。また十分な余寿命がない場合には部品の長寿命化処
理として熱疲労による損傷が使用温度を低下することで
効果的に寿命が伸びることが知られているので、損傷の
大きい領域表面には部材温度を低下させる遮熱コーティ
ングを施す。これにより部分的な補修により部品の長寿
命化が可能となる。
In the case of a high-temperature component of a gas turbine, for example, a stationary blade, small cracks are often distributed and grow on the surface due to thermal fatigue during use. These are detected and recorded at each regular inspection, so that the damage development can be grasped in a tendency. The area of the observation record of these records is determined by the part of the high temperature component, and the deterioration state of the high temperature component is quantitatively evaluated by representing the damage state in that region by the maximum crack length. On the other hand, in the residual life evaluation of parts based on thermal stress analysis by the finite element method using design conditions and operation history data, the heat transfer coefficient is adjusted so that the stress distribution corresponds to the damage distribution based on the crack length. The accuracy of evaluation can be improved by repeatedly performing boundary conditions such as the above and performing thermal stress analysis so as to match the damage distribution and determining the stress distribution. In addition, when there is not a sufficient remaining life, it is known that damage due to thermal fatigue can effectively extend the life by decreasing the operating temperature as a treatment for extending the life of parts. Apply a thermal barrier coating that lowers the temperature of the member. As a result, it is possible to extend the service life of parts by partial repair.

【0007】[0007]

【実施例】【Example】

(実施例1)本発明の1実施例を以下、図面を用いて説
明する。ガスタービン高温部品の寿命管理を実施する際
の手順について図1に示す。ガスタービン高温部品、例
えば図2に示す様な静翼は形状寸法などの設計条件と起
動停止回数や運転温度などの運転履歴を基本的な境界条
件として有限要素法などにより温度解析と熱応力解析を
行う。この解析結果の静翼の応力分布に基づき対応する
材料強度データを基準として損傷分布に変換して評価す
る。この場合、該当静翼の定期点検データとしての損傷
分布データ、たとえば図2に示す様な表面き裂の観察デ
ータを用いて、応力分布と比較してこの観察データと一
致するように、すなわち応力が高い部分はき裂密度が大
きくなるように熱伝達係数などの境界条件を変えながら
繰り返し解析を実施する。き裂分布観察データと解析結
果が一致した時の結果である応力分布から解析的に余寿
命を評価する。図3にき裂の発生分布状況と応力解析で
得られた等応力分布を示す。ここでガスタービンはその
起動特性のすぐれている特長から発電設備毎あるいは各
機器によってその運転履歴が異なる。このため機器によ
り著しく異なる運転履歴の把握、すなわち、起動停止回
数,運転時間,トリップ回数,排気ガス温度履歴などか
ら前記のように応力解析により求めた応力が繰り返すと
して熱疲労損傷を評価して該当機器の余寿命が計算され
る。一方、損傷分布の解析は図2に示す様な静翼の場合
は、図4のように一つの静翼全体を例えば16に分割し
た部位を考えて損傷分布を解析する。観察したき裂の数
と各部位の関係を図5に示す。観察した運転時間は約6
000時間から約20000時間の間の3回とした。こ
の結果から番号1と2のアウターウォール部と番号10
のトレイリングエッジ部のプレッシャサイド領域がき裂
の数が多いことが分かり、アウターとインナーウォール
の損傷の差は顕著である。図6には発生した各き裂の長
さの和である総長と部位の関係を示す。この関係は図5
のき裂数の結果とほぼ同じ傾向である。すなわち、番号
1と2のアウターウォール部と番号10のトレイリング
エッジ部のプレッシャサイド領域にき裂が大きく成長し
ていることが分かる。図5と図6の損傷解析からガスタ
ービン静翼の損傷累積の大きい領域が明らかとなり、静
翼のどの領域を監視すれば効果的に寿命を管理できるか
が分かる。さらに図7には稼働履歴の主要な項目である
起動停止回数とき裂の総長との関係を部位の10、すな
わち、アウターウォール側のトレイリングエッジ部に着
目して整理した結果を示す。
(Embodiment 1) One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a procedure for managing the life of the high temperature gas turbine component. For gas turbine high-temperature parts, for example, a stationary blade as shown in Fig. 2, temperature analysis and thermal stress analysis are performed by the finite element method with design conditions such as geometry and operating history such as the number of start and stop times and operating temperature as basic boundary conditions. I do. Based on the stress distribution of the stationary blade as a result of this analysis, the corresponding material strength data is converted into a damage distribution for evaluation. In this case, the damage distribution data as the regular inspection data of the corresponding stationary blade, for example, the observation data of the surface crack as shown in FIG. In the area with a high value, repeated analysis is performed while changing the boundary conditions such as the heat transfer coefficient so that the crack density increases. The residual life is analytically evaluated from the stress distribution, which is the result when the observation data of the crack distribution agrees with the analysis result. Figure 3 shows the distribution of crack initiation and the equal stress distribution obtained by stress analysis. Here, the operation history of the gas turbine differs depending on each power generation facility or each device because of its excellent starting characteristics. Therefore, it is possible to grasp the operating history that is significantly different depending on the equipment, that is, to evaluate the thermal fatigue damage assuming that the stress obtained by the stress analysis as described above from the number of times of start and stop, operating time, number of trips, exhaust gas temperature history, etc. is repeated. The remaining life of the device is calculated. On the other hand, in the case of the stationary blade as shown in FIG. 2, the damage distribution is analyzed by considering the site where one entire stationary blade is divided into, for example, 16 as shown in FIG. The relationship between the number of observed cracks and each part is shown in FIG. The observed driving time is about 6
Three times from 000 hours to about 20,000 hours. From this result, the outer wall parts of Nos. 1 and 2 and No. 10
It was found that the number of cracks was large in the pressure side area of the trailing edge part of, and the difference in damage between the outer wall and the inner wall was remarkable. FIG. 6 shows the relationship between the total length, which is the sum of the lengths of the cracks that occurred, and the site. This relationship is shown in Figure 5.
The tendency is almost the same as the result of crack number. That is, it can be seen that the cracks greatly grow in the pressure side regions of the outer wall portions of Nos. 1 and 2 and the trailing edge portion of No. 10. From the damage analysis of FIGS. 5 and 6, the region where the damage accumulation of the gas turbine stationary blade is large becomes clear, and it becomes clear which region of the stationary blade should be monitored to effectively manage the life. Further, FIG. 7 shows the result of organizing the relationship between the number of start-stops and the total length of cracks, which are the main items of the operation history, focusing on the part 10, that is, the trailing edge portion on the outer wall side.

【0008】図8には起動停止回数と部位10領域の最
大き裂長さの関係を示す。これらの結果から起動停止回
数と最大き裂長さは、よく対応してほぼ指数的に増加し
ている。これらの結果から最大き裂長さをamax とし、
起動停止回数をNとすれば、次式が得られる。
FIG. 8 shows the relationship between the number of times of starting and stopping and the maximum crack length in the region of the region 10. From these results, the number of starting and stopping and the maximum crack length are correspondingly and exponentially increasing. From these results, the maximum crack length is a max ,
If the number of start-stops is N, the following equation is obtained.

【0009】 N=C.log(amax) …(1) 上式により将来の最大き裂長さamax を予測し、静翼の
余寿命を評価できることになる。この場合、図10に示
すように決められた部位をビデオカメラなどで表面損傷
の画像を拡大入力し、これをコンピュータで画像処理
し、統計処理し最大き裂長さを求め余寿命が評価され
る。さらに画像を記録しておいて次回定検時にも同一領
域の画像を取り込んで前回画像のき裂画像は濃度を濃く
出力し、今回のものを薄く出力し重ね合わせることによ
り容易にき裂長さの成長が認識できる。
N = C.log (a max ) ... (1) The future maximum crack length a max can be predicted by the above equation, and the remaining life of the stationary blade can be evaluated. In this case, as shown in FIG. 10, an image of the surface damage is enlarged and input by a video camera or the like to the determined part, and this is image-processed by a computer and statistically processed to obtain the maximum crack length, and the remaining life is evaluated. . Furthermore, by recording the image and capturing the image of the same area at the next regular inspection, the crack image of the previous image is output with a high density, and the crack image of this time is output thinly to make it easy to check the crack length. You can recognize the growth.

【0010】上述のように解析的およびき裂長さ検出に
よる非破壊的余寿命評価による総合的な高温部品の余寿
命診断ができる。この場合次期定検までに十分な信頼性
維持できる余寿命があると診断されれば運転を続け、そ
うでなければ該当部品の長寿命化処理を施す。長寿命化
処理としては該当部品の交換,補修、それから遮熱コー
ティングがある。部品交換や補修については従来より採
用されてきているものである。ここでは静翼などのき裂
発生の主要メカニズムが熱疲労であることから、部品の
材料に負荷される温度を低下させることにより寿命が延
長されることに基づき遮熱コーティング施工を長寿命化
処理として採用する。この処理を施されればタービンに
戻され再び使用されることになる。
As described above, comprehensive residual life diagnosis of high-temperature parts can be performed by analytical and nondestructive residual life evaluation by crack length detection. In this case, if it is diagnosed that there is a remaining life that can maintain sufficient reliability by the next periodic inspection, the operation is continued, and if not, the life extension processing of the relevant part is performed. The life extension treatment includes replacement and repair of relevant parts, and then thermal barrier coating. It has been conventionally used for parts replacement and repair. Since thermal fatigue is the main mechanism for cracks in stator vanes, the life of thermal barrier coating is extended by lowering the temperature applied to the material of the parts, which extends the life of the thermal barrier coating. To be adopted as. If this treatment is applied, it will be returned to the turbine and used again.

【0011】ところで、遮熱コーティング施工された翼
についても施工された次の定検では余寿命診断が必要と
なる。この場合には遮熱コーティングされた翼に対する
新しい診断技術が必要となる。これについて以下に詳述
する。
By the way, the remaining service life diagnosis is required for the next regular inspection of the blade having the thermal barrier coating. This would require new diagnostic techniques for thermal barrier coated blades. This will be described in detail below.

【0012】遮熱コーティングはその合金コーティング
の上にジルコニア酸化物とイットリア酸化物混合のセラ
ミックスがコーティングされる。ところでコーティング
翼におけるき裂発生機構は次のように考えられている。
先ずコーティング層の劣化、すなわち層組織が2相(β
とγ′)に変化し脆くなり界面での微小剥離が生じる。
その次にコーティングにき裂が発生し、酸化あるいは硫
化腐食が相互拡散層、そして母材に及び、き裂はその腐
食を受けた部分を成長する。したがって劣化過程のう
ち、界面での変化を解析的あるいは非破壊的にそして破
壊評価で診断することが不可欠となる。本発明の実施例
として解析評価の段階ではこの劣化のメカニズムに基づ
いてなされる。すなわち、図11に示すセラミックスと
母材の中間層コーティングの劣化過程の解析的な説明図
を用いて評価手順を述べる。この図ではコーティング層
と母材における組成元素であるNiとAlの濃度勾配が
生じることを示している。(b)図に示すように、この
濃度勾配により各元素は高温の稼働状態で拡散移動が起
こる。この結果、図に示すような物質移動と空孔移動が
起こり(c)図のようにコーティング界面では析出物や
ボイドが発生することになる。この過程はNiとAlに
着目したKirkendall拡散として知られているものであ
る。この式から劣化として問題となるボイドの密度Cv
に関しては次式によって評価できる。 Cv=−1/(NsF)Jv/x …(2) ここで、Nsは空孔源密度、Fは温度に依存する定数、
Jvは空孔の流束である。上式(2)によって後に述べ
る破壊試験結果との対応から適正な定数Ccを決定し、
解析評価における基準値を設定する。すなわち、 Cv<Cc2 となる。
The thermal barrier coating is formed by coating a ceramic mixture of zirconia oxide and yttria oxide on the alloy coating. By the way, the crack initiation mechanism in the coating blade is considered as follows.
First, the deterioration of the coating layer, that is, the layer structure has two phases (β
And γ ′) and becomes brittle, causing microdelamination at the interface.
Next, a crack is generated in the coating, and oxidation or sulfide corrosion extends to the interdiffusion layer and the base material, and the crack grows in the corrosion-affected portion. Therefore, it is indispensable to diagnose the change at the interface analytically or nondestructively and by destructive evaluation in the deterioration process. As an example of the present invention, the analysis and evaluation stage is performed based on this deterioration mechanism. That is, the evaluation procedure will be described using the analytical explanatory diagram of the deterioration process of the intermediate layer coating of the ceramics and the base material shown in FIG. This figure shows that a concentration gradient of the composition elements Ni and Al in the coating layer and the base material occurs. As shown in the diagram (b), due to this concentration gradient, each element undergoes diffusive migration in a high-temperature operating state. As a result, mass transfer and vacancy transfer occur as shown in the figure, and precipitates and voids are generated at the coating interface as shown in (c). This process is known as Kirkendall diffusion focusing on Ni and Al. From this equation, the void density Cv which is a problem for deterioration
Can be evaluated by the following formula. Cv = -1 / (NsF) Jv / x (2) Here, Ns is a hole source density, F is a constant depending on temperature,
Jv is the flux of the holes. An appropriate constant Cc is determined from the correspondence with the destructive test result described later by the above formula (2),
Set the standard value for analysis evaluation. That is, Cv <Cc2.

【0013】図11に示したコーティング翼の劣化メカ
ニズムによれば界面層ではボイドが発達して材料剛性や
物性が変化するため超音波を用いて非破壊的に劣化が診
断できる。
According to the deterioration mechanism of the coating blade shown in FIG. 11, since the voids develop in the interface layer and the material rigidity and physical properties change, the deterioration can be diagnosed non-destructively using ultrasonic waves.

【0014】図12には破壊試験に用いられる微小パン
チ(スモールSPパンチ)試験法を示す。
FIG. 12 shows a micro punch (small SP punch) test method used in a destructive test.

【0015】(a)図はスモールパンチ試験に用いる治
具を示す。本手法の特徴は試験片として10mm角で0.
5mm の微小なものを採用できることである。これは実
コーティング翼から直接切り出して試験片を作成できる
ので高精度に実部材の劣化度を診断が可能である。
(b)図は上述の微小パンチ試験において材料劣化診断
をする際のパラメータであるSPエネルギーの定義を示
す。図に示すように(a)図に示す試験片治具により得
られる荷重と変位の曲線上でのSPエネルギーの大小に
より劣化度が評価できる。本発明では静翼の部分から最
も劣化していると思われる高温部から試験片を切り出し
SP試験を実施しその比較と、別途標準試験片で得られ
ているSPエネルギーと劣化度の関係から実翼の劣化診
断を行う。図(b)に示すようにコーティングは引張り
側に位置することで劣化が進行していれば、感度良く試
験荷重の低下に現われる。この荷重低下位置からSPエ
ネルギーを求めることにより正確にコティング層の劣化
を診断できることになる。またこの試験においてAEセ
ンサーを試験片に装着して実験すればコーティング部で
のき裂発生を感度良く検出できる。
FIG. 3A shows a jig used for the small punch test. The feature of this method is that the test piece is 10 mm square and is 0.
It is possible to use a minute one of 5 mm. Since the test piece can be prepared by cutting it directly from the actual coating blade, it is possible to diagnose the deterioration degree of the actual member with high accuracy.
The diagram (b) shows the definition of SP energy, which is a parameter when diagnosing material deterioration in the above-described micro punch test. As shown in the figure, the degree of deterioration can be evaluated by the magnitude of SP energy on the curve of load and displacement obtained by the test piece jig shown in FIG. In the present invention, a test piece is cut out from a high temperature portion which is considered to be most deteriorated from the portion of the stationary blade, an SP test is carried out, the comparison is made, and the relationship between the SP energy and the deterioration degree which is separately obtained in the standard test piece is used. Performs wing deterioration diagnosis. If the coating is located on the tensile side and the deterioration progresses as shown in FIG. (B), the test load appears with good sensitivity. By determining the SP energy from this load lowering position, it is possible to accurately diagnose the deterioration of the coating layer. Further, in this test, if an AE sensor is attached to a test piece and an experiment is conducted, the crack generation in the coating portion can be detected with high sensitivity.

【0016】[0016]

【発明の効果】本発明によれば、定期点検でえられるデ
ータである損傷分布に基づくことにより熱応力解析の負
荷条件を決定し、適正な余寿命評価を行い、その結果に
より長寿命化処理である遮熱コーティングを実施してガ
スタービンの高温部品の寿命管理を行うことによりガス
タービンの信頼性を確保して運転を維持できる。
According to the present invention, the load condition of the thermal stress analysis is determined based on the damage distribution which is the data obtained in the regular inspection, and the appropriate remaining life is evaluated. By performing the thermal barrier coating to manage the life of the high temperature parts of the gas turbine, the reliability of the gas turbine can be secured and the operation can be maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の評価手順の概要を示すフロ
ー図。
FIG. 1 is a flowchart showing an outline of an evaluation procedure according to an embodiment of the present invention.

【図2】本発明の実例を示すガスタービン静翼の損傷状
態とこれに対応する応力解析の結果を説明する図。
FIG. 2 is a diagram illustrating a damaged state of a gas turbine stationary blade and an example of stress analysis results corresponding to the damaged state, which illustrates an example of the present invention.

【図3】ガスタービン静翼に発生する応力の分布図。FIG. 3 is a distribution diagram of stress generated in a gas turbine stationary blade.

【図4】本発明での非破壊方法で採用する損傷状態を解
析する際に用いる対象領域を示す図。
FIG. 4 is a diagram showing a target region used when analyzing a damage state adopted in the non-destructive method according to the present invention.

【図5】損傷を解析した結果を示す図。FIG. 5 is a diagram showing a result of analyzing damage.

【図6】損傷を解析した結果を示す図。FIG. 6 is a diagram showing a result of analyzing damage.

【図7】損傷を解析した結果を示す図。FIG. 7 is a diagram showing a result of analyzing damage.

【図8】損傷を解析した結果を示す図。FIG. 8 is a diagram showing a result of analyzing damage.

【図9】本発明による実翼から損傷評価のため部位を決
めて拡大し画像処理する例を説明する図。
FIG. 9 is a diagram illustrating an example in which a portion is determined from a real blade according to the present invention for damage evaluation, enlarged, and image processed.

【図10】遮熱コーティング部の劣化状態を示す図。FIG. 10 is a diagram showing a deteriorated state of a thermal barrier coating portion.

【図11】遮熱コーティング部の劣化状態を示す図。FIG. 11 is a diagram showing a deteriorated state of a thermal barrier coating portion.

【図12】スモールパンチ試験による劣化診断を説明す
る図。
FIG. 12 is a diagram illustrating deterioration diagnosis by a small punch test.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】ガスタービン高温部品の寿命管理方法及び
その装置において、ガスタービン高温部品の設計条件と
運転履歴から前記高温部品の温度と応力の解析を実施し
て余寿命評価を行う際に、定期点検時に記録された前記
高温部品の損傷分布状態に対応するように解析での熱的
条件である負荷条件を決定し応力を求め、次回に予定さ
れる定検時の該当高温部品の損傷状態を起動停止回数と
運転時間をもとに前記解析で求めた応力が繰り返される
として計算して高温部品の余寿命を診断し、余寿命が所
定量ない場合にはさらに非破壊的検出法により余寿命を
診断し、次回の定検までの運転期間中に所定量の損傷に
到らなければ、そのまま運転を進め、所定の損傷以上と
なれば定検期間を短くするか、あるいは該当部品の補修
あるいは部品交換の長寿命化処理を施し運転を進め、長
寿命化処理を施した高温部品については次回の定検時に
は代表部品の抜き取りを行い、前記代表部品から試験片
を採集し破壊試験を実施して余寿命診断とし次回定検間
での運転の可否を判断することとし、定検期間や長寿命
化処理としての補修あるいは部品交換を余寿命診断に基
づいて計画的に実施することを特徴とするガスタービン
高温部品の寿命管理方法及びその装置。
1. A method and apparatus for managing the life of a gas turbine high temperature component, wherein when analyzing the temperature and stress of the high temperature component from the design conditions and operating history of the gas turbine high temperature component to evaluate the remaining life, The stress condition is determined by determining the load condition which is the thermal condition in the analysis so as to correspond to the damage distribution condition of the high temperature parts recorded during the periodic inspection, and the damage condition of the corresponding high temperature parts at the next scheduled regular inspection. Is calculated based on the number of times of start and stop and the operating time as the stress obtained in the above analysis is repeated to diagnose the remaining life of high temperature parts. After diagnosing the service life, if the prescribed amount of damage is not reached during the operation period until the next regular inspection, proceed with the operation as it is, and if it is more than the prescribed damage, shorten the regular inspection period or repair the relevant parts. Or parts replacement Life is extended and operation is advanced.For high temperature parts that have been extended in life, representative parts will be extracted at the next regular inspection, and test pieces will be collected from the representative parts and a destructive test will be performed to determine the remaining life. A gas turbine characterized by deciding whether or not to operate between the next regular inspections as a diagnosis, and systematically performing repairs or parts replacement as a regular inspection period or life extension processing based on the remaining life diagnosis. Method and apparatus for managing the life of high temperature parts.
【請求項2】前記定期点検時に記録された高温部品の損
傷分布状態は部品の材料表面に生じる微小なき裂の長さ
の分布データに基づき、き裂密度が大きい部位あるいは
き裂長さが大きい部位は大きい応力が作用しているとし
てき裂長さ分布に比例して応力の大きさの分布を一致さ
せるように温度応力解析の負荷条件である熱伝達係数等
の熱的条件を決定し、将来の運転計画に基づき損傷を微
小き裂密度D(a)あるいは最大き裂長さAmax として
損傷発達を運転計画の稼働時間tおよび起動停止回数N
の関係式D(a)=f(N,t)あるいはAmax=f(N,
t)から予測し、解析的に余寿命を評価することを特徴
とするガスタービン高温部品の寿命管理方法及びその装
置。
2. The damage distribution state of the high temperature component recorded at the time of the periodic inspection is based on the distribution data of minute crack lengths generated on the material surface of the component, and the portion having a large crack density or the portion having a large crack length. Indicates that a large stress is acting, the thermal conditions such as the heat transfer coefficient, which is the load condition of the temperature stress analysis, are determined so that the distribution of the stress size is matched in proportion to the crack length distribution. Based on the operation plan, the damage is defined as the micro crack density D (a) or the maximum crack length Amax, and the damage development is taken as the operating time t of the operation plan and the number of start / stop times N.
Relational expression D (a) = f (N, t) or Amax = f (N, t)
A method and apparatus for managing the life of a gas turbine high temperature component, characterized by predicting from t) and evaluating the remaining life analytically.
【請求項3】前記請求項1におけるガスタービン高温部
品の長寿命化は、将来の運転計画に基づき損傷を微小き
裂密度あるいは最大き裂長さとして損傷発達を運転計画
の稼働時間および起動停止回数の関係から予測し、解析
的に余寿命を評価し、所定の余寿命がない場合長寿命化
処理として微小き裂密度あるいは最大き裂長さのデータ
に基づいて損傷の進行が大きい部位に対して遮熱コーテ
ィングを施工し温度分布を一様にし熱応力を緩和するこ
とによりガスタービン高温部品を長寿命化することを特
徴とするガスタービン高温部品の寿命管理方法及びその
装置。
3. The extension of service life of the gas turbine high temperature component according to claim 1 is based on a future operation plan, and the damage development is defined as a micro crack density or a maximum crack length. Predicted from the relationship of, and analytically evaluate the remaining life, and if there is no predetermined remaining life, as a life extension treatment, based on the data of minute crack density or maximum crack length, A method and apparatus for managing the life of a gas turbine high temperature component, characterized by extending the life of a gas turbine high temperature component by applying a thermal barrier coating to make the temperature distribution uniform and relieve thermal stress.
【請求項4】ガスタービン高温部品の寿命管理方法及び
その装置において、高温部品の非破壊的余寿命診断は各
定期点検での損傷データである部材表面の微小き裂密度
あるいは最大き裂長さを運転履歴との関係に基づき、損
傷発達の履歴を統計的に近似しその近似式により、次回
定期点検の損傷を予測し余寿命を診断することを特徴と
するガスタービン高温部品の寿命管理方法及びその装
置。
4. A method and apparatus for managing the life of a high temperature component of a gas turbine, wherein the non-destructive residual life diagnosis of the high temperature component is the damage data in each periodical inspection, such as the minute crack density or the maximum crack length of the member surface. Based on the relationship with the operation history, the history of damage development is statistically approximated and the approximate expression is used to predict the damage of the next periodic inspection and diagnose the remaining life, and the life management method of the gas turbine high temperature component and That device.
【請求項5】ガスタービン高温部品の寿命管理方法及び
その装置において、高温部品の非破壊的余寿命診断は各
定期点検での損傷データである部材表面の微小き裂密度
あるいは最大き裂長さを運転履歴との関係および高温部
材中で損傷が大きい代表領域を決定し、該代表領域のみ
での採集データを該高温部品の損傷の監視部として、損
傷検出時には前記代表領域のみを対象にすることにより
損傷発達の履歴を統計的に回帰近似しその近似式によ
り、次回定期点検の損傷を予測し余寿命を診断すること
を特徴とするガスタービン高温部品の寿命管理方法及び
その装置。
5. A method and apparatus for managing the life of a high temperature component of a gas turbine, wherein the non-destructive residual life diagnosis of the high temperature component is the damage data in each periodic inspection, which is the microcrack density or the maximum crack length of the member surface. To determine a representative area with a large damage in the high temperature member in relation to the operation history, collect data in only the representative area as a monitoring unit for damage of the high temperature part, and target only the representative area when damage is detected A method and apparatus for managing the life of a high-temperature component of a gas turbine, characterized in that the history of damage development is statistically approximated to a regression, and the approximation formula predicts the damage at the next periodic inspection to diagnose the remaining life.
【請求項6】高温部品の非破壊的余寿命診断は各定期点
検での損傷データである部材表面の最大き裂長さと運転
履歴との関係および高温部材中でき裂寸法が大きい代表
領域に基づき、損傷検出時には前記代表領域を対象にす
ることによりき裂成長の履歴を統計的に近似しその近似
式により、次回定期点検の損傷を予測し余寿命を診断す
る前記ガスタービン高温部品の寿命管理方法及びその装
置において、前記代表領域をビデオカメラ等により入力
記録し前回記録の代表領域での最大き裂長さを比較計算
して、次回定期点検の損傷を予測し余寿命を診断するこ
とを特徴とするガスタービン高温部品の寿命管理方法及
びその装置。
6. Non-destructive residual life diagnosis of high temperature parts is based on the relationship between the maximum crack length of the member surface and the operation history, which is the damage data in each periodic inspection, and the representative region in the high temperature member where the crack size is large. The life management method of the gas turbine high temperature component for statistically approximating the history of crack growth by targeting the representative region at the time of damage detection and predicting the damage of the next periodic inspection and diagnosing the remaining life by the approximate expression In the device, the representative area is input and recorded by a video camera or the like, and the maximum crack length in the representative area recorded last time is comparatively calculated to predict damage at the next periodic inspection and diagnose the remaining life. And method for managing life of high temperature parts of gas turbine.
【請求項7】高温部品の非破壊的余寿命診断は各定期点
検での損傷データである部材表面の最大き裂長さを運転
履歴との関係および高温部材中でき裂寸法が大きい代表
領域に基づき、損傷検出時には前記代表領域を対象にす
ることにより損傷発達の履歴を統計的に近似しその近似
式により、次回定期点検の損傷を予測し余寿命を診断す
る前記ガスタービン高温部品の寿命管理方法及びその装
置において、代表領域をビデオカメラ等により入力記録
し前回記録の代表領域全域と画像上で最大き裂長さを比
較計算して、前記最大き裂長さと深さとの関係を予め求
めておいて肉厚に対し所定量き裂成長した時点で次回定
期点検の損傷を予測し余寿命を診断することを特徴とす
るガスタービン高温部品の寿命管理方法及びその装置。
7. Non-destructive residual life diagnosis of high-temperature parts is based on the relationship between the maximum crack length of the member surface, which is the damage data in each periodical inspection, and the operation history, and the representative region in the high-temperature member where the crack size is large. A method for managing the life of the gas turbine high temperature component, which statistically approximates the history of damage development by targeting the representative region at the time of damage detection, and predicts the damage of the next periodic inspection and diagnoses the remaining life by the approximate expression. In that device, the representative area is input and recorded by a video camera or the like, and the maximum crack length is compared and calculated on the entire area of the representative area recorded last time and the image, and the relationship between the maximum crack length and the depth is obtained in advance. A method and apparatus for managing the life of a high temperature component of a gas turbine, which predicts the damage of the next periodical inspection and diagnoses the remaining life when a predetermined amount of cracks grow with respect to the wall thickness.
【請求項8】前記請求項2の将来の運転計画に基づき損
傷を最大き裂長さとして損傷発達を運転計画の稼働時間
および起動停止回数の関係から予測し、解析的に余寿命
を評価し、所定の余寿命がない場合に最大き裂長さのデ
ータに基づいて損傷の進行が大きい部位に対して遮熱コ
ーティングを施工するガスタービン高温部品の寿命管理
方法及びその装置において、定検時の遮熱コーティング
部の余寿命診断を超音波利用による剥離面積の検出に基
づいて実施すること特徴とするガスタービン高温部品の
寿命管理方法及びその装置。
8. Based on the future operation plan of claim 2, damage development is predicted from the relationship between the operating time and the number of start and stop times of the operation plan with damage as the maximum crack length, and the remaining life is analytically evaluated. In the life management method and equipment for gas turbine high temperature parts, where a thermal barrier coating is applied to a part where damage progresses greatly based on the maximum crack length data when there is no prescribed remaining life, A method and apparatus for managing the life of a high temperature component of a gas turbine, characterized in that the remaining life of the thermal coating portion is diagnosed based on the detection of the peeled area using ultrasonic waves.
【請求項9】ガスタービン高温部品の寿命管理方法及び
その装置における高温部品長寿命化策としての遮熱コー
ティング施工は、高温部品の母材表面にNi,Co,C
r,Al,Yなどを主成分とする合金コーティングを低
圧プラズマ溶射などで施し、さらに前記合金コーティン
グ表面にアルミニウムをコーティングし、その後その表
面を大気に暴露し酸化させ、酸化させたアルミニウムコ
ーティング表面に遮熱コーティングを施工することを特
徴とするガスタービン高温部品の寿命管理方法及びその
装置。
9. A method for controlling the life of a high temperature component of a gas turbine, and a thermal barrier coating as a measure for extending the life of the high temperature component in the apparatus thereof, Ni, Co, C on the surface of the base material of the high temperature component
An alloy coating containing r, Al, Y, etc. as a main component is applied by low-pressure plasma spraying, and the surface of the alloy coating is further coated with aluminum. Then, the surface is exposed to the atmosphere and oxidized, and the oxidized aluminum coating surface is coated. A method and apparatus for managing the life of a high temperature gas turbine component, characterized by applying a thermal barrier coating.
【請求項10】ガスタービン高温部品の寿命管理方法及
びその装置における高温部品長寿命化策としての遮熱コ
ーティング施工は、高温部品の母材表面にNi,Co,
Cr,Al,Yなどを主成分とする合金のコーティング
を低圧プラズマ溶射などで施し、さらに前記合金コーテ
ィング表面にアルミニウムをコーティングし、その後そ
の表面を大気に暴露し酸化させ、酸化させたアルミニウ
ムコーティング表面を研削し平滑化した後に遮熱コーテ
ィングを施工することを特徴とするガスタービン高温部
品の寿命管理方法及びその装置。
10. A method of managing the life of a high temperature component of a gas turbine and a thermal barrier coating as a measure for extending the life of the high temperature component in the apparatus, wherein Ni, Co,
A coating of an alloy containing Cr, Al, Y or the like as a main component is applied by low pressure plasma spraying or the like, and the surface of the alloy coating is further coated with aluminum, and then the surface is exposed to the atmosphere to be oxidized, and the oxidized aluminum coating surface A method and apparatus for managing the life of a high temperature component of a gas turbine, characterized by applying a thermal barrier coating after grinding and smoothing.
JP29927094A 1994-12-02 1994-12-02 Method and apparatus for controlling life of high temperature part of gas turbine Pending JPH08160035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29927094A JPH08160035A (en) 1994-12-02 1994-12-02 Method and apparatus for controlling life of high temperature part of gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29927094A JPH08160035A (en) 1994-12-02 1994-12-02 Method and apparatus for controlling life of high temperature part of gas turbine

Publications (1)

Publication Number Publication Date
JPH08160035A true JPH08160035A (en) 1996-06-21

Family

ID=17870376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29927094A Pending JPH08160035A (en) 1994-12-02 1994-12-02 Method and apparatus for controlling life of high temperature part of gas turbine

Country Status (1)

Country Link
JP (1) JPH08160035A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156325A (en) * 2000-11-17 2002-05-31 Babcock Hitachi Kk Surface crack depth analytical method of metal member
JP2008039649A (en) * 2006-08-08 2008-02-21 Chugoku Electric Power Co Inc:The Evaluation method for creep lifetime of high-temperature member due to inverse analysis taking into consideration stress relaxation
JP2012009038A (en) * 2011-07-26 2012-01-12 Mitsubishi Heavy Ind Ltd Maintenance planning method
JP2015525354A (en) * 2012-06-19 2015-09-03 ゲーコーエヌ エアロスペース スウェーデン アーベー Reliable prediction of machine part life consumption
CN114160853A (en) * 2022-01-19 2022-03-11 重庆江增船舶重工有限公司 Two-half type thin-wall stationary blade finish milling method
CN114323619A (en) * 2021-12-31 2022-04-12 北京京丰燃气发电有限责任公司 Comprehensive evaluation method for heavy gas turbine blade state

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156325A (en) * 2000-11-17 2002-05-31 Babcock Hitachi Kk Surface crack depth analytical method of metal member
JP2008039649A (en) * 2006-08-08 2008-02-21 Chugoku Electric Power Co Inc:The Evaluation method for creep lifetime of high-temperature member due to inverse analysis taking into consideration stress relaxation
JP2012009038A (en) * 2011-07-26 2012-01-12 Mitsubishi Heavy Ind Ltd Maintenance planning method
JP2015525354A (en) * 2012-06-19 2015-09-03 ゲーコーエヌ エアロスペース スウェーデン アーベー Reliable prediction of machine part life consumption
CN114323619A (en) * 2021-12-31 2022-04-12 北京京丰燃气发电有限责任公司 Comprehensive evaluation method for heavy gas turbine blade state
CN114160853A (en) * 2022-01-19 2022-03-11 重庆江增船舶重工有限公司 Two-half type thin-wall stationary blade finish milling method
CN114160853B (en) * 2022-01-19 2024-04-09 重庆江增船舶重工有限公司 Finish milling method for two-half thin-wall stationary blade

Similar Documents

Publication Publication Date Title
KR100430211B1 (en) Service Life Management System for High-Temperature Part of Gas Turbine
JP3186866B2 (en) Method and apparatus for predicting deterioration / damage of structural member
JP4176777B2 (en) Method for predicting crack growth in gas turbine high-temperature parts and crack growth prediction apparatus using this method
JP2004156580A (en) Method for managing lifespan of high temperature gas turbine component and program medium
CA2072029A1 (en) Turbine blade assessment system
JP3392526B2 (en) Equipment maintenance management support equipment
EP1408201B1 (en) Steam turbine inspection method
US20040240600A1 (en) Positron annihilation for inspection of land based industrial gas turbine components
JPH10160646A (en) Method for anticipating fatigue life of structure member
JPH10293049A (en) Maintenance control method and device for gas turbine
JP2804701B2 (en) Gas turbine coating blade deterioration diagnosis method and apparatus
JPH08160035A (en) Method and apparatus for controlling life of high temperature part of gas turbine
JPH09195795A (en) Remaining life evaluation method for gas turbine stationary blade and device thereof
JPH11248605A (en) Estimation device and method for creep remaining life of gas turbine vane
JPH04282455A (en) Method and apparatus for maintenance control of structure part
JP6122669B2 (en) Remaining life evaluation method for high temperature machine parts
JP2005339249A (en) Repair plan support method and apparatus for plant equipment member
JPH11237912A (en) Method and device for maintenance and management of high-temperature structural member
Keller A practical approach to implementing linear elastic fracture mechanics in gas turbine rotor disk analyses
JPH075086A (en) Method for estimating superposed damage of creep and fatigue of high-temperature structure material
JP2801741B2 (en) Damage diagnosis method for gas turbine hot parts.
JP2001215176A (en) Maintenance and control support system of coating member
JP3519703B2 (en) Temperature estimation method for high temperature parts
JP3331459B2 (en) Ceramic coating remaining life evaluation diagnostic system
Livings et al. Process Compensated Resonance Testing for Qualifying the Metallurgical Aspects and Manufacturing Defects of Turbine Blades