JP2005134115A - Diagnostic method and risk evaluation method for tendency of low-cycle fatigue damage of equipement - Google Patents

Diagnostic method and risk evaluation method for tendency of low-cycle fatigue damage of equipement Download PDF

Info

Publication number
JP2005134115A
JP2005134115A JP2003366826A JP2003366826A JP2005134115A JP 2005134115 A JP2005134115 A JP 2005134115A JP 2003366826 A JP2003366826 A JP 2003366826A JP 2003366826 A JP2003366826 A JP 2003366826A JP 2005134115 A JP2005134115 A JP 2005134115A
Authority
JP
Japan
Prior art keywords
damage
equipment
cycle fatigue
fatigue damage
low cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003366826A
Other languages
Japanese (ja)
Inventor
Masamitsu Hashimoto
昌光 橋本
Koji Tamura
広治 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2003366826A priority Critical patent/JP2005134115A/en
Publication of JP2005134115A publication Critical patent/JP2005134115A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diagnostic method for tendency of "low"-cycle fatigue damage resulted from thermal stress at the time of starting/stopping equipment such as a device constituting a boiler, and an evaluation method based on risk of the "low"-cycle fatigue damage. <P>SOLUTION: The tendency index (breakage probability) of damage is calculated on the basis of the temperature T of the equipment, a starting/stopping frequency N, an equipment-specific breakage factor F determined depending on the presence/absence of a stress collection part or a welding part, a Young's modulus E, and a fatigue life determined by the material of the equipment, whereby the tendency of the "low"-cycle fatigue damage due to thermal stress at the time of starting/stopping the equipment can be diagnosed. A RBM (risk-based maintenance) method for evaluating the risk of the equipment while taking the resulting tendency of low-cycle fatigue damage as the vertical axis and the degree of influence as the horizontal axis is executed, and the result is served for the preservative maintenance of the equipment. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、機器の低サイクル疲労損傷起こりやすさ診断法とリスク評価法に係り、特にボイラの蒸発管などで生じ得るアルカリ応力腐食割れ(SCC)やアルカリ腐食損傷の危険度(リスク)を高精度に評価診断する方法に関する。   The present invention relates to a low-cycle fatigue damage diagnosis method and a risk evaluation method for equipment, and particularly increases the risk (risk) of alkali stress corrosion cracking (SCC) and alkali corrosion damage that can occur in an evaporator tube of a boiler. The present invention relates to a method for accurately evaluating and diagnosing.

装置損傷のリスクベースメンテナンス(RBM)評価法が米国石油協会(API)のAPI581:Risk-Based Inspection Base Resource Document、 May 2000に紹介されている。   A risk-based maintenance (RBM) assessment method for equipment damage is introduced in the American Petroleum Institute (API) API 581: Risk-Based Inspection Base Resource Document, May 2000.

石油化学プラントや火力発電プラントなどの大型設備において、近年では規制緩和の点からリスクを考慮した保全計画、すなわち、RBMが主流になってきている。   In large facilities such as petrochemical plants and thermal power plants, in recent years, maintenance plans that take risks into account from the viewpoint of deregulation, that is, RBMs have become mainstream.

図3にRBMの一例を示すが、図3のRBMは、損傷確率を査定した損傷の起こりやすさを縦軸に、損傷が生じた際の経済的及び人的被害の大きさを査定した影響度合を横軸にとって、装置の各部位の損傷リスクを評価し、損傷の起こりやすさと影響度合の両方が大きい部位や損傷を見出し、保全の優先順位をつけたり、リスク低減法を評価診断する手法である。RBMにより装置の各部位の検査や補修などの予防保全計画の最適化を図ることができ、この評価方法でプラント稼働率の向上や運転、補修コストの低減につながる効果がある。   Fig. 3 shows an example of an RBM. The RBM in Fig. 3 shows the impact of assessing the degree of economic and human damage at the time of damage, with the probability of damage as assessed by the probability of damage as the vertical axis. This is a method of evaluating the risk of damage at each part of the device, taking the degree as the horizontal axis, finding parts and damage where both the likelihood of damage and the degree of impact are large, prioritizing maintenance, and evaluating and diagnosing risk reduction methods. is there. The RBM can optimize the preventive maintenance plan such as inspection and repair of each part of the apparatus, and this evaluation method has the effect of improving the plant operation rate and reducing the operation and repair costs.

RBM診断法は1980年代の原子力プラントの評価を皮切りに、石油化学工業や発電プラント用に開発されており、種々の方法が提案されている。その中で米国石油協会(American Petroleum Institute:API)の手法(API581:Risk-Based Inspection Base Resource Document、 May 2000)は、判定や診断が客観的でデータベースも整備されている。   RBM diagnostic methods have been developed for petrochemical industries and power plants, starting with the evaluation of nuclear power plants in the 1980s, and various methods have been proposed. Among them, the American Petroleum Institute (API) method (API581: Risk-Based Inspection Base Resource Document, May 2000) is objective in judging and diagnosing and has a database.

API581では(1)全面腐食及び局部腐食(Appendix G)、(2)応力腐食割れ(SCC、Appendix H)、(3)高温での水素腐食(Appendix I)、(4)クリープ損傷(Appendix J)、(5)機械的振動による疲労損傷(Appendix K)、(6)脆性破壊(Appendix L)、(7)ライニング(Appendix M)、(8)外面損傷(Appendix N)が評価できるが、石油化学プラントを主対象としているため、火力発電用ボイラ設備に適用するためには、いくつかの補正が必要である事象もある。   In API581, (1) general corrosion and local corrosion (Appendix G), (2) stress corrosion cracking (SCC, Appendix H), (3) hydrogen corrosion at high temperature (Appendix I), (4) creep damage (Appendix J) (5) Fatigue damage due to mechanical vibration (Appendix K), (6) Brittle fracture (Appendix L), (7) Lining (Appendix M), (8) External surface damage (Appendix N) Since the plant is the main target, there are some events that require some corrections to be applied to boiler facilities for thermal power generation.

図4はAPI581における配管に対する機械的な「高」サイクル疲労損傷評価フローを示す。「高」サイクル疲労損傷の破壊確率は、基本となる配管の破壊確率に過去の破損経験の有無、振動の頻度、振動源の種類、設計変更の有無、配管の複雑さ、配管の溶接方法等で決定される補正係数を乗ずることによって求めることができ、客観的な配管の診断ができるフローである。   FIG. 4 shows a mechanical “high” cycle fatigue damage assessment flow for piping in API 581. The failure probability of “high” cycle fatigue damage is based on the failure probability of the basic piping, whether there is any previous failure experience, frequency of vibration, type of vibration source, design change, piping complexity, piping welding method, etc. This is a flow that can be obtained by multiplying the correction coefficient determined in (1), and allows an objective piping diagnosis.

図3における損傷の起こりやすさは、図4で求められた、例えば配管の損傷確率を示す指標が、1〜10の場合1、11〜100の場合2、101〜1,000の場合3、1,001から10,000の場合4、10,001〜100,000の場合5というふうに対数判定するものである。また、図3の横軸の影響度合いは、人的被害、装置補修費、プラント停止日数などの運転停止期間中の発電出力計画及び売電量から算出する損害額から算出される。   The probability of damage in FIG. 3 is determined in FIG. 4, for example, when the index indicating the damage probability of the pipe is 1 to 10, 1 to 11 to 100, 101 to 1,000, 3, The logarithmic determination is made such that 4 is in the case of 1,001 to 10,000, and 5 is in the case of 10,001 to 100,000. Further, the degree of influence on the horizontal axis in FIG. 3 is calculated from the amount of damage calculated from the power generation output plan and the amount of power sold during the shutdown period, such as human damage, equipment repair costs, and the number of days of plant shutdown.

また、ボイラ伝熱管の損傷時点における損傷の計測データに基づいて腐食疲労の進展の度合い、減肉損傷速度、伝熱管のき裂進展深さなどを求めて伝熱管の寿命を診断する方法(特開平11−294708号公報)や管の腐食の防止の原因になる伝熱管内の水質の異常状態を診断する方法(特開平5−264538号公報)などが知られている。
特開平11−294708号公報 特開平5−264538号公報 米国石油協会(API)のAPI581「Risk-Based Inspection Base Resource Document 」H1~H30ページ、 May 2000年発行
Also, a method of diagnosing the life of a heat transfer tube by determining the degree of progress of corrosion fatigue, the rate of thinning damage, the crack growth depth of the heat transfer tube, etc. Kaihei 11-294708) and a method for diagnosing an abnormal state of water quality in a heat transfer tube that causes prevention of corrosion of the tube (Japanese Patent Laid-Open No. 5-264538) are known.
JP-A-11-294708 Japanese Patent Laid-Open No. 5-264538 API581 `` Risk-Based Inspection Base Resource Document '' of American Petroleum Institute (API), H1-H30, May 2000

上記API581のRBMの中にも、Appendix−Kとして疲労損傷に対する診断方法が示されているが、図4で示した損傷評価フローからも分かるように対象が配管に限定されており、更に機械的な振動に起因する疲労損傷(「高」サイクル疲労損傷)を目的として作られている。したがって、ボイラの管寄せ等で問題となる起動停止時の熱応力に起因した「低」サイクル疲労損傷に対しては適用できない。   The API581 RBM also includes a method for diagnosis of fatigue damage as Appendix-K, but the object is limited to piping as can be seen from the damage evaluation flow shown in FIG. It is made for the purpose of fatigue damage ("high" cycle fatigue damage) caused by various vibrations. Therefore, it cannot be applied to “low” cycle fatigue damage caused by thermal stress at the time of starting and stopping, which is a problem due to boiler heading.

そこで、本発明の課題は、ボイラを構成する装置などの機器の起動停止時の熱応力に起因した「低」サイクル疲労損傷損傷の起こりやすさ診断法及び該「低」サイクル疲労損傷リスクベース評価法を提供することである。   Accordingly, an object of the present invention is to provide a method for diagnosing the likelihood of occurrence of “low” cycle fatigue damage caused by thermal stress at the time of starting and stopping of equipment such as a device constituting a boiler, and the risk-based evaluation of the “low” cycle fatigue damage. Is to provide the law.

本発明の課題は、次の解決手段で解決される。
請求項1記載の発明は、損傷の起こりやすさ指数(破損確率)を、機器に固有の破損係数(F)、機器内の温度差(ΔT)及び機器のヤング率(E)から算出されるひずみ(ε=F×ΔT/E)を指標として評価することを特徴とする機器の低サイクル疲労損傷起こりやすさ診断法である。
The problems of the present invention are solved by the following means.
In the first aspect of the invention, the damage likelihood index (failure probability) is calculated from the failure factor (F) inherent in the device, the temperature difference (ΔT) in the device, and the Young's modulus (E) of the device. This is a low-cycle fatigue damage susceptibility diagnosis method for equipment characterized by evaluating strain (ε = F × ΔT / E) as an index.

請求項4記載の発明は、縦軸に機器の損傷の起こりやすさ、横軸に機器の損傷が生じた場合の影響度合をとってリスクを評価する機器の低サイクル疲労損傷リスク評価法において、縦軸に請求項1の方法で算出した機器の低サイクル疲労損傷起こりやすさ指数(破損確率)をとり、横軸に得られた機器の運転停止期間中の発電出力計画及び売電量から算出する損害額、補償費、補修費、労災費、環境対策費及び二次被害対策費を含めた項目の係数と入力値の積の和からなる機器の低サイクル疲労損傷による影響度合(CF)をとって、4×4又は5×5のますに分けて得られる、前記損傷の起こりやすさ指数と損傷による影響度合の積の大小でリスクを評価する機器の低サイクル疲労損傷リスク評価法である。   The invention according to claim 4 is a low cycle fatigue damage risk evaluation method for equipment that evaluates risk by taking the degree of influence when equipment damage occurs on the vertical axis and the likelihood of equipment damage on the vertical axis, The vertical axis represents the low cycle fatigue damage likelihood index (failure probability) calculated by the method of claim 1, and the horizontal axis represents the power generation output plan and the amount of power sold during the equipment shutdown period. The degree of influence (CF) due to low cycle fatigue damage of equipment, which is the sum of the product of coefficient and input value of items including damage amount, compensation cost, repair cost, labor accident cost, environmental countermeasure cost and secondary damage cost. Thus, this is a low cycle fatigue damage risk evaluation method for equipment that evaluates the risk based on the product of the damage likelihood index and the degree of influence due to damage, which are obtained by dividing into 4 × 4 or 5 × 5.

本発明によれば、機器の温度(T)、起動停止回数(N)、応力集中部や溶接部の有無によって決定する機器に固有の破損係数(F)、ヤング率(E)、および機器の材質によって決定される疲労寿命によって損傷の起こりやすさ指数(破損確率)を算出し、機器の起動停止時の熱応力に起因した「低」サイクル疲労損傷の起こりやすさを診断することができる。また、前記得られた低サイクル疲労損傷の起こりやすさを縦軸にとり、横軸に影響度合をとり、機器のリスクを評価するRBM(リスクベースメンテナンス)法により達成される。   According to the present invention, the temperature (T) of the device, the number of start / stop times (N), the failure coefficient (F) specific to the device determined by the presence or absence of a stress concentration portion or a welded portion, the Young's modulus (E), and the device By calculating the fatigue probability index (failure probability) based on the fatigue life determined by the material, it is possible to diagnose the likelihood of the occurrence of “low” cycle fatigue damage due to the thermal stress at the start and stop of the equipment. Further, this is achieved by the RBM (risk-based maintenance) method in which the susceptibility of the obtained low cycle fatigue damage is plotted on the vertical axis and the influence level is plotted on the horizontal axis, and the risk of the equipment is evaluated.

具体的には下記の方法が考えられる。
(1) 縦軸に損傷の起こりやすさ、横軸に影響度合をとり、装置のリスクを評価するRBM(リスクベースメンテナンス)法において、機器に固有の破損係数(F)は対象とする機器の起動停止回数、応力集中部や溶接部の有無、材料(鋼種)、過去の破損状況を考慮して設定されている。例えば、配管の場合はF=2.0(MPa/℃)、管台溶接部の場合はF=5.0(MPa/℃)と設定している。そこで、機器の熱応力等に起因する低サイクル疲労損傷診断法において、損傷の起こりやすさ指数(破損確率)を機器に固有の破損係数(F)、機器内の温度差(ΔT)、機器のヤング率(E)から算出されるひずみ(ε=F×ΔT/E)を指標として評価する。
Specifically, the following method can be considered.
(1) In the RBM (risk-based maintenance) method, where the vertical axis indicates the likelihood of damage and the horizontal axis indicates the degree of influence, and the risk of the equipment is evaluated, the damage factor (F) specific to the equipment is the It is set in consideration of the number of start / stop times, presence / absence of stress concentrated parts and welds, material (steel type), and past damage status. For example, F = 2.0 (MPa / ° C.) in the case of piping, and F = 5.0 (MPa / ° C.) in the case of the nozzle weld. Therefore, in the low cycle fatigue damage diagnostic method caused by the thermal stress of the equipment, the damage likelihood index (failure probability) is expressed as the failure coefficient (F) inherent in the equipment, the temperature difference (ΔT) in the equipment, Strain (ε = F × ΔT / E) calculated from Young's modulus (E) is evaluated as an index.

(2)上記(1)のひずみ(ε)とボイラの起動停止回数(N)を用いて、対象としている材料の低サイクル疲労損傷試験結果を予め回帰して求めてある低サイクル疲労寿命との比較を行うことにより機器の低サイクル疲労損傷の起こりやすさ指数(破損確率)を求め、機器の熱応力等に起因する低サイクル疲労損傷診断法において、損傷の起こりやすさを診断する。 (2) Using the strain (ε) in (1) above and the number of times of start and stop of the boiler (N), the low cycle fatigue life obtained by regressing the low cycle fatigue damage test result of the target material in advance. By making a comparison, a low cycle fatigue damage likelihood index (failure probability) of the equipment is obtained, and in the low cycle fatigue damage diagnostic method caused by the thermal stress of the equipment, the likelihood of damage is diagnosed.

(3) 縦軸に前記(2)の機器の低サイクル疲労損傷の起こりやすさをとり、横軸に影響度合をとることで、機器のリスクを評価するRBM(リスクベースメンテナンス)法を実行する。 (3) The RBM (risk-based maintenance) method is used to evaluate the risk of equipment by taking the ease of low cycle fatigue damage of the equipment in (2) above on the vertical axis and taking the degree of influence on the horizontal axis. .

(作用)
ボイラの管寄せや水壁等のように、起動停止時の熱応力に起因した低サイクル疲労損傷を受ける機器においては、その低サイクル疲労損傷は、主としてボイラの起動停止回数Nとその温度T、発生応力(発生ひずみ)、材質により決定される。
(Function)
In equipment that undergoes low cycle fatigue damage due to thermal stress at the time of starting and stopping, such as boiler headers and water walls, the low cycle fatigue damage is mainly caused by the number of times N the boiler starts and stops and its temperature T, Determined by generated stress (generated strain) and material.

機器に発生する応力σは機器内の温度差ΔTに比例すると考えられるから、式(1)のような関係式が得られる。ここで、Fは機器に固有の破損係数であり、機器における応力集中の度合いや溶接部の有無などによって決まる。この破損係数は予め、有限要素法解析等によって決定される。機器に固有の破損係数Fは、例えば配管では2.0(MPa/℃)、管台の溶接部では5.0(MPa/℃)、配管の付着金物では6.0(MPa/℃)、水壁では10.0(MPa/℃)、過去に破損事例がある場合は11.0(MPa/℃)などのように設定されている。
σ=F×ΔT (1)
Since the stress σ generated in the device is considered to be proportional to the temperature difference ΔT in the device, a relational expression such as equation (1) is obtained. Here, F is a failure coefficient specific to the equipment, and is determined by the degree of stress concentration in the equipment, the presence or absence of welds, and the like. This damage factor is determined in advance by finite element method analysis or the like. The failure factor F inherent to the equipment is, for example, 2.0 (MPa / ° C.) for pipes, 5.0 (MPa / ° C.) for welds on the nozzles, 6.0 (MPa / ° C.) for metal fittings on pipes, It is set to 10.0 (MPa / ° C.) for the water wall and 11.0 (MPa / ° C.) when there is a breakage in the past.
σ = F × ΔT (1)

このことから、当該部位に発生するひずみεは機器のヤング率Eを用いて式(2)のように表される。
ε=σ/E (2)
From this, the strain ε generated in the part is expressed by the equation (2) using the Young's modulus E of the device.
ε = σ / E (2)

次に、予め機器に用いられている材料の低サイクル疲労試験を実施し、その結果を回帰して得られる低サイクル疲労物性値(a、b、c、SEE)を求める。低サイクル疲労物性値の一例を表1、2に示す。   Next, a low cycle fatigue test is performed on materials used in the device in advance, and low cycle fatigue property values (a, b, c, SEE) obtained by regression of the results are obtained. An example of low cycle fatigue property values is shown in Tables 1 and 2.

Figure 2005134115
Figure 2005134115

Figure 2005134115
Figure 2005134115

表1は評価フローに用いる低サイクル疲労物性値のうちSB49鋼(ボイラ及び圧力容器用炭素鋼)の値を、表2はSCMV3鋼(ボイラ及び圧力容器用Cr−Mo鋼)の値を示している。   Table 1 shows the values of SB49 steel (boiler and pressure vessel carbon steel) among the low cycle fatigue properties used in the evaluation flow, and Table 2 shows the values of SCMV3 steel (boiler and pressure vessel Cr-Mo steel). Yes.

これらの値を用いて式(3)より低サイクル疲労寿命Nfを求める。
log(Nf)=a×log(ε−b)+c (3)
Using these values, the low cycle fatigue life Nf is obtained from Equation (3).
log (Nf) = a × log (ε−b) + c (3)

このようにして低サイクル疲労寿命Nfが分かれば、低サイクル疲労データの標準偏差SEEとボイラの起動停止回数Nとを加味することで、機器の破損確率は式(4)を用いて求めることができる。
破損確率=累積確率(log(N)−log(Nf)/SEE) (4)
If the low cycle fatigue life Nf is known in this way, the failure probability of the equipment can be obtained by using the equation (4) by taking into account the standard deviation SEE of the low cycle fatigue data and the number of times of start and stop of the boiler N. it can.
Failure probability = cumulative probability (log (N) −log (Nf) / SEE) (4)

式(4)で得られた破損確率を機器の低サイクル疲労損傷の起こりやすさとして縦軸にとり、横軸に人的被害、装置補修費、プラント停止日数などの運転停止期間中の発電出力計画及び売電量から算出する損害額から算出される影響度合をとり、機器のリスクを評価するRBM(リスクベースメンテナンス)法を実行する。   The vertical axis shows the probability of failure obtained by equation (4) as the probability of low cycle fatigue damage of the equipment, and the horizontal axis shows the power generation output plan during the shutdown period, such as human damage, equipment repair costs, and plant shutdown days. The RBM (risk-based maintenance) method for evaluating the risk of the device is performed by taking the degree of influence calculated from the amount of damage calculated from the amount of electricity sold.

本発明によれば、ボイラの管寄せ等で問題となる熱応力に起因する低サイクル疲労損傷を高精度に診断でき、RBMでの損傷の起こりやすさを高精度に判定できる。RBMでのリスクを精度よく判定できると検査や補修などの予防保全計画の最適化が図れ、プラント稼働率の向上や運転、補修コストの低減につながる効果がある。   ADVANTAGE OF THE INVENTION According to this invention, the low cycle fatigue damage resulting from the thermal stress which becomes a problem by the header of a boiler etc. can be diagnosed with high precision, and the possibility of the damage in RBM can be determined with high precision. If the risk in RBM can be determined accurately, preventive maintenance plans such as inspections and repairs can be optimized, which has the effect of improving plant operating rates and reducing operation and repair costs.

以下、本発明の実施例を図2に沿って説明する。
図1は、本発明による実施例で低サイクル疲労損傷の起こりやすさ判定指数の評価フローチャートであり、図2は、本発明による低サイクル疲労を対象としたRBMの損傷の起こりやすさを判定するSB49鋼(ボイラ及び圧力容器用炭素鋼)に対する評価フローである。
An embodiment of the present invention will be described below with reference to FIG.
FIG. 1 is a flowchart for evaluating an index for determining the probability of occurrence of low cycle fatigue damage in an embodiment according to the present invention. FIG. 2 is a flowchart for determining the likelihood of damage to an RBM targeting low cycle fatigue according to the present invention. It is an evaluation flow with respect to SB49 steel (boiler and carbon steel for pressure vessels).

図1と図2は、本発明による低サイクル疲労を対象としたRBMの損傷の起こりやすさを判定する実際のフローチャートである。損傷の起こりやすさ判定指数(破損確率)は、以下の流れで実際に算出される。   1 and 2 are actual flowcharts for determining the likelihood of RBM damage targeting low cycle fatigue according to the present invention. The damage likelihood index (breakage probability) is actually calculated according to the following flow.

(1)対象とする機器の材質(例えばSB49鋼)と温度(例えば300℃)からヤング率Eを算出する。
(2)本実施例では管台の溶接部を想定したので、機器に固有の破損係数Fは10.0となり、温度差ΔTは120℃となる。
(3)求められたヤング率E(192300MPa)と破損係数F、温度差ΔTを用いて式(1)、(2)から発生するひずみεを求めると0.62(%)となる。
(4)表1に示す低サイクル疲労物性値(a、b、c、SEE)を用いて式(3)から低サイクル疲労寿命Nfを求めると、Nf=1110となる。
(5)(1)〜(4)で求められた疲労寿命Nfと低サイクル疲労物性値SEE(0.2126)とボイラの起動停止回数N(2000回)を用いて式(4)から破損確率を求めることができる。本実施例の場合、機器の破損確率は88.5(%)であると計算されている。
(1) The Young's modulus E is calculated from the material of the target device (for example, SB49 steel) and the temperature (for example, 300 ° C.).
(2) In this embodiment, since the welded portion of the nozzle is assumed, the inherent failure factor F is 10.0 and the temperature difference ΔT is 120 ° C.
(3) Using the obtained Young's modulus E (192300 MPa), the failure coefficient F, and the temperature difference ΔT, the strain ε generated from the equations (1) and (2) is obtained to be 0.62 (%).
(4) Using the low cycle fatigue property values (a, b, c, SEE) shown in Table 1, when the low cycle fatigue life Nf is obtained from the equation (3), Nf = 1110 is obtained.
(5) Failure probability from equation (4) using fatigue life Nf obtained in (1) to (4), low cycle fatigue property value SEE (0.2126), and boiler start / stop frequency N (2000 times) Can be requested. In the case of the present embodiment, the damage probability of the device is calculated to be 88.5 (%).

このように本実施例では、低サイクル疲労損傷の起こりやすさ指数(破損確率)を機器に固有の破損係数(F)、機器内の温度差(ΔT)、機器のヤング率(E)から算出されるひずみ(ε=F×ΔT/E)を指標として評価することができる。   As described above, in this example, the low cycle fatigue damage likelihood index (failure probability) is calculated from the failure coefficient (F) inherent to the device, the temperature difference (ΔT) in the device, and the Young's modulus (E) of the device. Strain (ε = F × ΔT / E) can be evaluated as an index.

得られた低サイクル疲労損傷の起こりやすさ指数(破損確率)を縦軸にとり、横軸に機器の運転停止期間、人的被害、装置補修費などの運転停止期間中の発電出力計画及び売電量から算出する損害額、補償費、補修費、労災費、環境対策費及び二次被害対策費を含めた項目の係数と入力値の積の和からなる機器の低サイクル疲労損傷による影響度合(CF)をとって、図3に示す4×4又は5×5のますに分けて得られる、前記損傷の起こりやすさ指数と損傷による影響度合の積の大小で機器のリスクを評価するRBM(リスクベースメンテナンス)法を実行することができる。なお、影響度合(CF)には発電出力、売電量を導入してもよい。   The obtained low-cycle fatigue damage likelihood index (probability of failure) is plotted on the vertical axis, and the horizontal axis represents the power generation output plan and power sales during the shutdown period, such as equipment shutdown period, human damage, and equipment repair costs. The degree of impact due to low cycle fatigue damage of equipment consisting of the sum of the coefficient and input values of items including damage amount, compensation cost, repair cost, labor accident cost, environmental countermeasure cost and secondary damage countermeasure cost calculated from ) To evaluate the risk of the equipment based on the product of the damage likelihood index and the degree of influence of damage obtained by dividing into 4 × 4 or 5 × 5 shown in FIG. Base maintenance) method can be implemented. It should be noted that the power generation output and the power sale amount may be introduced into the influence degree (CF).

本発明によれば、ボイラの管寄せ等で問題となる熱応力に起因する低サイクル疲労損傷を高精度に診断でき、RBMでの損傷の起こりやすさを高精度に判定でき、機器の損傷による影響度合を予測して、機器の予防保全計画の最適化が図れる。   According to the present invention, low cycle fatigue damage caused by thermal stress, which is a problem in boiler headers, etc., can be diagnosed with high accuracy, the likelihood of damage in RBM can be determined with high accuracy, and due to equipment damage Predict the degree of impact and optimize the preventive maintenance plan for equipment.

本発明になる実施例で低サイクル疲労損傷の起こりやすさ判定指数の評価フローチャートである。It is an evaluation flowchart of an index for determining the likelihood of occurrence of low cycle fatigue damage in an embodiment according to the present invention. 本発明になる具体的な実施例であるSB49鋼(ボイラ及び圧力容器用炭素鋼)に対する評価フローである。It is an evaluation flow with respect to SB49 steel (boiler and carbon steel for pressure vessels) which is a specific embodiment according to the present invention. 損傷確率を査定した損傷の起こりやすさを縦軸に、損傷が生じた際の経済的及び人的被害の大きさを査定した影響度合を横軸にとって、装置の各部位の損傷リスクを評価するAPI581のRBM評価法のグラフである。Assess the risk of damage at each part of the device, with the probability of damage as assessed by the probability of damage as the vertical axis and the degree of impact assessed as the degree of economic and human damage when the damage occurred as the horizontal axis. It is a graph of the RBM evaluation method of API581. 従来技術であるAPI581のRBM評価のうち機械的な振動に対する高サイクル疲労損傷評価フローである。It is the high cycle fatigue damage evaluation flow with respect to mechanical vibration among RBM evaluation of API581 which is a prior art.

Claims (4)

損傷の起こりやすさ指数(破損確率)を、機器に固有の破損係数(F)、機器内の温度差(ΔT)及び機器のヤング率(E)から算出されるひずみ(ε=F×ΔT/E)を指標として評価することを特徴とする機器の低サイクル疲労損傷起こりやすさ診断法。   The damage likelihood index (breakage probability) is calculated from the damage coefficient (F) inherent to the device, the temperature difference (ΔT) in the device and the Young's modulus (E) of the device (ε = F × ΔT / A method for diagnosing the likelihood of low cycle fatigue damage of equipment, characterized by evaluating E) as an index. 機器の起動停止回数(N)と機器の使用温度(T)と、予め回帰された疲労に関する材料物性値(疲労曲線)とを用いて機器の累積損傷確率を算出することを特徴とする請求項1記載の機器の低サイクル疲労損傷起こりやすさ診断法。   The cumulative damage probability of a device is calculated using the number of start / stop times of the device (N), the operating temperature of the device (T), and material property values (fatigue curve) relating to fatigue that has been regressed in advance. 1. A method for diagnosing the likelihood of low cycle fatigue damage of the device according to 1. 機器は、ボイラ装置であることを特徴とする請求項1記載の装置の低サイクル疲労損傷起こりやすさ診断法。   The apparatus as claimed in claim 1, wherein the apparatus is a boiler apparatus. 縦軸に機器の損傷の起こりやすさ、横軸に機器の損傷が生じた場合の影響度合をとってリスクを評価する機器の低サイクル疲労損傷リスク評価法において、
縦軸に請求項1の方法で算出した機器の低サイクル疲労損傷起こりやすさ指数(破損確率)をとり、
横軸に得られた機器の運転停止期間中の発電出力計画及び売電量から算出する損害額、補償費、補修費、労災費、環境対策費及び二次被害対策費を含めた項目の係数と入力値の積の和からなる機器の低サイクル疲労損傷による影響度合(CF)をとって、
4×4又は5×5のますに分けて得られる、前記損傷の起こりやすさ指数と損傷による影響度合の積の大小でリスクを評価する機器の低サイクル疲労損傷リスク評価法。
In the low cycle fatigue damage risk assessment method for equipment, where the vertical axis represents the likelihood of equipment damage and the horizontal axis represents the degree of impact when equipment damage occurs,
Take the low cycle fatigue damage likelihood index (failure probability) of the equipment calculated by the method of claim 1 on the vertical axis,
The coefficient of items including the amount of damage, compensation cost, repair cost, industrial accident cost, environmental countermeasure cost and secondary damage countermeasure cost calculated from the power generation output plan and the amount of power sales during the equipment shutdown period obtained on the horizontal axis Taking the degree of influence (CF) due to low cycle fatigue damage of equipment consisting of the sum of products of input values,
A low cycle fatigue damage risk assessment method for equipment that evaluates the risk based on the product of the damage likelihood index and the degree of influence of damage obtained by dividing into 4 × 4 or 5 × 5.
JP2003366826A 2003-10-28 2003-10-28 Diagnostic method and risk evaluation method for tendency of low-cycle fatigue damage of equipement Pending JP2005134115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003366826A JP2005134115A (en) 2003-10-28 2003-10-28 Diagnostic method and risk evaluation method for tendency of low-cycle fatigue damage of equipement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003366826A JP2005134115A (en) 2003-10-28 2003-10-28 Diagnostic method and risk evaluation method for tendency of low-cycle fatigue damage of equipement

Publications (1)

Publication Number Publication Date
JP2005134115A true JP2005134115A (en) 2005-05-26

Family

ID=34645003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003366826A Pending JP2005134115A (en) 2003-10-28 2003-10-28 Diagnostic method and risk evaluation method for tendency of low-cycle fatigue damage of equipement

Country Status (1)

Country Link
JP (1) JP2005134115A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101482478A (en) * 2008-01-07 2009-07-15 中国人民解放军空军装备研究院航空装备研究所 Fatigue load-contained metal random corrosion damage T-H curve test method
CN101482479A (en) * 2008-01-07 2009-07-15 中国人民解放军空军装备研究院航空装备研究所 Method for computing calendar life of metal protection layer by fatigue load-contained high-temperature T'-H' curve
CN102798539A (en) * 2012-08-09 2012-11-28 南京工业大学 Failure possibility evaluation method in quantitative risk analysis of pressure-bearing equipment
CN106372274A (en) * 2016-08-16 2017-02-01 中国商用飞机有限责任公司 Method for determining low-load cutoff limit of continuous flight load spectrum
CN109583595A (en) * 2017-09-27 2019-04-05 上海电气电站设备有限公司 A kind of method of determining thermal power steam turbine overhaul life and its influence factor
CN113378327A (en) * 2021-07-02 2021-09-10 吉林重通成飞新材料股份公司 Wind power blade trailing edge cracking resistance design method, device, equipment and storage medium

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067838A (en) * 1983-09-22 1985-04-18 Toshiba Corp Method and apparatus for diagnosing damage to structural member used at high temperature
JPS61140839A (en) * 1984-12-13 1986-06-27 Toshiba Corp Method and device for diagnosing thermal fatigue of structural member
JPS63284452A (en) * 1987-05-18 1988-11-21 Toshiba Corp Evaluating device for life of parts for high-temperature
JPH0425745A (en) * 1990-05-22 1992-01-29 Toshiba Corp Damage diagnostic method for gas turbine high-temperature component
JPH0624645Y2 (en) * 1985-05-25 1994-06-29 バブコツク日立株式会社 Boiler thermal stress monitor
JPH07209157A (en) * 1994-01-25 1995-08-11 Kobe Steel Ltd Method for estimating life of metal high-temperature equipment and method for estimating temperature of metal high-temperature equipment
JPH07239293A (en) * 1994-02-28 1995-09-12 Babcock Hitachi Kk Method and device for forming high temperature low cycle fatigue data base
JPH09119603A (en) * 1995-10-27 1997-05-06 Babcock Hitachi Kk Diagonosing and estimating method of corrosion, fatigue and damage in boiler water wall tube
JPH09218195A (en) * 1996-02-13 1997-08-19 Babcock Hitachi Kk Method for evaluating damage of boiler pipe collecting stub pipe
JPH10160646A (en) * 1996-12-03 1998-06-19 Toshiba Corp Method for anticipating fatigue life of structure member
JP2001174380A (en) * 1999-12-15 2001-06-29 Toshiba Corp Method and apparatus for predicting remaining life of structural material
JP2002014014A (en) * 2000-06-29 2002-01-18 Ntt Power & Building Facilities Inc Fatigue and damage evaluation device for structure
JP2002022649A (en) * 2000-07-12 2002-01-23 Babcock Hitachi Kk Method for measuring surface crack length of high- temperature equipment
JP2002288371A (en) * 2001-03-28 2002-10-04 Mitsubishi Heavy Ind Ltd System for setting machine facility maintenance charge and system for setting machine facility insurance
JP2002297709A (en) * 2001-03-29 2002-10-11 Kansai Electric Power Co Inc:The Method and device for supporting facility modification planning application
JP2003017391A (en) * 2001-07-02 2003-01-17 Ushio Inc Work stage of resist setting device
JP2003065984A (en) * 2001-08-30 2003-03-05 Babcock Hitachi Kk Method and apparatus for assessing remaining life of furnace heat conduction wall panel

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067838A (en) * 1983-09-22 1985-04-18 Toshiba Corp Method and apparatus for diagnosing damage to structural member used at high temperature
JPS61140839A (en) * 1984-12-13 1986-06-27 Toshiba Corp Method and device for diagnosing thermal fatigue of structural member
JPH0624645Y2 (en) * 1985-05-25 1994-06-29 バブコツク日立株式会社 Boiler thermal stress monitor
JPS63284452A (en) * 1987-05-18 1988-11-21 Toshiba Corp Evaluating device for life of parts for high-temperature
JPH0425745A (en) * 1990-05-22 1992-01-29 Toshiba Corp Damage diagnostic method for gas turbine high-temperature component
JPH07209157A (en) * 1994-01-25 1995-08-11 Kobe Steel Ltd Method for estimating life of metal high-temperature equipment and method for estimating temperature of metal high-temperature equipment
JPH07239293A (en) * 1994-02-28 1995-09-12 Babcock Hitachi Kk Method and device for forming high temperature low cycle fatigue data base
JPH09119603A (en) * 1995-10-27 1997-05-06 Babcock Hitachi Kk Diagonosing and estimating method of corrosion, fatigue and damage in boiler water wall tube
JPH09218195A (en) * 1996-02-13 1997-08-19 Babcock Hitachi Kk Method for evaluating damage of boiler pipe collecting stub pipe
JPH10160646A (en) * 1996-12-03 1998-06-19 Toshiba Corp Method for anticipating fatigue life of structure member
JP2001174380A (en) * 1999-12-15 2001-06-29 Toshiba Corp Method and apparatus for predicting remaining life of structural material
JP2002014014A (en) * 2000-06-29 2002-01-18 Ntt Power & Building Facilities Inc Fatigue and damage evaluation device for structure
JP2002022649A (en) * 2000-07-12 2002-01-23 Babcock Hitachi Kk Method for measuring surface crack length of high- temperature equipment
JP2002288371A (en) * 2001-03-28 2002-10-04 Mitsubishi Heavy Ind Ltd System for setting machine facility maintenance charge and system for setting machine facility insurance
JP2002297709A (en) * 2001-03-29 2002-10-11 Kansai Electric Power Co Inc:The Method and device for supporting facility modification planning application
JP2003017391A (en) * 2001-07-02 2003-01-17 Ushio Inc Work stage of resist setting device
JP2003065984A (en) * 2001-08-30 2003-03-05 Babcock Hitachi Kk Method and apparatus for assessing remaining life of furnace heat conduction wall panel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101482478A (en) * 2008-01-07 2009-07-15 中国人民解放军空军装备研究院航空装备研究所 Fatigue load-contained metal random corrosion damage T-H curve test method
CN101482479A (en) * 2008-01-07 2009-07-15 中国人民解放军空军装备研究院航空装备研究所 Method for computing calendar life of metal protection layer by fatigue load-contained high-temperature T'-H' curve
CN102798539A (en) * 2012-08-09 2012-11-28 南京工业大学 Failure possibility evaluation method in quantitative risk analysis of pressure-bearing equipment
CN106372274A (en) * 2016-08-16 2017-02-01 中国商用飞机有限责任公司 Method for determining low-load cutoff limit of continuous flight load spectrum
CN106372274B (en) * 2016-08-16 2018-04-20 中国商用飞机有限责任公司 Method for determining low-load cutoff limit of continuous flight load spectrum
CN109583595A (en) * 2017-09-27 2019-04-05 上海电气电站设备有限公司 A kind of method of determining thermal power steam turbine overhaul life and its influence factor
CN113378327A (en) * 2021-07-02 2021-09-10 吉林重通成飞新材料股份公司 Wind power blade trailing edge cracking resistance design method, device, equipment and storage medium
CN113378327B (en) * 2021-07-02 2022-09-02 吉林重通成飞新材料股份公司 Wind power blade trailing edge cracking resistance design method, device, equipment and storage medium

Similar Documents

Publication Publication Date Title
US9689789B2 (en) Damage evaluation method and maintenance evaluation index decision method
JP5276723B2 (en) Health evaluation system for nuclear power plants
Keprate et al. Fatigue and fracture degradation inspection of offshore structures and mechanical items: the state of the art
CN109521735B (en) On-line assessment method for use state risk of high-temperature heating surface of boiler
JP2007205692A (en) Thermal fatigue crack damage diagnosis method of boiler heat transfer tube
JP2005134115A (en) Diagnostic method and risk evaluation method for tendency of low-cycle fatigue damage of equipement
JP2005091028A (en) Method for diagnosing corrosion fatigue damage of boiler water wall tube
JP3652418B2 (en) Corrosion fatigue damage diagnosis prediction method for boiler water wall pipe
Tanzer Determination and Classification of Damage
Helle Five fatal flaws in API RP 581
JP6721273B2 (en) Determination method, determination device, and determination program for chemical cleaning time of boiler water cooling wall pipe material
Choudhary et al. On the reliability assessment of creep life for grade 91 steel
JP2015190950A (en) Life evaluation method and life evaluation device
Bulloch et al. A failure analysis and remnant life assessment of boiler evaporator tubes in two 250 MW boilers
JP2006194782A (en) Defect evaluation method for structure
JPH11294708A (en) Life judging method of heat transfer tube
Kainat et al. Implementation of API 1183 Recommended Practice for Reliability-Based Assessment of Dents in Liquid Pipelines
Bulatovic et al. Failure of steam line causes determined by NDT testing in power and heating plants
Jarić et al. Analysis of the estimated remaining service life of gas rectification columns
JP4831624B2 (en) Graphitization damage diagnosis method for carbon steel and Mo steel for boilers
JP2005091027A (en) Method for diagnosing easiness to cause alkali stress corrosion cracking and alkali corrosion damage
Purwidyasari et al. Estimating Remaining Life and Fitness-For-Services Evaluation of Fuel Piping Systems
Wilson Managing the mechanical integrity of pressure equipment using a layers of protection framework and incorporating integrity operating windows
Azarbaijani Long term creep deformation and crack growth predictions for grade 91 steels and risk-based methods in their component life assessment
Jaske et al. Risk based inspection methodology for components subject to high-temperature creep

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507