JP2006194782A - Defect evaluation method for structure - Google Patents

Defect evaluation method for structure Download PDF

Info

Publication number
JP2006194782A
JP2006194782A JP2005007948A JP2005007948A JP2006194782A JP 2006194782 A JP2006194782 A JP 2006194782A JP 2005007948 A JP2005007948 A JP 2005007948A JP 2005007948 A JP2005007948 A JP 2005007948A JP 2006194782 A JP2006194782 A JP 2006194782A
Authority
JP
Japan
Prior art keywords
residual stress
defect evaluation
stress
evaluation method
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005007948A
Other languages
Japanese (ja)
Inventor
Rie Sumiya
谷 利 恵 角
Masayuki Asano
野 政 之 淺
Toshiyuki Saito
藤 利 之 斎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005007948A priority Critical patent/JP2006194782A/en
Publication of JP2006194782A publication Critical patent/JP2006194782A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a defect evaluation method for a structure capable of obtaining a residual stress inside the structure relating to the growth of a crack. <P>SOLUTION: The method of evaluating an occurrence of a crack 2 caused in the structure 1 and its growth includes the steps of measuring the residual stress in the surface of the structure, calculating the distribution of the residual stress in the interior of the structure on the basis of the residual stress in the surface, estimating occurrences of a stress corrosion crack and a fatigue crack and their growth by using the residual stress distributions in the surface and the inside and evaluating the soundness of the structure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、構造物の健全性を評価する欠陥評価方法に係り、とくに欠陥評価に関わる残留応力評価により欠陥評価を行う方法に関する。   The present invention relates to a defect evaluation method for evaluating the soundness of a structure, and more particularly to a method for performing defect evaluation by residual stress evaluation related to defect evaluation.

一般に、プラント等を監視するシステムとして、図4および図5に示すような方法がある。図4は、特許文献1のプラント監視システムおよびそのシステムを備えたプラントを示しており、プラントの状態や運転を監視、診断するものである。また、図5は、特許文献2の予防保全方法および装置を示しており、機器の損傷の可能性を評価し優先度を決めることによりプラントの予防保全を行うものである。
特開平6−331507号公報 特開平9−33684号公報
Generally, there are methods as shown in FIGS. 4 and 5 as a system for monitoring a plant or the like. FIG. 4 shows a plant monitoring system of Patent Document 1 and a plant including the system, and monitors and diagnoses the state and operation of the plant. FIG. 5 shows the preventive maintenance method and apparatus of Patent Document 2, which performs preventive maintenance of a plant by evaluating the possibility of equipment damage and determining the priority.
JP-A-6-331507 Japanese Patent Laid-Open No. 9-33684

これら特許文献1,2に記載された各技術は、プラントの評価を行うものではあるが、発生した亀裂の進展に関する内部の残留応力の導出方法が明らかではなく、欠陥評価が十分ではない。   Although each technique described in these Patent Documents 1 and 2 evaluates a plant, a method for deriving an internal residual stress relating to the progress of a generated crack is not clear, and defect evaluation is not sufficient.

本発明は上述の点を考慮してなされたもので、亀裂の進展に関する内部の残留応力を求め得る構造物の欠陥評価方法を提供することを目的とする。   The present invention has been made in consideration of the above-described points, and an object of the present invention is to provide a structure defect evaluation method capable of obtaining an internal residual stress relating to the progress of a crack.

上記目的を達成するため、本発明では、請求項1ないし10に記載された構造物の欠陥評価方法を提供する。   In order to achieve the above object, the present invention provides a defect evaluation method for a structure described in claims 1 to 10.

請求項1記載の発明では、構造物に生じた割れの発生、進展を評価する方法において、前記構造物の表面残留応力を測定し、前記表面残留応力から前記構造物の内部における残留応力の分布を計算し、前記表面および前記内部の各残留応力の分布を用いて応力腐食割れや疲労に起因する割れの発生および進展を予測し、前記構造物の健全性を評価することを特徴とする。   According to the first aspect of the present invention, in the method for evaluating the occurrence and progress of cracks generated in a structure, the surface residual stress of the structure is measured, and the distribution of the residual stress in the structure from the surface residual stress. And predicting the occurrence and progress of cracks due to stress corrosion cracking and fatigue using the distribution of residual stresses on the surface and inside, and evaluating the soundness of the structure.

請求項2記載の発明では、構造物の内部の残留応力分布を、構造物の表面の残留応力、
残留応力発生源、構造物の表面に作用する表面力ベクトルおよびそれによる変位の関係式を解くことにより求めることを特徴とする。
In the invention according to claim 2, the residual stress distribution inside the structure is expressed by the residual stress on the surface of the structure,
It is obtained by solving a relational expression of a residual stress generation source, a surface force vector acting on the surface of the structure, and a displacement caused thereby.

請求項3記載の発明では、構造物の内部の残留応力を求める際に使用する関係式を、残留応力発生源、構造物の表面に作用する表面力ベクトルおよび物体に発生している変位の関係を示す第1関係式と、残留応力発生源である物体力、構造物の表面に作用する表面力ベクトル、物体に発生している変位および構造物の表面における任意の位置での応力の関係を示す第2関係式の2つとし、それら2つの関係式を連立させて解き残留応力を求めることを特徴とする。   In the invention described in claim 3, the relational expression used when obtaining the residual stress inside the structure is expressed by the relationship between the residual stress generation source, the surface force vector acting on the surface of the structure, and the displacement generated in the object. And the relationship between the first relational expression, the object force that is the source of residual stress, the surface force vector acting on the surface of the structure, the displacement generated on the object, and the stress at any position on the surface of the structure. The two relational expressions shown in FIG. 2 are used, and the two relational expressions are simultaneously solved to obtain the residual stress.

請求項4記載の発明では、請求項2または3の発明において、残留応力発生源を物体力とすることを特徴とする。   According to a fourth aspect of the present invention, in the second or third aspect of the present invention, the residual stress generation source is an object force.

請求項5記載の発明では、請求項2または3の発明において、残留応力発生源を作用する位置と大きさが等しく作用方向のみが反対である物体力対とすることを特徴とする。   The invention according to claim 5 is characterized in that, in the invention of claim 2 or 3, the pair of object forces is the same as the position where the residual stress generating source is applied, and the direction of action is opposite.

請求項6記載の発明では、請求項2または3の発明において、残留応力発生源をひずみとすることを特徴とする。   The invention of claim 6 is characterized in that, in the invention of claim 2 or 3, the residual stress generation source is strain.

請求項7記載の発明では、請求項1の発明において、構造物の表面の残留応力をX線回折法、超音波法、レーザ等による画像処理による応力測定法等の非破壊的な方法で求めることを特徴とする。   According to a seventh aspect of the invention, in the first aspect of the invention, the residual stress on the surface of the structure is obtained by a nondestructive method such as an X-ray diffraction method, an ultrasonic method, a stress measurement method by image processing using a laser or the like. It is characterized by that.

請求項8記載の発明では、請求項1の発明において、構造物の表面の残留応力を切断や穴明け等により解放されたひずみを測定して求めることを特徴とする。   The invention according to claim 8 is characterized in that, in the invention of claim 1, the residual stress on the surface of the structure is obtained by measuring the strain released by cutting or drilling.

請求項9記載の発明では、請求項1の発明において、残留応力を製造時または運転中のある時点から断続的あるいは連続的に測定し、断続的あるいは連続的に構造物の亀裂発生および進展を評価することを特徴とする。   In the invention of claim 9, in the invention of claim 1, the residual stress is measured intermittently or continuously from a certain point during production or operation, and the occurrence and progress of cracks in the structure are intermittently or continuously measured. It is characterized by evaluating.

請求項10記載の発明では、請求項1ないし9の発明において、前記残留応力の評価および欠陥発生、進展評価を、被測定構造物または被測定構造物と同様に製造され、同様のプラント運転環境で使用された構造物により行うことを特徴とする。   According to a tenth aspect of the present invention, in the first to ninth aspects of the invention, the residual stress evaluation and defect occurrence / progress evaluation are performed in the same manner as the structure to be measured or the structure to be measured. It is performed by the structure used in 1.

本発明は上述のように、構造物の表面の残留応力から構造物の内部の残留応力分布を計算し、構造物の表面および内部の残留応力分布を用いて応力腐食割れや疲労に起因する割れの発生および進展を予測するため、構造物の健全性を的確に評価することができる。   As described above, the present invention calculates the residual stress distribution inside the structure from the residual stress on the surface of the structure, and uses the residual stress distribution on the surface and inside the structure to crack due to stress corrosion cracking and fatigue. Therefore, it is possible to accurately evaluate the soundness of the structure.

図1は、本発明に係る方法のステップ構成を示す説明図、図2は、亀裂2が発生した構造物である配管1に関して、本発明に係る方法で求めた残留応力分布を示す図、図3(a),(b)は、本発明に係る方法で評価した亀裂深さの変化図である。   FIG. 1 is an explanatory diagram showing a step configuration of a method according to the present invention, and FIG. 2 is a diagram showing a residual stress distribution obtained by the method according to the present invention for a pipe 1 that is a structure in which a crack 2 has occurred. 3 (a) and 3 (b) are changes in crack depth evaluated by the method according to the present invention.

いま図2に示すように、配管1の外側溶接部3の近傍に欠陥、つまり亀裂2が発見された場合を想定する。この亀裂2の大きさが、今後の時間の経過とともにどのように変化するかによって補修計画が定まる。   Now, as shown in FIG. 2, a case is assumed where a defect, that is, a crack 2 is found in the vicinity of the outer welded portion 3 of the pipe 1. The repair plan is determined depending on how the size of the crack 2 will change over time.

配管1に亀裂2があっても、次回の検査まで配管が破壊せずに安全性が保たれ、亀裂2を補修せずに運転を継続することが可能な場合と補修を要する場合とがある。これを確認するために、欠陥評価を行う。   Even if there is a crack 2 in the piping 1, the piping is not destroyed until the next inspection, and the safety is maintained, and there are cases where the operation can be continued without repairing the crack 2 and the repair may be required. . In order to confirm this, defect evaluation is performed.

図1に示すように、まず亀裂2の大きさを、超音波探傷法等の非破壊検査によって同定する(S1)。次に、配管1の表面の残留応力を求めるために、表面の測定点4の残留応力をX線回折法による応力測定装置によって測定する(S2)。次いで、配管1の表面の残留応力分布から配管1の内部における残留応力発生源の大きさおよび分布を同定する(S3)。   As shown in FIG. 1, first, the size of the crack 2 is identified by nondestructive inspection such as ultrasonic flaw detection (S1). Next, in order to obtain the residual stress on the surface of the pipe 1, the residual stress at the measurement point 4 on the surface is measured by a stress measuring device based on the X-ray diffraction method (S2). Next, the size and distribution of the residual stress generation source inside the pipe 1 are identified from the residual stress distribution on the surface of the pipe 1 (S3).

残留応力の発生源および大きさを同定するためには、次の第1および第2の関係式を用いる。すなわち、i) 配管に作用する力(配管を物体と見て、以下、物体力という。)と、配管の表面に作用するトラクションと、変位との関係を示す第1関係式、およびii)物体力と、配管の表面に作用するトラクションと、変位と、配管の内部における任意の位置の応力との関係を示す第2関係式、である。   In order to identify the source and magnitude of the residual stress, the following first and second relational expressions are used. That is, i) a first relational expression indicating a relationship between a force acting on the pipe (hereinafter referred to as an object force when the pipe is regarded as an object), traction acting on the surface of the pipe, and ii) an object It is the 2nd relational expression which shows the relationship between physical strength, the traction which acts on the surface of piping, a displacement, and the stress of the arbitrary positions in the inside of piping.

これら第1および第2の両関係式において、残留応力発生源を物体力とし、配管表面における一致を条件として、第1関係式と第2関係式とを連立させて解く。   In both the first and second relational expressions, the first relational expression and the second relational expression are solved simultaneously with the residual stress generation source as the object force and the condition on the pipe surface as a condition.

一般に、境界値問題では、物体つまり配管の表面に作用する既知(*印)のトラクションtj *、変位uj *、配管に作用する物体力bj、それらにより表面に発生するトラクションtj、および変位ujの間に、下式(1)が成立する。
uj *=f(tj *,uj *,tj,uj)+f(bj) (1)
In general, in the boundary value problem, known (*) traction t j * acting on the surface of the object, that is, the pipe, displacement u j * , object force b j acting on the pipe, traction t j generated on the surface by them, And the following expression (1) holds between the displacement u j .
u j * = f 1 (t j * , u j * , t j , u j ) + f 2 (b j ) (1)

ここで、tj、ujは未知境界量であり、物体力bjも未知である。したがって、配管を計算に使用する一領域である要素に分割して、第1関係式である式(1)を離散化することにより、表面上の未知の力tjと変位ujとを求めることができる。 Here, t j and u j are unknown boundary quantities, and the object force b j is also unknown. Therefore, the unknown force t j and the displacement u j on the surface are obtained by dividing the pipe into elements that are one region used for calculation and discretizing the first relational expression (1). be able to.

既知になった表面上の全てのトラクションtj *、変位uj *0および物体力bj *から、配管内部の任意の位置における応力σを、次式(2)により計算することができる。
σ=g(tj *,uj *)+g(bj *) (2)
From all the tractions t j * , displacement u j * 0, and body force b j * on the known surface, the stress σ at an arbitrary position inside the pipe can be calculated by the following equation (2).
σ = g 1 (t j * , u j * ) + g 2 (b j * ) (2)

この式(2)を基にして、滑らかな配管表面の応力σsも下式(3)(第2関係式)により計算できる。
σs=g(tj *,uj *,tj,uj)+g(bj) (3)
Based on this formula (2), the stress σ s on the smooth pipe surface can be calculated by the following formula (3) (second relational expression).
σ s = g 1 (t j * , u j * , t j , u j ) + g 2 (b j ) (3)

なお、配管表面に作用するトラクションと、配管表面の外向きベクトルn(n,n,n)と応力成分σsijとの間には、下式(4)の関係がある。
ti=σsijnj(i,j=1,2,3) (4)
Note that there is a relationship of the following equation (4) between the traction acting on the pipe surface, the outward vector n (n 1 , n 2 , n 3 ) of the pipe surface, and the stress component σ sij .
t i = σ sij n j (i, j = 1,2,3) (4)

本発明では、欠陥システムにより亀裂進展挙動を明らかにする際に必要な構造物内部の残留応力を、上記の原理を用いて求める。測定した配管表面の応力σsと配管表面のトラクションとの関係は、上式(4)で示される。既知の物体力bj*を未知の残留応力発生源と考えて、残留応力発生源を作用する位置および大きさが等しく、作用方向のみが反対である物体力対とし、上記した式(1)と式(3)とを連立させて、残留応力発生源bj*を同定する(S3)。 In the present invention, the residual stress inside the structure necessary for clarifying the crack propagation behavior by the defect system is obtained using the above principle. The relationship between the measured stress σ s on the pipe surface and the traction on the pipe surface is expressed by the above equation (4). Considering the known body force bj * as an unknown residual stress source, the residual stress source is applied to the body force pair in which the position and magnitude at which the residual stress source acts are equal and only the direction of action is opposite. The residual stress generation source bj * is identified by combining the equation (3) (S3).

次に、既知になったbjを用いて、上式(2)により配管内部の任意位置の応力、すなわち図3に示すような内部残留応力分布を求める(S4)。求めた配管内部の残留応力分布と非破壊検査とにより同定した亀裂の大きさから、破壊力学パラメータである応力拡大係数を予め準備していた既存の式で評価する(S5)。   Next, by using the known bj, a stress at an arbitrary position inside the pipe, that is, an internal residual stress distribution as shown in FIG. 3 is obtained by the above equation (2) (S4). From the obtained residual stress distribution inside the pipe and the size of the crack identified by the nondestructive inspection, a stress intensity factor, which is a fracture mechanics parameter, is evaluated by an existing formula prepared in advance (S5).

図3(a),(b)は、その値に基づき、予め準備していた既存データベースや式に基づいて疲労亀裂の亀裂進展速度を求め、亀裂の大きさの変化を求めたものである。図3(a)は配管内部の残留応力分布を示しており、図3(b)は亀裂深さの変化を示している。   3 (a) and 3 (b) show the crack growth rate of the fatigue crack based on the existing database and formulas prepared in advance, and the change in the crack size. FIG. 3 (a) shows the residual stress distribution inside the pipe, and FIG. 3 (b) shows the change in crack depth.

このようにして求めた亀裂の大きさから、破壊評価を行う(S6)。亀裂が構造物の安全性に及ぼす影響を評価し、補修の可否を維持規格等の規格に基づいて評価し(S7)、必要であれば図1に破線で示す亀裂の補修(S8)を行い、さらに必要に応じて、同様の手順(S1〜S7)を繰り返す。   Fracture evaluation is performed from the crack size thus obtained (S6). Evaluate the effect of cracks on the safety of structures, evaluate repairs based on standards such as maintenance standards (S7), and if necessary, repair cracks (S8) indicated by broken lines in FIG. Further, if necessary, the same procedure (S1 to S7) is repeated.

この実施例2では、残留応力発生源をひずみとする。実施例1における残留応力発生源では、作用する位置および大きさが等しく、作用方向のみが反対である物体力対とするのに対して、この実施例2では、残留応力発生源をひずみとして残留応力発生源を特定し、内部の残留応力を求める。   In the second embodiment, the residual stress generation source is strain. In the residual stress generation source in the first embodiment, the acting position is the same as the object force pair in which the position and size are the same and only the direction of the action is opposite. In the second embodiment, the residual stress generation source is the residual stress as a strain. Identify the source of stress and determine the internal residual stress.

この実施例3では、超音波法で残留応力を測定する。実施例1で配管表面の残留応力をX線回折法で測定するのに対して、この実施例3では、超音波法で残留応力を測定し内部の残留応力を求める。   In Example 3, the residual stress is measured by an ultrasonic method. While the residual stress on the pipe surface is measured by the X-ray diffraction method in Example 1, the residual stress is measured by the ultrasonic method in this Example 3 to determine the internal residual stress.

この実施例4では、画像処理により残留応力を求める。実施例1で配管表面の残留応力をX線回折法で測定するのに対して、この実施例4では、配管表面の残留応力をCCDカメラによる画像処理によって測定する。製造前の表面の画像と製造後の同じ位置の表面の画像との変化から、残留応力を求め内部の残留応力を求める。   In the fourth embodiment, the residual stress is obtained by image processing. In Example 1, the residual stress on the pipe surface is measured by the X-ray diffraction method, whereas in Example 4, the residual stress on the pipe surface is measured by image processing using a CCD camera. From the change between the image of the surface before manufacture and the image of the surface at the same position after manufacture, the residual stress is determined to determine the internal residual stress.

本発明の第1の実施例における評価工程を示す図。The figure which shows the evaluation process in the 1st Example of this invention. 本発明によって評価すべき欠陥を有する配管の説明図。Explanatory drawing of piping which has the defect which should be evaluated by this invention. 図3(a)は板内部の残留応力分布を特性図、図3(b)は亀裂深さの変化を示す特性図。FIG. 3 (a) is a characteristic diagram showing the residual stress distribution inside the plate, and FIG. 3 (b) is a characteristic diagram showing changes in crack depth. 従来のプラント用欠陥評価の一工程例を示す図。The figure which shows one process example of the defect evaluation for the conventional plants. 従来のプラント用欠陥評価の他の工程例を示す図。The figure which shows the other process example of the conventional defect evaluation for plants.

符号の説明Explanation of symbols

1 配管
2 亀裂
3 溶接部
4 残留応力測定点
1 Pipe 2 Crack 3 Weld 4 Residual stress measurement point

Claims (10)

構造物に生じた割れの発生、進展を評価する方法において、
前記構造物の表面残留応力を測定し、
前記表面残留応力から前記構造物の内部における残留応力の分布を計算し、
前記表面および前記内部の各残留応力の分布を用いて応力腐食割れや疲労に起因する割れの発生および進展を予測し、前記構造物の健全性を評価する
構造物の欠陥評価方法。
In a method for evaluating the occurrence and progress of cracks in a structure,
Measuring the surface residual stress of the structure,
Calculate the distribution of residual stress in the structure from the surface residual stress,
A defect evaluation method for a structure that predicts the occurrence and progress of cracks due to stress corrosion cracking and fatigue using the distribution of residual stresses on the surface and the interior, and evaluates the soundness of the structure.
請求項1記載の方法において、
前記内部の残留応力の分布を、前記構造物の表面の残留応力と、前記残留応力の発生源と、前記構造物の表面に作用する表面力ベクトルと、それによる変位との関係式を解くことにより求める構造物の欠陥評価方法。
The method of claim 1, wherein
Solving the internal residual stress distribution by solving the relational expression of the residual stress on the surface of the structure, the source of the residual stress, the surface force vector acting on the surface of the structure, and the displacement caused thereby. Defect evaluation method for structures determined by
請求項2記載の方法において、
前記内部の残留応力を求める際に使用する関係式を、
前記残留応力の発生源と、前記構造物の表面に作用する表面力ベクトルと、前記構造物に発生している変位との関係を示す第1関係式と、
前記残留応力の発生源である物体力と、前記構造物の表面に作用する表面力ベクトルと、前記構造物に発生している変位と、前記構造物の表面における任意の位置における応力との関係を示す第2関係式との2つとし、
その2つの関係式を連立させて解くことにより残留応力を求めることを特徴とする構造物の欠陥評価方法。
The method of claim 2, wherein
The relational expression used to determine the internal residual stress is
A first relational expression showing a relationship between a source of the residual stress, a surface force vector acting on the surface of the structure, and a displacement generated in the structure;
The relationship between the object force that is the source of the residual stress, the surface force vector that acts on the surface of the structure, the displacement that occurs in the structure, and the stress at any position on the surface of the structure And the second relational expression indicating
A defect evaluation method for a structure, characterized in that residual stress is obtained by solving the two relational expressions simultaneously.
請求項2または3記載の方法において、
前記残留応力の発生源を物体力とすることを特徴とする構造物の欠陥評価方法。
The method according to claim 2 or 3,
A defect evaluation method for a structure, characterized in that an object force is a source of the residual stress.
請求項2または3記載の方法において、
前記残留応力の発生源を作用する位置と大きさが等しく作用方向のみが反対である物体力対とすることを特徴とする構造物の欠陥評価方法。
The method according to claim 2 or 3,
A defect evaluation method for a structure, characterized in that a pair of object forces having the same position and magnitude as the acting source of the residual stress and opposite in the acting direction are used.
請求項2または3記載の方法において、
前記残留応力の発生源をひずみとすることを特徴とする構造物の欠陥評価方法。
The method according to claim 2 or 3,
A defect evaluation method for a structure, wherein the residual stress generation source is strain.
請求項1記載の方法において、
前記表面の残留応力を、X線回折法、超音波法、レーザ等による画像処理による応力測定法等の非破壊的な方法で求める構造物の欠陥評価方法。
The method of claim 1, wherein
A defect evaluation method for a structure in which the residual stress on the surface is obtained by a nondestructive method such as an X-ray diffraction method, an ultrasonic method, a stress measurement method by image processing using a laser or the like.
請求項1記載の方法において、
前記表面の残留応力を、切断や穴明け等により解放されたひずみを測定することにより求める構造物の欠陥評価方法。
The method of claim 1, wherein
A method for evaluating a defect in a structure, wherein the residual stress on the surface is determined by measuring strain released by cutting or drilling.
請求項1記載の方法において、
前記残留応力を、製造時または運転中のある時点から断続的あるいは連続的に測定し、断続的あるいは連続的に前記構造物の亀裂発生および進展を評価する構造物の欠陥評価方法。
The method of claim 1, wherein
A defect evaluation method for a structure in which the residual stress is intermittently or continuously measured from a certain point during manufacturing or operation, and crack generation and progress of the structure are evaluated intermittently or continuously.
請求項1ないし9記載の方法において、
前記残留応力の評価および欠陥発生、進展評価を、被測定物または被測定物と同様に製造され、同様のプラント運転環境で使用された構造物によって行う構造物の欠陥評価方法。
10. A method according to claim 1-9.
A defect evaluation method for a structure in which the evaluation of residual stress and the occurrence of defects and the evaluation of progress are performed by a measurement object or a structure manufactured in the same manner as the measurement object and used in the same plant operating environment.
JP2005007948A 2005-01-14 2005-01-14 Defect evaluation method for structure Pending JP2006194782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005007948A JP2006194782A (en) 2005-01-14 2005-01-14 Defect evaluation method for structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005007948A JP2006194782A (en) 2005-01-14 2005-01-14 Defect evaluation method for structure

Publications (1)

Publication Number Publication Date
JP2006194782A true JP2006194782A (en) 2006-07-27

Family

ID=36800978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005007948A Pending JP2006194782A (en) 2005-01-14 2005-01-14 Defect evaluation method for structure

Country Status (1)

Country Link
JP (1) JP2006194782A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100834190B1 (en) 2006-08-18 2008-06-02 부산대학교 산학협력단 Method for estimating of stiffened panels with cracking
KR101101976B1 (en) * 2010-12-21 2012-01-02 한국수력원자력 주식회사 Fabrication device and method of tubing with stress corrosion cracking at high temperature
CN104464851A (en) * 2014-12-19 2015-03-25 大连理工大学 Device and method for monitoring thermal fatigue prototype of loop high-temperature pipeline in nuclear power plant
JP2020094967A (en) * 2018-12-14 2020-06-18 学校法人 工学院大学 Method and device for detecting internal defect

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100834190B1 (en) 2006-08-18 2008-06-02 부산대학교 산학협력단 Method for estimating of stiffened panels with cracking
KR101101976B1 (en) * 2010-12-21 2012-01-02 한국수력원자력 주식회사 Fabrication device and method of tubing with stress corrosion cracking at high temperature
CN104464851A (en) * 2014-12-19 2015-03-25 大连理工大学 Device and method for monitoring thermal fatigue prototype of loop high-temperature pipeline in nuclear power plant
JP2020094967A (en) * 2018-12-14 2020-06-18 学校法人 工学院大学 Method and device for detecting internal defect
JP7290213B2 (en) 2018-12-14 2023-06-13 学校法人 工学院大学 Internal defect detection method and internal defect detection apparatus

Similar Documents

Publication Publication Date Title
Shojai et al. Influence of pitting corrosion on the fatigue strength of offshore steel structures based on 3D surface scans
JP5276723B2 (en) Health evaluation system for nuclear power plants
Keprate et al. Fatigue and fracture degradation inspection of offshore structures and mechanical items: the state of the art
Javadi et al. Measurement of residual stresses induced by sequential weld buttering and cladding operations involving a 2.25 Cr-1Mo substrate material
Maharaj et al. A review of methods to estimate creep damage in low‐alloy steel power station steam pipes
JP2006194782A (en) Defect evaluation method for structure
Farhad et al. Fatigue of X65 steel in the sour corrosive environment—A novel experimentation and analysis method for predicting fatigue crack initiation life from corrosion pits
Muránsky et al. Evaluation of a self-equilibrium cutting strategy for the contour method of residual stress measurement
WO2019044554A1 (en) Crack evaluation-standard establishment method, method for evaluating crack by internal flaw inspection, and maintenance management method
Bertini et al. Effects of plate stiffness on the fatigue resistance and failure location of pipe-to-plate welded joints under bending
JP2010142899A (en) Stress improvement processing method
JP2007232401A (en) Lifetime evaluation method of high-strength steel welding zone
Holt et al. Application of probabilistic modelling to the lifetime management of nuclear boilers in the creep regime: Part 1
JP2009014683A (en) Method and system for evaluating destruction
Song et al. Residual stresses in weld repairs and mitigation by design
Nenadic et al. Seeding cracks using a fatigue tester for accelerated gear tooth breaking
JP3612293B2 (en) Method and apparatus for measuring residual stress in object
JP2005134115A (en) Diagnostic method and risk evaluation method for tendency of low-cycle fatigue damage of equipement
Volker et al. Modeling of NDE reliability: development of a POD generator
Lockey et al. Modelling shallow dents using local regression methods and finite element analysis
JP2005227138A (en) Internal residual stress measuring instrument, and measuring method therefor
JP6913525B2 (en) Creep damage evaluation method
Jacob et al. Should residual stresses be taken into account in structural integrity assessment of offshore monopiles?
Mishael et al. Propagation of Interacting Cracks in Offshore Wind Welded Structures Through Numerical Analysis
JP6553900B2 (en) Evaluation method for fractured surface of plant members