JP2007232401A - Lifetime evaluation method of high-strength steel welding zone - Google Patents

Lifetime evaluation method of high-strength steel welding zone Download PDF

Info

Publication number
JP2007232401A
JP2007232401A JP2006051073A JP2006051073A JP2007232401A JP 2007232401 A JP2007232401 A JP 2007232401A JP 2006051073 A JP2006051073 A JP 2006051073A JP 2006051073 A JP2006051073 A JP 2006051073A JP 2007232401 A JP2007232401 A JP 2007232401A
Authority
JP
Japan
Prior art keywords
inspection
void
life
creep
strength steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006051073A
Other languages
Japanese (ja)
Other versions
JP4616778B2 (en
Inventor
Nobuyoshi Komai
伸好 駒井
Toshiyuki Imazato
敏幸 今里
Masashi Ozaki
政司 尾崎
Masaaki Fujita
正昭 藤田
Tadashi Sakaeda
正 栄田
Hiroshi Shiibashi
啓 椎橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006051073A priority Critical patent/JP4616778B2/en
Publication of JP2007232401A publication Critical patent/JP2007232401A/en
Application granted granted Critical
Publication of JP4616778B2 publication Critical patent/JP4616778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lifetime evaluation method of a high-strength steel welding zone capable of determining properly a residual lifetime of a welding zone of a high-strength ferrite steel. <P>SOLUTION: An inspection for measuring the number density of voids (number/mm<SP>2</SP>) which is the number per unit area of creep voids on the outer surface of the high-strength steel weld zone which is an inspection object is performed (S101). Then, it is determined whether a measurement result in the surface void number measuring process is over a prescribed threshold or not (S102). When the result is below the prescribed threshold (120/mm<SP>2</SP>) in the void number determination process, the residual lifetime of the weld zone is measured (S103). When the result is below the prescribed threshold in the void number determination process, the residual lifetime of the weld zone is measured. When the result is over the prescribed threshold, ultrasonic test inspection (UT inspection) of the inside is performed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は高強度鋼溶接部の寿命評価方法に関し、特に火力プラント等の高温・高圧機器に使用される高強度フェライト系鋼の母材部乃至溶接継手部におけるクリープ損傷の評価に用いて有用なものである。   The present invention relates to a method for evaluating the life of high-strength steel welds, and is particularly useful for evaluating creep damage in base materials or welded joints of high-strength ferritic steels used in high-temperature and high-pressure equipment such as thermal power plants. Is.

火力プラントを構成する、例えばボイラ等は、高温・高圧環境で運転されるので、これを構成する材料である耐熱鋼には、長期に亘る運転によりクリープ等による損傷が蓄積されることがある。そこで、この種のプラントの運用に当たっては、前記耐熱鋼の精度の高い寿命評価を行って信頼性の向上を図ることが、長期に亘る安定的な運用を確保する上で肝要である。   Since, for example, a boiler or the like constituting a thermal power plant is operated in a high temperature and high pressure environment, damage due to creep or the like may be accumulated in the heat-resistant steel that is a material constituting the thermal plant due to long-term operation. Therefore, in the operation of this type of plant, it is important to ensure the long-term stable operation by performing a highly accurate life evaluation of the heat-resistant steel and improving the reliability.

ボイラ等の耐圧鋼がクリープ損傷を受けると、この耐熱鋼中にクリープボイドを発生することが知られている。このクリープボイドはクリープ損傷の進行に伴い増加するので、観察面の単位面積当たりのクリープボイドの個数密度やクリープボイドの面積率を実測することにより当該耐熱鋼の余寿命を推測することが行われている。また、以前に検出したボイド個数密度に対する今回検出したボイド個数密度の増加程度であるボイド個数密度変化率を求め、このボイド個数密度変化率に基づき前記耐熱鋼の余寿命を評価することが提案されている(特許文献1)。   It is known that when a pressure resistant steel such as a boiler is subjected to creep damage, a creep void is generated in the heat resistant steel. Since this creep void increases with the progress of creep damage, the remaining life of the heat-resistant steel can be estimated by measuring the number density of creep voids per unit area of the observation surface and the area ratio of creep voids. ing. In addition, it is proposed to obtain a void number density change rate that is an increase of the void number density detected this time relative to the previously detected void number density, and to evaluate the remaining life of the heat resistant steel based on the void number density change rate. (Patent Document 1).

特開2004−85347号公報JP 2004-85347 A

ところで、高強度フェライト鋼溶接部はタイプIV損傷と呼ばれるクリープ破壊モードを示すことが判っているが、損傷末期まで内部でのき裂発生がなく、また、形状などによって、損傷挙動が大きく変化することがある。
よって、寿命評価を行う際の以下のような問題点がある。
By the way, it has been found that high strength ferritic steel welds exhibit a creep fracture mode called type IV damage, but there is no internal cracking until the end of damage, and the damage behavior varies greatly depending on the shape and the like. Sometimes.
Therefore, there are the following problems when performing life evaluation.

1)外表面のクリープ損傷と板厚内部のクリープ損傷の対比が困難である。これは、表面でクリープ損傷が小さいと思われても、内部のクリープ損傷が大きいことがあるからである。
これは、図6−1に示すように、従来クロムモリブデン鋼では、母材11と溶接金属12との熱影響部(HAZ)13の外表面と内部のクリープ損傷量は、図6−2に示すように、相間関係があったが、近年多用されている改良9Cr−1Mo高強度フェライト鋼は、図6−3に示すように外表面と内部のクリープ損傷量のばらつきが多く、外表面でクリープ損傷が小さくても,内部で損傷が大きいことがある場合がある。
特に長い配管先の屈曲部においては、熱応力がかかるので、顕著となる。
1) It is difficult to compare creep damage on the outer surface and creep damage inside the plate thickness. This is because even if the creep damage seems to be small on the surface, the internal creep damage may be large.
As shown in FIG. 6A, in the conventional chromium molybdenum steel, the amount of creep damage inside and outside the heat affected zone (HAZ) 13 between the base material 11 and the weld metal 12 is shown in FIG. As shown in FIG. 6-3, the improved 9Cr-1Mo high-strength ferritic steel, which has been widely used in recent years, has a large variation in the amount of creep damage on the outer surface and the inner surface as shown in FIG. 6-3. Even if the creep damage is small, the damage may be large inside.
In particular, in a bent portion at a long pipe tip, a thermal stress is applied, which becomes remarkable.

2)また、微視き裂発生の時期が寿命末期であり、き裂を超音波探傷検査などで検出しても、それ以降の寿命が非常に小さく、適切な処置ができない可能性が高い、という問題がる。 2) In addition, the microcrack occurs at the end of its life, and even if the crack is detected by ultrasonic flaw detection etc., the life after that is very small, and there is a high possibility that appropriate treatment cannot be performed. There is a problem.

よって、従来のような外表面のみを検査しても内部の損傷が判断できないこととなり、高強度フェライト鋼の溶接部の余寿命の判断を適切にできる評価法の出現が望まれている。   Therefore, even if only the outer surface is inspected as in the prior art, the internal damage cannot be determined, and the emergence of an evaluation method that can appropriately determine the remaining life of the welded portion of the high-strength ferritic steel is desired.

本発明は、前記問題に鑑み、高強度フェライト鋼の溶接部の余寿命の判断を適切にできる高強度鋼溶接部の寿命評価方法を提供することを課題とする。   This invention makes it a subject to provide the lifetime evaluation method of the high strength steel weld part which can judge the remaining life of the weld part of high strength ferritic steel appropriately in view of the said problem.

上述した課題を解決するための本発明の第1の発明は、検査対象の高強度鋼溶接部の外表面のクリープボイドのボイド個数密度又はボイド面積率を計測する表面ボイド計測工程と、前記表面ボイド計測工程の計測結果より、所定の閾値以上か否かを判定するボイド個数密度又はボイド面積率の判定工程と、前記判定工程において、所定の閾値以下の場合に、溶接部の余寿命を計測する余寿命計測工程と、前記判定工程において、所定の閾値以上の場合に、内部の超音波探傷検査(UT検査)を行う探傷検査工程と、前記探傷検査工程において、内部欠陥の有無を判定する欠陥判定工程とからなることを特徴とする高強度鋼溶接部の寿命評価方法にある。   A first invention of the present invention for solving the above-described problems includes a surface void measuring step for measuring a void number density or a void area ratio of creep voids on an outer surface of a high-strength steel weld to be inspected, and the surface From the measurement result of the void measurement process, the void number density or void area ratio determination process for determining whether or not it is equal to or greater than a predetermined threshold, and the remaining life of the welded portion is measured when the determination process is below the predetermined threshold. In the flaw remaining life measurement step and the determination step, if the predetermined threshold value or more is exceeded, a flaw detection inspection step for performing an internal ultrasonic flaw inspection (UT inspection), and the presence or absence of an internal defect in the flaw detection inspection step are determined. It is in the life evaluation method of the high strength steel welded part characterized by consisting of a defect determination process.

第2の発明は、第1の発明において、前記余寿命計測工程において、余寿命が所定時間以上である場合には、所定期間経過後に再評価することを特徴とする高強度鋼溶接部の寿命評価方法にある。   2nd invention WHEREIN: In the said 1st invention, in the said remaining life measurement process, when a remaining life is more than predetermined time, it re-evaluates after progress for a predetermined period, The lifetime of the high strength steel welding part characterized by the above-mentioned It is in the evaluation method.

第3の発明は、第1の発明において、前記余寿命計測工程において、余寿命が所定時間以下である場合には、処置を行うことを特徴とする高強度鋼溶接部の寿命評価方法にある。   According to a third aspect of the present invention, in the first aspect of the invention, in the remaining life measuring step, when the remaining life is equal to or shorter than a predetermined time, a treatment is performed. .

第4の発明は、第1の発明において、前記余寿命計測工程において、余寿命が所定時間以下である場合には、内部の超音波探傷検査(UT検査)を行うことを特徴とする高強度鋼溶接部の寿命評価方法にある。   According to a fourth aspect of the present invention, in the first aspect, in the remaining life measuring step, when the remaining life is equal to or shorter than a predetermined time, an internal ultrasonic flaw inspection (UT inspection) is performed. It is in the life evaluation method for steel welds.

第5の発明は、第1又は4の発明において、前記欠陥判定工程において、欠陥が存在する場合には、処置を行うことを特徴とする高強度鋼溶接部の寿命評価方法にある。   According to a fifth invention, in the first or fourth invention, there is provided a method for evaluating the life of a high-strength steel weld, characterized in that a treatment is performed when a defect is present in the defect determination step.

第6の発明は、第1又は4の発明において、前記欠陥判定工程において、欠陥が無い場合には、所定期間経過後に再評価することを特徴とする高強度鋼溶接部の寿命評価方法にある。   A sixth invention is the life evaluation method for a high strength steel welded portion according to the first or fourth invention, wherein, in the defect determination step, if there is no defect, re-evaluation is performed after a predetermined period. .

第7の発明は、第1乃至6のいずれか一つの発明において、前記検査対象の高強度鋼溶接部が、高強度フェライト系鋼の母材部乃至溶接継手部であることを特徴とする高強度鋼溶接部の寿命評価方法にある。   According to a seventh invention, in any one of the first to sixth inventions, the high-strength steel welded portion to be inspected is a base material portion or a welded joint portion of high-strength ferritic steel. It is in the life evaluation method of high strength steel welds.

本発明の高強度鋼溶接部の寿命評価方法によれば、外表面のクリープボイドから余寿命を判断すると共に、超音波探傷検査を行い、欠陥の有無を判断することで、内部の損傷の有無を判断し、必要に応じて適切な処置を施すことができるものとなる。   According to the method of evaluating the life of a high strength steel weld of the present invention, the remaining life is determined from the creep voids on the outer surface, ultrasonic inspection is performed, and the presence or absence of defects is determined to determine whether there is internal damage. And appropriate measures can be taken as necessary.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.

本発明による実施例に係る高強度鋼溶接部の寿命評価方法について、図面を参照して説明する。
図1は、実施例に係る高強度鋼溶接部の寿命評価方法の判定手法を示すフローチャートである。
図1に示すように、高強度鋼溶接部の寿命評価方法の判定手法は、検査対象の高強度鋼溶接部の外表面のクリープボイドの単位面積当りの数であるボイド個数密度(個/mm2)を計測する検査を行なう(S101)。次に、前記表面ボイド個数計測工程の計測結果より、所定の閾値以上か否かを判定する(S102)。図1においては、後述する試験結果より、所定の閾値を120個/mm2として、ボイド個数判定する。
なお、ボイド個数密度とボイド面積率との間には、図7に示す相間関係を有するので、ボイド個数密度が120個/mm2はボイド面積率の0.047%と等価であり、以降も同様の相間関係を用いて換算することが可能である。
前記ボイド個数判定工程において、所定の閾値(120個/mm2)以下の場合に、溶接部の余寿命を図2で示すようにき裂が内在していることを仮定し、推測を行なう(S103)。
余寿命とは、過去の使用時間を考慮して今後破断に至るまでに要する時間をいう。
なお、閾値(120個/mm2)は近年多用されている改良9Cr−1Mo高強度フェライト鋼の場合であり、他の材料の場合には、後述するクリープ寿命消費率から求めるようにすればよい。
A method for evaluating the life of a high-strength steel weld according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a flowchart illustrating a determination method of a life evaluation method for a high-strength steel weld according to an embodiment.
As shown in FIG. 1, the determination method of the life evaluation method for high strength steel welds is a void number density (number / mm / mm) which is the number of creep voids on the outer surface of the high strength steel welds to be inspected. 2 ) A test for measuring is performed (S101). Next, it is determined from the measurement result of the surface void number measuring step whether or not it is a predetermined threshold value or more (S102). In FIG. 1, the number of voids is determined from a test result to be described later with a predetermined threshold value of 120 / mm 2 .
Since the void number density and the void area ratio have the interphase relationship shown in FIG. 7, a void number density of 120 / mm 2 is equivalent to 0.047% of the void area ratio, and so on. It is possible to convert using the same interphase relationship.
In the void number determination step, when the value is equal to or less than a predetermined threshold (120 pieces / mm 2 ), the remaining life of the weld is assumed to be present as shown in FIG. S103).
The remaining life refers to the time required to break in the future in consideration of the past use time.
Note that the threshold value (120 pieces / mm 2 ) is the case of the improved 9Cr-1Mo high-strength ferritic steel that has been widely used in recent years, and in the case of other materials, it may be obtained from the creep life consumption rate described later. .

ここで、本実施例では、判定の閾値を検討するパラメータとしてボイド個数密度を計測して判定しているが、本発明はこれに限定されるものではなく、ボイド面積率を計測して判定するようにしてもよい。
ここで、ボイド個数密度を計測するボイド個数密度法は、例えば倍率が300倍の光学顕微鏡の4視野(写真サイズ:120mm×80mm)において、面積中に占めるボイドの個数密度を計測するものである。なお、倍率500倍の場合(例えばSEM等)には、10視野としている。
一方、ボイド面積率法は、例えば倍率が300倍の光学顕微鏡の4視野(写真サイズ:120mm×80mm)において、面積中に占めるボイドの面積率を計測するものである。なお、倍率500倍の場合には、10視野としている。
ボイド面積率法の場合には、最適エッチング処理を行なうことにより、面積率にバラツキが生じることがない。また、デジタル画像処理システムを用いることで、計測時間の短縮化を図ることができる。
図7にボイド個数密度とボイド面積率との相間関係図の一例を示す。
以下の実施例では、ボイド個数密度のパラメータを用いた判定手法について説明する。
In this embodiment, the void number density is measured and determined as a parameter for examining the determination threshold. However, the present invention is not limited to this, and the void area ratio is measured and determined. You may do it.
Here, the void number density method for measuring the void number density is to measure the number density of voids in the area in, for example, four fields of view (photo size: 120 mm × 80 mm) of an optical microscope having a magnification of 300 times. . Note that when the magnification is 500 times (for example, SEM), 10 fields of view are used.
On the other hand, the void area ratio method measures the area ratio of voids in the area in, for example, four visual fields (photo size: 120 mm × 80 mm) of an optical microscope having a magnification of 300 times. In addition, when the magnification is 500 times, 10 visual fields are used.
In the case of the void area ratio method, the area ratio does not vary by performing the optimum etching process. Further, by using a digital image processing system, the measurement time can be shortened.
FIG. 7 shows an example of a correlation diagram between the void number density and the void area ratio.
In the following embodiment, a determination method using a void number density parameter will be described.

前記ボイド個数判定工程において、所定の閾値(120個/mm2)以上の場合に、内部の超音波探傷検査(UT検査)を行う(S104)。これは、所定の閾値以上の場合には、内部に欠陥が存在している確率が高いので、非破壊検査であるUT検査を行なう必要があるからである。 When the number of voids is determined to be greater than or equal to a predetermined threshold (120 / mm 2 ), an internal ultrasonic inspection (UT inspection) is performed (S104). This is because, when the threshold value is equal to or greater than the predetermined threshold value, it is necessary to perform a UT inspection which is a nondestructive inspection because there is a high probability that a defect exists inside.

この非破壊検査において、内部欠陥の有無を判定する(S105)。
内部欠陥が無い場合には、所定時間経過後に再検査を行なう(S106)。
この検査の結果、内部結果が有る場合には、要処置を施す(S107)。
In this nondestructive inspection, the presence or absence of an internal defect is determined (S105).
If there is no internal defect, re-inspection is performed after a predetermined time (S106).
As a result of this inspection, if there is an internal result, a necessary action is taken (S107).

ここで、更に余寿命時間の判定を行なう(S108)。
余寿命の判定の結果において、所定時間(例えば1.7万時間)以上である場合には、所定期間経過後に再検査するようにすればよい(S106)。
Here, the remaining life time is further determined (S108).
If the remaining life is determined to be longer than a predetermined time (for example, 17,000 hours), re-inspection may be performed after the predetermined period has elapsed (S106).

また、前記余寿命の判定結果において、所定時間(例えば1.7万時間)以下である場合には、次回の検査までに破断する可能性が高いので、要処置を行う。   Further, if the remaining life is determined to be less than a predetermined time (for example, 17,000 hours), the possibility of fracture by the next inspection is high, so a necessary action is taken.

さらに、前記余寿命判定結果において、所定時間(例えば1.7万時間)以下である場合には、内部の超音波探傷検査(UT検査)を行う(S104)。
これは、内部にボイドが発生している可能性が高いが、き裂に至るボイドか否かの判断を行なうものである。初期からボイドが存在して、それが進展しないような場合には、内部欠陥がないことが予想されるので、これを判断するために、UT検査を行なうものである。
Further, if the remaining life determination result is equal to or shorter than a predetermined time (for example, 17,000 hours), an internal ultrasonic inspection (UT inspection) is performed (S104).
This is highly likely that a void has occurred inside, but it is determined whether or not the void leads to a crack. If there is a void from the beginning and it does not progress, it is expected that there is no internal defect. Therefore, a UT inspection is performed to determine this.

UT検査の前記欠陥判定において、欠陥が存在する場合には、要処置を行う(S107)。また、欠陥が無い場合には、所定期間経過後に再検査する(S106)。   If there is a defect in the defect determination of the UT inspection, a necessary action is taken (S107). If there is no defect, re-inspection is performed after a predetermined period (S106).

これにより、従来適切なクリープ損傷評価法の無かった高強度フェライト鋼の溶接部のクリープ評価法が提案でき、耐圧部の信頼性の確保および噴破事故などの未然防止が可能となる。   This makes it possible to propose a creep evaluation method for welds of high-strength ferritic steel that has not had an appropriate creep damage evaluation method in the past, and it is possible to ensure the reliability of the pressure-resistant portion and prevent blast accidents.

以下に、本発明の前提となる溶接部の外表面のクリープボイド個数と内部ボイドとの関係について説明する。
先ず、本試験例では、実機ボイラ溶接部のクリープ損傷を模擬した損傷材を製作するために、市販の改良9Cr−1Mo鋼である「火SCMV28」(厚さ:32mm鋼板)を用いて、被覆アーク溶接で継手を製作し、そこから、溶接部を含む大型試験片(32×40mm断面)を採取した。
The relationship between the number of creep voids on the outer surface of the weld and the internal void, which is the premise of the present invention, will be described below.
First, in this test example, in order to produce a damaged material that simulates creep damage of a welded part of an actual boiler, a commercially available modified 9Cr-1Mo steel, “Fire SCMV28” (thickness: 32 mm steel plate), is used for coating. A joint was produced by arc welding, and a large test piece (32 × 40 mm cross section) including a welded portion was collected therefrom.

図5−1に試験片の平面図、図5−2に大型クリープ試験片の側面図を示す。試験片20に溶接金属12部分を溶接している。
表1に供試鋼の化学成分を示す。
FIG. 5-1 is a plan view of the test piece, and FIG. 5-2 is a side view of the large creep test piece. A weld metal 12 portion is welded to the test piece 20.
Table 1 shows the chemical composition of the test steel.

Figure 2007232401
Figure 2007232401

[試験の概要]
大型クリープ試験片20を650℃×66MPaでクリープ試験を行い、破断までに複数回の中途止めを実施して、その際に溶接部最終ビード側の試験片外表面から各種非破壊検査を実施した。
適用した非破壊検査手法は、磁粉探傷検査(MT検査)、超音波探傷検査(UT検査)、レプリカ法による組織観察およびレプリカ法による溶接熱影響部でのクリープボイド個数密度計測である。
[Summary of test]
A large creep test piece 20 was subjected to a creep test at 650 ° C. × 66 MPa, and several breaks were made before rupture. At that time, various nondestructive inspections were performed from the outer surface of the test piece on the final bead side of the weld. .
The applied nondestructive inspection methods are magnetic particle inspection (MT inspection), ultrasonic inspection (UT inspection), structure observation by the replica method, and creep void number density measurement at the weld heat affected zone by the replica method.

試験では、最終的に2678時間(tr)でクリープ破断したので、検査時期(t)に対応するクリープ破断試験片の寿命消費率(t/tr)は表2に示す通りとなった。また、各中途止め時のクリープ寿命消費率(t/tr)に対する非破壊検査結果を表3に示す。   In the test, since creep rupture finally occurred at 2678 hours (tr), the life consumption rate (t / tr) of the creep rupture test piece corresponding to the inspection time (t) was as shown in Table 2. Table 3 shows the nondestructive inspection results with respect to the creep life consumption rate (t / tr) at each halfway stop.

(1)クリープ寿命消費率(t/tr)=0(試験前)
MT検査及びUT検査で異常は検出されず、組織も健全であった。
(1) Creep life consumption rate (t / tr) = 0 (before test)
No abnormalities were detected in the MT inspection and UT inspection, and the tissue was healthy.

(2)(クリープ寿命消費率t/tr)=0.187
MT検査及びUT検査で異常は検出されず、組織も健全であった。
(2) (Creep life consumption rate t / tr) = 0.187
No abnormalities were detected in the MT inspection and UT inspection, and the tissue was healthy.

(3)クリープ寿命消費率(t/tr)=0.373
MT検査及びUT検査で異常は検出されなかったが、溶接熱影響部細粒域で極少量のクリープボイドの生成が認められた。クリープボイド個数密度は20個/mm2であった。
(3) Creep life consumption rate (t / tr) = 0.373
No abnormality was detected in the MT inspection and the UT inspection, but a very small amount of creep voids was observed in the fine grain region of the weld heat affected zone. The creep void number density was 20 / mm 2 .

(4)クリープ寿命消費率(t/tr)=0.560
溶接熱影響部細粒域で少量のクリープボイドの生成が認められた。そのクリープボイド個数密度は123個/mm2であった。
(4) Creep life consumption rate (t / tr) = 0.560
A small amount of creep voids was observed in the weld heat affected zone fine grain region. The creep void number density was 123 / mm 2 .

(5)クリープ寿命消費率(t/tr)=0.747
溶接熱影響部細粒域でクリープボイドの生成が認められた。そのクリープボイド個数密度は478個/mm2であった。
また、MT検査で外表面にき裂などの欠陥発生は認められなかったが、UT検査で内在の欠陥が検出され、そのき裂高さを計測したところ、4mmと推定された。
(5) Creep life consumption rate (t / tr) = 0.747
The formation of creep voids was observed in the fine grain region of the heat affected zone. The creep void number density was 478 / mm 2 .
Further, no defect such as a crack was found on the outer surface in the MT inspection, but an inherent defect was detected in the UT inspection and the crack height was measured, and it was estimated to be 4 mm.

(6)クリープ寿命消費率(t/tr)=0.934
MT検査において溶接熱影響部で3mm長さのき裂を検出した。また、t/tr=0.747時に検出内在欠陥高さが8mmとなっており、き裂が大きくなっていると考えられた。
また、クリープボイド個数密度は723個/mm2であった。
(6) Creep life consumption rate (t / tr) = 0.934
In the MT inspection, a crack having a length of 3 mm was detected at the weld heat affected zone. Further, when t / tr = 0.747, the height of the inherent defect detected was 8 mm, and it was considered that the crack was large.
The creep void number density was 723 pieces / mm 2 .

(7)クリープ寿命消費率(t/tr)=1.0000(クリープ破断)
溶接熱影響部の細粒域でクリープ破壊した。未破断側の溶接熱影響部細粒域のボイド個数密度は1354個/mm2であった。
(7) Creep life consumption rate (t / tr) = 1.0000 (creep rupture)
Creep fracture occurred in the fine grain region of the heat affected zone. The number density of voids in the fine region of the weld heat affected zone on the unbroken side was 1354 / mm 2 .

上記の試験片を実機溶接部と見立てて、図1に示す寿命評価判定フローに従って、寿命評価した結果を述べる。   Assume that the above-mentioned test piece is a welded part of an actual machine, and describe the result of life evaluation according to the life evaluation judgment flow shown in FIG.

Figure 2007232401
Figure 2007232401

Figure 2007232401
Figure 2007232401

表2及び表3より、MT検査で欠陥が検出されるのはクリープ寿命消費率(t/tr)=0.934以降である。
ここで、外表面で欠陥が検出された場合には、欠陥の性状を調査した上で、欠陥を取り除かなければならない。
From Table 2 and Table 3, it is after the creep life consumption rate (t / tr) = 0.934 that the defect is detected by the MT inspection.
Here, when a defect is detected on the outer surface, the defect must be removed after investigating the properties of the defect.

なお、欠陥がクリープ性ではなく、なんらかの形で製造時の欠陥が検出された場合には、欠陥除去後、クリープボイドの個数密度を計測して、その外表面のボイド個数密度120個/mm2(板厚内部の最大のボイド個数密度:570個/mm2)を境界として処置を判断する必要がある。 In addition, when the defect is not creep property and the defect at the time of manufacture is detected in some form, after removing the defect, the number density of the creep void is measured, and the void number density on the outer surface is 120 / mm 2. It is necessary to determine the treatment on the basis of (the maximum void number density inside the plate thickness: 570 / mm 2 ).

これは、外表面のボイド個数密度と、試験片内部のき裂発生有無の調査した結果から、外表面でボイド個数密度が120個/mm2以上となれば、試験片内部にき裂が発生している可能性が高く、そのき裂の影響の検討をするために、検査フローに従って、き裂高さの計測を行って、き裂進展寿命を計算し、適切な処置を行う必要がある。 From the results of investigating the void number density on the outer surface and the presence or absence of cracks inside the test piece, if the void number density on the outer surface is 120 pieces / mm 2 or more, cracks are generated inside the test piece. In order to examine the effect of the crack, it is necessary to measure the crack height according to the inspection flow, calculate the crack growth life, and take appropriate measures. .

き裂寿命の計算例として、予め測定したき裂進展速度からき裂の貫通寿命を計算した結果の一例を図2に示す。図2では、初期き裂の長さを3mm、5mm、7mm及び10mmの場合各々異なるので、余寿命を各々求めた。   As an example of calculating the crack life, FIG. 2 shows an example of the result of calculating the crack penetration life from the crack growth rate measured in advance. In FIG. 2, since the initial crack length is different for 3 mm, 5 mm, 7 mm, and 10 mm, the remaining lifetimes were obtained.

通常、大型火力発電所の定期検査は2年毎に行われることが多いので、すくなくとも1.7万時間以上の寿命がなければ、すぐさま損傷部の取替などの処置が必要となる。なお、外表面のボイド個数密度が120個/mm2を超えていても、UT検査などで内在の欠陥が検出されない場合も考えられるが、溶接部細粒域における外表面と内部のボイド個数密度の関係図を示す図3で示すとおり、外表面よりも板厚内部の方において、ボイド個数密度が多い傾向にあり、その場合においても安全な処置判断を行うために、UT検査でのき裂検出限界と考えられる高さ3mmのき裂を想定して、き裂進展寿命を求めて判断する。 Usually, large-scale thermal power plants are regularly inspected every two years, so if there is at least 17,000 hours or more of life, measures such as replacement of damaged parts are required immediately. Note that even if the void number density on the outer surface exceeds 120 / mm 2 , there may be a case where an inherent defect is not detected by UT inspection or the like. As shown in FIG. 3 showing the relationship diagram, the number of voids tends to be higher in the inside of the plate thickness than in the outer surface. Even in this case, a crack in the UT inspection is necessary to make a safe treatment judgment. Assuming a crack with a height of 3 mm that is considered to be the detection limit, the crack propagation life is determined and determined.

また、余寿命診断時に、MT検査で欠陥が検出されない場合は、き裂が発生していないものと推定され、クリープ中途止め試験のクリープ寿命消費率t/tr=0〜0.934に該当する。   Further, when no defect is detected in the MT inspection at the time of remaining life diagnosis, it is presumed that no crack has occurred, and it corresponds to the creep life consumption rate t / tr = 0 to 0.934 in the creep stoppage test. .

先ず、UT検査で内在欠陥が検出された場合について説明する。
板厚内部での欠陥有無の調査をUT検査で実施し、内在欠陥が検出された場合には、レプリカ法でボイド個数密度を計測し、外表面のボイド個数密度が120個/mm2を超えている場合は、き裂高さから寿命を計算する。
First, a case where an intrinsic defect is detected in the UT inspection will be described.
Investigating the presence or absence of defects inside the plate thickness by UT inspection, if an internal defect is detected, the void number density is measured by the replica method, and the void number density on the outer surface exceeds 120 / mm 2 If it is, calculate the life from the crack height.

また、き裂が内在していても、外表面でのボイド個数密度が120個/mm2未満の場合は、外表面のボイド個数密度が120個/mm2に達するまでの時間を見積もり、この時点で内部のボイド個数密度が570/mm2に達し、き裂が発生している可能性があるので、それにき裂発生後の進展時間を加味して、処置判断を行う。
ボイド個数密度の増加の傾向の調査結果を図4に示す。図4は小型クリープ試験法で求めた溶接部細粒域の最大クリープボイド個数密度と、クリープ破断寿命消費率との関係図である。
よって、図4に示すように、調査時点までの運転時間とその時点での外表面ボイド個数密度から、内部のクリープボイド個数密度が570個/mm2に達するまでの時間を算出することができる。
Further, even if inherent crack, if the void number density of the outer surface is less than 120 / mm 2, to estimate the time until the void number density of the outer surface reaches 120 / mm 2, the At that time, the internal void number density reaches 570 / mm 2 , and there is a possibility that a crack has occurred. Therefore, a treatment judgment is made in consideration of the progress time after the crack has occurred.
FIG. 4 shows the survey results of the tendency of increase in the void number density. FIG. 4 is a graph showing the relationship between the maximum number of creep voids in the weld grain region determined by the small creep test method and the creep rupture life consumption rate.
Therefore, as shown in FIG. 4, the time required for the internal creep void number density to reach 570 / mm 2 can be calculated from the operation time up to the time of investigation and the outer surface void number density at that time. .

一方、UT検査で内在欠陥が検出されなかった場合について説明する。
外表面でのボイド個数密度を計測し、外表面のボイド個数密度が120個/mm2未満の場合は外表面でのボイド個数密度が120個/mm2に達するまでの時間を求め、それにき裂発生後の進展時間を加味して、処置判断を行う。
また、外表面のボイド個数密度が120個/mm2以上の場合には、UT検査での欠陥検出有無を問わず、3mm高さの欠陥が内在していると仮定し、き裂進展寿命にて、適切な処置判断を行う。
On the other hand, a case where an intrinsic defect is not detected in the UT inspection will be described.
Measured void number density of the outer surface, if the void number density of the outer surface is less than 120 / mm 2 determined the time until the void number density at the outer surface reaches 120 / mm 2,-out it Judgment of treatment is made taking into account the progress time after the initiation of the crack.
In addition, when the void number density on the outer surface is 120 pieces / mm 2 or more, it is assumed that a defect with a height of 3 mm is present regardless of whether or not a defect is detected in the UT inspection. Make appropriate treatment decisions.

以上のように、本発明においては、先ず、溶接部断面のクリープボイド個数密度分布を収集し、その外表面に対応する内部における最大ボイド個数密度を推定し、処置を判断するようにしている。   As described above, in the present invention, first, the creep void number density distribution of the welded section is collected, and the maximum void number density in the interior corresponding to the outer surface is estimated to determine the treatment.

そして、外表面と内部のクリープ損傷分布(ボイド個数密度)を整理した結果から、予め求めておいたき裂発生が起こりえる外表面のボイド個数密度(120/mm2)からき裂有無を推定し、寿命評価を行うようにしたので、簡易な判断で迅速な判定を行なうことができる。 Then, from the results of organizing the creep damage distribution (void number density) on the outer surface and inside, the presence or absence of cracks was estimated from the void number density (120 / mm 2 ) on the outer surface where cracks could occur in advance. Since the life evaluation is performed, a quick determination can be made with a simple determination.

クリープボイドは、耐熱鋼の溶接部の熱影響で顕著に発生し、その部分が最もクリープ強度が弱いので、その部分の寿命の評価が出来れば、母材部を含むボイラ等の耐圧部の寿命評価を行なったことになる。特に、改良9Cr−1Mo鋼においては、微視き裂発生の時期が寿命末期であり、き裂を超音波探傷検査などで検出しても、それ以降の寿命が非常に小さく、適切な処置ができない可能性が高いので、本発明によれば、それ以前において、適切な処置を施すことができる。   Creep voids are prominently generated due to the heat effect of heat-resistant steel welds, and the creep strength of the part is the weakest. If the life of the part can be evaluated, the life of the pressure-resistant part such as a boiler including the base metal part Evaluation has been done. In particular, in the improved 9Cr-1Mo steel, the microcracking occurs at the end of its life, and even if the crack is detected by ultrasonic flaw detection or the like, the life after that is very small, and appropriate measures can be taken. According to the present invention, an appropriate treatment can be performed before that.

以上のように、本発明に係る高強度鋼溶接部の寿命評価方法は、外表面と内部のクリープ損傷分布(ボイド個数密度)を整理した結果から、予め求めておいたき裂発生が起こりえる外表面の所定のボイド個数密度からき裂有無を推定し、寿命評価を確実に行なうことができ、特に火力プラント等の高温・高圧機器に使用される高強度フェライト系鋼の母材部乃至溶接継手部におけるクリープ損傷の評価に用いて適している。   As described above, the life evaluation method for high-strength steel welds according to the present invention can generate cracks that have been obtained in advance, based on the results of organizing the outer surface and internal creep damage distribution (void density). Presence of cracks can be estimated from a predetermined density of voids on the outer surface, and life evaluation can be performed reliably. In particular, the base material or welded joint of high-strength ferritic steel used in high-temperature and high-pressure equipment such as thermal power plants Suitable for evaluation of creep damage in parts.

実施例に係る高強度鋼溶接部の寿命評価方法の判定手法を示すフローチャートである。It is a flowchart which shows the determination method of the lifetime evaluation method of the high strength steel welding part which concerns on an Example. 予め測定したき裂進展速度からき裂の貫通寿命の計算した結果図である。It is a result figure which calculated the penetration life of a crack from the crack growth rate measured beforehand. 溶接部細粒域における外表面と内部のボイド個数密度の関係図である。It is a related figure of the void number density of the outer surface and an inside in a welding part fine grain region. 溶接部細粒域の最大クリープボイド個数密度と、クリープ破断寿命消費率との関係図である。FIG. 4 is a relationship diagram between the maximum number of creep voids in the welded fine grain region and the creep rupture life consumption rate. 試験片の平面図である。It is a top view of a test piece. 大型クリープ試験片の正面図である。It is a front view of a large-sized creep test piece. 母材に溶接金属を設けた模式図である。It is the schematic diagram which provided the weld metal in the base material. 従来鋼の溶接部のクリープ損傷量と板厚との関係図である。It is a related figure of the creep damage amount and plate | board thickness of the welding part of conventional steel. 高強度フェライト鋼のクリープ損傷量と板厚との関係図である。FIG. 5 is a relationship diagram between creep damage and plate thickness of high-strength ferritic steel. ボイド個数密度とボイド面積率との相間関係図である。It is a correlation diagram between a void number density and a void area ratio.

符号の説明Explanation of symbols

11 母材
12 溶接金属
13 熱影響部(HAZ)
11 Base material 12 Weld metal 13 Heat affected zone (HAZ)

Claims (7)

検査対象の高強度鋼溶接部の外表面のクリープボイドのボイド個数密度又はボイド面積率を計測する表面ボイド計測工程と、
前記表面ボイド計測工程の計測結果より、所定の閾値以上か否かを判定するボイド個数密度又はボイド面積率の判定工程と、
前記判定工程において、所定の閾値以下の場合に、溶接部の余寿命を計測する余寿命計測工程と、
前記判定工程において、所定の閾値以上の場合に、内部の超音波探傷検査(UT検査)を行う探傷検査工程と、
前記探傷検査工程において、内部欠陥の有無を判定する欠陥判定工程とからなることを特徴とする高強度鋼溶接部の寿命評価方法。
Surface void measurement process for measuring the void number density or void area ratio of creep voids on the outer surface of the high strength steel weld to be inspected;
From the measurement result of the surface void measurement step, a void number density or void area ratio determination step for determining whether or not a predetermined threshold value or more,
In the determination step, if it is equal to or less than a predetermined threshold, a remaining life measuring step of measuring the remaining life of the welded portion;
In the determination step, a flaw detection inspection step of performing an internal ultrasonic flaw inspection (UT inspection) when a predetermined threshold value or more,
The method for evaluating the life of a high-strength steel weld, comprising a defect determination step for determining the presence or absence of an internal defect in the flaw detection inspection step.
請求項1において、
前記余寿命計測工程において、余寿命が所定時間以上である場合には、所定期間経過後に再評価することを特徴とする高強度鋼溶接部の寿命評価方法。
In claim 1,
In the said remaining life measurement process, when the remaining life is more than predetermined time, it evaluates again after progress for a predetermined period, The life evaluation method of the high strength steel welded part characterized by the above-mentioned.
請求項1において、
前記余寿命計測工程において、余寿命が所定時間以下である場合には、処置を行うことを特徴とする高強度鋼溶接部の寿命評価方法。
In claim 1,
In the remaining life measuring step, when the remaining life is equal to or shorter than a predetermined time, a treatment is performed.
請求項1において、
前記余寿命計測工程において、余寿命が所定時間以下である場合には、内部の超音波探傷検査(UT検査)を行うことを特徴とする高強度鋼溶接部の寿命評価方法。
In claim 1,
In the remaining life measuring step, when the remaining life is equal to or shorter than a predetermined time, an internal ultrasonic flaw inspection (UT inspection) is performed.
請求項1又は4において、
前記欠陥判定工程において、欠陥が存在する場合には、処置を行うことを特徴とする高強度鋼溶接部の寿命評価方法。
In claim 1 or 4,
In the defect determination step, when there is a defect, a treatment is performed.
請求項1又は4において、
前記欠陥判定工程において、欠陥が無い場合には、所定期間経過後に再評価することを特徴とする高強度鋼溶接部の寿命評価方法。
In claim 1 or 4,
In the defect determination step, when there is no defect, the life evaluation method for a high strength steel weld is characterized by re-evaluation after a predetermined period.
請求項1乃至6のいずれか一つにおいて、
前記検査対象の高強度鋼溶接部が、高強度フェライト系鋼の母材部乃至溶接継手部であることを特徴とする高強度鋼溶接部の寿命評価方法。
In any one of Claims 1 thru | or 6,
The life evaluation method for a high-strength steel welded portion, wherein the high-strength steel welded portion to be inspected is a base material portion or a welded joint portion of high-strength ferritic steel.
JP2006051073A 2006-02-27 2006-02-27 Life evaluation method for high strength steel welds Active JP4616778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006051073A JP4616778B2 (en) 2006-02-27 2006-02-27 Life evaluation method for high strength steel welds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006051073A JP4616778B2 (en) 2006-02-27 2006-02-27 Life evaluation method for high strength steel welds

Publications (2)

Publication Number Publication Date
JP2007232401A true JP2007232401A (en) 2007-09-13
JP4616778B2 JP4616778B2 (en) 2011-01-19

Family

ID=38553142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006051073A Active JP4616778B2 (en) 2006-02-27 2006-02-27 Life evaluation method for high strength steel welds

Country Status (1)

Country Link
JP (1) JP4616778B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012108051A (en) * 2010-11-18 2012-06-07 Babcock Hitachi Kk Method of predicting damage in heat-resistant steel weld zone
JP2012173217A (en) * 2011-02-23 2012-09-10 Mitsubishi Heavy Ind Ltd Piping inspection method and piping lifetime determination method
JP2013011521A (en) * 2011-06-29 2013-01-17 Mitsubishi Heavy Ind Ltd Remaining life evaluation method and remaining life evaluation device
JP2016035399A (en) * 2014-08-01 2016-03-17 三菱日立パワーシステムズ株式会社 Method for inspecting remaining life of welded part of heat resistant member
CN111656182A (en) * 2018-02-14 2020-09-11 三菱日立电力系统株式会社 Method for inspecting plant equipment
CN111919104A (en) * 2018-03-28 2020-11-10 三菱动力株式会社 Method for evaluating remaining life of piping

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153865A (en) * 1999-11-29 2001-06-08 Mitsubishi Heavy Ind Ltd Evaluating method and device for damage of metallic material
JP2001305124A (en) * 2000-04-19 2001-10-31 Mitsubishi Heavy Ind Ltd Method for evaluating life of metallic material
JP2002031632A (en) * 2000-07-17 2002-01-31 Ishikawajima Harima Heavy Ind Co Ltd Method for diagnosing creep damage of piping
JP2002168853A (en) * 2000-12-01 2002-06-14 Mitsubishi Heavy Ind Ltd Method for evaluating life of metal material
JP2003014705A (en) * 2001-06-27 2003-01-15 Mitsubishi Heavy Ind Ltd Damage evaluation method for metal material
JP2003207489A (en) * 2001-11-09 2003-07-25 Mitsubishi Heavy Ind Ltd Damage evaluation method and apparatus for metallic material
JP2003253337A (en) * 2001-12-27 2003-09-10 Mitsubishi Heavy Ind Ltd Process and apparatus for regenerating creep deteriorated part
JP2003315251A (en) * 2002-04-25 2003-11-06 Mitsubishi Heavy Ind Ltd High temperature damage evaluating method for heat- resisting steel
JP2004212366A (en) * 2003-01-09 2004-07-29 Mitsubishi Heavy Ind Ltd Creep damage detecting method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153865A (en) * 1999-11-29 2001-06-08 Mitsubishi Heavy Ind Ltd Evaluating method and device for damage of metallic material
JP2001305124A (en) * 2000-04-19 2001-10-31 Mitsubishi Heavy Ind Ltd Method for evaluating life of metallic material
JP2002031632A (en) * 2000-07-17 2002-01-31 Ishikawajima Harima Heavy Ind Co Ltd Method for diagnosing creep damage of piping
JP2002168853A (en) * 2000-12-01 2002-06-14 Mitsubishi Heavy Ind Ltd Method for evaluating life of metal material
JP2003014705A (en) * 2001-06-27 2003-01-15 Mitsubishi Heavy Ind Ltd Damage evaluation method for metal material
JP2003207489A (en) * 2001-11-09 2003-07-25 Mitsubishi Heavy Ind Ltd Damage evaluation method and apparatus for metallic material
JP2003253337A (en) * 2001-12-27 2003-09-10 Mitsubishi Heavy Ind Ltd Process and apparatus for regenerating creep deteriorated part
JP2003315251A (en) * 2002-04-25 2003-11-06 Mitsubishi Heavy Ind Ltd High temperature damage evaluating method for heat- resisting steel
JP2004212366A (en) * 2003-01-09 2004-07-29 Mitsubishi Heavy Ind Ltd Creep damage detecting method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012108051A (en) * 2010-11-18 2012-06-07 Babcock Hitachi Kk Method of predicting damage in heat-resistant steel weld zone
JP2012173217A (en) * 2011-02-23 2012-09-10 Mitsubishi Heavy Ind Ltd Piping inspection method and piping lifetime determination method
JP2013011521A (en) * 2011-06-29 2013-01-17 Mitsubishi Heavy Ind Ltd Remaining life evaluation method and remaining life evaluation device
JP2016035399A (en) * 2014-08-01 2016-03-17 三菱日立パワーシステムズ株式会社 Method for inspecting remaining life of welded part of heat resistant member
CN111656182A (en) * 2018-02-14 2020-09-11 三菱日立电力系统株式会社 Method for inspecting plant equipment
CN111919104A (en) * 2018-03-28 2020-11-10 三菱动力株式会社 Method for evaluating remaining life of piping

Also Published As

Publication number Publication date
JP4616778B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
JP5086615B2 (en) Life evaluation method by creep elongation of high strength steel weld and life evaluation method of high strength steel weld
JP4464043B2 (en) Creep life evaluation method
JP4616778B2 (en) Life evaluation method for high strength steel welds
Siefert et al. Evaluation of the creep cavitation behavior in Grade 91 steels
JP4054834B2 (en) Comprehensive evaluation method of creep remaining life
Parker et al. Creep performance of a grade 91 header
JP5276497B2 (en) Pipe weld life evaluation method
Maharaj et al. A review of methods to estimate creep damage in low‐alloy steel power station steam pipes
WO2019159940A1 (en) Plant inspection method
JP4054833B2 (en) Evaluation method of creep remaining life
Ma et al. Failure analysis on circulating water pump of duplex stainless steel in 1000 MW ultra-supercritical thermal power unit
JP2008032480A (en) Damage evaluation method of heat-resistant steel, and damage evaluation device thereof
JP2011196935A (en) Life expectancy evaluation method
JP5806108B2 (en) Evaluation method of creep damage of boiler furnace spray tube.
JP6077512B2 (en) Prediction method for heat transfer tube corrosion using eddy current inspection method
Bridges et al. The development of nondestructive evaluation coupons in full grade 91 cross-welds with various levels of creep damage
JP2004085347A (en) Method for evaluating life of heat-resistant steel
CN110806357A (en) Method for evaluating high-temperature creep damage based on low-temperature fracture
JP5859710B2 (en) Prediction method for creep remaining life of product deteriorated by heating and pressurization, and calibration curve creation method used for this prediction method
JP2017219472A (en) High chromium steel creep life diagnosis method
Mokhtar et al. Failure analysis of high pressure high temperature super-heater outlet header tube in heat recovery steam generator
Grisolia Assessment of weld reduction factors through experimental reference curves
Martins et al. Failure mechanisms on exhaust systems of naval gas turbines
Coleman et al. Deficient Materials in Hot Reheat Seam Welded High-Energy Piping
Ramadan The Structure for Monitoring the Technical Condition of Furnace Tubes from Refineries and Petrochemical Plants.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101022

R151 Written notification of patent or utility model registration

Ref document number: 4616778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250