JP2009174859A - Remaining lifetime evaluation method of machine part - Google Patents

Remaining lifetime evaluation method of machine part Download PDF

Info

Publication number
JP2009174859A
JP2009174859A JP2008010574A JP2008010574A JP2009174859A JP 2009174859 A JP2009174859 A JP 2009174859A JP 2008010574 A JP2008010574 A JP 2008010574A JP 2008010574 A JP2008010574 A JP 2008010574A JP 2009174859 A JP2009174859 A JP 2009174859A
Authority
JP
Japan
Prior art keywords
crack
inspection
machine part
calculated
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008010574A
Other languages
Japanese (ja)
Other versions
JP5050873B2 (en
Inventor
Yasuyuki Kurihara
康行 栗原
Yoshitaka Hayashi
美孝 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008010574A priority Critical patent/JP5050873B2/en
Publication of JP2009174859A publication Critical patent/JP2009174859A/en
Application granted granted Critical
Publication of JP5050873B2 publication Critical patent/JP5050873B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem, wherein clear remaining lifetime of a machine part, for which metal fatigue cracks are discovered, cannot be evaluated by conventional future life evaluation techniques and increase in the inspection number of times (increase in inspection cost), or the like, of the machine part is brought about. <P>SOLUTION: A stress concentration region of the machine part is selected by the analysis of stress under restriction and loading condition which is close to actual phenomenon for keeping a master curve, which is a relational curve of the maximum crack dimension and a remaining lifetime consumption ratio, preliminarily calculated by the analysis of the crack propagation from the stress concentration region which is a crack occurrence start point. The maximum dimension measured values of the cracks detected by the stereoscopic inspection of the machine part are adapted to the master curve, and the remaining lifetime of the machine part is calculated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、機械部品の余寿命評価方法に関し、詳しくは、機械部品の金属疲労による余寿命を評価するための、機械部品の余寿命評価方法に関する。   The present invention relates to a remaining life evaluation method for a machine part, and more particularly, to a remaining life evaluation method for a machine part for evaluating the remaining life due to metal fatigue of the machine part.

近年、機械部品の応力の繰り返しによる金属疲労による破壊事故が多数発生している。このような状況の中、機械部品の余寿命を診断し、適切な処置を施す技術が必要とされている。余寿命評価技術として、従来、特許文献1などに提案されたものが知られている。しかしそれらは、温度変化の大きいガスタービンなどを対象とした低サイクル熱応力に対する手法であり、載荷荷重による応力繰り返しに対する手法ではないことや、疲労寿命を算定するためのマスターカーブを作成するにあたり材料試験により得られたものを補完する方法を用いているため、形状的な応力集中の影響を強く受ける機械部品や複雑な応力状態となる機械部品に対しての適用はできない。
特開平10−160646号公報
In recent years, many destruction accidents due to metal fatigue due to repeated stress of machine parts have occurred. Under such circumstances, there is a need for a technique for diagnosing the remaining life of machine parts and taking appropriate measures. As a remaining life evaluation technique, a technique proposed in Patent Document 1 or the like has been known. However, these are methods for low-cycle thermal stress for gas turbines with large temperature changes, and are not methods for repeated stress due to load, and materials for creating a master curve for calculating fatigue life. Since a method of complementing the one obtained by the test is used, it cannot be applied to mechanical parts that are strongly influenced by geometric stress concentration or mechanical parts that are in a complicated stress state.
JP-A-10-160646

一方、形状的な応力集中の影響を強く受ける機械部品や複雑な応力状態となる機械部品を有する工場では、検査により亀裂が発見された場合は、グラインダー手入れなどで亀裂を除去する延命化措置がとられることが多い。この方法では、亀裂の完全な除去が困難な場合があることや、グラインダー手入れなどで亀裂を除去する方法によっては新たな欠陥となる可能性があること、亀裂を除去することで機械部品の肉厚が減少し作用応力が増加する、など疲労寿命をかえって短くする可能性がある。また、グラインダー手入れなどで亀裂を除去した後の余寿命が明確ではないため、点検を頻繁に行う必要が生じ、点検コストが増大する可能性がある。   On the other hand, in factories that have mechanical parts that are strongly influenced by geometric stress concentration or that have complex stress conditions, if cracks are found by inspection, life-prolonging measures are taken to remove the cracks by, for example, grooming. Often taken. In this method, it may be difficult to completely remove the crack, and it may become a new defect depending on the method of removing the crack by grinder care or the like. There is a possibility of shortening the fatigue life by decreasing the thickness and increasing the working stress. In addition, since the remaining life after removing the crack by grinder care or the like is not clear, it is necessary to frequently inspect, and the inspection cost may increase.

つまり、従来の余寿命評価技術では、金属疲労亀裂が発見された機械部品に対して明確な余寿命評価ができず、その機械部品の点検回数の増大(点検コストの増大)を招くという課題があった。   In other words, with the conventional remaining life evaluation technology, there is a problem that a clear remaining life evaluation cannot be performed on a machine part in which a metal fatigue crack is found, resulting in an increase in the number of inspections of the machine part (increase in inspection cost). there were.

発明者らは、機械部品に生ずる応力繰り返しによる金属疲労に対する余寿命を明確に評価しうる手法を検討した。その結果、対象とした金属製の機械部品の応力集中部位を実現象に近い拘束および載荷条件下での応力解析により選定し、この選定した部位を亀裂発生の起点とした亀裂伝播解析により、最大亀裂寸法と寿命消費率の関係曲線であるマスターカーブを算定しておき、このマスターカーブに、前記機械部品を検査し検出した亀裂の最大寸法計測値を適用して余寿命を算出することにより、前記課題が解決されうることに想到し、本発明をなした。すなわち本発明は次のとおりである。
[請求項1] 対象とした金属製の機械部品の応力集中部位を実現象に近い拘束および載荷条件下での応力解析により選定し、この選定した部位を亀裂発生の起点とした亀裂伝播解析により、最大亀裂寸法と寿命消費率の関係曲線であるマスターカーブを算定しておき、このマスターカーブに、前記機械部品の実体検査で検出した亀裂の最大寸法計測値を適用して余寿命を算出することを特徴とする機械部品の余寿命評価方法。
[請求項2] 前記実体検査は非破壊検査で行うことを特徴とする請求項1に記載の機械部品の余寿命評価方法。
[請求項3] 前記非破壊検査は、VT(目視観察)、レプリカ法、MT(磁粉探傷試験)、UT(超音波探傷試験)、PT(浸透探傷試験)、RT(放射線探傷試験)のうちいずれか1つまたは2つ以上を用いて行うことを特徴とする請求項2に記載の機械部品の余寿命評価方法。
The inventors studied a method that can clearly evaluate the remaining life against metal fatigue due to repeated stress generated in mechanical parts. As a result, the stress concentration part of the target metal mechanical part was selected by the stress analysis under the constraint and loading conditions close to the actual phenomenon, and the crack propagation analysis with this selected part as the starting point of crack initiation By calculating a master curve that is a relationship curve between crack dimensions and life consumption rate, and calculating the remaining life by applying the maximum dimension measurement value of the crack detected by inspecting the mechanical part to this master curve, The inventors have conceived that the above problems can be solved, and have made the present invention. That is, the present invention is as follows.
[Claim 1] A stress concentration part of a target metal mechanical part is selected by a stress analysis under constraints and loading conditions close to actual phenomena, and a crack propagation analysis using the selected part as a starting point of crack generation. The master curve, which is the relationship curve between the maximum crack size and the life consumption rate, is calculated, and the remaining life is calculated by applying the maximum dimension measurement value of the crack detected in the physical inspection of the machine part to this master curve. A remaining life evaluation method for mechanical parts, characterized in that:
[Claim 2] The method for evaluating the remaining life of a machine part according to claim 1, wherein the substance inspection is performed by nondestructive inspection.
[Claim 3] The non-destructive inspection includes VT (visual observation), replica method, MT (magnetic particle inspection test), UT (ultrasonic inspection), PT (penetration inspection), and RT (radiation inspection). 3. The method for evaluating the remaining life of a machine part according to claim 2, wherein any one or more of them are used.

本発明によれば、形状的な応力集中の影響を強く受ける機械部品や複雑な応力状態となる機械部品の金属疲労に対する余寿命を明確に評価できるから、発見された亀裂をグラインダー手入れなどで除去する/しないの判断が的確にでき、寿命短縮につながりかねない余計な亀裂除去措置を回避できて、機械全体の安定操業が可能となる。また、亀裂を除去した場合でも、亀裂除去後の機械部品形状を初期条件とした同様の応力解析および亀裂伝播解析によって余寿命を明確に算出でき、それに基づいて点検回数を必要最小限に抑えることができて、点検コストを削減しうる。   According to the present invention, it is possible to clearly evaluate the remaining life against mechanical fatigue of mechanical parts that are strongly influenced by geometric stress concentration and mechanical parts that are in a complicated stress state, and therefore, the found cracks can be removed by grooming or the like. This makes it possible to accurately determine whether or not to perform the process, avoid unnecessary crack removal measures that may lead to shortening of the service life, and enable stable operation of the entire machine. Even when cracks are removed, the remaining life can be clearly calculated by the same stress analysis and crack propagation analysis using the machine part shape after crack removal as the initial condition, and the number of inspections can be minimized based on this. Can reduce the inspection cost.

以下、本発明を実施するための最良の形態について図面を用いて説明する。
図1は、本発明の概要を示す流れ図である。
まず、ステップ1(応力集中部位の選定)を実行する。このステップでは、対象とした機械部品に対して、実現象に近いと考えうる拘束および載荷条件を境界条件としてFEM(Finite Element Method;有限要素法)解析を行い、最大発生応力およびその発生位置を算出する。このとき、応力集中部位近傍のメッシュサイズは十分な精度が得られる大きさ、形状となるように留意する。
The best mode for carrying out the present invention will be described below with reference to the drawings.
FIG. 1 is a flowchart showing an outline of the present invention.
First, step 1 (selection of stress concentration part) is executed. In this step, FEM (Finite Element Method) analysis is performed on the target mechanical parts using the constraints and loading conditions that can be considered to be close to real phenomena as the boundary conditions, and the maximum generated stress and its position are determined. calculate. At this time, attention should be paid so that the mesh size in the vicinity of the stress concentration portion has a size and a shape with sufficient accuracy.

次に、ステップ2(最大亀裂寸法計測)、ステップ3(マスターカーブの決定)を実行する。これらステップ2,3は、どちらを先行させてもよく、また、これらを併行させてもよい。
ステップ2では、機械部品の定期修理に合わせて、特に前記FEM解析で算出された応力集中部位を中心に、前記機械部品の実体検査を行って亀裂を検出し、その最大亀裂寸法を計測する。亀裂を検出するための実体検査は、余寿命評価後の機械部品をそのまま使用する場合があるから、非破壊検査で行うことが好ましい。ただし、新品と交換することが決定している機械部品に対してはサンプルを切り出して亀裂を計測してもよい。
Next, step 2 (maximum crack dimension measurement) and step 3 (master curve determination) are executed. Either of these steps 2 and 3 may be preceded, or these may be performed in parallel.
In step 2, in accordance with the periodic repair of the machine part, in particular, the mechanical part is inspected mainly about the stress concentration part calculated by the FEM analysis to detect a crack, and the maximum crack size is measured. The physical inspection for detecting cracks is preferably performed by non-destructive inspection because machine parts after remaining life evaluation may be used as they are. However, for mechanical parts that are determined to be replaced with new ones, a sample may be cut out and cracks may be measured.

非破壊検査の手法としては、VT(目視観察)、レプリカ法、MT(磁粉探傷試験)、UT(超音波探傷試験)、PT(浸透探傷試験)、RT(放射線探傷試験)などが挙げられ、これらのいずれも好ましく用いうる。これらの手法は、いずれか1つを用いてもよく、また、2つ以上を組み合わせて用いてもよい。なお、レプリカ法とは、レプリカフィルムを被検面に貼付して表面状態を観察する方法である。具体的なレプリカ法の一例として、被検面を鏡面研磨の後、アセトンを滴下し、高分子レプリカフィルムを貼り付け、アセトンが揮発した後、レプリカ膜を剥がし、金蒸着を行い、レーザー顕微鏡を用いて微視亀裂の観察・計測を行うなどが挙げられる。   Nondestructive inspection methods include VT (visual observation), replica method, MT (magnetic particle inspection test), UT (ultrasonic inspection), PT (penetration inspection), RT (radiation inspection), etc. Any of these can be preferably used. Any one of these methods may be used, or two or more methods may be used in combination. The replica method is a method of observing the surface state by attaching a replica film to a test surface. As an example of a specific replica method, the test surface is mirror-polished, then acetone is dropped, a polymer replica film is attached, the acetone is volatilized, the replica film is peeled off, gold deposition is performed, and a laser microscope is used. It can be used to observe and measure microcracks.

ステップ3では、マスターカーブを決定(算定)する。マスターカーブは、対象とする部材(機械部品)に生じた最大亀裂寸法(縦軸にとる)と寿命消費率(横軸にとる)の関係を示したグラフであると定義される。このグラフを算出するために、部材に使用された鋼材のパリス則と亀裂進展解析を用いて、亀裂の寸法と寿命消費率の関係を計算する。寿命消費率については、破断回数(図6参照)と現在の回数との比から算出する。破断回数については構造体の形状および材料の物理定数などを用いて亀裂進展解析から決定する。   In step 3, a master curve is determined (calculated). The master curve is defined as a graph showing the relationship between the maximum crack size (taken on the vertical axis) and the life consumption rate (taken on the horizontal axis) generated in the target member (machine part). In order to calculate this graph, the relationship between the crack size and the lifetime consumption rate is calculated using the Paris law and crack growth analysis of the steel used for the member. The life consumption rate is calculated from the ratio between the number of breaks (see FIG. 6) and the current number. The number of fractures is determined from crack growth analysis using the shape of the structure and the physical constants of the material.

ステップ4では、ステップ2で計測された最大亀裂寸法の値とステップ3で算定したマスターカーブとから余寿命を算出する。   In step 4, the remaining life is calculated from the value of the maximum crack size measured in step 2 and the master curve calculated in step 3.

以下、実施例を挙げて本発明をさらに詳しく説明する。実施例では、製鉄所圧延機の部材であるエンドヨークを対象として余寿命を評価する。
(ステップ1) エンドヨークの実使用状態に近いと考えられる拘束および載荷条件下でFEM解析を行って応力分布を求め、応力集中部位を選定する。図2は、このFEM解析で得られたエンドヨーク5の応力分布を等応力線で描いたもので、本実施例の場合、多重入れ子状の等応力線は入れ子の内側のものほど応力が高くなっており、R隅部の端部側に最大発生応力の発生位置6があることがわかる。
Hereinafter, the present invention will be described in more detail with reference to examples. In the embodiment, the remaining life is evaluated for an end yoke that is a member of a steel mill.
(Step 1) FEM analysis is performed under constraints and loading conditions that are considered to be close to the actual use state of the end yoke, the stress distribution is obtained, and a stress concentration site is selected. FIG. 2 shows the stress distribution of the end yoke 5 obtained by this FEM analysis with iso-stress lines. In the case of this example, the multi-nested iso-stress line has a higher stress in the inner part of the nest. It can be seen that the generation position 6 of the maximum generated stress is located on the end side of the R corner.

(ステップ2) 最大発生応力の発生部位6を中心に実体検査(亀裂の検出および亀裂寸法の計測)を行う。本実施例の場合、応力集中位置が表面であるため、亀裂の検出精度が高いMTにより亀裂を検出する。検出された亀裂の、計測された亀裂長さのうち最大値を最大亀裂寸法として採用する。本実施例では、計測された最大亀裂寸法は、亀裂長さで3.2mmであった。   (Step 2) Substantive inspection (crack detection and crack dimension measurement) is performed centering on the site 6 where the maximum stress is generated. In this embodiment, since the stress concentration position is the surface, the crack is detected by MT with high crack detection accuracy. The maximum value of the detected crack lengths of the detected cracks is adopted as the maximum crack size. In this example, the maximum crack size measured was 3.2 mm in crack length.

なお、より高精度の調査を行うためには、レプリカ法を用いると良い。また、TOFD(Time of Flight Diffraction)法などで亀裂深さが分かる場合は、計測された亀裂深さのうち最深値を最大亀裂寸法として採用するのが好ましい。なお、TOFD法とはUT手法の一種であり、一対の発信及び受信用の二つの探触子を対向させて配置し、被検査断面を透過させるように超音波の送受信を行い、表面直下の表面透過波(ラテラル波)および底面反射波と、「きず」の上下端で発生する回折波の伝播時間差を利用して、幾何学的に「きず」の位置(きず高さ、きずの指示長さ)を測定する手法であって、これによれば、簡便で高精度な探傷が可能であり、特に、肉厚方向の寸法を高精度計測できる(石川島検査計測株式会社のURL[http://www.iic-hq.co.jp/work_contents/01inspection_measurement/01nondestructive_testing/KH-01.html]からの情報)。   In order to conduct a more accurate investigation, it is preferable to use a replica method. Further, when the crack depth is known by the TOFD (Time of Flight Diffraction) method or the like, it is preferable to employ the deepest value among the measured crack depths as the maximum crack size. The TOFD method is a kind of UT method, and a pair of transmission and reception probes are arranged opposite to each other, and ultrasonic waves are transmitted and received so as to transmit the cross section to be inspected. Using the difference in propagation time between the surface transmitted wave (lateral wave) and the bottom reflected wave and the diffracted wave generated at the upper and lower ends of the flaw, geometrically the position of the flaw (flaw height, flaw indication length) This is a simple and highly accurate flaw detection, and in particular, can measure the dimension in the thickness direction with high precision (URL of Ishikawajima Inspection and Measurement Co., Ltd. [http: / /www.iic-hq.co.jp/work_contents/01inspection_measurement/01nondestructive_testing/KH-01.html]).

(ステップ3) 例えば図3に示すようなフローに沿って亀裂進展解析を行う。このフローを説明する。
まず、ステップ31において亀裂進展解析用の解析モデルを作成する。この解析モデルは亀裂進展解析の解析プログラムを基に作成できる。亀裂進展解析プログラムとしては様々な汎用プログラムが販売されている。例えば、Computational Mechanics BEASY社のBEASYと称する境界要素法に基づいた解析手法、Zentech社のZENCRACKと称する有限要素法に基づいた亀裂進展解析などがある。さらに、近年は、リメッシュが不要なX−FEM(extended Finite Element Method、参考文献「Belytschko T.,Black T.著“Elastic Crack Growth in Finite Elements with Minimal Remeshing”Int.J.Number.Meth.Engng.45(5),601-620(1999)」)などの解析手法も実用段階にあり、大幅な労力の低減が可能となってきている。的確なモデル化ができ、同等以上の性能を持っていれば、どれを用いてもよい。
(Step 3) For example, a crack growth analysis is performed along a flow as shown in FIG. This flow will be described.
First, in step 31, an analysis model for crack growth analysis is created. This analysis model can be created based on an analysis program for crack growth analysis. Various general-purpose programs are sold as crack growth analysis programs. For example, there is an analysis method based on a boundary element method called BEASY of Computational Mechanics BEASY, and a crack growth analysis based on a finite element method called ZENCRACK of Zentech. Furthermore, in recent years, the X-FEM (extended Finite Element Method, reference material “Belytschko T., Black T.,“ Elastic Crack Growth in Finite Elements with Minimal Remeshing ”Int. J. Number. Meth. Engng. 45 (5), 601-620 (1999) ") and other analytical methods are also in practical use, and it has become possible to significantly reduce labor. Any model can be used as long as it can be accurately modeled and has equivalent or better performance.

次にステップ32において初期亀裂の決定を行う。ここでは、先に求めた応力集中部位(R隅部)に、想定する初期亀裂を与える。この初期亀裂の長さは、パリス則の実験結果における最小亀裂長さ、およびメッシュサイズなどの計算精度を考慮した値とする。なお、パリス則とは、例えば図4(社団法人日本材料学会編「金属材料疲労き裂進展抵抗データ集」(1983、株式会社西村信天堂発行)より)に示されるような、CT試験片を用いた疲労試験により得られる亀裂伝播速度da/dNと応力拡大係数ΔKのデータを両対数プロットすることで見出される曲線関係則である。   Next, in step 32, the initial crack is determined. Here, the assumed initial crack is given to the stress concentration site (R corner) obtained previously. The initial crack length is a value that takes into account the calculation accuracy such as the minimum crack length and mesh size in the experimental results of the Paris rule. Note that the Paris rule is a CT test piece as shown in FIG. 4 (from “Material Collection of Metallic Fatigue Crack Propagation Resistance” edited by Japan Society for Materials Science (1983, published by Shinchon Nishimura Co., Ltd.)). This is a curve relation law found by log-log plotting data of crack propagation rate da / dN and stress intensity factor ΔK obtained by the fatigue test used.

次にステップ33において構造解析計算を行う。ここでは、与えた解析モデル、境界条件、および亀裂条件において解析を実行し、全体の構造変形状態を計算する。この時、亀裂一般部(亀裂の先端部以外の部分)は荷重に対して抵抗しない構造とするか、接触・摩擦等々の影響が大きい場合は、それらを考慮した条件としても良い。
次にステップ34において亀裂先端部のK値を決定する。亀裂先端部は、特異場となっているため、変形、応力、歪などを算出するには、破壊力学に基づいた計算が必要となる。具体的には、亀裂先端周りでJ積分を実行し、得られたJ積分値からK値を算出する。
Next, in step 33, structural analysis calculation is performed. Here, the analysis is executed under the given analysis model, boundary condition, and crack condition, and the entire structural deformation state is calculated. At this time, the general crack portion (the portion other than the tip of the crack) has a structure that does not resist the load, or when the influence of contact, friction, etc. is large, the conditions may be taken into consideration.
Next, in step 34, the K value of the crack tip is determined. Since the crack tip is a singular field, calculation based on fracture mechanics is required to calculate deformation, stress, strain, and the like. Specifically, J integration is performed around the crack tip, and the K value is calculated from the obtained J integration value.

次にステップ35において次ステップの亀裂位置を計算する。亀裂が進展するときの進展方向角度の決定には、maximum circumferential stress criterionを用いた。これは、亀裂先端を囲む円周方向の中で応力が最大となる方向に次ステップの亀裂が進展するという仮説に基づいている。2次元の解析の場合、各計算ステップにおいて得られたKI値、KII値を用いて次式(数1の式) Next, in step 35, the crack position of the next step is calculated. The maximum circumferential stress criterion was used to determine the propagation direction angle when the crack propagates. This is based on the hypothesis that the crack of the next step progresses in the direction in which the stress is maximum in the circumferential direction surrounding the crack tip. For 2-dimensional analysis, K I values obtained at each calculation step, the following equation using the K II value (Equation 1)

Figure 2009174859
Figure 2009174859

により、進展方向角度(1つ前の計算ステップにおける進展方向からの偏角)θが求まる。得られた亀裂進展方向に対して垂直な方向の応力拡大係数KI値から亀裂の進展量を計算し(ここでもパリス則を使う)、新しい亀裂先端位置を決定する。
そして、ステップ36において、前記新しい亀裂先端位置がメッシュ内に存在するか否かを判定し、存在する場合はこの新しい亀裂先端位置を含む亀裂を前記解析モデルに与え、ステップ33以降を繰り返す。存在しない場合は解析を終了する。
Thus, a progress direction angle (a deviation angle from the progress direction in the previous calculation step) θ is obtained. The resulting crack progress of the crack is calculated from the stress intensity factor K I value in a direction perpendicular to the extending direction (using Paris law here), to determine a new crack tip position.
In step 36, it is determined whether or not the new crack tip position exists in the mesh. If it exists, a crack including the new crack tip position is given to the analysis model, and step 33 and subsequent steps are repeated. If it does not exist, the analysis is terminated.

本実施例における解析結果によると、図5に示すように、エンドヨーク5の亀裂7は、R隅部の起点Cから図示のような経路で伝播し外面側の終点Cに達して、エンドヨーク5を破断させる。
上述の亀裂進展解析によって、図6に示すような、載荷回数と亀裂長の関係が得られる。ここで「亀裂長」なる用語は、部材表面内の「亀裂長さ」および部材肉厚方向の「亀裂深さ」を総称した用語である「亀裂寸法」と同義に用いる。
According to the analysis result in the present embodiment, as shown in FIG. 5, the crack 7 of the end yoke 5 propagates from the starting point C 0 at the R corner to the end point C 1 on the outer surface side by propagating along the path as shown in the figure. The end yoke 5 is broken.
The relationship between the number of times of loading and the crack length as shown in FIG. 6 is obtained by the crack growth analysis described above. Here, the term “crack length” is used synonymously with “crack dimension”, which is a generic term for “crack length” in the member surface and “crack depth” in the thickness direction of the member.

寿命消費率(詳しくは疲労寿命消費率)は、以下に示す破断長(または破断回数)と、載荷回数から算出する。
a) 実際に起きた破断事故の疲労亀裂破面のデータが得られる場合は、破断時の亀裂長さまたは亀裂深さを破断長(図6中の破断長a2に相当)とし、破断までの供用期間に荷重を受ける回数を破断回数(図6中の破断回数N2に相当)とする。
b) 亀裂進展解析で急激に亀裂が進展し脆性破壊に至る亀裂長を破断長(図6中の破断長a1に相当)、回数を破断回数(図6中の破断回数N1に相当)とする。寿命消費率は、前述のように、(現在の回数/破断回数)から算出される。「現在の回数」はステップ33の繰り返し回数の現在値であり、各現在値ごとに亀裂長が算出される。
The life consumption rate (specifically, fatigue life consumption rate) is calculated from the following break length (or the number of breaks) and the number of times of loading.
a) If data on the fatigue crack fracture surface of an actual rupture accident is obtained, the crack length or crack depth at the time of rupture shall be the rupture length (corresponding to the rupture length a2 in FIG. 6) The number of times the load is received during the service period is defined as the number of breaks (corresponding to the number of breaks N2 in FIG. 6).
b) In the crack growth analysis, the crack length that leads to a brittle fracture due to abrupt crack growth is the fracture length (corresponding to the fracture length a1 in FIG. 6), and the number of times is the number of fractures (corresponding to the number of fractures N1 in FIG. 6). . The lifetime consumption rate is calculated from (current number of times / number of breaks) as described above. “Current count” is the current value of the number of repetitions of step 33, and the crack length is calculated for each current value.

なお、算出された破断回数については、不慮の過大荷重や材料のバラツキなどを考慮して、これに安全率を加味した値を用いることが望ましい。ここで亀裂長とは、亀裂長さと考えるのが一般的だが、マスターカーブは通常、亀裂深さで算出されることが多い。しかし、亀裂の深さと長さとは、作用荷重や亀裂進展状態によって相互に関係付けることができる。よって、想定される作用荷重での深さと長さの関係式を予め求めておくことで、どちらか一方の値があれば他方の算出が可能であるため、マスターカーブの縦軸のパラメータは、深さ、長さのどちらであってもよい。   As for the calculated number of breaks, it is desirable to use a value that takes into account a safety factor in consideration of an unexpectedly excessive load or material variation. Here, the crack length is generally considered as the crack length, but the master curve is usually calculated by the crack depth in many cases. However, the depth and length of the crack can be related to each other depending on the applied load and the crack propagation state. Therefore, by obtaining the relational expression of the depth and length at the assumed working load in advance, if one of the values is available, the other can be calculated. Either depth or length may be used.

これらから、寿命消費率と亀裂長の関係のプロット点が得られるが、それらの値に対して近似関数(近似曲線)を想定したものをマスターカーブとする。近似曲線は、プロット点の分布や安全係数の考え方(設計思想)に応じて適切な手法により作成する。
本実施例における解析で得られたプロット点と、これに対して想定されるいくつかの近似曲線を図7に示す。なお、縦軸のパラメータは亀裂長さとした。曲線M1,M3,M4はそれぞれ、寿命消費率に対する亀裂長さのプロット点の散らばり具合から推定される分布範囲のほぼ中心、ほぼ上限、ほぼ下限を通るものであり、また、曲線M2はプロット点を滑らかにつないだものである。いずれを選ぶかは設計思想によるので、特に限定されないが、本実施例では曲線M1を選定した。
From these, plot points of the relationship between the life consumption rate and the crack length can be obtained, and a master curve is assumed assuming an approximate function (approximate curve) for these values. The approximate curve is created by an appropriate method according to the distribution of plot points and the concept of safety factor (design concept).
FIG. 7 shows plot points obtained by the analysis in this example and some approximate curves assumed for the plot points. The parameter on the vertical axis is the crack length. Curves M1, M3, and M4 pass through approximately the center, approximately the upper limit, and approximately the lower limit of the distribution range estimated from the dispersion of the plot points of the crack length against the life consumption rate, respectively, and the curve M2 represents the plot points. Are connected smoothly. Which one is selected depends on the design concept and is not particularly limited. In this embodiment, the curve M1 is selected.

(ステップ4) エンドヨーク5の荷重と載荷回数(および時間)の関係などを、実測値または装置の使用計画などから算出する。これらから破断回数に対応する寿命(N)が分かり、寿命消費率から余寿命が計算できる。すなわち、図8に示すように、本実施例の場合、前述のようにステップ2で最大亀裂長さ3.2mmが検出されたので、これを縦軸の値としたときの曲線M1上の点の横軸の値が現在の寿命消費率(Φ)として算出される。この値は図示のように0.4である。これらの値から、余寿命(Nfr)は次式(数2の式)で決定できる。 (Step 4) The relationship between the load of the end yoke 5 and the number of times of loading (and time) is calculated from the actual measurement value or the usage plan of the apparatus. From these, the life (N f ) corresponding to the number of breaks is known, and the remaining life can be calculated from the life consumption rate. That is, as shown in FIG. 8, in the case of the present embodiment, the maximum crack length of 3.2 mm was detected in step 2 as described above. The value on the horizontal axis is calculated as the current life consumption rate (Φ c ). This value is 0.4 as shown. From these values, the remaining life (N fr ) can be determined by the following formula (Formula 2).

Figure 2009174859
Figure 2009174859

本実施例では、数2の式にΦ=0.4を代入して決定した余寿命Nfr1に所定の安全率を掛けた期間だけ、亀裂を除去することなくそのままエンドヨーク5を供用し続け、破断することなく使用することができた。この供用期間後、同様に余寿命を評価したところ、Φは0.9となっていたので、新品と交換した。なお、この交換時にそれまで使用していたエンドヨーク5からサンプルを採取して亀裂深さを計測し、そのデータを基にマスターカーブの補正を行った。 In the present embodiment, the end yoke 5 is used as it is without removing cracks only during a period in which the remaining life N fr1 determined by substituting Φ c = 0.4 into the formula 2 is multiplied by a predetermined safety factor. Subsequently, it could be used without breaking. After this service period, as well was to evaluate the remaining life, because Φ c had become 0.9, was replaced with a new one. A sample was taken from the end yoke 5 that had been used up to the time of replacement, the crack depth was measured, and the master curve was corrected based on the data.

このように、本発明によれば、寿命短縮につながりかねない余計な亀裂除去措置を回避できて、機械全体の安定操業が可能となる。   As described above, according to the present invention, it is possible to avoid unnecessary crack removal measures that may lead to shortening of the life, and stable operation of the entire machine becomes possible.

本発明の概要を示す流れ図である。It is a flowchart which shows the outline | summary of this invention. 応力解析の例としてエンドヨークを対象に計算した結果を示す応力分布図である。It is a stress distribution figure which shows the result calculated about the end yoke as an example of a stress analysis. 亀裂進展解析の概要を示す流れ図である。It is a flowchart which shows the outline | summary of a crack growth analysis. パリス則の具体例を示すグラフである。It is a graph which shows the specific example of a Paris rule. 亀裂進展解析の例としてエンドヨークを対象に計算した結果を示す亀裂進展経路図である。It is a crack propagation path figure which shows the result calculated about the end yoke as an example of a crack propagation analysis. 破断回数の決定方法の例を示す説明図である。It is explanatory drawing which shows the example of the determination method of the frequency | count of fracture | rupture. マスターカーブの決定方法の例を示す説明図である。It is explanatory drawing which shows the example of the determination method of a master curve. マスターカーブによる寿命消費率の決定方法の例を示す説明図である。It is explanatory drawing which shows the example of the determination method of the lifetime consumption rate by a master curve.

符号の説明Explanation of symbols

1,2,3,4 ステップ
5 機械部品(例えばエンドヨーク)
6 最大発生応力の発生位置
7 亀裂
31,32,33,34,35,36 ステップ
1, 2, 3, 4 Step 5 Machine parts (eg end yoke)
6 Maximum stress generation position 7 Crack
31,32,33,34,35,36 steps

Claims (3)

対象とした金属製の機械部品の応力集中部位を実現象に近い拘束および載荷条件下での応力解析により選定し、この選定した部位を亀裂発生の起点とした亀裂伝播解析により、最大亀裂寸法と寿命消費率の関係曲線であるマスターカーブを算定しておき、このマスターカーブに、前記機械部品の実体検査で検出した亀裂の最大寸法計測値を適用して余寿命を算出することを特徴とする機械部品の余寿命評価方法。   The stress concentration part of the target metal mechanical part is selected by restraint that is close to the actual phenomenon and stress analysis under loading conditions, and the crack propagation analysis with this selected part as the starting point of crack generation is used to determine the maximum crack size. A master curve that is a relationship curve of the life consumption rate is calculated, and the remaining life is calculated by applying the maximum dimension measurement value of the crack detected by the physical inspection of the machine part to the master curve. A method for evaluating the remaining life of machine parts. 前記実体検査は非破壊検査で行うことを特徴とする請求項1に記載の機械部品の余寿命評価方法。   2. The remaining life evaluation method for machine parts according to claim 1, wherein the substance inspection is performed by non-destructive inspection. 前記非破壊検査は、VT(目視観察)、レプリカ法、MT(磁粉探傷試験)、UT(超音波探傷試験)、PT(浸透探傷試験)、RT(放射線探傷試験)のうちいずれか1つまたは2つ以上を用いて行うことを特徴とする請求項2に記載の機械部品の余寿命評価方法。   The nondestructive inspection is any one of VT (visual observation), replica method, MT (magnetic particle inspection test), UT (ultrasonic inspection), PT (penetration inspection), RT (radiation inspection). The method for evaluating the remaining life of a machine part according to claim 2, wherein two or more are used.
JP2008010574A 2008-01-21 2008-01-21 Remaining life evaluation method for machine parts Expired - Fee Related JP5050873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008010574A JP5050873B2 (en) 2008-01-21 2008-01-21 Remaining life evaluation method for machine parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008010574A JP5050873B2 (en) 2008-01-21 2008-01-21 Remaining life evaluation method for machine parts

Publications (2)

Publication Number Publication Date
JP2009174859A true JP2009174859A (en) 2009-08-06
JP5050873B2 JP5050873B2 (en) 2012-10-17

Family

ID=41030120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008010574A Expired - Fee Related JP5050873B2 (en) 2008-01-21 2008-01-21 Remaining life evaluation method for machine parts

Country Status (1)

Country Link
JP (1) JP5050873B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291918A (en) * 2008-06-09 2009-12-17 Jfe Steel Corp Method of extending fatigue life of metal material subjected to repeated load history
CN101825522A (en) * 2010-03-31 2010-09-08 武汉理工大学 Self-diagnosis system for wind-induced cumulative fatigue damage of pull lug node substructure of mast structure
KR20140139622A (en) * 2012-04-04 2014-12-05 지멘스 코포레이션 Probabilistic fatigue life prediction using ultrasonic inspection data considering eifs uncertainty
JP2015105659A (en) * 2013-11-28 2015-06-08 トヨタ自動車株式会社 Storage tank and metal member attached thereto, and manufacturing method of storage tank
CN110261249A (en) * 2019-07-01 2019-09-20 广西玉柴机器股份有限公司 A method of evaluation and test castings of gray cast iron endurance limit under pull compression
CN113340749A (en) * 2021-04-30 2021-09-03 成都飞机工业(集团)有限责任公司 Stress monitoring-based fatigue crack propagation life prediction method for high-lock bolt connecting piece
CN113567243A (en) * 2021-07-15 2021-10-29 中南大学 Crack closing stress determination method based on axial stress response

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016182798A1 (en) 2015-05-08 2016-11-17 Schlumberger Technology Corporation Fatigue analysis procedure for drill string
WO2016179767A1 (en) * 2015-05-08 2016-11-17 Schlumberger Technology Corporation Fatigue analysis procedure for drill string

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180744A (en) * 1991-12-26 1993-07-23 Nec Corp Analyzing method of stress and evaluating method of strength using the same
JPH10160646A (en) * 1996-12-03 1998-06-19 Toshiba Corp Method for anticipating fatigue life of structure member
JP2002303565A (en) * 2001-04-05 2002-10-18 Mitsubishi Heavy Ind Ltd Evaluation system of remaining life of turbine
JP2003149091A (en) * 2001-11-08 2003-05-21 Hitachi Constr Mach Co Ltd Fatigue life evaluating system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180744A (en) * 1991-12-26 1993-07-23 Nec Corp Analyzing method of stress and evaluating method of strength using the same
JPH10160646A (en) * 1996-12-03 1998-06-19 Toshiba Corp Method for anticipating fatigue life of structure member
JP2002303565A (en) * 2001-04-05 2002-10-18 Mitsubishi Heavy Ind Ltd Evaluation system of remaining life of turbine
JP2003149091A (en) * 2001-11-08 2003-05-21 Hitachi Constr Mach Co Ltd Fatigue life evaluating system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291918A (en) * 2008-06-09 2009-12-17 Jfe Steel Corp Method of extending fatigue life of metal material subjected to repeated load history
CN101825522A (en) * 2010-03-31 2010-09-08 武汉理工大学 Self-diagnosis system for wind-induced cumulative fatigue damage of pull lug node substructure of mast structure
KR20140139622A (en) * 2012-04-04 2014-12-05 지멘스 코포레이션 Probabilistic fatigue life prediction using ultrasonic inspection data considering eifs uncertainty
KR101677015B1 (en) 2012-04-04 2016-11-17 지멘스 코포레이션 Probabilistic fatigue life prediction using ultrasonic inspection data considering eifs uncertainty
JP2015105659A (en) * 2013-11-28 2015-06-08 トヨタ自動車株式会社 Storage tank and metal member attached thereto, and manufacturing method of storage tank
CN110261249A (en) * 2019-07-01 2019-09-20 广西玉柴机器股份有限公司 A method of evaluation and test castings of gray cast iron endurance limit under pull compression
CN113340749A (en) * 2021-04-30 2021-09-03 成都飞机工业(集团)有限责任公司 Stress monitoring-based fatigue crack propagation life prediction method for high-lock bolt connecting piece
CN113340749B (en) * 2021-04-30 2022-04-08 成都飞机工业(集团)有限责任公司 Stress monitoring-based fatigue crack propagation life prediction method for high-lock bolt connecting piece
CN113567243A (en) * 2021-07-15 2021-10-29 中南大学 Crack closing stress determination method based on axial stress response
CN113567243B (en) * 2021-07-15 2022-05-03 中南大学 Crack closing stress determination method based on axial stress response

Also Published As

Publication number Publication date
JP5050873B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5050873B2 (en) Remaining life evaluation method for machine parts
JP3652943B2 (en) Metal material damage evaluation method and apparatus
US20100131210A1 (en) Method and system for non-destructive inspection of a colony of stress corrosion cracks
JP5783553B2 (en) Piping life determination method
JP5276497B2 (en) Pipe weld life evaluation method
JP6197391B2 (en) Fatigue life evaluation method for structures
JP2015188928A (en) Lifetime evaluation method and lifetime evaluation device
JP2003207489A (en) Damage evaluation method and apparatus for metallic material
TWI692640B (en) Factory inspection method
JP2017151107A (en) Crack evaluation method inside welded part using phased array method, and welded part maintenance and management method
CN105738017A (en) Method for correcting evaluation on stress on surface layer of metal material by ultrasonic wave due to element content influence
Habibalahi et al. Forward to residual stress measurement by using pulsed eddy current technique
JP4672616B2 (en) Evaluation method of stress corrosion crack growth rate
Raude et al. Stress corrosion cracking direct assessment of carbon steel pipeline using advanced eddy current array technology
JP2003130789A (en) Method for evaluating life of metallic material
Panetta et al. Mechanical damage characterization in pipelines
Lakshmi et al. Quantitative NDE of aero engine turbine rotor blade—A case study
JP2002168853A (en) Method for evaluating life of metal material
Kania et al. Investigation and Assessment of Low-Frequency ERW Seam Imperfections by EMAT and CMFL ILI
Abbasi et al. NDE and material evaluation for lifetime assessment of power plant components
Yusa et al. Probabilistic evaluation of the area of coverage of a probe used for eddy current non-destructive inspections
JP2005227138A (en) Internal residual stress measuring instrument, and measuring method therefor
JPH0611464A (en) Method for evaluating degree of fatigue of structural material
Kim et al. Identification of nonregular indication according to change of grain size/surface geometry in nuclear power plant (NPP) reactor vessel (RV)-upper head alloy 690 penetration
Rehman et al. Sizing stress corrosion cracks using laser ultrasonics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees