JPH10152852A - Method of building underground structure and structural member used therein - Google Patents

Method of building underground structure and structural member used therein

Info

Publication number
JPH10152852A
JPH10152852A JP8313362A JP31336296A JPH10152852A JP H10152852 A JPH10152852 A JP H10152852A JP 8313362 A JP8313362 A JP 8313362A JP 31336296 A JP31336296 A JP 31336296A JP H10152852 A JPH10152852 A JP H10152852A
Authority
JP
Japan
Prior art keywords
structural member
members
underground structure
ring
annular hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8313362A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Hamada
良幸 浜田
Atsushi Ito
篤 伊藤
Kazuyoshi Sato
和義 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KATO KENSETSU KK
Nippon Kokan Light Steel Co Ltd
Kato Construction Co Ltd
Original Assignee
KATO KENSETSU KK
Nippon Kokan Light Steel Co Ltd
Kato Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KATO KENSETSU KK, Nippon Kokan Light Steel Co Ltd, Kato Construction Co Ltd filed Critical KATO KENSETSU KK
Priority to JP8313362A priority Critical patent/JPH10152852A/en
Publication of JPH10152852A publication Critical patent/JPH10152852A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of building an underground structure, which is safe, which can simply and precisely build the structure, and which can reduce the building cost and shorten the construction period thereof, and to provide structure members used therefor. SOLUTION: A method of building an underground structure comprises the steps of driving sheathing wall members 20 into the ground, excavating the ground surrounded by sheathing wall members 20 through underwater-excavation up to a predetermined depth D, after floating an assembly of a ring-like working face fixture 21 having no opening in the lower part thereof, and a ring-like member 10 set up on the fixture 21 on the water surface inside of the sheathing members 10, arranging a float scaffold 22 in the ring-like members 10, laying ring-like members 10, 10... in a next lot, so as to adjust the buoyancy, and joining the ring-like members 10 together while increasing the depth thereof, after sinking the ring-like members 10 up to a desired depth, inserting a tremie pipe 23 into the ring-like members 10 through a vertical shaft, thereafter placing concrete in the ring-like members 10, and underwater placing a hardener between the ring-like members 10 and the sheathing wall members 20 so as to build an underground structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地中構造物の構築
工法及びこれに使用する構造部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for constructing an underground structure and a structural member used for the method.

【0002】[0002]

【従来の技術】従来より、建築物を支える基礎や立坑等
の内空利用の地中構造物は、主に、深礎工法や地中連壁
工法等により構築されてきた。そこで、これらの構築工
法について図7、図8を参照して簡単に説明する。図7
は深礎工法を示したもので、図8は地中連壁工法を示し
たものである。
2. Description of the Related Art Conventionally, underground structures for use in the air, such as foundations for supporting buildings and shafts, have been constructed mainly by a deep foundation method or an underground wall method. Therefore, these construction methods will be briefly described with reference to FIGS. FIG.
Fig. 8 shows the deep foundation method, and Fig. 8 shows the underground continuous wall method.

【0003】まず、図7に基づいて深礎工法による構築
手順について説明する。作業員が坑内に入り、坑壁をス
コップ等を用いて人力で掘削を進める。このとき、坑壁
の崩壊を防ぐために型枠を取り付けながら掘削を行な
う。さらに、必要があれば、薬液等を注入する。また、
坑内の酸欠を防ぐために、送風機100によって空気を
送り込んでいる。
First, a construction procedure by the deep foundation method will be described with reference to FIG. A worker enters the mine and excavates the pit wall manually using a scoop or the like. At this time, excavation is performed while attaching a formwork to prevent collapse of the pit wall. Further, if necessary, a chemical solution or the like is injected. Also,
In order to prevent oxygen deficiency in the pit, air is blown by a blower 100.

【0004】掘削土砂は坑上に組んだやぐら101に取
り付けられたバケット102をウインチ103で巻き取
ることにより坑外へ搬出される。また、掘削による湧水
はポンプ104により坑外へ排水される。そして、所望
の深度に到達した後、坑内に鉄筋を建て込み、トレミー
管等でコンクリートを打設する。土留め材は、地盤の状
況、目的に応じて取り外し、または埋め殺す。このよう
にして、地中構造物を構築している。
[0004] The excavated earth and sand is carried out of the mine by winding a bucket 102 attached to a tower 101 assembled on the mine with a winch 103. Also, the spring water from the excavation is drained out of the pit by the pump 104. Then, after reaching a desired depth, a reinforcing bar is erected in the pit and concrete is poured with a tremy tube or the like. Earth retaining material is removed or buried depending on the condition of the ground and the purpose. In this way, an underground structure is constructed.

【0005】この深礎工法は掘削面の目視確認を行なう
ことができる点、山岳地、傾斜地等の大型施工機械の搬
入が困難な所でも施工できる点、騒音振動が少ないとい
う点などで優れている。
This deep foundation method is excellent in that it allows visual confirmation of the excavated surface, that it can be constructed even in places where large construction machines such as mountainous areas and sloping land are difficult to carry in, and that noise and vibration are small. I have.

【0006】次に、図8に基づいて地中連壁工法による
構築手順について説明する。まず、掘削機110を用い
て先行パネル分の掘削を行なう。このとき、周辺地盤の
崩壊を防ぐために、掘削溝に安定液を満たしている(図
8(a))。掘削終了後、壁間継手を組み込んだ鉄筋篭
111aをクレーンによって吊り込む。鉄筋篭111a
の建て込み終了後、仕切板112及び継手防護材113
を挿入する(図8(b))。続いて、仕切板112によ
り仕切られた部分に、トレミー管114を用いて溝底か
ら順次コンクリートを打設する(図8(c))。これ
で、先行パネルが完成する。
Next, a construction procedure by the underground continuous wall method will be described with reference to FIG. First, excavation for the preceding panel is performed using the excavator 110. At this time, in order to prevent the collapse of the surrounding ground, the excavation trench is filled with a stable liquid (FIG. 8A). After the excavation is completed, the reinforced cage 111a incorporating the joint between the walls is suspended by a crane. Reinforcing cage 111a
After the completion of the installation, the partition plate 112 and the joint protective material 113
Is inserted (FIG. 8B). Subsequently, concrete is sequentially poured from the groove bottom using the tremy tube 114 into the portion partitioned by the partition plate 112 (FIG. 8C). Thus, the preceding panel is completed.

【0007】続いて、掘削機110により後行パネル分
の掘削を行なう(図8(d))。掘削終了後、継手清掃
機を用いて継手を清掃する。先行パネルと同様にして、
先行パネルの間に後行パネル用の鉄筋篭111bを建て
込む(図8(e))。そして、トレミー管114を用い
て溝底から順次コンクリートを打設する(図8
(f))。このようにして、連続壁の地中構造物が構築
される(図8(g))。
Subsequently, the excavator 110 excavates the following panel (FIG. 8 (d)). After the excavation is completed, the joint is cleaned using a joint cleaning machine. Like the preceding panel,
The rebar basket 111b for the succeeding panel is erected between the preceding panels (FIG. 8E). Then, concrete is sequentially poured from the groove bottom using the tremy tube 114 (FIG. 8).
(F)). In this way, an underground structure having a continuous wall is constructed (FIG. 8 (g)).

【0008】この地中連壁工法は周辺地盤への影響が少
ない点、軟弱地盤から岩盤まで適用範囲が広い点、低騒
音・低振動で建設公害を防止できる点で優れている。ま
た、近年では、施工技術の向上にともなって、単に仮設
の山留め止水壁としてのみならず、長期の土圧水圧を負
担する本設の地下外壁、あるいは地震時の水平力を負担
する耐震壁、基礎杭として利用されている。
The underground wall construction method is excellent in that it has little effect on the surrounding ground, has a wide application range from soft ground to rock, and has low noise and vibration and can prevent construction pollution. In recent years, along with the improvement of construction technology, not only as a temporary retaining water barrier, but also a permanent underground outer wall that bears long-term earth pressure water pressure, or a seismic wall that bears horizontal force during an earthquake , Is used as a foundation pile.

【0009】また最近、地中構造物の構築工法が種々開
発されている。そのうちに1つである圧入式オープンケ
ーソン工法について図9を参照して説明する。図9は圧
入式オープンケーソン工法の説明図である。この工法
は、まず地中内にグランドアンカー120を設置し、ケ
ーソン121を地上で構築し、内部を水中掘削しつつ、
アンカー120の鋼線に反力を取って、支圧盤122、
載荷桁123を介してジャッキ124にて地中に圧入す
る。その後、所望の深度までケーソン121を沈設した
ら、底版コンクリートを打設して、地中構造物を構築し
ている。
Recently, various construction methods of underground structures have been developed. One of them, the press-fitting open caisson method, will be described with reference to FIG. FIG. 9 is an explanatory diagram of the press-fit type open caisson method. This method first installs a ground anchor 120 in the ground, builds a caisson 121 on the ground, and excavates the inside underwater,
By taking a reaction force to the steel wire of the anchor 120, the supporting plate 122,
It is pressed into the ground by the jack 124 via the loading girder 123. After that, when the caisson 121 is sunk to a desired depth, bottom slab concrete is cast to construct an underground structure.

【0010】この工法は、坑内に作業員が入らないので
安全である。また、地盤改良を行なう必要がなく、安定
液のプラントも必要なく経済的であり、周囲の近接建物
を隆起または陥没させるような問題も発生しない。
[0010] This construction method is safe because no workers enter the mine. In addition, there is no need to perform ground improvement, there is no need for a plant for stabilizing liquid, and it is economical, and there is no problem of raising or lowering nearby neighboring buildings.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、深礎工
法は前述したように人力による作業が基本となってお
り、作業者が坑内に立ち入って作業を行なうため危険作
業が伴うことや、酸素欠乏、有毒ガスの発生・滞留が起
る可能性がある。また、掘削に関して、常に地盤調査と
掘削された土砂の比較検討を行いながら、地盤状況に応
じて薬液等の注入を行い坑壁崩壊に対処する必要があ
り、この地盤改良によって周辺地盤へ影響を及ぼす可能
性もある。すなわち、深礎工法には、このような種々の
問題点がある。
However, as described above, the deep foundation method is based on manual work, and requires a worker to enter the mine to perform work. Poisonous gas generation and stagnation may occur. In addition, regarding excavation, it is necessary to respond to the collapse of the pit wall by injecting chemicals etc. according to the ground conditions while constantly conducting ground surveys and comparing and examining excavated earth and sand. It can also have an effect. That is, the deep foundation method has such various problems.

【0012】一方、地中連壁工法は、底版部の崩壊を防
ぐために底版部の地盤改良、並びに連続壁の安定した根
入れ長が必要である。また、孔壁の崩壊を防ぐために掘
削溝に安定液を満たして掘削を行なう。従って、安定液
のプラントが必要であるため、大きな敷地、工費を要す
るという問題がある。また、プラントの設置・撤去に時
間を要するのでその分だけ工期が延びてしまうという問
題もある。
On the other hand, in the underground continuous wall method, it is necessary to improve the ground of the bottom slab and prevent the continuous slab from being collapsed in order to prevent collapse of the bottom slab. In addition, excavation is performed by filling the excavation trench with a stable liquid to prevent collapse of the hole wall. Therefore, there is a problem that since a plant for a stabilizing solution is required, a large site and construction cost are required. In addition, there is a problem that the time required for installation / removal of the plant is long, and the construction period is prolonged accordingly.

【0013】また、圧入式オープンケーソン工法は、躯
体構築作業と掘削作業とが交互に行なわれるため、躯体
の養生、並びに支圧盤、載荷桁、及びジャッキの脱着作
業を繰り返す必要があるので工期を要する。さらに、ケ
ーソンを圧入する際に、載荷桁にジャッキを数カ所かけ
てケーソンを圧入していくので、各ジャッキにかける力
を正確に調整しなければ、鉛直精度を確保することがで
きないが、この調節作業が面倒であるという問題があ
る。また、この調節を正確に行なっても、地層の変化に
よって傾いて圧入される可能性もある。
Further, in the press-fitting open caisson method, since the skeleton construction work and the excavation work are performed alternately, it is necessary to repeat the curing of the skeleton and the detachment work of the supporting plate, the loading girder, and the jack. It costs. Furthermore, when press-fitting the caisson, several jacks are inserted into the loading girder and the caisson is press-fitted.If the force applied to each jack is not precisely adjusted, the vertical accuracy cannot be ensured. There is a problem that work is troublesome. In addition, even if this adjustment is performed accurately, there is a possibility that a press-fit may be performed at an angle due to a change in the stratum.

【0014】そこで、本発明は上記した問題点を解決す
るためになされたものであり、安全であり、簡単に精度
よく施工でき、工費低減・工期短縮を図ることができる
地中構造物の構築工法及びこれに使用する構造部材を提
供することを目的とする。
Accordingly, the present invention has been made to solve the above-mentioned problems, and it is possible to construct an underground structure which is safe, can be easily and accurately constructed, and can reduce the construction cost and the construction period. An object of the present invention is to provide a construction method and a structural member used for the method.

【0015】[0015]

【課題を解決するための手段】上記問題点を解決するた
めに、請求項1の発明によれば、地中構造物を構築する
工法において、地中に土留め材を打ち込み、土留め材で
仕切られた内部を水中掘削にて所望の深度まで掘削する
第1工程と、底部に開口部のない環状の刃口金物上に環
状中空構造部材を構築したものを前記土留め材の内側の
水面に浮かべた後に、前記環状中空構造部材の内側にフ
ロート足場を設置する第2工程と、水面に浮かんでいる
前記環状中空構造部材の上に、次ロットの環状中空構造
部材を設置し浮力を調整して、前記フロート足場を利用
し前記環状中空構造部材同士を接合する第3工程と、前
記第3工程を順次繰り返して深度を下げていき、所望の
深度を有する地中構造物を沈設する第4工程と、からな
ることを特徴とする。
In order to solve the above-mentioned problems, according to the first aspect of the present invention, in a method of constructing an underground structure, a soil retaining material is driven into the ground, and the ground retaining material is used. A first step of excavating the partitioned interior to a desired depth by underwater excavation, and forming an annular hollow structural member on an annular blade fitting having no opening at the bottom, the water surface inside the earth retaining material; After floating, the second step of installing a float scaffold inside the annular hollow structural member and adjusting the buoyancy by installing an annular hollow structural member of the next lot on the annular hollow structural member floating on the water surface And a third step of joining the annular hollow structural members to each other using the float scaffold, and sequentially decreasing the depth by repeating the third step to lay down an underground structure having a desired depth. And four steps. .

【0016】掘削の際、坑内に作業員が入る必要がない
ので安全に施工できる。また、坑内の水替えを行なう必
要がないため、地盤改良を行なう必要がなくなる。従っ
て、土留め材の構成を簡素にすることができ、さらに型
枠作業も伴わないので、省力化及び工期の短縮が可能と
なり、工費を低減することができる。また、掘削作業と
構造部材の組立作業は独立し、かつ構造物の組立作業と
沈設作業が同時進行するので工期の短縮化を図れる。こ
こで、環状中空構造部材の形状には、円状、楕円状、小
判状、矩形状等のような形状が含まれている。すなわ
ち、環状中空構造部材の内壁面が閉曲面を構成していれ
ばよいので、色々な形状に環状中空構造部材を製作でき
る。
At the time of excavation, since there is no need for an operator to enter the mine, the construction can be performed safely. Further, since there is no need to change the water in the pit, it is not necessary to perform ground improvement. Therefore, the configuration of the earth retaining material can be simplified, and since no formwork is involved, labor saving and shortening of the construction period are possible, and the construction cost can be reduced. In addition, the excavation work and the assembling work of the structural members are independent, and the assembling work and the submerging work of the structure proceed simultaneously, so that the construction period can be shortened. Here, the shape of the annular hollow structural member includes shapes such as a circular shape, an elliptical shape, an oval shape, and a rectangular shape. That is, since the inner wall surface of the annular hollow structural member only needs to form a closed curved surface, the annular hollow structural member can be manufactured in various shapes.

【0017】さらに、水中施工のため構造部材の浮力を
調節することにより、沈下深度を変化させることができ
るので、フロート足場で行なう接合作業を容易に行なう
ことができる。また、圧入式オープンケーソン工法のよ
うに沈設作業の際、構造部材に外力を加えておく必要が
ないため、ジャッキ等の施工機器を使用せずに施工する
ことが可能になる。また、構造部材を地中に設置する際
に、その浮力を利用し重力バランスをとりながら順次埋
め込んで行くので、掘削孔が多少曲がっていても構造部
材を精度よく鉛直方向に沈設することができる。
Further, since the sunk depth can be changed by adjusting the buoyancy of the structural member for underwater construction, the joining operation performed on the float scaffold can be easily performed. In addition, since there is no need to apply external force to the structural members during the laying operation as in the case of the press-fit type open caisson method, it is possible to perform the construction without using construction equipment such as jacks. In addition, when the structural member is installed in the ground, the buoyancy is used and the buoyancy is gradually buried while maintaining the gravity balance. Therefore, even if the excavation hole is slightly bent, the structural member can be accurately sunk in the vertical direction. .

【0018】請求項2の発明によれば上記問題点を解決
するために、地中構造物を構築する工法において、請求
項1に記載する地中構造物の構築工法の第4工程終了
後、前記環状中空構造部材内にコンクリートを打設し、
その後坑内底部に水中コンクリートを打設して、前記環
状中空構造部材と土留め材との間に硬化材を水中打設し
て地中構造物を構築することを特徴とする。
According to a second aspect of the present invention, in order to solve the above problem, in the construction method of the underground structure, after the fourth step of the underground structure construction method according to the first aspect, Casting concrete into the annular hollow structural member,
Thereafter, underwater concrete is poured into the bottom of the pit, and a hardening material is poured underwater between the annular hollow structural member and the earth retaining material to construct an underground structure.

【0019】請求項3の発明によれば上記問題点を解決
するために、請求項2に記載する地中構造物の構築工法
において、前記環状中空構造部材と土留め材との間に硬
化材を水中打設した後に、土留め材を撤去することを特
徴とする。
According to a third aspect of the present invention, in order to solve the above problems, in the construction method of an underground structure according to the second aspect, a hardening material is provided between the annular hollow structural member and the earth retaining material. After being cast underwater, the earth retaining material is removed.

【0020】土留め材を撤去するときに、硬化材が硬化
する前に土留め材を引き抜くため、硬化材が地盤との間
に隙間なく充填される。また、土留め材を撤去した後硬
化するため、周辺地盤への影響がなく、周辺地盤並びに
近接構造物を沈下または陥没させたりすることがない。
When the earth retaining material is removed, the earth retaining material is pulled out before the hardened material is hardened, so that the hardened material is filled with no gap between the hardened material and the ground. Further, since the hardening material is removed and then hardened, there is no influence on the surrounding ground, and the surrounding ground and the adjacent structures are not settled or depressed.

【0021】請求項4の発明によれば上記問題点を解決
するために、請求項1に記載する地中構造物の構築工法
に使用される構造部材において、前記環状中空構造部材
を構築したときに、主桁部分に鉛直方向に一致する開口
部が形成されていることを特徴とする。
According to a fourth aspect of the present invention, there is provided a structural member used in the method of constructing an underground structure according to the first aspect, wherein the annular hollow structural member is constructed. In addition, an opening is formed in the main girder portion so as to coincide with the vertical direction.

【0022】主桁部分に鉛直方向に一致する開口部が形
成されているので、構造部材内へトレミー管を吊り込む
ことができ、底部から順次コンクリートを打設すること
ができるため、簡単に躯体コンクリートを施工すること
ができ、しかも構築養生を必要としないので工期短縮が
可能である。また、トレミー管を使用せずに、最上部の
構造部材に形成された開口部から直接コンクリートを打
設しても、各構造部材の開口部をコンクリートが流動通
過して構造部材内にコンクリートが充填されるため、躯
体コンクリートを施工することができる。
Since the main girder has an opening which is vertically aligned with the main girder, the tremee pipe can be hung into the structural member, and concrete can be poured sequentially from the bottom, so that the skeleton can be easily formed. Since concrete can be constructed and construction curing is not required, the construction period can be shortened. Also, even if concrete is poured directly from the opening formed in the uppermost structural member without using a tremy tube, concrete flows through the opening of each structural member, and concrete enters the structural member. Since it is filled, skeleton concrete can be constructed.

【0023】[0023]

【発明の実施の形態】以下、本発明に係る地中構造物の
構造部材及び構築工法について、具体化した実施の形態
を挙げ、図面に基づいて詳細に説明する。本発明の地中
構造物の構造部材の一実施の形態について、図1〜図3
を参照して説明する。図1は構造部材の斜視図、図2、
図3は構造部材の断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a structural member of an underground structure and a construction method according to the present invention will be described in detail with reference to the drawings, taking concrete embodiments. 1 to 3 show an embodiment of a structural member of an underground structure according to the present invention.
This will be described with reference to FIG. FIG. 1 is a perspective view of a structural member, FIG.
FIG. 3 is a sectional view of the structural member.

【0024】図1、図2、及び図3に示すように、構造
部材1は内外側部、上下部及び端部の6壁面から構成さ
れ、各壁面の材質は鋼板であり、これらの鋼板を溶接に
て接合し製作された円弧形状の部材である。各鋼板で仕
切られる構造部材の内部は中空になっている。そして、
上下面の鋼板2,2の中央には縦貫通孔2a,…と、そ
の両側には縦接続孔2b,…、両端面の鋼板3,3の中
央には横貫通孔3a,…と、その両側には横接続孔3
b,…がそれぞれ形成されている。これらの接合孔2
b,3bは、構造部材を構築していくときに、各部材同
士を接合するためのものであり、貫通孔2a,3aは、
空気孔及び構築後のコンクリート打設時のコンクリート
の流路になる。この縦貫通孔2aは、図6に示すよう
に、各構造部材1,1,…を鉛直方向に千鳥状に接合し
たときに、鉛直方向に一直線状になるような位置に形成
されている。よって、構造部材を構築した際に、内部に
コンクリートを打設するときにトレミー管を構造部材内
部に挿入することができる。また、内外側面の鋼板4
a,4bには、鉛直方向及び水平方向への各部材の接続
作業が行えるように切り欠き部4cが各接合部に形成さ
れている。
As shown in FIG. 1, FIG. 2, and FIG. 3, the structural member 1 includes six inner and outer portions, upper and lower portions, and end portions, and the material of each wall is a steel plate. It is an arc-shaped member manufactured by welding. The inside of the structural member partitioned by each steel plate is hollow. And
In the center of the steel plates 2 on the upper and lower surfaces, a vertical through hole 2a,..., On both sides thereof, vertical connection holes 2b,. Horizontal connection holes 3 on both sides
are formed respectively. These joint holes 2
b and 3b are for joining each member when constructing a structural member, and the through holes 2a and 3a are
It serves as an air hole and a concrete flow path when placing concrete after construction. As shown in FIG. 6, the vertical through holes 2a are formed at positions where the structural members 1, 1,... Are staggered in the vertical direction so as to be linear in the vertical direction. Therefore, when constructing the structural member, the tremee pipe can be inserted into the structural member when concrete is poured into the structural member. In addition, steel plates 4 on the inner and outer surfaces
A cutout 4c is formed in each of the joints a and 4b so that each member can be connected in the vertical and horizontal directions.

【0025】この円弧形状の構造部材1を4つ使用して
水平方向に接合すると、図4に示すような環状部材10
が出来上がる。さらに、この環状部材10を鉛直方向に
接合することによって、任意の長さを持つ地中構造物の
構造部材を製作することができる。各構造部材1,1,
…の接合は、ボルト接合や溶接等によって行なわれる。
また、接合後に切り欠き部4cを外側に鋼板を溶接す
る、あるいは充填材を充填する等の方法にによって塞い
でもよい。
When four arc-shaped structural members 1 are joined in the horizontal direction, four annular members 10 as shown in FIG.
Is completed. Further, by joining this annular member 10 in the vertical direction, a structural member of an underground structure having an arbitrary length can be manufactured. Each structural member 1,1,
Are joined by bolt joining, welding, or the like.
Further, after joining, the notch 4c may be closed by welding a steel plate to the outside, or filling a filler.

【0026】以上説明したように、本発明の構造部材1
は内部が中空であるから軽量であり、しかも現場にて組
み立てるので、施工現場への運搬も簡単であり、また、
現場で大きな置き場面積を取らなくてよい。さらに、設
置の際にも大型重機を必要とせず、汎用重機にて設置す
ることができる。従って、本発明の構造部材1を用いて
地中構造物を構築すれば工費の低減が可能となる。ま
た、主桁部分に鉛直方向に一致する開口部が形成されて
いるので、構造部材内へトレミー管を吊り込むことがで
き、底部から順次コンクリートを打設することができる
ため、簡単に躯体コンクリートを施工することができ、
しかも構築養生を必要としないので工期短縮が可能であ
る。
As described above, the structural member 1 of the present invention
Since the inside is hollow, it is lightweight, and because it is assembled at the site, it is easy to transport to the construction site,
There is no need to take up a large storage area on site. Furthermore, a large-sized heavy machine is not required at the time of installation, and can be installed with a general-purpose heavy machine. Therefore, if an underground structure is constructed by using the structural member 1 of the present invention, the construction cost can be reduced. Also, the main girder part has an opening that matches the vertical direction, so that the tremee pipe can be hung into the structural member, and concrete can be poured sequentially from the bottom, making it easy to build concrete Can be constructed,
Moreover, since no construction curing is required, the construction period can be shortened.

【0027】続いて、上記環状部材10を用いて地中構
造物を構築する工法について、図5を参照して説明す
る。まず、構築する地中構造物の深度Dよりも深めに鋼
矢板等の土留め材20を地中に設置する(図5
(a))。次に、土留め材20で仕切られた内部を掘削
機を使用して、水中掘削にて所望の深度Dまで掘削する
(図5(b))。土留め材20により坑壁崩壊を防いで
いるので、安定液を用いずに水中掘削を行なうことがで
きる。さらに、後述するように環状部材の組立は水中施
工により行なわれるため、底盤改良を行なう必要がな
く、また土留め材に水圧による応力が発生しないので、
構成が簡素でよいので経済的であり工費低減につなが
る。
Next, a method of constructing an underground structure using the annular member 10 will be described with reference to FIG. First, the earth retaining material 20 such as a steel sheet pile is installed underground deeper than the depth D of the underground structure to be constructed (FIG. 5).
(A)). Next, the inside partitioned by the earth retaining material 20 is excavated to a desired depth D by underwater excavation using an excavator (FIG. 5B). Since the earth retaining material 20 prevents the collapse of the pit wall, underwater excavation can be performed without using a stable liquid. Further, as will be described later, since the assembling of the annular member is performed by underwater construction, there is no need to perform bottom improvement, and since stress due to water pressure does not occur in the earth retaining material,
Since the configuration is simple, it is economical and leads to a reduction in construction costs.

【0028】次に、地上にて予め環状の刃口金物21上
に組み立てておいた環状部材10を、クレーンにより吊
り上げて坑内の水面に浮かべる。この刃口金物21は、
底部が刃状になっており、上部には環状部材10の縦貫
通孔2aと連通する孔が形成されている(不図示)。刃
口金物21と環状部材10との接合もボルト接合や溶接
等によって行なわれる。
Next, the annular member 10 previously assembled on the annular blade fitting 21 on the ground is lifted by a crane and floated on the water surface in the pit. This blade fitting 21 is
The bottom has a blade shape, and a hole communicating with the vertical through hole 2a of the annular member 10 is formed at the top (not shown). Joining of the blade base 21 and the annular member 10 is also performed by bolt joining, welding, or the like.

【0029】そして、環状部材10の内側にフロート足
場22を設置する(図5(c))。続けて、次ロットの
環状部材10を坑内の水中に浮かんでいる環状部材10
の上で組み立てる。次ロットの構造部材10を組み立て
る際、フロート足場22を利用して環状部材10同志の
鉛直方向への接合作業が行なわれる。このときの接合
も、ボルト接合や溶接等により行なわれる。そして、環
状部材10同志が接合されると、環状部材10の重量に
よって、既に組み立てられた環状部材10は水面下に沈
み込み深度を下げていく(図5(d))。このとき、フ
ロート足場での接合作業を容易にするため必要に応じて
ウエイトを加えて重量バランス(浮力調節)をとる。そ
の後、刃口金物21の下端が所望の深度Dに定着するま
で、この沈設工程を繰り返し行う。ここで、ウエイトと
して水を用いることも可能であり、ウエイトとして利用
した水は、環状部材内に打設するコンクリートで置換さ
れて排水される。
Then, the float scaffold 22 is set inside the annular member 10 (FIG. 5C). Subsequently, the annular member 10 of the next lot is floating in the water in the mine.
Assemble on When assembling the structural member 10 of the next lot, the annular members 10 are joined in the vertical direction using the float scaffold 22. The joining at this time is also performed by bolt joining, welding, or the like. When the annular members 10 are joined to each other, the assembled annular member 10 sinks below the water surface to lower the depth due to the weight of the annular member 10 (FIG. 5D). At this time, weight is added as necessary to balance the weight (adjustment of buoyancy) to facilitate the joining work on the float scaffold. After that, the setting process is repeatedly performed until the lower end of the blade fitting 21 is fixed at a desired depth D. Here, it is also possible to use water as the weight, and the water used as the weight is replaced by concrete poured into the annular member and drained.

【0030】沈設工程においては、1段ずつあるいは多
数段ずつ組み立てていくことが可能である。さらに、環
状部材10を順次鉛直方向に構築するとき、図6に示す
ように、各構造部材1,1,…を千鳥状に接合すると、
添接効果により強度を増すことができる。
In the setting step, it is possible to assemble one stage at a time or at many stages. Further, when sequentially constructing the annular member 10 in the vertical direction, as shown in FIG.
Strength can be increased by the attachment effect.

【0031】このように中空構造物である環状部材10
を用いることにより、構築工程において、その浮力を利
用できるため、大型の重機を必要とせず、汎用重機にて
施工を行なうことができる。さらに、重力バランスをと
りながら順次埋め込んで行くので、掘削孔が多少曲がっ
ていても構造部材を精度よく鉛直方向に沈設することが
できる。
The annular member 10 having a hollow structure as described above
By using the buoyancy, the buoyancy can be used in the construction process, so that the construction can be performed by a general-purpose heavy machine without requiring a large-sized heavy machine. Further, since the burial is sequentially buried while maintaining the gravity balance, the structural member can be accurately laid down in the vertical direction even if the digging hole is slightly bent.

【0032】所望の深度Dに定着した後に、フロート足
場22を撤去し、坑底部の沈澱物を除去する。そして、
環状部材10の上下面に形成された縦貫通孔2aが鉛直
方向に開口しているので、この開口部(縦貫通孔2a)
にクレーンを用いてトレミー管23を吊り込み、環状部
材10内部に底部から順次コンクリートを打設していく
(図5(e))。環状部材10内部のコンクリート打設
が終了したら、坑内の底面に底版コンクリートを水中打
設する。その後、環状部材10と土留め材20との間詰
めを、掘削土砂を固化処理した硬化材を水中打設して行
う。
After fixing to the desired depth D, the float scaffold 22 is removed and the sediment at the bottom of the pit is removed. And
Since the vertical through holes 2a formed on the upper and lower surfaces of the annular member 10 are open in the vertical direction, the opening (the vertical through hole 2a)
The tremy tube 23 is suspended by using a crane, and concrete is sequentially poured into the annular member 10 from the bottom (FIG. 5E). When the casting of the concrete inside the annular member 10 is completed, the bottom slab concrete is poured underwater on the bottom of the pit. Thereafter, the filling between the annular member 10 and the earth retaining material 20 is performed by casting a hardened material obtained by solidifying excavated earth and sand underwater.

【0033】最後に、坑内の水をポンプにて排出して、
間詰め材が硬化する前に土留め材を撤去する。場合によ
っては、土留め材を埋め殺してもよい。以上の作業によ
り地中構造物である立坑が構築される(図5(f))。
Finally, the water in the mine is discharged by a pump,
Remove the earth retaining material before the filling material hardens. In some cases, the earth retaining material may be buried and killed. Through the above operations, a shaft, which is an underground structure, is constructed (FIG. 5 (f)).

【0034】土留め材を撤去するときに、硬化材が硬化
する前に土留め材を引き抜くため、硬化材が地盤との間
に隙間なく充填される。また、土留め材を撤去した後硬
化するため、周辺地盤への影響がなく、周辺地盤並びに
近接構造物を沈下または陥没させたりすることがない。
When removing the earth retaining material, the earth retaining material is pulled out before the hardened material is hardened, so that the hardened material is filled without gaps between the hardened material and the ground. Further, since the hardening material is removed and then hardened, there is no influence on the surrounding ground, and the surrounding ground and the adjacent structures are not settled or depressed.

【0035】以上説明したように、本発明の地中構造物
の構築工法によれば、掘削の際、坑内に作業員が入る必
要がないので安全に施工できる。また、坑内の水替えを
行なう必要がないため、地盤改良を行なう必要がなくな
る。従って、土留め材の構成を簡素にすることができ、
さらに型枠作業も伴わないので、省力化及び工期の短縮
が可能となり、工費を低減することができる。また、掘
削作業と構造部材の組立作業は独立し、かつ構造物の組
立作業と沈設作業が同時進行するので工期の短縮化を図
れる。
As described above, according to the method of constructing an underground structure according to the present invention, there is no need for an operator to enter a pit during excavation, so that construction can be performed safely. Further, since there is no need to change the water in the pit, it is not necessary to perform ground improvement. Therefore, the configuration of the earth retaining material can be simplified,
Further, since no mold work is involved, labor saving and shortening of the construction period are possible, and the construction cost can be reduced. In addition, the excavation work and the assembling work of the structural members are independent, and the assembling work and the submerging work of the structure proceed simultaneously, so that the construction period can be shortened.

【0036】さらに、水中施工のため構造部材の浮力を
調節することにより、深度を変化させることができるの
で、フロート足場で行なう接合作業を容易に行なうこと
ができる。また、圧入式オープンケーソン工法のように
沈設作業の際、構造部材に外力を加えておく必要がない
ため、ジャッキ等の施工機器を使用せずに施工すること
が可能になる。また、構造部材を地中に設置する際に、
その浮力を利用し重力バランスをとりながら順次埋め込
んで行くので、掘削孔が多少曲がっていても構造部材を
精度よく鉛直方向に沈設することができる。
Furthermore, the depth can be changed by adjusting the buoyancy of the structural member for underwater construction, so that the joining operation performed on the float scaffold can be easily performed. In addition, since there is no need to apply external force to the structural members during the laying operation as in the case of the press-fit type open caisson method, it is possible to perform the construction without using construction equipment such as jacks. Also, when installing structural members underground,
Since the buoyancy is used to sequentially bury the cavities while maintaining the gravity balance, the structural members can be accurately sunk in the vertical direction even if the excavation holes are slightly bent.

【0037】以上本発明の実施の形態について説明した
が、本発明は上記実施の形態に限ることなく、色々な応
用が可能である。例えば本実施の形態では、構造部材の
外側面が平坦であるが、この外側面に突起を設ければ、
押し込み・引抜きに対して強い地中構造物を構築するこ
とが可能である。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various applications are possible. For example, in the present embodiment, the outer surface of the structural member is flat, but if a protrusion is provided on this outer surface,
It is possible to construct an underground structure that is strong against pushing and pulling.

【0038】[0038]

【発明の効果】本発明の地中構造物の構築工法によれ
ば、地中に土留め材を打ち込み、土留め材で仕切られた
内部を水中掘削にて所望の深度まで掘削する第1工程
と、底部に開口部のない環状の刃口金物上に環状中空構
造部材を構築したものを前記土留め材の内側の水面に浮
かべた後に、前記環状中空構造部材の内側にフロート足
場を設置する第2工程と、水面に浮かんでいる前記環状
中空構造部材の上に、次ロットの環状中空構造部材を設
置し浮力を調整して、前記フロート足場を利用し前記環
状中空構造部材同士を接合する第3工程と、前記第3工
程を順次繰り返して深度を下げていき、所望の深度を有
する地中構造物を沈設する第4工程と、によって地中構
造物を構築するので、掘削の際、坑内に作業員が入る必
要がないので安全に施工できる。また、坑内の水替えを
行なう必要がないため、地盤改良を行なう必要がなくな
る。従って、土留め材の構成を簡素にすることができ、
さらに型枠作業も伴わないので、省力化及び工期の短縮
が可能となり、工費を低減することができる。また、掘
削作業と構造部材の組立作業は独立し、かつ構造物の組
立作業と沈設作業が同時進行するので工期の短縮化を図
れる。
According to the method of constructing an underground structure of the present invention, a first step of driving a soil retaining material into the ground and excavating the interior partitioned by the soil retaining material to a desired depth by underwater excavation. After floating an annular hollow structural member on an annular blade base having no opening at the bottom on the water surface inside the earth retaining material, a float scaffold is installed inside the annular hollow structural member. In the second step, an annular hollow structural member of the next lot is installed on the annular hollow structural member floating on the water surface, buoyancy is adjusted, and the annular hollow structural members are joined to each other using the float scaffold. Since the underground structure is constructed by the third step and the fourth step of sequentially repeating the third step to lower the depth and laying the underground structure having the desired depth, the underground structure is constructed. Since there is no need for workers to enter the mine, It can be. Further, since there is no need to change the water in the pit, it is not necessary to perform ground improvement. Therefore, the configuration of the earth retaining material can be simplified,
Further, since no mold work is involved, labor saving and shortening of the construction period are possible, and the construction cost can be reduced. In addition, the excavation work and the assembling work of the structural members are independent, and the assembling work and the submerging work of the structure proceed simultaneously, so that the construction period can be shortened.

【0039】さらに、水中施工のため構造部材の浮力を
調節することにより、沈設深度を変化させることができ
るので、フロート足場で行なう接合作業を容易に行なう
ことができる。また、圧入式オープンケーソン工法のよ
うに沈設作業の際、構造部材に外力を加えておく必要が
ないため、ジャッキ等の施工機器を使用せずに施工する
ことが可能になる。また、構造部材を地中に設置する際
に、その浮力を利用し重力バランスをとりながら順次埋
め込んで行くので、掘削孔が多少曲がっていても構造部
材を精度よく鉛直方向に沈設することができる。
Further, the depth of submersion can be changed by adjusting the buoyancy of the structural member for underwater construction, so that the joining operation performed on the float scaffold can be easily performed. In addition, since there is no need to apply external force to the structural members during the laying operation as in the case of the press-fit type open caisson method, it is possible to perform the construction without using construction equipment such as jacks. In addition, when the structural member is installed in the ground, the buoyancy is used and the buoyancy is gradually buried while maintaining the gravity balance. Therefore, even if the excavation hole is slightly bent, the structural member can be accurately sunk in the vertical direction. .

【0040】また、本発明の構造部材によれば、主桁部
分に構築後に鉛直方向に一致する開口部が形成されてい
るので、地中への沈設後に構造部材内へトレミー管を吊
り込むこともできるので、簡単に躯体コンクリートを施
工することができ、しかも構築養生を必要としないので
工期短縮が可能である。
Further, according to the structural member of the present invention, since the opening corresponding to the vertical direction is formed in the main girder portion after the construction, the trumy tube is suspended in the structural member after being submerged in the ground. Therefore, it is possible to easily apply the slab concrete, and the construction period can be shortened because no curing is required.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係る構造部材の斜視図
である。
FIG. 1 is a perspective view of a structural member according to an embodiment of the present invention.

【図2】図1に示すA−A矢視の断面図である。FIG. 2 is a sectional view taken along the line AA shown in FIG.

【図3】図2に示す各方向の矢視による断面を示したも
のであり、(a)はa−a矢視、(b)はb−b矢視、
(c)はc−c矢視の断面図である。
FIGS. 3A and 3B are cross-sectional views taken along arrows in each direction shown in FIG. 2; FIG.
(C) is a cross-sectional view taken along the line cc.

【図4】環状部材の断面図である。FIG. 4 is a sectional view of an annular member.

【図5】本発明の一実施の形態に係る構築工法の説明図
である。
FIG. 5 is an explanatory diagram of a construction method according to an embodiment of the present invention.

【図6】環状部材の鉛直方向への接合方法を説明する説
明図である。
FIG. 6 is an explanatory view illustrating a method of joining the annular member in a vertical direction.

【図7】深礎工法の施工方法の説明図である。FIG. 7 is an explanatory diagram of a construction method of a deep foundation method.

【図8】地中連壁工法の施工方法の説明図である。FIG. 8 is an explanatory view of a construction method of an underground wall construction method.

【図9】圧入式オープンケーソン工法の施工方法の説明
図である。
FIG. 9 is an explanatory diagram of a construction method of a press-fit type open caisson method.

【符号の説明】[Explanation of symbols]

1 構造部材 2 上下面鋼板 2a 縦貫通孔 2b 縦接続孔 3 端面鋼板 3a 横貫通孔 3b 横接続孔 4a,4b 側面鋼板 4c 切り欠き部 10 環状部材 20 土留め材 21 刃口金物 22 フロート足場 23 トレミー管 DESCRIPTION OF SYMBOLS 1 Structural member 2 Upper and lower surface steel plate 2a Vertical through hole 2b Vertical connection hole 3 End surface steel plate 3a Horizontal through hole 3b Horizontal connection hole 4a, 4b Side steel plate 4c Notch 10 Ring member 20 Earth retaining material 21 Blade base 22 Float scaffold 23 Tremy tube

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 篤 愛知県海部郡蟹江町大字蟹江新田字下市場 19番地の1 株式会社加藤建設内 (72)発明者 佐藤 和義 埼玉県熊谷市大字三ケ尻6100番地 日本鋼 管ライトスチール株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Atsushi Ito Kanie-cho, Kaifu-gun, Aichi Prefecture, Kanie-cho, Nitta-shi, Shimo Market 19-1, Kato Construction Co., Ltd. No. Nippon Kokan Light Steel Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 地中構造物を構築する工法において、 地中に土留め材を打ち込み、土留め材で仕切られた内部
を水中掘削にて所望の深度まで掘削する第1工程と、 底部に開口部のない環状の刃口金物上に環状中空構造部
材を構築したものを前記土留め材の内側の水面に浮かべ
た後、前記環状中空構造部材の内側にフロート足場を設
置する第2工程と、 水面に浮かんでいる前記環状中空構造部材の上に、次ロ
ットの環状中空構造部材を設置し浮力を調整して、前記
フロート足場を利用し前記環状中空構造部材同士を接合
する第3工程と、 前記第3工程を順次繰り返して深度を下げていき、所望
の深度を有する地中構造物を沈設する第4工程と、から
なることを特徴とする地中構造物の構築工法。
1. A construction method for constructing an underground structure, comprising: a first step of driving a soil retaining material into the ground and excavating an interior partitioned by the soil retaining material to a desired depth by underwater excavation; A second step of setting a float scaffold inside the annular hollow structural member after floating the annular hollow structural member on the annular blade base having no opening on the water surface inside the retaining material; A third step of installing the next lot of annular hollow structural members on the annular hollow structural members floating on the water surface, adjusting the buoyancy, and joining the annular hollow structural members to each other using the float scaffold; And a fourth step of successively repeating the third step to lower the depth and laying an underground structure having a desired depth.
【請求項2】 地中構造物を構築する工法において、請
求項1に記載する地中構造物の構築工法の第4工程終了
後、前記環状中空構造部材内にコンクリートを打設し、
その後坑内底部に水中コンクリートを打設して、前記環
状中空構造部材と土留め材との間に硬化材を水中打設し
て地中構造物を構築することを特徴とする地中構造物の
構築工法。
2. A method for constructing an underground structure, wherein after the fourth step of the underground structure construction method according to claim 1, concrete is poured into the annular hollow structural member,
Then, an underwater concrete is poured into the bottom of the underground, and a hardening material is poured underwater between the annular hollow structural member and the earth retaining material to construct an underground structure. Construction method.
【請求項3】 請求項2に記載する地中構造物の構築工
法において、 前記環状中空構造部材と土留め材との間に硬化材を水中
打設した後に、土留め材を撤去することを特徴とする地
中構造物の構築工法。
3. The method of constructing an underground structure according to claim 2, wherein the hardening material is poured underwater between the annular hollow structural member and the earth retaining material, and then the earth retaining material is removed. Construction method of underground structure which is the feature.
【請求項4】 請求項1に記載する地中構造物の構築工
法に使用される構造部材において、 前記環状中空構造部材を構築したときに、主桁部分に鉛
直方向に一致する開口部が形成されていることを特徴と
する構造部材。
4. The structural member used in the method of constructing an underground structure according to claim 1, wherein when the annular hollow structural member is constructed, an opening corresponding to a vertical direction is formed in a main girder portion. A structural member characterized by being made.
JP8313362A 1996-11-25 1996-11-25 Method of building underground structure and structural member used therein Pending JPH10152852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8313362A JPH10152852A (en) 1996-11-25 1996-11-25 Method of building underground structure and structural member used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8313362A JPH10152852A (en) 1996-11-25 1996-11-25 Method of building underground structure and structural member used therein

Publications (1)

Publication Number Publication Date
JPH10152852A true JPH10152852A (en) 1998-06-09

Family

ID=18040352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8313362A Pending JPH10152852A (en) 1996-11-25 1996-11-25 Method of building underground structure and structural member used therein

Country Status (1)

Country Link
JP (1) JPH10152852A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101129250B1 (en) 2011-08-31 2012-03-26 김순민 The intake tower construction method that use a mold of intake tower that can do function of cofferdam and an outer wall of intake tower at the same time
CN105972212A (en) * 2016-07-29 2016-09-28 中冶华天工程技术有限公司 Prefabricated assembled pipe rack
JP2018138726A (en) * 2017-02-24 2018-09-06 Jfe建材株式会社 Hollow segment, annular structure, and cut-off wall structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101129250B1 (en) 2011-08-31 2012-03-26 김순민 The intake tower construction method that use a mold of intake tower that can do function of cofferdam and an outer wall of intake tower at the same time
CN105972212A (en) * 2016-07-29 2016-09-28 中冶华天工程技术有限公司 Prefabricated assembled pipe rack
JP2018138726A (en) * 2017-02-24 2018-09-06 Jfe建材株式会社 Hollow segment, annular structure, and cut-off wall structure

Similar Documents

Publication Publication Date Title
US7500807B2 (en) Method of construction using sheet piling sections
AU2011368478B2 (en) Batch-installation-type large-caliber underwater casing installation structure using sheet pile and method for constructing same
JP2012107479A (en) Method for constructing underground and aboveground structure
CN105649094B (en) A kind of deep water foundation bearing platform construction three wall steel cofferdams and its construction method
JP2000008394A (en) Construction method for underground structure such as underground pit for installation of parking lot
KR100673475B1 (en) A pc girder member for frame of underground layer and assembling structure of frame of underground by using of it and the method therof
KR100912574B1 (en) Retaining wall system using strut assembly and excavating method using the same
JP2004285735A (en) Method of constructing temporary landing bridge by using truss frame
JPH10152852A (en) Method of building underground structure and structural member used therein
JPH10152853A (en) Method of building underground structure and structure member used therein
JPH0559728A (en) Sheathing work above underground structure
JP4475116B2 (en) Vertical shaft structure and its construction method
KR102078794B1 (en) An Earth Retaining Wall with Underground Buttresses and A Method of Constructing the same
EP1964981A1 (en) Reinforcement elements for in-situ cast walls and method to excavate in situ cast walls
KR102149709B1 (en) Deformation prevention method of files for retaining wall of underground
JP3430376B2 (en) How to build an underground skeleton
KR101026112B1 (en) The construction method of underground structure using mega-structure
AU2016250441A1 (en) A method of constructing a column, a subterranean structure, and a structure made from the method
JP2000087679A (en) Underground structure, and its constructing method
JPH04185816A (en) Construction of beam in underground wall
JPH08291526A (en) Construction method for underground structure
JP4589506B2 (en) Pre-installation method of large steel columns for constructing buildings with superstructure structure by the reverse driving method
JP3171716B2 (en) Foundation construction method on inclined surface
JPS5921831A (en) Reverse placement work
JP2023147049A (en) Underground structure construction method