JPH10140244A - Production of grain oriented electrical steel sheet excellent in lower magnetic field iron loss characteristic in comparison with high magnetic field iron loss characteristic - Google Patents

Production of grain oriented electrical steel sheet excellent in lower magnetic field iron loss characteristic in comparison with high magnetic field iron loss characteristic

Info

Publication number
JPH10140244A
JPH10140244A JP8313098A JP31309896A JPH10140244A JP H10140244 A JPH10140244 A JP H10140244A JP 8313098 A JP8313098 A JP 8313098A JP 31309896 A JP31309896 A JP 31309896A JP H10140244 A JPH10140244 A JP H10140244A
Authority
JP
Japan
Prior art keywords
iron loss
annealing
rolling
temperature
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8313098A
Other languages
Japanese (ja)
Other versions
JP3326083B2 (en
Inventor
Tetsuo Toge
哲雄 峠
Michiro Komatsubara
道郎 小松原
Atsuto Honda
厚人 本田
Kenichi Sadahiro
健一 定廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP31309896A priority Critical patent/JP3326083B2/en
Priority to CNB971252890A priority patent/CN1153227C/en
Priority to US08/954,504 priority patent/US6039818A/en
Priority to KR1019970053853A priority patent/KR100440994B1/en
Priority to DE69705688T priority patent/DE69705688T2/en
Priority to EP97118278A priority patent/EP0837149B1/en
Publication of JPH10140244A publication Critical patent/JPH10140244A/en
Priority to US09/493,864 priority patent/US6331215B1/en
Application granted granted Critical
Publication of JP3326083B2 publication Critical patent/JP3326083B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the iron loss characteristic in a low magnetic field by controlling a slab heating temp., Al content and the combination of a hot-rolled sheet annealing temp. and decarburizing annealing temp. SOLUTION: In order to reduce the iron loss, secondary recrystallized grain is necessary to fine. For this purpose, the content of Al as an inhibitor component is made to in the range of 0.010-0.020wt.%. The steel adjusted with the component in such a way, is heated on the slab and this slab heating temp. is made to <=1250 deg.C. By this method, the good crystal grain distribution and the magnetic characteristics can be obtd. The slab in such a way, is hot-rolled, and successively, after applying the annealing to the hot-rolled sheet, cold-rolling is executed and further, the decarburize-annealing is executed. In order to fine the secondary recrystallized grain, the hot-rolled sheet annealing temp. x ( deg.C) and the decarburized annealing temp. y ( deg.C) are regulated so as to satisfy the following relations. 800<=x<=1000 and (-x/2)+1200<=y<=(-x/2)+1300.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は方向性電磁鋼板に係
り、中でも特に小型発電機の鉄芯やEIコアなどに使用
される高磁場鉄損特性に比較して低磁場鉄損特性に優れ
た特性を要求される方向性電磁鋼板の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented electrical steel sheet, and more particularly to a grain-oriented electrical steel sheet having a low magnetic field iron loss characteristic superior to a high magnetic field iron loss characteristic used for an iron core or an EI core of a small generator. The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet requiring characteristics.

【0002】[0002]

【従来の技術】方向性電磁鋼板は主として変圧器その他
の電気機器の鉄芯材料として使用される。この場合にお
いて、方向性電磁鋼板に要求される特性としては、一般
に50Hzの周波数で1.7Tに磁化させた場合の損失で
あるW17/50(W/kg)で表わされる鉄損が低い
ことが重要である。そのため、W17/50を低減する
ための研究が多くなされ、ヒステリシス損を抑えるため
に、製品板の結晶方位を磁化容易軸〈001〉が圧延方
向に揃った{110}〈001〉方位に極力集積させる
技術が開示されてきた。
2. Description of the Related Art Grain-oriented electrical steel sheets are mainly used as iron core materials for transformers and other electrical equipment. In this case, a characteristic required for the grain-oriented electrical steel sheet is that iron loss represented by W17 / 50 (W / kg), which is a loss when magnetized to 1.7 T at a frequency of 50 Hz, is generally low. is important. Therefore, much research has been conducted to reduce W17 / 50, and in order to suppress the hysteresis loss, the crystal orientation of the product sheet is integrated as much as possible in the {110} <001> orientation where the easy magnetization axis <001> is aligned with the rolling direction. Techniques have been disclosed.

【0003】方向性電磁鋼板の一般的な製造方法として
は、厚さ100〜300mmのスラブを高温に加熱後熱
延し、次いでこの熱延板を1回または中間焼鈍をはさむ
2回以上の冷間圧延によって最終板厚とし、脱炭焼鈍
後、焼鈍分離剤を塗布してから二次再結晶および純化を
目的として最終仕上焼鈍を行うという複雑な工程がとら
れており、最終仕上焼鈍時の二次再結晶によって{11
0}〈001〉方位の結晶粒を成長させている。
[0003] As a general method of manufacturing a grain-oriented electrical steel sheet, a slab having a thickness of 100 to 300 mm is heated to a high temperature and then hot-rolled, and then the hot-rolled sheet is subjected to one or two or more cold treatments including intermediate annealing. The final thickness by cold rolling, after decarburizing annealing, a complex process of performing a final finish annealing for the purpose of secondary recrystallization and purification after applying an annealing separating agent has been taken, during the final finish annealing $ 11 by secondary recrystallization
Crystal grains of 0 ° <001> orientation are grown.

【0004】このような二次再結晶を効果的に促進させ
るためには、まず一次再結晶の成長を抑制するインヒビ
ターと呼ばれる分散相を、均一かつ適正なサイズに分散
させることが重要である。かかるインヒビターとして代
表的なものは、MnS、MnSe、AlN、及びVNの
ような硫化物、Se化合物や窒化物等で、鋼中への溶解
度が極めて小さいものが用いられている。
[0004] In order to effectively promote such secondary recrystallization, it is important to first disperse a dispersed phase called an inhibitor that suppresses the growth of primary recrystallization into a uniform and appropriate size. Representative examples of such inhibitors include sulfides such as MnS, MnSe, AlN, and VN, Se compounds, nitrides, and the like, which have extremely low solubility in steel.

【0005】また、上述の硫化物、Se化合物、窒化物
を主としたインヒビターの適正制御の方法として、従来
の工程では熱延前のスラブ加熱時にインヒビターを一旦
完全固溶させた後、熱延時に析出させる方法がとられて
きた。この場合インヒビターを十分固溶させるためのス
ラブ加熱温度は1400℃程度であり、普通鋼のスラブ
加熱温度に比べて約200℃も高く、かかる高温スラブ
加熱には以下のような欠点がある。 1)高温加熱を行うためにエネルギー原単位が高い。 2)溶融スケールが発生しやすく、またスラブ垂れが生
じやすい。 3)スラブ表層の過脱炭が生じる。
[0005] As a method for appropriately controlling the above-mentioned inhibitor mainly composed of sulfide, Se compound and nitride, in the conventional process, the inhibitor is once completely solid-dissolved during slab heating before hot rolling. Sometimes precipitation methods have been used. In this case, the slab heating temperature for sufficiently dissolving the inhibitor is about 1400 ° C., which is about 200 ° C. higher than the slab heating temperature of ordinary steel. Such high-temperature slab heating has the following disadvantages. 1) The unit energy consumption is high due to high-temperature heating. 2) Melt scale is easily generated and slab dripping is easily generated. 3) Excessive decarburization of the slab surface layer occurs.

【0006】上記2)3)の問題点を解決するために、
方向性電磁鋼板専用の誘導加熱炉が考案されたが、エネ
ルギーコスト増大という問題点が残された。特に、近年
のエネルギー危機に伴い、省エネルギー化が焦眉の急と
なり、そのためスラブ加熱温度の低温化を実現するため
にこれまで多くの研究者が多大な努力をしてきている。
In order to solve the above problems 2) and 3),
An induction heating furnace dedicated to grain-oriented electrical steel sheets was devised, but the problem of increased energy costs remained. In particular, with the recent energy crisis, energy saving has become an urgent issue, and many researchers have made great efforts to achieve a lower slab heating temperature.

【0007】例えば、特公昭54−24685号公報で
はAs、Bi、Sb等の粒界偏析元素を鋼中に含有し、
インヒビターとして利用することによってスラブ加熱温
度を1050〜1350℃の範囲にする方法が開示され
た。また、特開昭57−158332号公報ではMn含
有量を下げ、Mn/Sの比率を2.5以下にすることに
よりスラブ加熱温度を低温化し、さらにCuの添加によ
り二次再結晶を安定化する技術が開示された。特開昭5
7−89433号公報ではMnに加えてS、Se、S
b、Bi、Pb、B等の元素を加え、これにスラブの柱
状晶率と二次冷延圧下率を組み合わせることにより11
00〜1250℃とスラブ加熱温度の低温化を実現して
いる。しかしながら、これらは鋼中への溶解度が極めて
小さいAlNをインヒビターとして利用しない方針の技
術であるため、インヒビターの抑止力が弱く、磁気特性
が今一歩悪かったり、研究室規模の技術に留まるという
問題点があった。
For example, in Japanese Patent Publication No. 54-24687, steel contains grain boundary segregation elements such as As, Bi, and Sb.
A method has been disclosed in which the slab heating temperature is adjusted to a range of 1050 to 1350 ° C. by using it as an inhibitor. In Japanese Patent Application Laid-Open No. 57-158332, the slab heating temperature is lowered by lowering the Mn content and the ratio of Mn / S to 2.5 or less, and the addition of Cu stabilizes the secondary recrystallization. A technique for doing so has been disclosed. JP 5
JP-A-7-89433 discloses that in addition to Mn, S, Se, S
b, Bi, Pb, B, and other elements, and adding the columnar crystal ratio of the slab and the secondary cold rolling reduction to 11
A lower slab heating temperature of 00 to 1250 ° C. is realized. However, these are technologies that do not use AlN, which has a very low solubility in steel, as an inhibitor. Therefore, the inhibitory power of the inhibitor is weak, the magnetic properties are now one step worse, or the technology is limited to laboratory-scale technology. was there.

【0008】特開昭59−190324号公報では一次
再結晶焼鈍時にパルス焼鈍を施すという新規な技術が開
示されたが、これも研究室規模の製造手段に留まってい
る。特開昭59−56522号公報では、Mnを0.0
8〜0.45%、Sを0.007%以下にすることによ
りスラブ加熱を低温化する技術が開示され、さらに特開
昭59−190325号公報ではこれにCrを添加する
ことにより二次再結晶の安定化を図る技術が開示され
た。これらは、S量を下げてスラブ加熱時のMnSの固
溶を図るのが特徴である。しかし、これらの技術による
ときは重量の大きなコイルでは幅方向や長手方向に磁気
特性のばらつきが生じるという問題点があった。
Japanese Unexamined Patent Publication (Kokai) No. 59-190324 discloses a novel technique of performing pulse annealing at the time of primary recrystallization annealing, but this is also limited to a laboratory scale manufacturing means. In JP-A-59-56522, Mn is set to 0.0
A technique for lowering the slab heating temperature by reducing the S content to 8 to 0.45% and the S content to 0.007% or less is disclosed. Further, Japanese Patent Application Laid-Open No. 59-190325 discloses a secondary recycling method in which Cr is added. Techniques for stabilizing crystals have been disclosed. These are characterized by lowering the amount of S to achieve solid solution of MnS during slab heating. However, according to these techniques, there is a problem in that a coil having a large weight causes variations in magnetic characteristics in the width direction and the longitudinal direction.

【0009】特開昭57−207114号公報では組成
の極低炭素化(C:0.002〜0.010%)とスラ
ブ加熱温度の低温化を組み合わさせる技術が開示され
た。この技術はスラブ加熱温度が低い場合には凝固から
熱延までの間にオーステナイト相を経由しない方が後の
二次再結晶に有利であるという思想に基づくものである
が、C量が極端に低いことは、冷延時の破断防止にも有
利であるが、二次再結晶を安定化させるために、脱炭焼
鈍時に窒化することが必要である。
Japanese Patent Application Laid-Open No. 57-207114 discloses a technique that combines a very low carbon composition (C: 0.002 to 0.010%) and a low slab heating temperature. This technique is based on the idea that, when the slab heating temperature is low, it is more advantageous not to pass through the austenite phase between solidification and hot rolling in subsequent secondary recrystallization, but the amount of C is extremely high. Although low is also advantageous for preventing breakage during cold rolling, it is necessary to perform nitriding during decarburization annealing in order to stabilize secondary recrystallization.

【0010】この技術を受けて、途中窒化を前提とした
技術開発が多く行われた。すなわち、特開昭62−70
521号公報では仕上げ焼鈍条件を特定し、仕上げ焼鈍
時に途中窒化することで低温スラブ加熱を可能にする技
術が開示され、さらに、特開昭62−40315号公報
ではスラブ加熱時に固溶しえない量のAl、Nを含有
し、途中窒化によってインヒビターを適正状態に制御す
る方法が開示された。しかし、脱炭焼鈍時に途中窒化を
施す方法は、新たな設備を要し、コストが増大するとい
う問題点があり、また、仕上げ焼鈍中の窒化は制御が困
難であるという問題点がある。
[0010] In response to this technology, many technical developments have been made on the premise of nitriding. That is, JP-A-62-70
Japanese Patent Application Laid-Open No. 521 discloses a technique for specifying low-temperature slab heating by specifying the conditions of the final annealing and nitriding in the middle of the final annealing. Further, Japanese Patent Application Laid-Open No. 62-40315 does not dissolve the slab at the time of slab heating. A method has been disclosed that contains amounts of Al and N and controls the inhibitor to an appropriate state by nitridation during the process. However, the method of performing nitriding in the middle of decarburizing annealing requires new equipment and increases costs, and also has a problem that nitriding during finish annealing is difficult to control.

【0011】一方、近年、材料の鉄損特性と実機の鉄損
特性が必ずしも一致しないということが問題視されるよ
うになった。確かに、大型変圧器の鉄芯や巻鉄芯の鉄損
はW17/50の値が低い材料が実機の特性も優れてい
る結果を得ている。しかし、小型発電機の鉄芯や小型変
圧器であるEIコアなどでは鋼板内部を流れる磁束が複
雑なために材料のW17/50の値と実機の特性が一致
しない問題点が生じた。近年エネルギー危機の進行とと
もに変圧器中で無駄に失うエネルギーの低減が要求さ
れ、実機の鉄損を低減する努力がなされているなか、材
料のW17/50では正当な材料評価がなされておら
ず、材料の選定にしばしば困難をきたしているのが現状
である。
On the other hand, in recent years, it has become a problem that the iron loss characteristics of materials do not always match the iron loss characteristics of actual machines. Certainly, the iron loss of the iron core and the wound iron core of the large transformer is such that a material having a low value of W17 / 50 has excellent characteristics of the actual machine. However, in the case of an iron core of a small generator or an EI core which is a small transformer, there is a problem that the value of W17 / 50 of the material does not match the characteristics of the actual machine due to the complicated magnetic flux flowing inside the steel sheet. In recent years, along with the progress of the energy crisis, reduction of energy wasted in transformers has been required, and efforts have been made to reduce iron loss in actual machines. At present, it is often difficult to select materials.

【0012】一般に材料の鉄損を低減するには、渦電流
損を低下させるため有効なSiを含有させ電気抵抗を高
める方法、鋼板板厚を低減する方法、結晶粒径を低減す
る方法、さらに結晶方位の{110}〈001〉への集
積度を高めて磁束密度を向上させる方法が知られてい
る。このうち磁束密度を向上させる方法はこれまでよく
研究されており、例えば特公昭51−2290号公報に
は鋼中インヒビター成分としてAlを添加し1300℃
以上の高温でスラブ加熱し、熱間圧延仕上げ圧延を高温
短時間で行い、980℃以上の熱延終了温度で熱間圧延
を行う技術が、また、特公昭46−23820号公報に
は鋼中にAlを添加し、熱間圧延後1000〜1200
℃の高温の熱延板焼鈍とそれに伴う急冷処理によって微
細なAlNを析出させ、80〜95%の高圧下を施す技
術が開示され、これによってB10にして1.95Tの
極めて高い磁束密度と、低い鉄損の材料を得ている。
In general, in order to reduce iron loss of a material, a method of increasing electric resistance by containing Si effective to reduce eddy current loss, a method of reducing the thickness of a steel sheet, a method of reducing a crystal grain size, There is known a method of improving the magnetic flux density by increasing the degree of integration of the crystal orientation into {110} <001>. Among them, a method for improving the magnetic flux density has been well studied. For example, Japanese Patent Publication No. 51-2290 discloses a method of adding Al as an inhibitor component in steel at 1300 ° C.
A technique of performing slab heating at the above high temperature, performing hot rolling finish rolling in a short time at a high temperature, and performing hot rolling at a hot rolling end temperature of 980 ° C. or more is disclosed in Japanese Patent Publication No. 46-23820. Al after addition to hot rolling after 1000 to 1200
A technique is disclosed in which fine AlN is precipitated by high-temperature hot-rolled sheet annealing at a high temperature of ℃ and quenching accompanying the same, and a high pressure of 80 to 95% is applied, whereby an extremely high magnetic flux density of 1.95 T for B10 is obtained. A material with low iron loss has been obtained.

【0013】しかしながら、W17/50の低減の際に
従来通常追及されてきたかかる結晶方位を揃え磁束密度
を向上させる方法では、これらEIコアや小型発電機の
鉄芯の鉄損特性を向上させるのには有効であるといえな
かった。その理由は、EIコアなどは、鋼板内部を流れ
る磁束が複雑なためである。
However, in the method of aligning crystal orientations and improving the magnetic flux density, which has conventionally been pursued when W17 / 50 is reduced, the iron loss characteristics of the EI core and the iron core of the small generator are improved. Was not effective. The reason is that the magnetic flux flowing inside the steel plate is complicated in the EI core and the like.

【0014】磁束密度を向上させる方法に代わる鉄損低
減手段としてSi含有量を増加させる手法、鋼板板厚を
低減する手法、結晶粒径を低減する手法を検討したが、
このうちSi含有量を増加させる手法についてはSiを
過度に含有させると鋼板の圧延性や加工性を劣化させる
ので好ましくなく、また鋼板板厚を低減する方法も極端
な製造コスト増大をもたらすので限界があった。
As a means for reducing iron loss, a method of increasing the Si content, a method of reducing the thickness of the steel sheet, and a method of reducing the crystal grain size have been examined as alternatives to the method of improving the magnetic flux density.
Among them, the method of increasing the Si content is not preferable because excessive addition of Si deteriorates the rolling property and workability of the steel sheet, and the method of reducing the thickness of the steel sheet also causes an extreme increase in manufacturing cost. was there.

【0015】これとは別に、実機の小型発電機の鉄芯の
鉄損やEIコアの鉄損について材料評価のよりよい指標
を検討したところ、表1に示されるように高磁場での鉄
損特性に比較して低磁場での鉄損特性が良好なこと、即
ち、W10/50(磁束密度1.0Tにおける鉄損:W
/kg)のW17/50に対する比と実機の特性とがよ
い相関を有することがわかった。この理由は実機の場合
鋼板内を流れる磁束の分布が不均一であるため低磁場に
おける鉄損がより重要で、高磁場鉄損の方は、むしろ逆
に高い方が実機全体における磁束の流れがより均一化す
る方向に改善され、結果的に実機の鉄損を低減すること
になるためと思われる。
Separately from this, a better index for material evaluation was examined for iron loss of the iron core of the actual small generator and iron loss of the EI core. Iron loss characteristics in a low magnetic field as compared with the characteristics, that is, W10 / 50 (iron loss at a magnetic flux density of 1.0 T: W
/ Kg) with respect to W17 / 50 and the characteristics of the actual machine had a good correlation. The reason for this is that in the case of the actual machine, the distribution of magnetic flux flowing in the steel sheet is not uniform, so iron loss in a low magnetic field is more important. It is considered that the iron loss of the actual machine is reduced as a result of improvement in the direction of more uniformity.

【0016】[0016]

【表1】 [Table 1]

【0017】かかる良好な実機特性を得た材料aやbに
ついて調査したところ、結晶組織が細粒となっているこ
とがわかった。従来より鉄損低減に結晶粒径が小さい方
が有利であるという知識はあっても、すべてが材料のW
17/50低減に関する研究であって、EIコアなどの
鉄損を低減するといった実機特性向上の観点、即ちW1
7/50を増加しW10/50やW10/50のW17
/50に対する比を低減するといった観点から、結晶粒
径を如何なるサイズと分布に制御すべきかといった研究
は皆無であり、適正な結晶粒の分布は明確とはなってい
なかった。
Investigations were made on the materials a and b having such good actual machine characteristics, and it was found that the crystal structure was fine. Even though there is a knowledge that smaller crystal grain size is more advantageous for reducing iron loss,
This is a study on reduction of 17/50, and is aimed at improving the characteristics of actual equipment such as reducing iron loss of EI cores, that is, W1.
W10 / 50 and W17 of W10 / 50 increased by 7/50
From the viewpoint of reducing the ratio to / 50, there is no study on what size and distribution the crystal grain size should be controlled, and the proper distribution of the crystal grains has not been clarified.

【0018】ちなみに従来から広く知られている方向性
電磁鋼板の結晶粒径の制御の技術は、例えば、特公昭5
9−20745号公報に平均結晶粒径として1〜6mm
とする薄方向性電磁鋼板が提案されており、また、特公
昭62−56923号公報には2mm以下の結晶粒の個
数比率を15〜70%とし鉄損を低減する手法が開示さ
れている。さらに、特公平6−80172号公報には
1.0mm以上、2.5mm以下の微細粒を混粒状に存
在させることにより鉄損を低減する技術が開示されてい
る。しかし、これらはいずれも磁束密度1.7Tの高磁
場鉄損の値W17/50を目的としたものであり、低磁
場領域での鉄損について検討されたものではない。
Incidentally, a technique for controlling the crystal grain size of grain-oriented electrical steel sheets, which has been widely known, is disclosed in, for example,
No. 9-20745 discloses an average crystal grain size of 1 to 6 mm.
And Japanese Patent Publication No. Sho 62-56923 discloses a method for reducing the iron loss by setting the number ratio of crystal grains of 2 mm or less to 15 to 70%. Furthermore, Japanese Patent Publication No. 6-80172 discloses a technique for reducing iron loss by allowing fine grains of 1.0 mm or more and 2.5 mm or less to exist in a mixed state. However, these are all aimed at the value W17 / 50 of the high magnetic field iron loss of the magnetic flux density of 1.7 T, and have not been studied about the iron loss in the low magnetic field region.

【0019】以上を要約すると、従来の技術では、 1)結晶方位の{110}〈001〉への集極度を高
め、磁束密度を向上させるためには、1400℃程度の
高温スラブ加熱を行うか、途中窒化が必要である。 2)しかし、結晶方位の{110}〈001〉への集積
度を極端に高める方法は、EIコアや小型発電機の実機
の鉄芯の鉄損特性の向上には有効でない。という問題点
があったのである。
To summarize the above, in the prior art, 1) In order to increase the degree of collection of the crystal orientation to {110} <001> and improve the magnetic flux density, it is necessary to perform high-temperature slab heating at about 1400 ° C. In addition, nitridation is required on the way. 2) However, the method of extremely increasing the degree of integration of the crystal orientation into {110} <001> is not effective in improving the iron loss characteristics of the EI core and the iron core of the actual machine of the small generator. There was a problem.

【0020】[0020]

【発明が解決しようとする課題】従って本発明が解決し
ようとする課題は、EIコア等に適した高磁場鉄損特性
に比較して低磁場鉄損特性に優れた方向性電磁鋼板の製
造方法を提供することにある。また、スラブ加熱を普通
鋼並の温度で行い、特に積極的な途中窒化を施さずに、
EIコアや小形発電機などに適した方向性電磁鋼板を製
造する方法を提供することにある。いいかえれば、低磁
場鉄損特性に優れた方向性電磁鋼板をエネルギー消費が
少なく、かつ工程を複雑化せずに、生産する技術を提供
しようとするものである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for producing a grain-oriented electrical steel sheet which is more excellent in low-field iron loss characteristics than high-field iron loss characteristics suitable for an EI core or the like. Is to provide. In addition, slab heating is performed at the same temperature as ordinary steel, and especially without aggressive nitriding,
An object of the present invention is to provide a method for manufacturing a grain-oriented electrical steel sheet suitable for an EI core, a small generator, and the like. In other words, it is an object of the present invention to provide a technology for producing a grain-oriented electrical steel sheet having excellent low-field iron loss characteristics with low energy consumption and without complicating the process.

【0021】[0021]

【課題を解決するための手段】本発明の研究者らは鋭意
研究の末、W17/50を増加し、かつW10/50を
低減する、即ちW10/50のW17/50に対する比
の値を低減するためには、スラブ加熱温度を低下し、イ
ンヒビターとしてのAl含有量を制御し、熱延板焼鈍温
度と脱炭焼鈍温度を組み合わせて制御すればよいことを
新規に見い出し本発明を完成させた。具体的には、ま
ず、重量%でSi:2.0〜4.5%、C:0.02〜
0.07%、Mn:0.03〜2.5%、を含有し、イ
ンヒビター成分としてAl:0.010〜0.020
%、Sb:0.0010〜0.080%、を含有する鋼
スラブを加熱後、熱間圧延をし、次いで熱延板焼鈍を施
した後、冷間圧延により最終板厚とした後、脱炭焼鈍、
さらに焼鈍分離材を塗布した後に仕上焼鈍を施す方向性
電磁鋼板の製造方法において、鋼スラブの加熱温度を1
250℃以下とすること、熱延板焼鈍温度x℃と脱炭焼
鈍温度y℃を 800≦x≦1000、かつ (−x/2)+1200≦y≦(−x/2)+1300 とすることおよび冷間圧延をタンデム圧延機により圧下
率80%以上、95%以下で行うこととすることを特徴
とする高磁場鉄損特性に比較して低磁場鉄損特性に優れ
た方向性電磁鋼板の製造方法を提案する。
SUMMARY OF THE INVENTION The inventors of the present invention have, after intensive studies, increased W17 / 50 and reduced W10 / 50, that is, reduced the value of the ratio of W10 / 50 to W17 / 50. In order to do so, it was newly found that the slab heating temperature should be reduced, the Al content as an inhibitor should be controlled, and the hot-rolled sheet annealing temperature and the decarburization annealing temperature should be controlled in combination. . Specifically, first, Si: 2.0 to 4.5% and C: 0.02 to 2.0% by weight.
0.07%, Mn: 0.03 to 2.5%, and Al: 0.010 to 0.020 as an inhibitor component
%, Sb: 0.0010 to 0.080%, heated, hot-rolled, then hot-rolled, annealed, cold-rolled to a final thickness, and then removed. Charcoal annealing,
Further, in the method for producing a grain-oriented electrical steel sheet in which finish annealing is performed after applying an annealing separator, the heating temperature of the steel slab is set to 1
250 ° C. or lower, hot rolled sheet annealing temperature x ° C. and decarburization annealing temperature y ° C. are set to 800 ≦ x ≦ 1000 and (−x / 2) + 1200 ≦ y ≦ (−x / 2) +1300, and Manufacture of grain-oriented electrical steel sheets having excellent low-field iron loss characteristics compared to high-field iron loss characteristics, wherein cold rolling is performed by a tandem rolling mill at a rolling reduction of 80% or more and 95% or less. Suggest a method.

【0022】さらにインヒビター成分として、Mo、B
i、Te、Nb、Sn、Crを含有せしめ、また、鋼ス
ラブのAl及びNの含有量を 1.67≦Al(wt%)/N(wt%)≦2.18 とするものである。さらに、冷間圧延をタンデム圧延機
で圧下率80%以上、95%以下、かつ温度90℃以
上、好ましくは120℃以上、180℃以下で行うこと
によりより本発明の目的に添った方向性電磁鋼板の製造
を可能にするものである。
Further, Mo, B
i, Te, Nb, Sn, and Cr are contained, and the contents of Al and N in the steel slab are set to 1.67 ≦ Al (wt%) / N (wt%) ≦ 2.18. Further, the cold rolling is performed by a tandem rolling mill at a rolling reduction of 80% or more and 95% or less and at a temperature of 90 ° C or more, preferably 120 ° C or more and 180 ° C or less, so that the directional electromagnetic processing according to the present invention can be achieved. It enables the production of steel sheets.

【0023】[0023]

【発明の実施の態様】以下、上記発明を完成するに至っ
た諸実験について述べ、併せて本発明の実施の態様を詳
細に説明する。 (実験1)予備実験 表2に示される鋼塊記号VIとXIのスラブを各2本ず
つ用意し、1本は1200℃で、他の1本は1400℃
で加熱後、熱間圧延し、2.0mmの熱延コイルとし
た。その後これらのコイルは全て2分割し、一方は90
0℃で60秒間の、他方は1050℃で60秒間の熱延
板焼鈍を施した。さらに、これらのコイルは酸洗後80
℃の温度でタンデム圧延機によって0.34mmの厚み
にした。その後、脱脂処理を行い830℃で2分間の脱
炭焼鈍を施し、焼鈍分離剤をコイル表面に塗布し、昇温
時600℃までN2単独の雰囲気、その後1050℃ま
では25%N2と75%H2の混合雰囲気、以後H2単独
雰囲気で1200℃まで昇温後5時間保持する最終仕上
げ焼鈍を施し、その後未反応分離剤を除去した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, various experiments leading to the completion of the present invention will be described, and embodiments of the present invention will be described in detail. (Experiment 1) Preliminary Experiment Two slabs of ingot symbols VI and XI shown in Table 2 were prepared, one at 1200 ° C and the other at 1400 ° C.
, And hot-rolled to form a 2.0 mm hot-rolled coil. Then these coils were all split into two parts, one of which was 90
The hot rolled sheet was annealed at 0 ° C. for 60 seconds and the other at 1050 ° C. for 60 seconds. In addition, these coils are
The thickness was reduced to 0.34 mm by a tandem rolling mill at a temperature of ° C. Thereafter, a degreasing treatment is performed, decarburizing annealing is performed at 830 ° C. for 2 minutes, an annealing separating agent is applied to the coil surface, and the temperature is raised to 600 ° C. in an atmosphere of N 2 alone, and then to 1050 ° C., 25% N 2 . A final finishing annealing was performed in a mixed atmosphere of 75% H 2 and thereafter in a single atmosphere of H 2, which was heated to 1200 ° C. and maintained for 5 hours, after which the unreacted separating agent was removed.

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】これらの鋼板をマクロエッチし二次粒の形
状を観察した。これらのコイルはさらに40%のコロイ
ダリシリカを含有するリン酸マグネシウムを主成分とす
る絶縁コーティングを塗布し800℃で焼き付け製品と
した。各製品より圧延方向に沿ってエプスタインサイズ
の試験片を切り出し800℃で3時間の歪取焼鈍を施し
た後、1.0Tおよび1.7Tの磁束密度における鉄損
の値、W10/50、W17/50および磁束密度B8
を測定した。これらの値を表3にまとめて示す。さら
に、各製品からEIコア用の鉄芯を打抜き、歪取焼鈍を
施し、積み加工、銅線の巻加工などによってEIコアを
作製した。これらのコアの鉄損特性についても、表3に
併記する。
These steel sheets were macro-etched and the shape of secondary grains was observed. These coils were further coated with an insulating coating mainly composed of magnesium phosphate containing 40% colloidal silica and baked at 800 ° C. to obtain products. A specimen of Epstein size was cut out from each product along the rolling direction and subjected to strain relief annealing at 800 ° C. for 3 hours, and then the values of iron loss at 1.0 T and 1.7 T of magnetic flux density, W10 / 50, W17 / 50 and magnetic flux density B8
Was measured. These values are summarized in Table 3. Further, an EI core was manufactured by punching an iron core for the EI core from each product, performing strain relief annealing, stacking, winding a copper wire, and the like. Table 3 also shows the iron loss characteristics of these cores.

【0027】表3より、W10/50のW17/50に
対する比が小さく、EIコアの鉄損が良好であったの
は、試料のみであった。試料の板を仕上げ焼鈍後、
マクロエッチすると二次再結晶の不良部がなく、かつ、
粒径が7mmを超える粗大粒もほとんどなかった。Al
量が0.025wt%の鋼記号XIではスラブ加熱12
00℃では、二次再結晶不良となった(試料、参
照)。これは、熱延前にAlNがほとんど固溶しなかっ
たためと考えられる。一方、スラブ加熱温度1400℃
の試料、では十分二次再結晶し、B8、W17/5
0ともに良好な値を示したが、EIコアの鉄損は大きく
なった。仕上げ焼鈍後のマクロ組織をみると、試料、
では二次粒が20mm以上となり非常に粗大化してい
た。
As shown in Table 3, the ratio of W10 / 50 to W17 / 50 was small, and only the sample had good iron loss of the EI core. After finishing annealing the sample plate,
There is no defective part of secondary recrystallization by macro etching, and
There were almost no coarse particles having a particle size exceeding 7 mm. Al
In the case of steel symbol XI having an amount of 0.025 wt%, slab heating 12
At 00 ° C., secondary recrystallization failure occurred (sample, see). This is presumably because AlN hardly dissolved in the solution before hot rolling. On the other hand, slab heating temperature 1400 ° C
Sample, the secondary recrystallization was sufficient, and B8, W17 / 5
0 showed good values, but the iron loss of the EI core was large. Looking at the macrostructure after finish annealing, the sample,
In this case, the secondary grains became 20 mm or more and were very coarse.

【0028】試料では、一部に二次再結晶不良が生
じ、二次再結晶した粒は、粒径が10mm程度になって
いた。試料、では、二次再結晶不良部はなく、二次
粒の粒径は10〜15mm程度であった。試料のみ
が、EIコアの鉄損が良好となった理由については、A
l量を減らし、スラブ加熱温度を下げた方が、インヒビ
ター抑制力が適正化されたためと考えられる。換言すれ
ば、スラブ加熱温度を高くし、インヒビターとしてAl
量を増加させる方法は、従来からB8を高め、W17/
50を低める方法としてとられてきた方法であるが、E
Iコアの鉄損を低めるという観点では、二次粒が大きす
ぎるために好ましくない。つまり、インヒビターの抑制
力が強すぎると、(110)[001]方位に極めて近
い少数の粒のみが二次再結晶するために、二次粒径が粗
大化しすぎるのである。
In the sample, secondary recrystallization failure occurred partially, and the size of the secondary recrystallized grains was about 10 mm. In the sample, there was no defective secondary recrystallization, and the particle size of the secondary particles was about 10 to 15 mm. As for the reason that the iron loss of the EI core was good only for the sample, A
It is considered that the lowering of the amount of l and the lowering of the slab heating temperature made the inhibitor inhibitory force more appropriate. In other words, the slab heating temperature is increased and Al
The method of increasing the amount is to increase B8 conventionally and to increase W17 /
A method that has been adopted as a method of lowering 50 is
From the viewpoint of reducing the iron loss of the I core, the secondary grains are too large, which is not preferable. That is, if the inhibitory force of the inhibitor is too strong, only a small number of grains very close to the (110) [001] orientation undergo secondary recrystallization, so that the secondary particle size becomes too coarse.

【0029】なお、本予備実験の結果から熱延板焼鈍温
度については、高温にする程、一次再結晶後の粒径が大
きくなることがわかった。この一次粒径は、二次再結晶
時の粒成長の駆動力に影響を及ぼすが、実験から低温ス
ラブ加熱かつ低Alの場合には、適正な二次再結晶を生
じさせるための熱延板焼鈍温度は比較的低温であること
がわかった。一次粒径を変化させる因子として、熱延板
焼鈍温度の他に、脱炭焼鈍温度が考えられる。そこで、
次に脱炭焼鈍温度の影響と熱延板焼鈍温度の影響を次の
実験2により検討した。
From the results of this preliminary experiment, it was found that the higher the temperature of the hot-rolled sheet annealing, the larger the grain size after primary recrystallization. The primary particle size affects the driving force for grain growth during secondary recrystallization. However, from experiments, in the case of low-temperature slab heating and low Al, a hot-rolled sheet for producing appropriate secondary recrystallization is used. The annealing temperature was found to be relatively low. As a factor for changing the primary particle size, a decarburizing annealing temperature is considered in addition to the hot-rolled sheet annealing temperature. Therefore,
Next, the influence of the decarburizing annealing temperature and the effect of the hot-rolled sheet annealing temperature were examined by the following experiment 2.

【0030】(実験2)熱延板焼鈍温度と脱炭焼鈍温度
の影響 表2に示される鋼塊記号VIのスラブを1200℃で加
熱後、熱間圧延して、2.4mmの熱延コイルとした。
これらの熱延コイルに60秒間の熱延板焼鈍を施し、酸
洗した後、100〜160℃の温度でタンデム圧延機に
よって0.34mmの厚みに温間圧延した。その後、脱
脂処理を行ない120秒間の脱炭焼鈍を施し、焼鈍分離
剤を塗布し昇温時500℃までN2単独雰囲気、その後
850℃までは25%N2と75%H2の混合雰囲気、以
後H2単独雰囲気で1180℃まで昇温後保持する最終
仕上げ焼鈍を施し、その後未反応分離剤を除去した。こ
れらのコイルはさらに40%のコロイダルシリカを含有
するリン酸マグネシウムを主成分とする絶縁コーティン
グを塗布し800℃で焼き付け製品とした。さらに、各
製品からEIコア用の鉄芯を打抜き、歪取焼鈍を施し、
積み加工、銅線の巻加工などを行ってEIコアを作製し
た。
(Experiment 2) Influence of hot rolled sheet annealing temperature and decarburizing annealing temperature A slab of steel ingot symbol VI shown in Table 2 was heated at 1200 ° C., and then hot-rolled to obtain a 2.4 mm hot-rolled coil. And
These hot-rolled coils were subjected to hot-rolled sheet annealing for 60 seconds, pickled, and then hot-rolled to a thickness of 0.34 mm by a tandem rolling mill at a temperature of 100 to 160 ° C. Thereafter, a degreasing treatment is performed, decarburization annealing is performed for 120 seconds, an annealing separator is applied, and the temperature is raised to 500 ° C. in an atmosphere of N 2 alone, up to 850 ° C., a mixed atmosphere of 25% N 2 and 75% H 2 , Thereafter, final finishing annealing was performed in which the temperature was raised to 1180 ° C. in an atmosphere of H 2 alone, and then the unreacted separating agent was removed. These coils were further coated with an insulating coating mainly composed of magnesium phosphate containing 40% of colloidal silica and baked at 800 ° C. to obtain products. In addition, punching iron cores for EI cores from each product, performing strain relief annealing,
The EI core was manufactured by stacking, winding a copper wire, and the like.

【0031】熱延板焼鈍温度を750℃〜1050℃、
脱炭焼鈍温度を690℃〜900℃で変化させ、EIコ
アの鉄損W17/50との関係を調査した結果を図1に
示す。図1より、EIコアの鉄損値が良好である範囲
は、 800≦x≦1000、かつ、 (−x/2)+1200≦y≦(−x/2)+1300 x:熱延板焼鈍温度(℃)、 y:脱炭焼鈍温度(℃) であった。
The hot-rolled sheet annealing temperature is 750 ° C. to 1050 ° C.
FIG. 1 shows the results obtained by changing the decarburization annealing temperature from 690 ° C. to 900 ° C. and examining the relationship with the iron loss W17 / 50 of the EI core. From FIG. 1, the range in which the iron loss value of the EI core is good is 800 ≦ x ≦ 1000 and (−x / 2) + 1200 ≦ y ≦ (−x / 2) +1300 x: hot rolled sheet annealing temperature ( ° C), y: decarburizing annealing temperature (° C).

【0032】熱延板焼鈍温度、脱炭焼鈍温度ともに、高
温である程、一次再結晶後の粒径が大きくなる。EIコ
アの鉄損値を低減させるためには、二次再結晶粒を細粒
化することが必要と考えられるが、二次粒細粒化のため
には一次粒の適正制御が必要である。その一次粒適正制
御のためには、熱延板焼鈍温度x、脱炭焼鈍温度yは上
述の不等式の範囲内であればよいということが、実験2
からわかった。なお、上述の不等式を満たす範囲は、通
常の方向性電磁鋼板の製造方法と比べると、低温域であ
ることが特徴である。
The higher the temperature of both the hot-rolled sheet annealing temperature and the decarburization annealing temperature, the larger the grain size after primary recrystallization. In order to reduce the iron loss value of the EI core, it is considered necessary to make the secondary recrystallized grains finer. However, in order to make the secondary grains finer, it is necessary to appropriately control the primary grains. . Experiment 2 shows that the hot rolled sheet annealing temperature x and the decarburization annealing temperature y should be within the above-mentioned inequalities for proper control of the primary grains.
I knew from The range that satisfies the above inequality is characterized in that it is in a low temperature range as compared with a normal method for manufacturing a grain-oriented electrical steel sheet.

【0033】(実験3)冷間圧延の圧延方法の検討 表2に示される鋼記号VIのスラブを4本、1150℃
で加熱後熱間圧延し、2.4mmの熱延コイルとした。
これらの熱延コイルは900℃で30秒間の熱延板焼鈍
を行い、酸洗後、冷間圧延により0.34mmの厚みに
圧延した。このとき、第1のコイルは120〜180℃
の温度でタンデム圧延機による温間圧延を施し、第2の
コイルは同じくタンデム圧延機によったが圧延クーラン
トを多量に鋼板表面に噴射し50〜80℃の鋼板温度の
圧延を施し、第3のコイルはリバース式の圧延機によっ
て圧延パス間において150〜220℃の温度での時効
処理を施し、第4のコイルは同じくリバース式の圧延機
によってクーラントを多量に流し、50〜80℃の温度
の圧延を施した。その後、各コイルは脱脂処理を行い8
00℃で2分間の脱炭焼鈍を施し、焼鈍分離剤をコイル
表面に塗布し、昇温時700℃までN2単独の雰囲気、
その後850℃までは25%N2と75%H2の混合雰囲
気、以後H2単独雰囲気で1180℃まで昇温後5時間
保持する最終仕上げ焼鈍を施し、その後未反応分離剤を
除去した。これらのコイルはさらに60%のコロイダル
シリカを含有するリン酸マグネシウムを主成分とする絶
縁コーティングを塗布し800℃で焼き付け製品とし
た。
(Experiment 3) Examination of rolling method of cold rolling Four slabs of steel symbol VI shown in Table 2 were set at 1150 ° C.
And then hot rolled to form a 2.4 mm hot rolled coil.
These hot-rolled coils were annealed at 900 ° C. for 30 seconds, pickled, and then cold-rolled to a thickness of 0.34 mm. At this time, the first coil is at 120 to 180 ° C.
The second coil was also subjected to warm rolling by a tandem rolling mill at a temperature of, and the second coil was similarly rolled at a steel sheet temperature of 50 to 80 ° C by spraying a large amount of rolling coolant onto the surface of the steel sheet using a tandem rolling mill. The coil of No. is subjected to aging treatment at a temperature of 150 to 220 ° C. between rolling passes by a reverse type rolling mill, and the fourth coil is similarly supplied with a large amount of coolant by a reverse type rolling mill, and is heated to a temperature of 50 to 80 ° C. Was rolled. After that, each coil is degreased to 8
Perform decarburization annealing at 00 ° C for 2 minutes, apply an annealing separating agent to the coil surface, and raise the temperature up to 700 ° C in an atmosphere of N 2 alone,
A mixed atmosphere of thereafter up to 850 ℃ 25% N 2 and 75% H 2, subjected to final finish annealing and holding for 5 hours after heating to 1180 ° C. in the subsequent H 2 alone atmosphere, and then remove unreacted separating agent. These coils were further coated with an insulating coating mainly composed of magnesium phosphate containing 60% of colloidal silica and baked at 800 ° C. to obtain products.

【0034】各製品より圧延方向に沿ってエプスタイン
サイズの試験片を切り出し800℃で3時間の歪取焼鈍
を施した後、1.0Tおよび1.7Tの磁束密度におけ
る鉄損の値W10/50、W17/50および磁束密度
B8を測定した。これらの値を表4にまとめて示す。さ
らに、各製品からEIコア用の鉄芯を打ち抜き、歪取焼
鈍を施し、積み加工、銅線の巻加工などを行ってEIコ
アを作製した。これらの鉄損特性についても表4に併記
する。
A test piece of Epstein size was cut out from each product along the rolling direction, subjected to strain relief annealing at 800 ° C. for 3 hours, and then the value of iron loss W10 / 50 at a magnetic flux density of 1.0T and 1.7T. , W17 / 50 and magnetic flux density B8 were measured. These values are summarized in Table 4. Further, an EI core was manufactured by punching out an iron core for the EI core from each product, performing strain relief annealing, stacking, winding a copper wire, and the like. Table 4 also shows these iron loss characteristics.

【0035】[0035]

【表4】 [Table 4]

【0036】表4に示されるように、タンデム圧延機を
用いて圧延を行った第1および第2のコイルにおいての
み高磁場での鉄損に対する比較として良好な低磁場鉄損
を有する製品が得られ、特に120〜180℃で温間圧
延を行った第1のコイルの実機特性が優れていた。
As shown in Table 4, a product having a good low-field iron loss as compared with the iron loss at a high magnetic field was obtained only in the first and second coils rolled using a tandem rolling mill. In particular, the actual characteristics of the first coil that was warm-rolled at 120 to 180 ° C. were excellent.

【0037】一般に温間圧延や時効処理は結晶の圧延変
形集合組織を変える働きがあり、圧延再結晶後の一次再
結晶組織中に二次再結晶の核となる(110)[00
1]方位の結晶粒の生成密度を高めることが知られてい
る。このためには特公昭54−13846号公報に開示
されているように、従来はゼンジマーミルでのリバース
式の圧延機による圧延パス間での時効処理によりCの拡
散を図るのが適切とされていた。
In general, warm rolling or aging has the function of changing the rolling deformation texture of the crystal, and becomes the core of secondary recrystallization in the primary recrystallization structure after rolling recrystallization (110) [00].
1) It is known to increase the generation density of crystal grains in the orientation. For this purpose, as disclosed in Japanese Patent Publication No. 54-13846, it has conventionally been considered appropriate to promote the diffusion of C by aging treatment between rolling passes by a reverse type rolling mill in a Sendzimir mill. .

【0038】しかしながら、本実験の結果に示されるよ
うに圧延パス間での時効処理は有効でなく、タンデム圧
延機による圧延が有効であった。両者の差異について考
察すると、前者では圧延時の歪速度が相対的に小さい、
また圧延パスの間に十分時間があり、その間に加工歪に
起因して発生した熱により必然的にCの転位への拡散現
象による静的時効が起きるのに対し、後者は圧延時の歪
速度が相対的に大きく、また圧延パス間の時間が極めて
短いため静的時効は起らず、圧延パス中、転位が付加さ
れつつ同時にCの転位への拡散による動的歪時効が起る
点にある。
However, as shown in the results of this experiment, aging treatment between rolling passes was not effective, and rolling by a tandem rolling mill was effective. Considering the difference between the two, in the former, the strain rate during rolling is relatively small,
Also, there is sufficient time between rolling passes, during which heat generated due to work strain inevitably causes static aging due to the diffusion phenomenon of C to dislocations, whereas the latter is the strain rate during rolling. Is relatively large, and the time between rolling passes is extremely short, so that static aging does not occur. During the rolling pass, dislocations are added and at the same time, dynamic strain aging due to diffusion of C into dislocations occurs. is there.

【0039】本実験の結果はタンデム圧延方式がリバー
ス圧延方式に優ること、およびタンデム温間圧延は低温
度のタンデム圧延に優ること、さらに、リバース圧延方
式ではパス間時効が有害なことを示している。したがっ
て、歪速度が大きいことおよび動的時効は有効に作用す
るが、静的時効は有害な作用を及ぼすことを示してい
る。このことより、本発明においてはタンデム圧延機で
の圧延を採用し、かつ圧延温度を90℃以上、好ましく
は120℃以上、180℃以下とすることが望ましい。
The results of this experiment show that the tandem rolling method is superior to the reverse rolling method, that the tandem warm rolling is superior to the low-temperature tandem rolling method, and that the aging between passes is harmful in the reverse rolling method. I have. Thus, high strain rates and dynamic aging are effective, whereas static aging has a detrimental effect. For this reason, in the present invention, it is desirable to adopt rolling in a tandem rolling mill and to set the rolling temperature to 90 ° C. or higher, preferably 120 ° C. or higher and 180 ° C. or lower.

【0040】(実験4)成分の再検討 実験1から、スラブのAl含有量を比較的少なくし、ス
ラブ加熱温度を低くすることが、EIコアの鉄損値の低
減に有効であることがわかった。Alは、AlNとして
インヒビターの働きをするので、Nの含有量について再
検討した。
(Experiment 4) Reexamination of Components From Experiment 1, it was found that reducing the Al content of the slab and lowering the slab heating temperature was effective in reducing the iron loss value of the EI core. Was. Since Al acts as an inhibitor as AlN, the content of N was reexamined.

【0041】表2に示される鋼記号IV〜VIIIのス
ラブを1150℃に加熱後、熱間圧延し、2.4mm厚
の熱延コイルとした。その後900℃で60秒間の熱延
板焼鈍を施し、酸洗後、150℃の温度でタンデム圧延
機によって0.34mmの厚みに圧延した。その後脱脂
処理を行い、800℃で2分間の脱炭焼鈍を施し、焼鈍
分離剤を塗布後、昇温時700℃までN2単独の雰囲
気、その後850℃までは25%N2と75%H2の混合
雰囲気、以後H2単独雰囲気で1180℃まで昇温後5
時間保持する最終仕上げ焼鈍を施し、その後未反応分離
剤を除去した。これらのコイルはさらに60%のコロイ
ダルシリカを含有するリン酸マグネシウムを主成分とす
る絶縁コーティングを塗布し800℃で焼き付け製品と
した。
The slabs of steel symbols IV to VIII shown in Table 2 were heated to 1150 ° C., and then hot-rolled to obtain hot-rolled coils having a thickness of 2.4 mm. Thereafter, hot-rolled sheet annealing was performed at 900 ° C. for 60 seconds, and after pickling, it was rolled at a temperature of 150 ° C. by a tandem rolling mill to a thickness of 0.34 mm. Thereafter, degreasing treatment is performed, decarburizing annealing is performed at 800 ° C. for 2 minutes, and after applying an annealing separating agent, an atmosphere of N 2 alone is used up to 700 ° C. at the time of heating, and then 25% N 2 and 75% H 2 mixed atmosphere, was warmed to 1180 ° C. in the subsequent H 2 alone atmosphere 5
A final finish anneal with a holding time was applied, after which the unreacted separating agent was removed. These coils were further coated with an insulating coating mainly composed of magnesium phosphate containing 60% of colloidal silica and baked at 800 ° C. to obtain products.

【0042】各製品より圧延方向に沿ってエプスタイン
サイズの試験片を切り出し800℃で3時間の歪取焼鈍
を施した後、1.0Tおよび1.7Tの磁束密度におけ
る鉄損の値W10/50、W17/50および磁束密度
B8を測定した。これらの値を表5にまとめて示す。さ
らに、各製品からEIコア用の鉄芯を打抜き、歪取焼鈍
を施し、積み加工、銅線の巻加工などによってEIコア
を作製した。これらのコアの鉄損特性についても表5に
併記する。
A test piece of Epstein size was cut out from each product along the rolling direction, subjected to strain relief annealing at 800 ° C. for 3 hours, and then the value of iron loss W10 / 50 at a magnetic flux density of 1.0T and 1.7T. , W17 / 50 and magnetic flux density B8 were measured. These values are summarized in Table 5. Further, an EI core was manufactured by punching an iron core for the EI core from each product, performing strain relief annealing, stacking, winding a copper wire, and the like. Table 5 also shows the iron loss characteristics of these cores.

【0043】[0043]

【表5】 [Table 5]

【0044】表5より、Al/N、の値が27/14
(=1.93)に近い程、つまり、原子数比で1:1に
近い程、良好な結果が得られた。AlNとインヒビター
として使用する通常の方向性電磁鋼板では、原子数では
Alの方がNよりも多い。このように、Al/Nが1:
1に近い程良好な結果が得られた理由については次のよ
うに考えられる。通常の方向性電磁鋼板では、(11
0)[001]方位への高い集積が要求されるため、仕
上げ焼鈍の際に、二次再結晶の開始温度を高め、(11
0)[001]に非常に近い方位の粒のみを二次再結晶
させている。つまり、AlNが完全に固溶し、抑止力が
なくなる温度を高めるために、Al量を過剰にしてい
る。しかし、本発明では、(110)[001]への集
積は多少弱くても、二次粒を細粒化させ、実機での鉄損
を低くすることが必要である。従ってAlを過剰に含有
する必要はない。但し、インヒビターが弱すぎることも
好ましくなく、比較的少いAl量で、かつ、AlNのイ
ンヒビター効果を有効に活用するには、AlとNを原子
数で等量ずつ含有させるのが好ましい。
According to Table 5, the value of Al / N was 27/14.
(= 1.93), that is, as the atomic ratio was closer to 1: 1, a better result was obtained. In AlN and ordinary grain-oriented electrical steel sheets used as inhibitors, Al has more atoms than N in the number of atoms. Thus, Al / N is 1:
The reason why a better result is obtained as the value is closer to 1 is considered as follows. In a normal grain-oriented electrical steel sheet, (11
0) Since high integration in the [001] orientation is required, at the time of finish annealing, the starting temperature of secondary recrystallization is increased, and (11)
0) Only grains having an orientation very close to [001] are subjected to secondary recrystallization. That is, in order to increase the temperature at which AlN completely dissolves and the deterrent is lost, the amount of Al is excessive. However, in the present invention, it is necessary to make the secondary grains finer and to reduce iron loss in an actual machine, even if the accumulation in (110) [001] is somewhat weak. Therefore, it is not necessary to contain Al excessively. However, it is not preferable that the inhibitor is too weak. In order to effectively utilize the inhibitory effect of AlN with a relatively small amount of Al, it is preferable to contain Al and N in equal amounts by the number of atoms.

【0045】以上の実験結果から本発明の基本的構成は
明らかであるが、以下具体的に実施態様について説明す
る。まず、成分について述べる。
Although the basic configuration of the present invention is clear from the above experimental results, embodiments will be specifically described below. First, the components will be described.

【0046】C:0.02〜0.07% Cの含有量は0.07%以下とする。即ち、0.07%
を超えるとγ変態量が過剰となり、熱間圧延中のAlの
分布が不均一となり熱延板焼鈍の昇温過程で析出するA
lNの分布も不均一となり低磁場における良好な磁気特
性が得られない。一方、0.02%未満では組織改善効
果が得られず二次再結晶が不完全となり同じく磁気特性
が劣化する。従って、Cは0.02〜0.07%の範囲
に限定される。
C: 0.02 to 0.07% The content of C is set to 0.07% or less. That is, 0.07%
Exceeds γ, the amount of γ transformation becomes excessive, the distribution of Al during hot rolling becomes non-uniform, and A precipitates during the heating process of hot-rolled sheet annealing.
The distribution of 1N is also non-uniform and good magnetic properties in a low magnetic field cannot be obtained. On the other hand, if the content is less than 0.02%, the effect of improving the structure cannot be obtained, and the secondary recrystallization becomes incomplete, and the magnetic properties also deteriorate. Therefore, C is limited to the range of 0.02 to 0.07%.

【0047】Si:2.0〜4.5% Siは電気抵抗を増加させ鉄損を低減するために必須の
元素であり、このためには2.0%以上含有させること
が必要であるが、4.5%を超えると加工性が劣化し、
電磁鋼板の製造や、製品の加工が極めて困難になるので
2.0〜4.5%の範囲とする。
Si: 2.0 to 4.5% Si is an essential element for increasing electric resistance and reducing iron loss. For this purpose, it is necessary to contain 2.0% or more. If it exceeds 4.5%, the workability will deteriorate,
Since it becomes extremely difficult to manufacture an electromagnetic steel sheet and to process a product, the content is set to 2.0 to 4.5%.

【0048】Mn:0.03〜2.5% MnもSiと同じく電気抵抗を高め、また、製造時の熱
間加工性を向上させるので必要な元素である。この目的
のためには0.03%以上の含有が必要であるが2.5
%を超えて含有した場合γ変態を誘起して磁気特性が劣
化するので、0.03〜2.5%の範囲とする。
Mn: 0.03 to 2.5% Mn is an element necessary for increasing electric resistance and improving hot workability at the time of production, similarly to Si. For this purpose, a content of 0.03% or more is necessary, but 2.5% or more is required.
%, The magnetic properties are degraded by inducing γ transformation, so that the content is set in the range of 0.03 to 2.5%.

【0049】インヒビター成分、Al:0.010〜
0.020% 鋼中にはこれらの元素の他に二次再結晶を誘起するため
のインヒビター成分の含有が必要である。まずAlを
0.010〜0.020%含有させることが必要であ
る。ここでAlの含有量が0.010%未満の場合、熱
延板焼鈍の昇温過程において析出するAlNの量が不足
し、逆に0.020%を超える場合1200℃前後での
スラブの低温加熱においてのAlNの固溶が困難となる
し、また、AlNの固溶温度が上昇するため熱間圧延に
おいてAlNが析出し熱延板焼鈍の昇温過程におけるA
lNの微細析出が不能となり、低磁場での良好な鉄損特
性が得られない。この不備を解消するため1400℃前
後の高温度でのスラブ加熱を行うと、製品の結晶粒径が
粗大化し、高磁場での鉄損が低減し、低磁場での鉄損が
増大する結果となり実機の鉄損が劣化する。したがっ
て、Alは0.010〜0.020%の範囲とする。
Inhibitor component, Al: 0.010
0.020% In addition to these elements, the steel must contain an inhibitor component for inducing secondary recrystallization. First, it is necessary to contain 0.010 to 0.020% of Al. Here, if the Al content is less than 0.010%, the amount of AlN precipitated in the temperature rising process of hot-rolled sheet annealing becomes insufficient, and if it exceeds 0.020%, the low temperature of the slab at about 1200 ° C. The solid solution of AlN becomes difficult during heating, and the solid solution temperature of AlN rises, so that AlN precipitates in hot rolling and A in the temperature rising process of hot-rolled sheet annealing.
Fine precipitation of 1N becomes impossible, and good iron loss characteristics in a low magnetic field cannot be obtained. When slab heating is performed at a high temperature of around 1400 ° C to eliminate this defect, the crystal grain size of the product becomes coarse, iron loss in a high magnetic field decreases, and iron loss in a low magnetic field increases. Iron loss of actual machine deteriorates. Therefore, Al is set in the range of 0.010 to 0.020%.

【0050】インヒビター成分、Sb:0.0010〜
0.080% インヒビターとしてSbも含有させる。Sbは熱間圧延
において微細な析出物を形成し、次工程の熱延板焼鈍の
昇温過程におけるAlNの析出核を増加させる作用を有
する。かかる作用を得るために0.0010%以上が必
要であるが、0.08%を超えると製品のベンド特性な
ど機械特性が劣化するので、その含有量は0.0010
〜0.080%の範囲とする。
Inhibitor component, Sb: 0.0010
0.080% Sb is also contained as an inhibitor. Sb has the effect of forming fine precipitates in hot rolling and increasing the precipitation nuclei of AlN in the temperature rising process of the hot-rolled sheet annealing in the next step. To obtain such an effect, 0.0010% or more is necessary. However, if the content exceeds 0.08%, mechanical properties such as bend characteristics of a product are deteriorated.
-0.080%.

【0051】N:0.0030〜0.0100% さらにNはAlNを形成し、インヒビターとして機能す
るので0.0030%以上の含有させることが必要であ
る。しかしながら、0.0100%を超えて含有すると
鋼中でガス化し、フクレなどの欠陥をもたらすので0.
0030〜0.0100%の範囲にしなければならな
い。なお、Al/Nの比については極力1に近いのが望
ましいことはすでに述べたところである。
N: 0.0030 to 0.0100% Further, N forms AlN and functions as an inhibitor. Therefore, it is necessary to contain 0.0030% or more of N. However, if the content exceeds 0.0100%, gasification occurs in the steel, causing defects such as blisters.
Must be in the range of 0030-0.0100%. It has already been mentioned that the Al / N ratio is preferably as close to 1 as possible.

【0052】その他添加元素:Mo、Bi,Te、N
b、Sn、Crなど その他の添加元素については高磁場鉄損特性に比較して
低磁場鉄損特性の良好な方向性電磁鋼板を得るためには
必ずしも必要とされるものではないが、例えば、Moの
添加などは鋼板の表面性状を改善する効果があるのでB
iやTeなどを適宜含有させることは可能である。ま
た、Sbと同様の働きをするものとして、Nb、Sn、
Cr等を含有させることも可能である。
Other additive elements: Mo, Bi, Te, N
Other elements such as b, Sn, and Cr are not necessarily required to obtain a grain-oriented electrical steel sheet having a good low-field iron loss property as compared to a high-field iron loss property. Mo addition has the effect of improving the surface properties of the steel sheet.
It is possible to appropriately contain i, Te, and the like. In addition, Nb, Sn,
It is also possible to contain Cr and the like.

【0053】(スラブ加熱)以上の成分に調整された鋼
は通常スラブ加熱に供されたのち、熱間圧延により熱延
コイルとされるが、このスラブ加熱温度を1250℃以
下とすることが本発明において重要であることはすでに
述べたとおりである。即ち、高温でのスラブ加熱を行っ
た場合、製品の結晶粒が粗大化し、低磁場での鉄損が劣
化する。したがって良好な結晶粒分布と磁気特性を得る
ためにはスラブ加熱温度を1250℃以下としなければ
ならない。なお、近年、スラブ加熱を行わず連続鋳造
後、直接熱間圧延を行う方法が開発されているが、この
方法はスラブ加熱温度を低くとれるので、本発明におい
ても好適に実施しうる。
(Slab Heating) The steel adjusted to the above components is usually subjected to slab heating and then hot-rolled into a hot-rolled coil. The slab heating temperature is set to 1250 ° C. or less. What is important in the invention is as described above. That is, when slab heating is performed at a high temperature, the crystal grains of the product are coarsened, and iron loss in a low magnetic field is deteriorated. Therefore, in order to obtain good crystal grain distribution and magnetic properties, the slab heating temperature must be 1250 ° C. or less. In recent years, a method of performing direct hot rolling after continuous casting without performing slab heating has been developed. However, since this method can lower the slab heating temperature, it can be suitably carried out in the present invention.

【0054】(熱間圧延、冷間圧延)次に、熱延コイル
に熱延板焼鈍を施し、酸洗後、冷間圧延し、続いて一次
再結晶焼鈍を兼ねた脱炭焼鈍を施す。冷間圧延において
は、タンデム圧延機による1回の圧延で最終板厚とす
る。この場合、1回の冷間圧延によって最終板厚とされ
るが、タンデム圧延機による圧延とすることが必須の条
件となる。ここでタンデム圧延機とは、ロール対の間を
通板し圧延する圧延機を通板方向に連続的に並設し、鋼
板の流れに対し連続して圧延することを可能としたもの
をいう。かかるタンデム圧延機での圧延によって圧延パ
ス間における有害な静的歪時効を抑制することが可能で
あるとともに歪速度を増大させ良好な圧延集合組織を得
ることが可能となることは実験3の考察から明らかであ
る。これにより一次再結晶集合組織が二次再結晶の粒成
長を促進する方向へと改善され、微細結晶粒の核生成と
成長が促進される。この点において、必然的に静的時効
を伴い、二次再結晶粒の成長性に劣る一次再結晶組織が
もたらされ、二次再結晶不良が生ずるゼンジマー圧延機
などのリバース方式の場合と異なる。
(Hot Rolling, Cold Rolling) Next, the hot rolled coil is subjected to hot rolled sheet annealing, pickling, cold rolling, and then decarburizing annealing also serving as primary recrystallization annealing. In the cold rolling, the final thickness is obtained by one rolling using a tandem rolling mill. In this case, the final thickness is obtained by one cold rolling, but it is an essential condition to perform rolling by a tandem rolling mill. Here, a tandem rolling mill refers to a rolling mill that passes between roll pairs and is continuously arranged in a rolling direction in a rolling direction to enable continuous rolling with respect to a flow of a steel sheet. . It is considered in Experiment 3 that rolling by such a tandem rolling mill can suppress harmful static strain aging between rolling passes and increase strain rate to obtain a good rolling texture. It is clear from As a result, the primary recrystallization texture is improved in such a direction as to promote the grain growth of the secondary recrystallization, and nucleation and growth of fine crystal grains are promoted. In this respect, it is inevitably accompanied by static aging, resulting in a primary recrystallized structure inferior in the growth property of secondary recrystallized grains, which is different from the case of a reverse method such as a Sendzimir rolling mill in which poor secondary recrystallization occurs. .

【0055】(温間圧延、圧下率)上記タンデム圧延の
際、圧延中の鋼板温度を高めることによって動的歪時効
を惹起し、さらに好ましい効果を得ることも可能であ
る。このための圧延温度としては鋼板の温度で90℃以
上、300℃以下、好ましくは120℃以上、180℃
以下が適切である。本発明においては、さらに、冷間圧
延の圧下率を80%以上、95%以下とする。温間圧延
の場合も同様である。圧下率が80%未満の場合は製品
の粒径が粗大化し、高磁場鉄損の低減の割に低磁場鉄損
が増大する。逆に圧下率が95%を超える場合は、二次
再結晶不良が生じる。
(Warm Rolling, Rolling Reduction) In the tandem rolling, it is possible to raise the temperature of the steel sheet during rolling to cause dynamic strain aging and obtain a more preferable effect. The rolling temperature for this purpose is 90 ° C. or more and 300 ° C. or less, preferably 120 ° C. or more and 180 ° C.
The following are appropriate: In the present invention, the rolling reduction of the cold rolling is set to 80% or more and 95% or less. The same applies to the case of warm rolling. If the rolling reduction is less than 80%, the grain size of the product becomes coarse, and the low-field iron loss increases in spite of the reduction in the high-field iron loss. Conversely, if the rolling reduction exceeds 95%, secondary recrystallization failure occurs.

【0056】(熱延板焼鈍、脱炭焼鈍)熱延板焼鈍と脱
炭焼鈍においては、実験2で示した通り、熱延板焼鈍温
度x(℃)と脱炭焼鈍温度y(℃)を 800≦x≦1000、かつ (−x/2)+1200≦y≦(−x/2)+1300 に限定する。
(Hot Rolled Sheet Annealing and Decarburizing Annealing) In hot rolled sheet annealing and decarburizing annealing, as shown in Experiment 2, the hot rolled sheet annealing temperature x (° C.) and the decarburizing annealing temperature y (° C.) 800 ≦ x ≦ 1000 and (−x / 2) + 1200 ≦ y ≦ (−x / 2) +1300.

【0057】(最終仕上げ焼鈍、コーティング)脱炭焼
鈍後、焼鈍分離剤を塗布し、最終仕上げ焼鈍を施す。な
お、脱炭焼鈍時、及び、最終仕上げ焼鈍時の窒化は極力
抑制することが必要である。最終仕上げ焼鈍後は、必要
に応じて絶縁コーティングを塗布焼き付け、さらに平坦
化焼鈍を施し、製品とする。
(Final Finish Annealing, Coating) After decarburizing annealing, an annealing separator is applied and final finish annealing is performed. It is necessary to suppress nitriding during decarburizing annealing and final finishing annealing as much as possible. After the final annealing, an insulation coating is applied and baked if necessary, and further flattening anneal is performed to obtain a product.

【0058】[0058]

【実施例】【Example】

【実施例1】表2に示される鋼塊記号I〜XIまでの成
分組成の溶鋼を電磁撹拌を印加しつつ連続鋳造でスラブ
となし、1200℃に加熱後、熱間圧延し、2.4mm
の厚みの熱延コイルとした。次に熱延コイルに880℃
で60秒間の熱延板焼鈍を施した。さらに、これらのコ
イルは酸洗後150℃の温度でタンデム圧延機によって
0.34mmの厚みに圧延した。その後、脱脂処理を行
い820℃で2分間の脱炭焼鈍を施し、焼鈍分離剤をコ
イル表面に塗布し、昇温時500℃までN2単独の雰囲
気、その後1050℃までは25%N2と75%H2の混
合雰囲気、以後H2単独雰囲気で1200℃まで昇温後
5時間保持する最終仕上げ焼鈍を施し、その後未反応分
離剤を除去した。これらのコイルはさらに40%のコロ
イダルシリカを含有するリン酸マグネシウムを主成分と
する絶縁コーティングを塗布し800℃で焼き付け製品
とした。
Example 1 A molten steel having a composition of ingots I to XI shown in Table 2 was formed into a slab by continuous casting while applying electromagnetic stirring, heated to 1200 ° C., and then hot-rolled to 2.4 mm.
Hot-rolled coil of thickness. Next, at 880 ° C
For 60 seconds. Further, these coils were rolled to a thickness of 0.34 mm by a tandem rolling mill at a temperature of 150 ° C. after pickling. Thereafter, a degreasing treatment is performed, decarburization annealing is performed at 820 ° C. for 2 minutes, an annealing separator is applied to the coil surface, and the temperature is raised to 500 ° C. in an atmosphere of N 2 alone, and then to 1050 ° C. in 25% N 2 . A final finishing annealing was performed in a mixed atmosphere of 75% H 2 and thereafter in a single atmosphere of H 2, which was heated to 1200 ° C. and maintained for 5 hours, after which unreacted separating agent was removed. These coils were further coated with an insulating coating mainly composed of magnesium phosphate containing 40% of colloidal silica and baked at 800 ° C. to obtain products.

【0059】各製品より圧延方向に沿ってエプスタイン
サイズの試験片を切り出し800℃で3時間の歪取焼鈍
を施した後、1.0Tおよび1.7Tの磁束密度におけ
る鉄損の値W10/50、W17/50および磁束密度
B8を測定した。これらの値を表6にまとめて示す。さ
らに、各製品からEIコア用の鉄芯を打抜き、歪取焼鈍
を施し、積み加工、銅線の巻加工などによってEIコア
を作製した。これらのコアの鉄損特性についても表6に
併記する。表6に示されるように本発明の成分範囲内の
鋼スラブを用いた方向性電磁鋼板は高磁場での鉄損特性
に比較して低磁場での鉄損特性に優れ、実機の鉄損値が
極めて良好である。
A test piece of Epstein size was cut out from each product along the rolling direction and subjected to strain relief annealing at 800 ° C. for 3 hours, and then the value of the iron loss W10 / 50 at a magnetic flux density of 1.0T and 1.7T. , W17 / 50 and magnetic flux density B8 were measured. These values are summarized in Table 6. Further, an EI core was manufactured by punching an iron core for the EI core from each product, performing strain relief annealing, stacking, winding a copper wire, and the like. Table 6 also shows the iron loss characteristics of these cores. As shown in Table 6, the grain-oriented electrical steel sheet using the steel slab within the composition range of the present invention is superior in iron loss characteristics in a low magnetic field as compared with the iron loss characteristics in a high magnetic field. Is extremely good.

【0060】[0060]

【表6】 [Table 6]

【0061】[0061]

【実施例2】表2に示される鋼塊記号IXの成分組成の
スラブを1150、1200、1250、1300、1
350℃の各温度に加熱後熱間圧延し、2.4mmの厚
みの熱延コイルとした。次に熱延コイルに880℃で6
0秒間の熱延焼鈍を施した。さらに、これらのコイルは
酸洗後150℃温度でタンデム圧延機によって0.26
mmの厚みに圧延した。その後、脱脂処理を行い800
℃で2分間の脱炭焼鈍を施し、焼鈍分離剤をコイル表面
に塗布し、昇温時500℃までN2単独の雰囲気、その
後1050℃までは25%N2と75%H2の混合雰囲
気、以後H2単独雰囲気で1200℃まで昇温後5時間
保持する最終仕上げ焼鈍を施し、その後未反応分離剤を
除去した。これらのコイルはさらに40%のコロイダル
シリカを含有するリン酸マグネシウムを主成分とする絶
縁コーティングを塗布し800℃で焼き付け製品とし
た。
Example 2 A slab having the ingot symbol IX shown in Table 2 was used for 1150, 1200, 1250, 1300, 1
After being heated to each temperature of 350 ° C., hot rolling was performed to obtain a hot-rolled coil having a thickness of 2.4 mm. Next, 6 minutes at 880 ° C
Hot rolling annealing was performed for 0 second. Further, these coils were pickled at a temperature of 150.degree.
mm. Thereafter, degreasing is performed and 800
Decarburizing annealing at 2 ° C. for 2 minutes, applying an annealing separating agent to the coil surface, increasing the temperature to 500 ° C. in an atmosphere of N 2 alone, and then up to 1050 ° C. in a mixed atmosphere of 25% N 2 and 75% H 2 Thereafter, a final finish annealing was performed in which the temperature was raised to 1200 ° C. for 5 hours in an atmosphere of H 2 alone, and then the unreacted separating agent was removed. These coils were further coated with an insulating coating mainly composed of magnesium phosphate containing 40% of colloidal silica and baked at 800 ° C. to obtain products.

【0062】各製品より圧延方向に沿ってエプスタイン
サイズの試験片を切り出し800℃で3時間の歪取焼鈍
を施した後、1.0Tおよび1.7Tの磁束密度におけ
る鉄損の値W10/50、W17/50および磁束密度
B8を測定した。これらの値を表7にまとめて示す。さ
らに、各製品からEIコア用の鉄芯を打抜き、歪取焼鈍
を施し積み加工、銅線の巻加工などによってEIコアを
作製した。これらのコアの鉄損特性についても表7に併
記する。表7に示されるようにスラブ加熱温度を125
0℃以下とした場合、高磁場での鉄損特性に比較して低
磁場での鉄損特性に優れ、実機の鉄損値が極めて良好で
ある。
A test piece of Epstein size was cut out from each product along the rolling direction, subjected to strain relief annealing at 800 ° C. for 3 hours, and then the value of iron loss W10 / 50 at a magnetic flux density of 1.0 T and 1.7 T. , W17 / 50 and magnetic flux density B8 were measured. These values are summarized in Table 7. Furthermore, an EI core was manufactured by punching an iron core for the EI core from each product, performing strain relief annealing, stacking, and winding a copper wire. Table 7 also shows the iron loss characteristics of these cores. As shown in Table 7, the slab heating temperature was 125
When the temperature is 0 ° C. or lower, the iron loss characteristics in a low magnetic field are superior to the iron loss characteristics in a high magnetic field, and the iron loss value of an actual machine is extremely good.

【0063】[0063]

【表7】 [Table 7]

【0064】[0064]

【実施例3】表2に示される鋼塊記号VIIの成分組成
のスラブを1180℃で加熱後熱間圧延し、2.4mm
の厚みの熱延コイルとした。次に熱延コイルに60秒間
の熱延板焼鈍を施し、酸洗後80℃の温度でタンデム圧
延機によって0.34mmの厚みに圧延した。その後、
脱脂処理を行い2分間の脱炭焼鈍を施し、焼鈍分離剤を
コイル表面に塗布し、昇温時500℃までN2単独の雰
囲気、その後1050℃までは25%N2と75%H2
混合雰囲気、以後H2単独雰囲気で1200℃まで昇温
後5時間保持する最終仕上げ焼鈍を施し、その後未反応
分離剤を除去した。ここで、熱延板焼鈍温度x℃と脱炭
焼鈍温度y℃は (x、y)=(750、800)、(800、75
0)、(800、850)、(800、950)、(9
00、750)、(900、800)、(900、85
0)、(1000、750)、(1000、800)、
(1000、850)、(1050、800)の11条
件に変化させた。これらのコイルはさらに40%のコロ
イダルシリカを含有するリン酸マグネシウムを主成分と
する絶縁コーティングを塗布し800℃で焼き付け製品
とした。
Example 3 A slab having the composition of steel ingot VII shown in Table 2 was heated at 1180 ° C. and then hot-rolled to 2.4 mm.
Hot-rolled coil of thickness. Next, the hot-rolled coil was subjected to hot-rolled sheet annealing for 60 seconds, and after pickling, was rolled to a thickness of 0.34 mm by a tandem rolling mill at a temperature of 80 ° C. afterwards,
After degreasing and decarburizing annealing for 2 minutes, an annealing separator is applied to the coil surface, and the temperature is raised to 500 ° C. in an atmosphere of N 2 alone, and then up to 1050 ° C. in an atmosphere of 25% N 2 and 75% H 2 . A final finishing annealing was performed in which the temperature was raised to 1200 ° C. in a mixed atmosphere and thereafter in an atmosphere of H 2 alone for 5 hours, and then the unreacted separating agent was removed. Here, the hot rolled sheet annealing temperature x ° C. and the decarburization annealing temperature y ° C. are (x, y) = (750, 800), (800, 75).
0), (800, 850), (800, 950), (9
00, 750), (900, 800), (900, 85)
0), (1000, 750), (1000, 800),
(1000, 850) and (1050, 800) were changed to 11 conditions. These coils were further coated with an insulating coating mainly composed of magnesium phosphate containing 40% of colloidal silica and baked at 800 ° C. to obtain products.

【0065】各製品より圧延方向に沿ってエプスタイン
サイズの試験片を切り出し800℃で3時間の歪取焼鈍
を施した後、1.0Tおよび1.7Tの磁束密度におけ
る鉄損の値W10/50、W17/50および磁束密度
B8を測定した。これらの値を表8にまとめて示す。さ
らに、各製品からEIコア用の鉄芯を打抜き、歪取焼鈍
を施し、積み加工、銅線の巻加工などによってEIコア
を作製した。これらのコアの鉄損特性についても表8に
併記する。表8に示されるようにxとyとの関係を 800≦x≦1000、かつ (−x/2)+1200≦y≦(−x/2)+1300 の範囲内とした場合、高磁場での鉄損特性に比較して低
磁場での鉄損特性に優れ、実機の鉄損値が極めて良好で
ある。
A test piece of Epstein size was cut out from each product along the rolling direction, subjected to strain relief annealing at 800 ° C. for 3 hours, and then the value of the iron loss W10 / 50 at a magnetic flux density of 1.0T and 1.7T. , W17 / 50 and magnetic flux density B8 were measured. These values are summarized in Table 8. Further, an EI core was manufactured by punching an iron core for the EI core from each product, performing strain relief annealing, stacking, winding a copper wire, and the like. Table 8 also shows the iron loss characteristics of these cores. As shown in Table 8, when the relationship between x and y is in the range of 800 ≦ x ≦ 1000 and (−x / 2) + 1200 ≦ y ≦ (−x / 2) +1300, iron in a high magnetic field The iron loss characteristics in a low magnetic field are superior to the loss characteristics, and the iron loss value of the actual machine is extremely good.

【0066】[0066]

【表8】 [Table 8]

【0067】[0067]

【実施例4】表2に示される鋼塊記号Vの組成を有する
溶鋼を電磁撹拌を印加しつつ連続鋳造機でスラブに鋳込
んだ。このスラブを7本、1230℃で加熱後、熱間圧
延し、(a)2.0mm、(b)2.2mm、(c)
2.5mm、(d)2.7mm、(e)3.2mm、
(f)3.6mm、(g)13mm厚みの熱延コイルと
した。ついで900℃で30秒間の熱延板焼鈍を行い、
酸洗後、冷間圧延により0.49mmの厚みに圧延し
た。したがって(a)のコイルの圧下率は76%、
(b)のコイルの圧下率は78%、(c)のコイルの圧
下率は80%、(d)のコイルの圧下率は82%、
(e)のコイルの圧下率は85%、(f)のコイルの圧
下率は86%、(g)のコイルの圧下率は96%であ
る。これらの圧延の際、圧延はコイル温度を120〜1
80℃の温度とし、またタンデム圧延機によって圧延を
行った。その後、各コイルは脱脂処理を行い840℃で
2分間の脱炭焼鈍を施し、焼鈍分離剤をコイル表面に塗
布し、昇温時700℃までN2単独の雰囲気、その後8
50℃までは25%N2と75%H2の混合雰囲気、以後
2単独雰囲気で1200℃まで昇温後5時間保持する
最終仕上げ焼鈍を施し、その後未反応分離剤を除去し
た。これらのコイルはさらに60%のコロイダルシリカ
を含有するリン酸マグネシウムを主成分とする絶縁コー
ティングを塗布し800℃で焼き付け製品とした。
Example 4 Molten steel having the composition of ingot symbol V shown in Table 2 was cast into a slab by a continuous casting machine while applying electromagnetic stirring. Seven slabs were heated at 1230 ° C. and then hot-rolled to obtain (a) 2.0 mm, (b) 2.2 mm, and (c).
2.5 mm, (d) 2.7 mm, (e) 3.2 mm,
(F) A hot-rolled coil having a thickness of 3.6 mm and (g) a thickness of 13 mm. Then, hot rolled sheet annealing is performed at 900 ° C for 30 seconds.
After pickling, it was rolled to a thickness of 0.49 mm by cold rolling. Therefore, the rolling reduction of the coil of (a) is 76%,
The rolling reduction of the coil of (b) is 78%, the rolling reduction of the coil of (c) is 80%, the rolling reduction of the coil of (d) is 82%,
The rolling reduction of the coil of (e) is 85%, the rolling reduction of the coil of (f) is 86%, and the rolling reduction of the coil of (g) is 96%. During these rollings, the rolling is performed at a coil temperature of 120 to 1 mm.
The temperature was set to 80 ° C., and rolling was performed by a tandem rolling mill. Thereafter, each coil is subjected to a degreasing treatment, subjected to decarburizing annealing at 840 ° C. for 2 minutes, an annealing separator is applied to the coil surface, and the temperature is raised to 700 ° C. in an atmosphere of N 2 alone.
Until 50 ° C, final finishing annealing was performed in a mixed atmosphere of 25% N 2 and 75% H 2 , followed by heating to 1200 ° C in a single atmosphere of H 2 for 5 hours and then removing the unreacted separating agent. These coils were further coated with an insulating coating mainly composed of magnesium phosphate containing 60% of colloidal silica and baked at 800 ° C. to obtain products.

【0068】各製品より圧延方向に沿ってエプスタンサ
イズの試験片を切り出し800℃で3時間の歪取焼鈍を
施した後、1.0Tおよび1.7Tの磁束密度における
鉄損の値、W10/50、W17/50および磁束密度
B8を測定した。これらの値を表9にまとめて示す。さ
らに、各製品からEIコア用の鉄芯を打抜き、歪取焼鈍
を施し、積み加工、銅線の巻加工などによってEIコア
を作製した。これらのコアの鉄損特性についても表9に
併記する。表9に示されるように冷間圧延の圧下率を8
0%以上、95%以下とした本発明構成要件を満足する
方向性電磁鋼板は高磁場での鉄損特性に比較して低磁場
での鉄損特性に優れ、実機の鉄損値が極めて良好であ
る。
From each product, test pieces of Epstan size were cut out along the rolling direction and subjected to strain relief annealing at 800 ° C. for 3 hours, and then the values of iron loss at magnetic flux densities of 1.0 T and 1.7 T, W10 / 50, W17 / 50 and magnetic flux density B8 were measured. These values are summarized in Table 9. Further, an EI core was manufactured by punching an iron core for the EI core from each product, performing strain relief annealing, stacking, winding a copper wire, and the like. Table 9 also shows the iron loss characteristics of these cores. As shown in Table 9, the rolling reduction of the cold rolling was 8
A grain-oriented electrical steel sheet satisfying the constituent requirements of the present invention of 0% or more and 95% or less has excellent iron loss characteristics in a low magnetic field as compared with the iron loss characteristics in a high magnetic field, and has an extremely good iron loss value of a real machine. It is.

【0069】[0069]

【表9】 [Table 9]

【0070】[0070]

【発明の効果】以上詳細したように本発明の製造方法に
従えば、高磁場鉄損特性に比較して低磁場鉄損特性に優
れた方向性電磁鋼板が確実に得られ、これを用いたEI
コアなど実機の特性が優れた製品が得られるとともに、
電磁鋼板スラブ加熱温度を大きく低下させることができ
るので、省エネルギーに寄与するところも大である。
As described in detail above, according to the manufacturing method of the present invention, a grain-oriented electrical steel sheet having excellent low-field iron loss characteristics as compared with high-field iron loss characteristics can be reliably obtained. EI
A product with excellent characteristics of the actual machine such as a core can be obtained,
Since the heating temperature of the electromagnetic steel sheet slab can be greatly reduced, it greatly contributes to energy saving.

【図面の簡単な説明】[Brief description of the drawings]

【図1】EIコアの鉄損値に及ぼす熱延板焼鈍温度と脱
炭焼鈍温度の関係図
FIG. 1 is a graph showing the relationship between the iron loss value of an EI core and the annealing temperature of a hot-rolled sheet and the decarburization annealing temperature.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本田 厚人 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 定廣 健一 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Atsuto Honda 1-chome, Kawasaki-dori, Mizushima, Kurashiki-shi, Okayama Pref. 1-chome (without address) Inside Kawasaki Steel Corporation Mizushima Works

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で Si:2.0〜4.5% C:0.02〜0.07% Mn:0.03〜2.5% を含有し、インヒビター成分として Al:0.010〜0.020% Sb:0.0010〜0.080% を含有する鋼スラブを加熱後、熱間圧延をし、次いで熱
延板焼鈍を施した後、冷間圧延により最終板厚とし、さ
らに、脱炭焼鈍および焼鈍分離材を塗布して仕上焼鈍を
施す方向性電磁鋼板の製造方法において、 鋼スラブの加熱温度を1250℃以下とすること 熱延板焼鈍温度x℃と脱炭焼鈍温度y℃を 800≦x≦1000、かつ (−x/2)+1200≦y≦(−x/2)+1300 で行うこと、および冷間圧延をタンデム圧延機により圧
下率80%以上、95%以下で行うこと、を特徴とする
高磁場鉄損特性に比較して低磁場鉄損特性に優れた方向
性電磁鋼板の製造方法。
1. The composition contains, by weight%, Si: 2.0 to 4.5% C: 0.02 to 0.07% Mn: 0.03 to 2.5%, and Al: 0.010 as an inhibitor component. After heating a steel slab containing 0.00.020% Sb: 0.0010 to 0.080%, hot rolling is performed, then hot-rolled sheet annealing is performed, and then the final thickness is reduced by cold rolling. A method for producing a grain-oriented electrical steel sheet in which a decarburizing annealing and an annealing separator are applied and finish annealing is performed, wherein the heating temperature of the steel slab is 1250 ° C. or less. The temperature is set to 800 ≦ x ≦ 1000 and (−x / 2) + 1200 ≦ y ≦ (−x / 2) +1300, and the cold rolling is performed by a tandem rolling mill at a draft of 80% or more and 95% or less. Low magnetic field compared to high field iron loss characteristics Method for producing a high-oriented electrical steel sheet iron loss characteristics.
【請求項2】 インヒビター成分としてさらにMo、B
i、Te、Nb、Sn、Crを含有することを特徴とす
る請求項1記載の高磁場鉄損特性に比較して低磁場鉄損
特性に優れた方向性電磁鋼板の製造方法。
2. Mo or B is further added as an inhibitor component.
The method for producing a grain-oriented electrical steel sheet having excellent low-field iron loss characteristics as compared with the high-field iron loss characteristics according to claim 1, characterized by containing i, Te, Nb, Sn, and Cr.
【請求項3】 鋼スラブのAl及びNの含有量を 1.67≦Al(wt%)/N(wt%)≦2.18 とすることを特徴とする請求項1または2記載の高磁場
鉄損特性に比較して低磁場鉄損特性に優れた方向性電磁
鋼板の製造方法。
3. The high magnetic field according to claim 1, wherein the content of Al and N in the steel slab is 1.67 ≦ Al (wt%) / N (wt%) ≦ 2.18. A method for producing a grain-oriented electrical steel sheet having excellent low-field iron loss characteristics compared to iron loss characteristics.
【請求項4】 冷間圧延をタンデム圧延機で、圧下率8
0%以上、95%以下、かつ温度90℃以上で行うこと
を特徴とする請求項1、2または3記載の高磁場鉄損特
性に比較して低磁場鉄損特性に優れた方向性電磁鋼板の
製造方法。
4. A cold rolling is performed by a tandem rolling mill with a rolling reduction of 8%.
A grain-oriented electrical steel sheet having a low magnetic field iron loss characteristic as compared with the high magnetic field iron loss characteristic according to claim 1, wherein the heat treatment is performed at 0% or more, 95% or less, and at a temperature of 90 ° C or more. Manufacturing method.
【請求項5】 冷間圧延を温度120℃以上、180℃
以下で行うことを特徴とする請求項4記載の高磁場鉄損
特性に比較して低磁場鉄損特性に優れた方向性電磁鋼板
の製造方法。
5. Cold rolling at a temperature of 120 ° C. or more, 180 ° C.
A method for producing a grain-oriented electrical steel sheet having excellent low-field iron loss characteristics as compared with the high-field iron loss characteristics according to claim 4, wherein the method is performed as follows.
JP31309896A 1996-10-21 1996-11-08 Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics Expired - Fee Related JP3326083B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP31309896A JP3326083B2 (en) 1996-11-08 1996-11-08 Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics
US08/954,504 US6039818A (en) 1996-10-21 1997-10-20 Grain-oriented electromagnetic steel sheet and process for producing the same
KR1019970053853A KR100440994B1 (en) 1996-10-21 1997-10-20 Directional electromagnetic steel sheet and manufacturing method thereof
CNB971252890A CN1153227C (en) 1996-10-21 1997-10-20 Grain-oriented electromagnetic steel sheet and process for producing the same
DE69705688T DE69705688T2 (en) 1996-10-21 1997-10-21 Grain-oriented electromagnetic steel sheet and its manufacturing process
EP97118278A EP0837149B1 (en) 1996-10-21 1997-10-21 Grain-oriented electromagnetic steel sheet and process for producing the same
US09/493,864 US6331215B1 (en) 1996-10-21 2000-01-28 Process for producing grain-oriented electromagnetic steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31309896A JP3326083B2 (en) 1996-11-08 1996-11-08 Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics

Publications (2)

Publication Number Publication Date
JPH10140244A true JPH10140244A (en) 1998-05-26
JP3326083B2 JP3326083B2 (en) 2002-09-17

Family

ID=18037143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31309896A Expired - Fee Related JP3326083B2 (en) 1996-10-21 1996-11-08 Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics

Country Status (1)

Country Link
JP (1) JP3326083B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106319174A (en) * 2016-09-23 2017-01-11 武汉钢铁股份有限公司 Annealing isolation agent capable of improving quality of low-temperature casting blank heating high induction grain oriented silicon steel bottom layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106319174A (en) * 2016-09-23 2017-01-11 武汉钢铁股份有限公司 Annealing isolation agent capable of improving quality of low-temperature casting blank heating high induction grain oriented silicon steel bottom layer
CN106319174B (en) * 2016-09-23 2018-10-16 武汉钢铁有限公司 Improve the annealing separating agent of low temperature casting blank heating high magnetic induction grain-oriented silicon steel bottom layer quality

Also Published As

Publication number Publication date
JP3326083B2 (en) 2002-09-17

Similar Documents

Publication Publication Date Title
JP2022542380A (en) Highly magnetically inductive oriented silicon steel and its manufacturing method
US5330586A (en) Method of producing grain oriented silicon steel sheet having very excellent magnetic properties
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH03294427A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3326083B2 (en) Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics
KR100192841B1 (en) Non-oriented magnetic steel plate and its production method
JPH032323A (en) Manufacture of nonoriented silicon steel sheet having high magnetic flux density
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3310004B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH10110218A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2521586B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JP3849310B2 (en) Method for producing grain-oriented electrical steel sheet without ear cracks
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH07110974B2 (en) Method for producing directional silicon iron alloy ribbon
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JPH04154914A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPS5855209B2 (en) Method for manufacturing non-oriented silicon steel sheet with little aging deterioration and good surface quality
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
JPH06212262A (en) Production of grain-oriented silicon steel sheet having extremely low core loss
JP3527276B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees