JPH10139593A - 混合アルカリ水熱法による層状岩塩型リチウムフェライトの製造方法 - Google Patents

混合アルカリ水熱法による層状岩塩型リチウムフェライトの製造方法

Info

Publication number
JPH10139593A
JPH10139593A JP8318747A JP31874796A JPH10139593A JP H10139593 A JPH10139593 A JP H10139593A JP 8318747 A JP8318747 A JP 8318747A JP 31874796 A JP31874796 A JP 31874796A JP H10139593 A JPH10139593 A JP H10139593A
Authority
JP
Japan
Prior art keywords
hydroxide
iron
lithium
rock salt
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8318747A
Other languages
English (en)
Other versions
JP2855190B2 (ja
Inventor
Kazuaki Ato
和明 阿度
Mitsuharu Tabuchi
光春 田渕
Hiroyuki Kageyama
博之 蔭山
Osamu Nakamura
治 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP8318747A priority Critical patent/JP2855190B2/ja
Priority to US08/959,976 priority patent/US5863512A/en
Publication of JPH10139593A publication Critical patent/JPH10139593A/ja
Application granted granted Critical
Publication of JP2855190B2 publication Critical patent/JP2855190B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0027Mixed oxides or hydroxides containing one alkali metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compounds Of Iron (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

(57)【要約】 【課題】低コストのリチウム二次電池用正極材料として
の層状岩塩型LiFeO2を大量生産しうる新たな製造方法を
提供することを主な目的とする。 【解決手段】1.水溶性鉄塩、水酸化鉄、酸化水酸化鉄
および金属鉄の少なくとも1種を水酸化リチウムと水酸
化ナトリウムおよび/または水酸化カリウムとを含む水
溶液中で130〜300℃で水熱処理することを特徴とする層
状岩塩型構造を有するLiFeO2の製造方法。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、層状岩塩型構造を
有するリチウムフェライト(LiFeO2)系粉末の製造方法
に関する。この様なリチウムフェライト系粉末は、リチ
ウム二次電池の正極用材料などとして有用である。
【0002】
【従来の技術】現在、ポータブルタイプの電子・電気機
器の可充電電源として使用されているリチウム二次電池
用の正極材料として、層状岩塩型(α-NaFeO2型)構造
を有するリチウムコバルトおよびニッケル酸化物(LiCo
O2、LiNiO2およびその固溶体)が研究開発され、実用化
されている。しかしながら、これらの正極材料は、高作
動電圧かつ高容量である反面、希少金属であるCo或いは
Niを含んでいて高価であるため、これらを用いるリチウ
ム二次電池(電池中で正極材料のコストは、約1/3を占
める)の市場拡大の障害となっている。
【0003】また、次世代の低コスト4V級の正極材料と
して、LiMn2O4などのリチウムマンガンスピネルおよび
リチウムフェライト(LiFeO2)が注目され、その研究開
発が行われつつある。特に、リチウムフェライトは、資
源的に極めて豊富なFeを用いるので、次世代の低コスト
正極材料として最も期待されている。しかしながら、こ
の化合物を従来から行われている種々のリチウム化合物
と3価の鉄化合物を300〜900℃で固相反応させる方法
{例えば、J.C.Anderson and M.Schieber,J.Phys.Chem.
Solids,25(1964)961-968}で製造する場合には、陽イオ
ンがランダム分布したα-LiFeO2或いはLiCoO2とは異な
る陽イオン規則構造を有するγ-LiFeO2しか得られな
い。これらの相は、充放電時のLiの拡散経路が確保され
ていないため、正極特性を示さない。従って、LiNiO2
いはLiCoO2と同一の結晶構造を有する層状岩塩型LiFeO2
の製造方法の確立が急務とされている。現在のところ、
この化合物の合成は、通常の固相反応法で合成したα-N
aFeO2をLiイオンを含む溶融塩中でイオン交換に供する
ことにより行われている{例えば、T.Shirane,R.Kanno,
Y.Kawamoto,Y.Takeda,M.Takano,T.Kamiya and F.Izumi,
Solid State Ionics,79(1995)227-233;以下これを「参
照文献」という}。しかしながら、この方法は、工業的
プロセスとしては、α-NaFeO2の製造およびそのイオン
交換という2段階を必要とすることから、大量生産が困
難であるなどの問題があり、これに代わる新たな実用的
プロセスの開発が望まれている。
【0004】
【発明が解決しようとする課題】従って、本発明は、低
コストのリチウム二次電池用正極材料としての層状岩塩
型LiFeO2を大量生産しうる新たな製造方法を提供するこ
とを主な目的とする。
【0005】
【課題を解決するための手段】本発明者は、上記の様な
従来技術の問題点に鑑みて鋭意研究を重ねた結果、次世
代の二次リチウム電池正極材料用として有望視されてい
るリチウム含有遷移金属酸化物の1種である層状岩塩型
LiFeO2を特定の原料を使用する水熱処理法により、α-N
aFeO2を経ることなく、製造する技術を確立することに
成功した。
【0006】すなわち、本発明は、下記の水熱法による
層状岩塩型LiFeO2の製造方法を提供するものである: 1.水溶性鉄塩、水酸化鉄、酸化水酸化鉄および金属鉄
の少なくとも1種を水酸化リチウムと水酸化ナトリウム
および/または水酸化カリウムとを含む水溶液中で130
〜300℃で水熱処理することを特徴とする層状岩塩型構
造を有するLiFeO2の製造方法。
【0007】
【発明の実施の形態】本発明において使用する鉄源原料
としては、水溶性塩(硝酸塩、硫酸塩、塩化物)、水酸
化物、酸化水酸化物(α-FeOOHなど)、金属鉄などが挙
げられる。鉄化合物は、無水物或いは水和物のいずれで
あっても良い。鉄源原料としては、3価の鉄化合物(硝
酸塩、硫酸塩、塩化物など)がより好ましい。鉄源原料
は、単独で使用してもよく、2種以上を併用しても良
い。
【0008】本発明においては、まず、鉄源原料として
水溶性鉄塩を濃度0.05〜10M程度、より好ましくは0.1〜
1M程度で水に溶解させた後、この水溶液に水酸化リチウ
ム(通常無水物換算で1〜20mol/kg・H2O程度、より好ま
しくは5〜15mol/kg・H2O程度)と水酸化ナトリウムおよ
び水酸化カリウムの少なくとも1種(通常無水物換算で
10〜100mol/kg・H2O程度、より好ましくは30〜60mol/kg
・H2O程度)とを加え、混合する。水酸化リチウム、水
酸化ナトリウムおよび水酸化カリウムは、無水物であっ
ても或いは水和物であっても良い。次いで、上記で得ら
れた混合物を水熱反応炉(例えば、オートクレーブ)に
静置して、水熱反応に供する。水熱反応条件は特に限定
されるものではないが、通常130〜300℃程度の温度で0.
5時間〜14日間程度であり、より好ましくは200〜250℃
程度の温度で1時間〜48時間程度である。反応終了後、
残存する水酸化リチウムと水酸化ナトリウムおよび/ま
たは水酸化カリウムを除去するため、反応生成物を水洗
し、濾過し、乾燥することにより、所望の層状岩塩型Li
FeO2を得る。
【0009】鉄源原料として水酸化鉄、酸化水酸化鉄或
いは金属鉄を使用する場合にも、上記とほぼ同様の結果
が得られる。ただし、この場合には、水酸化リチウムと
水酸化ナトリウムおよび/または水酸化カリウムとを含
む水溶液を予め調製し、これに水酸化鉄、酸化水酸化鉄
または金属鉄を加えて混合した後、混合物を水熱反応に
供することが好ましい。
【0010】
【発明の効果】本発明によれば、これまで低コストで工
業的に製造することが困難であった層状岩塩型LiFeO2
単一の工程で大量生産することが可能となったので、Li
FeO2を正極材料とするリチウム二次電池の開発が一層促
進される。
【0011】
【実施例】以下に実施例を示し、本発明の特徴とすると
ころをより一層明確にする。なお、実施例で得られた試
料の結晶相は、X線回折分析により評価した。
【0012】実施例1 ポリテトラフルオロエチレン製ビーカー中に塩化鉄6水
和物5.4gを秤量し、蒸留水100mlを加えて、十分に撹拌
し、完全に溶解させた。次いで、約8mol/kg・H2Oに相当
する水酸化リチウム一水和物33gと約40mol/kg・H2Oに相
当する水酸化ナトリウム160gを上記の水溶液に加え、よ
く撹拌した。溶解時には、かなりの発熱を伴うので、ビ
ーカー中の混合溶液を100℃以下に冷却した後、ビーカ
ーを水熱反応炉(オートクレーブ)内に静置し、230℃
で24時間水熱処理した。水熱処理終了後、ビーカー内容
物の温度が100℃程度に下がった時点で、ビーカーをオ
ートクレーブ外に取り出し、生成している粉末を蒸留水
で洗浄して、過剰に存在する水酸化リチウムおよび水酸
化ナトリウムを除去し、濾過し、乾燥することにより、
粉末状生成物を得た。最終生成物のX線回折パターンを
図1に示す。α-NaFeO2などの残留は認められず、全て
の回折ピークは、前記「参照文献」に報告されている六
方晶系の層状岩塩型LiFeO2の単位胞で、指数付けするこ
とができた。
【0013】実施例2 ポリテトラフルオロエチレン製ビーカー中に約1.3mol/k
g・H2Oに相当する水酸化リチウム一水和物50gと約40mol
/kg・H2Oに相当する水酸化ナトリウム160gを入れ、蒸留
水100mlを加えて、十分に撹拌し、完全に溶解させた。
溶解時には、かなりの発熱を伴うので、ビーカー中の混
合アルカリ溶液を100℃以下に冷却した後、約0.3mol/kg
・H2Oに相当する酸化水酸鉄(α-FeOOH)2.7gを加え、
よく混合した。次いで、ビーカーを水熱反応炉(オート
クレーブ)内に静置し、220℃で3時間水熱処理した。水
熱処理終了後、ビーカー内容物の温度が100℃以下に下
がった時点で、ビーカーをオートクレーブ外に取り出
し、生成している粉末を蒸留水で洗浄して、過剰に存在
する水酸化リチウムおよび水酸化ナトリウムを除去し、
濾過し、乾燥することにより、粉末状生成物を得た。最
終生成物のX線回折パターンを図2に示す。α-NaFeO2
などの残留は認められず、全ての回折ピークは、前記
「参照文献」に報告されている六方晶系の層状岩塩型Li
FeO2の単位胞で、指数付けすることができた。
【0014】実施例3 ポリテトラフルオロエチレン製ビーカー中に約1.3mol/k
g・H2Oに相当する水酸化リチウム一水和物50gと約60mol
/kg・H2Oに相当する水酸化カリウム337gとを入れ、蒸留
水100mlを加えて、十分に撹拌し、完全に溶解させた。
溶解時には、かなりの発熱を伴うので、ビーカー中の混
合アルカリ溶液を100℃以下に冷却した後、約0.3mol/kg
・H2Oに相当する酸化水酸鉄(α-FeOOH)2.7gを加え、
よく混合した。次いで、ビーカーを水熱反応炉(オート
クレーブ)内に静置し、220℃で3時間水熱処理した。水
熱処理終了後、ビーカー内容物の温度が100℃以下に下
がった時点で、ビーカーをオートクレーブ外に取り出
し、生成している粉末を蒸留水で洗浄して、過剰に存在
する水酸化リチウムおよび水酸化カリウムを除去し、濾
過し、乾燥することにより、粉末状生成物を得た。最終
生成物のX線回折パターンを図3に示す。α-NaFeO2
どの残留は認められず、全ての回折ピークは、前記「参
照文献」に報告されている六方晶系の層状岩塩型LiFeO2
の単位胞で、指数付けすることができた。
【図面の簡単な説明】
【図1】実施例1において得られたLiFeO2のX線回折結
果を示すパターンである。
【図2】実施例2において得られたLiFeO2のX線回折結
果を示すパターンである。
【図3】実施例3において得られたLiFeO2のX線回折結
果を示すパターンである。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 4/58 H01M 4/58 (72)発明者 中村 治 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】水溶性鉄塩、水酸化鉄、酸化水酸化鉄およ
    び金属鉄の少なくとも1種を水酸化リチウムと水酸化ナ
    トリウムおよび/または水酸化カリウムとを含む水溶液
    中で130〜300℃で水熱処理することを特徴とする層状岩
    塩型構造を有するLiFeO2の製造方法。
JP8318747A 1996-11-13 1996-11-13 混合アルカリ水熱法による層状岩塩型リチウムフェライトの製造方法 Expired - Lifetime JP2855190B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8318747A JP2855190B2 (ja) 1996-11-13 1996-11-13 混合アルカリ水熱法による層状岩塩型リチウムフェライトの製造方法
US08/959,976 US5863512A (en) 1996-11-13 1997-10-29 Process for preparing layered rock salt type lithium ferrite by mixed alkali hydrothermal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8318747A JP2855190B2 (ja) 1996-11-13 1996-11-13 混合アルカリ水熱法による層状岩塩型リチウムフェライトの製造方法

Publications (2)

Publication Number Publication Date
JPH10139593A true JPH10139593A (ja) 1998-05-26
JP2855190B2 JP2855190B2 (ja) 1999-02-10

Family

ID=18102498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8318747A Expired - Lifetime JP2855190B2 (ja) 1996-11-13 1996-11-13 混合アルカリ水熱法による層状岩塩型リチウムフェライトの製造方法

Country Status (2)

Country Link
US (1) US5863512A (ja)
JP (1) JP2855190B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028264A (ja) * 2010-07-27 2012-02-09 Toyota Motor Corp 負極活物質、その製造方法および前記負極活物質を用いた二次電池
WO2012172623A1 (ja) * 2011-06-13 2012-12-20 株式会社日立製作所 リチウムイオン二次電池の負極活物質、その製造方法およびリチウムイオン二次電池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3547575B2 (ja) * 1996-10-15 2004-07-28 松下電器産業株式会社 リチウム鉄酸化物、その製造方法およびリチウム電池
JP2896510B1 (ja) * 1998-03-13 1999-05-31 工業技術院長 水熱酸化法による層状岩塩型リチウムコバルト酸化物の製造方法
CN101834292B (zh) * 2010-04-23 2012-06-27 北京科技大学 一种表面复合的层状锂锰镍氧化物正极材料及其制备方法
US20140011075A1 (en) * 2012-06-27 2014-01-09 Precursor Energetics, Inc, Nickel and lithium-containing molecular precursors for battery cathode materials
CN104692465B (zh) * 2015-02-04 2016-02-24 天津大学 锂离子电池正极材料α-LiFeO2纳米粉体的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028264A (ja) * 2010-07-27 2012-02-09 Toyota Motor Corp 負極活物質、その製造方法および前記負極活物質を用いた二次電池
WO2012172623A1 (ja) * 2011-06-13 2012-12-20 株式会社日立製作所 リチウムイオン二次電池の負極活物質、その製造方法およびリチウムイオン二次電池
JPWO2012172623A1 (ja) * 2011-06-13 2015-02-23 株式会社日立製作所 リチウムイオン二次電池の負極活物質、その製造方法およびリチウムイオン二次電池

Also Published As

Publication number Publication date
JP2855190B2 (ja) 1999-02-10
US5863512A (en) 1999-01-26

Similar Documents

Publication Publication Date Title
JP3263725B2 (ja) 混合アルカリ水熱法による層状岩塩型リチウムマンガン酸化物の製造方法
US5981106A (en) Positive electrode active material for lithium battery, method for producing the same, and lithium battery containing the same
JP3500424B2 (ja) 単相リチウムフェライト系複合酸化物
JPH0837007A (ja) リチウム含有遷移金属複合酸化物及びその製造方法並びにその用途
CN1218443A (zh) 锂锰氧化物尖晶石的制备方法
JP3702353B2 (ja) リチウム電池用正極活物質の製造方法およびリチウム電池
JP2003048718A (ja) リチウムフェライト系複合酸化物およびその製造方法
CN110775951A (zh) 电极材料高纯度磷酸盐的制备方法
JP4066472B2 (ja) 板状水酸化ニッケル粒子、その製造方法及びこれを原料とするリチウム・ニッケル複合酸化物粒子の製造方法
US20210013507A1 (en) Method to produce cathode materials for li-ion batteries
WO2008023622A1 (fr) Procédé de production d'un oxyde composé lithium/manganèse
JP2855190B2 (ja) 混合アルカリ水熱法による層状岩塩型リチウムフェライトの製造方法
JPH1149519A (ja) リチウムコバルト複合酸化物の製造方法
JP2896510B1 (ja) 水熱酸化法による層状岩塩型リチウムコバルト酸化物の製造方法
JP2931961B2 (ja) ソルボサーマルイオン交換法による層状岩塩型リチウムフェライトの製造方法
JP4535618B2 (ja) 酸化マンガンをベースとした材料
JP3532139B2 (ja) ニッケル含有酸化物電極材料の製造方法及びその電極材料を用いる電池
JPH10106566A (ja) リチウム二次電池用正極活物質の製造法
KR100679380B1 (ko) 습식 공정을 이용한 코발트, 니켈 및 망간 함유 수산화물의저온 리튬화
JPH10316432A (ja) オキシ水酸化ニッケルの製造方法および非水電解質電池
JP3407042B2 (ja) リチウムイオン二次電池正極用材料及びその製造方法
JP4695237B2 (ja) 非水電解質二次電池用正極活物質の製造方法
JP3837469B2 (ja) 層状岩塩型リチウム鉄酸化物およびその製造方法
JP3914981B2 (ja) 立方晶岩塩型リチウムフェライト系酸化物およびその製造方法
JP2001076728A (ja) リチウム二次電池用正極活物質の製造方法

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term