JPH10125855A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH10125855A
JPH10125855A JP8274943A JP27494396A JPH10125855A JP H10125855 A JPH10125855 A JP H10125855A JP 8274943 A JP8274943 A JP 8274943A JP 27494396 A JP27494396 A JP 27494396A JP H10125855 A JPH10125855 A JP H10125855A
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor device
chips
semiconductor chip
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8274943A
Other languages
Japanese (ja)
Other versions
JP3639390B2 (en
Inventor
Haruo Hyodo
治雄 兵藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP27494396A priority Critical patent/JP3639390B2/en
Publication of JPH10125855A publication Critical patent/JPH10125855A/en
Application granted granted Critical
Publication of JP3639390B2 publication Critical patent/JP3639390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve effective area ratio of a semiconductor device. SOLUTION: This device consists of the following; a first semiconductor chip 61 wherein a transistor is formed in a semiconductor device, a second semiconductor chip 81 wherein an integrated circuit is formed, and a plurality of external part connecting means 62, 82... which are electrically connected to electrode pads arranged on the surfaces of both the semiconductor chips 61, 81. Both of the semiconductor chips 61, 81 are adjacently arranged, electrically connected with each other, and electrically connected to the external part connecting means arranged in the vicinity of the chips. Main surfaces of the external part connecting means and the first and the second semiconductor chips 61, 81 are exposed and fixed by using resin 110 for sealing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置に関し、
特に、半導体装置のチップ面積と、半導体装置をプリン
ト基板等の実装基板上に実装する実装面積との比率で表
す実装有効面積率を向上させた半導体装置に関する。
The present invention relates to a semiconductor device,
In particular, the present invention relates to a semiconductor device having an improved effective mounting area ratio represented by a ratio of a chip area of the semiconductor device to a mounting area for mounting the semiconductor device on a mounting board such as a printed board.

【0002】[0002]

【従来の技術】一般的にシリコン基板上にトランジスタ
素子が形成された半導体装置は、図9に示すような構成
が主に用いられる。1はシリコン基板、2はシリコン基
板1が実装される放熱板等のアイランド、3はリード端
子、及び4は封止用の樹脂モールドである。
2. Description of the Related Art Generally, a semiconductor device in which a transistor element is formed on a silicon substrate mainly has a structure as shown in FIG. 1 is a silicon substrate, 2 is an island such as a heat sink on which the silicon substrate 1 is mounted, 3 is a lead terminal, and 4 is a resin mold for sealing.

【0003】シリコン基板11に形成されるトランジス
タ素子は、図3に示すように、例えば、N型シリコン基
板11にコレクタ領域となるN型のエピタキシャル層1
2にボロン等のP型の不純物を拡散してベース領域13
が形成され、そのベース領域13内にリン等のN型の不
純物を拡散してエミッタ領域14が形成される。シリコ
ン基板11の表面にベース領域13、エミッタ領域14
の一部を露出させる開口部を有した絶縁膜15が形成さ
れ、その露出されたベース領域13、エミッタ領域14
上にアルミニウム等の金属が蒸着されベース電極16、
エミッタ電極17が形成される。このような構成のトラ
ンジスタではシリコン基板がコレクタ電極18となる。
As shown in FIG. 3, a transistor element formed on a silicon substrate 11 is, for example, an N-type epitaxial layer 1 serving as a collector region on an N-type silicon substrate 11.
2, a P-type impurity such as boron is diffused into the base region 13.
Is formed, and an N-type impurity such as phosphorus is diffused in base region 13 to form emitter region 14. Base region 13 and emitter region 14 are provided on the surface of silicon substrate 11.
An insulating film 15 having an opening exposing a part of the base region 13 and the exposed emitter region 14 is formed.
A metal such as aluminum is deposited on the base electrode 16,
An emitter electrode 17 is formed. In the transistor having such a configuration, the silicon substrate becomes the collector electrode 18.

【0004】上記のように、トランジスタ素子が形成さ
れたシリコン基板1は、図9に示すように、銅ベースの
放熱板等のアイランド2に半田等のろう材5を介して固
着実装され、シリコン基板1の周辺に配置されたリード
端子3にトランジスタ素子のベース電極、エミッタ電極
とがそれぞれワイヤーボンディングによってワイヤーで
電気的に接続されている。コレクタ電極に接続されるリ
ード端子はアイランドと一体に形成されており、シリコ
ン基板をアイランド上に実装することで電気的に接続さ
れた後、エポキシ樹脂等の熱硬化型樹脂4によりトラン
スファーモールドによって、シリコン基板とリード端子
の一部を完全に被覆保護し、3端子構造の半導体装置が
提供される。
As described above, the silicon substrate 1 on which the transistor elements are formed is fixedly mounted on an island 2 such as a copper-based heat radiating plate via a brazing material 5 such as solder, as shown in FIG. The base electrode and the emitter electrode of the transistor element are electrically connected to the lead terminals 3 arranged around the substrate 1 by wires by wire bonding. The lead terminal connected to the collector electrode is formed integrally with the island, and after being electrically connected by mounting a silicon substrate on the island, transfer molding is performed using a thermosetting resin 4 such as an epoxy resin. A semiconductor device having a three-terminal structure is provided by completely covering and protecting a silicon substrate and part of a lead terminal.

【0005】[0005]

【発明が解決しようとする課題】樹脂モールドされた半
導体装置は、通常、ガラスエポキシ基板等の実装基板に
実装され、実装基板上に実装された他の半導体装置、回
路素子と電気的に接続され所定の回路動作を行うための
一部品として取り扱われる。図10は、実装基板上に半
導体装置を実装したときの断面図を示し、20は半導体
装置、21、23はベース又はエミッタ電極用のリード
端子、22はコレクタ用のリード端子、30は実装基板
である。
A resin-molded semiconductor device is usually mounted on a mounting substrate such as a glass epoxy substrate, and is electrically connected to other semiconductor devices and circuit elements mounted on the mounting substrate. It is handled as one component for performing a predetermined circuit operation. FIG. 10 is a cross-sectional view of a semiconductor device mounted on a mounting substrate, wherein 20 is a semiconductor device, 21 and 23 are lead terminals for base or emitter electrodes, 22 is a lead terminal for collector, and 30 is a mounting substrate. It is.

【0006】実装基板30上に半導体装置20が実装さ
れる実装面積は、リード端子21、22、23とそのリ
ード端子と接続される導電パッドで囲まれた領域によっ
て表される。実装面積は半導体装置20内のシリコン基
板(半導体チップ)面積に比べ大きく、実際に機能を持
つ半導体チップの面積に比べ実装面積の殆どはモールド
樹脂、リード端子によって取られている。
The mounting area where the semiconductor device 20 is mounted on the mounting board 30 is represented by a region surrounded by the lead terminals 21, 22, and 23 and conductive pads connected to the lead terminals. The mounting area is larger than the area of the silicon substrate (semiconductor chip) in the semiconductor device 20, and most of the mounting area is taken by the mold resin and the lead terminals as compared with the area of the semiconductor chip having an actual function.

【0007】ここで、実際に機能を持つ半導体チップ面
積と実装面積との比率を有効面積率として考慮すると、
樹脂モールドされた半導体装置では有効面積率が極めて
低いことが確認されている。有効面積率が低いことは、
半導体装置20を実装基板30上の他の回路素子と接続
使用とする場合に、実装面積の殆どが機能を有する半導
体チップとは直接関係のないデッドスペースとなる。有
効面積率が小さいと上記したように、実装基板30上で
デットスペースが大きくなり、実装基板30の高密度小
型化の妨げとなる。
Here, considering the ratio between the area of the semiconductor chip having the actual function and the mounting area as the effective area ratio,
It has been confirmed that a resin-molded semiconductor device has an extremely low effective area ratio. The low effective area ratio means that
When the semiconductor device 20 is used for connection with another circuit element on the mounting board 30, most of the mounting area becomes a dead space which is not directly related to a semiconductor chip having a function. If the effective area ratio is small, the dead space on the mounting substrate 30 increases as described above, which hinders the high-density and miniaturization of the mounting substrate 30.

【0008】特に、この問題はパッケージサイズが小さ
い半導体装置に顕著に現れる。例えば、EIAJ規格で
あるSC−75A外形に搭載される半導体チップの最大
サイズは、図11に示すように、0.40mm×0.40
mmが最大である。この半導体チップを金属リード端子と
ワイヤーで接続し、樹脂モールドすると半導体装置の全
体のサイズは、1.6mm×1.6mmとなる。この半導体
装置のチップ面積は0.16mmで、半導体装置を実装す
る実装面積は半導体装置の面積とほぼ同様として考え
て、2.56mmであるため、この半導体装置の有効面積
率は約6.25%となり、実装面積の殆どが機能を持つ
半導体チップ面積と直接関係のないデットスペースとな
っている。
In particular, this problem appears remarkably in a semiconductor device having a small package size. For example, as shown in FIG. 11, the maximum size of a semiconductor chip mounted on the SC-75A outer shape of the EIAJ standard is 0.40 mm × 0.40 mm.
mm is the largest. When this semiconductor chip is connected to metal lead terminals by wires and resin-molded, the overall size of the semiconductor device becomes 1.6 mm × 1.6 mm. The chip area of this semiconductor device is 0.16 mm, and the mounting area for mounting the semiconductor device is 2.56 mm, assuming that it is almost the same as the area of the semiconductor device. Therefore, the effective area ratio of this semiconductor device is about 6.25. %, And most of the mounting area is a dead space that is not directly related to the area of the semiconductor chip having functions.

【0009】この有効面積率に関する問題は、特に、上
記したようにパッケージサイズが極めて小さく、チップ
サイズが大きい半導体装置において顕著に現れるが、半
導体チップを金属リード端子でワイヤー接続し、樹脂モ
ールドする、樹脂封止型の半導体装置であれば同様に問
題となる。近年の電子機器、例えば、パーソナルコンピ
ュータ、電子手帳等の携帯情報処理装置、8mmビデオ
カメラ、携帯電話、カメラ、液晶テレビ等において用い
られる実装基板は、電子機器本体の小型化に伴い、その
内部に使用される実装基板も高密度小型化の傾向にあ
る。
The problem relating to the effective area ratio is particularly prominent in a semiconductor device having a very small package size and a large chip size as described above. However, the semiconductor chip is wire-connected with metal lead terminals and resin-molded. A similar problem arises with a resin-sealed semiconductor device. In recent years, mounting substrates used in electronic devices, for example, portable information processing devices such as personal computers and electronic organizers, 8 mm video cameras, mobile phones, cameras, liquid crystal televisions, etc. There is also a tendency for high-density and small-sized mounting boards to be used.

【0010】しかし、上記の先行技術の樹脂封止型の半
導体装置では、上述したように、半導体装置を実装する
実装面積にデットスペースが大きいため、実装基板の小
型化に限界があり、実装基板の小型化の妨げの一つの要
因となっていた。ところで、有効面積率を向上させる先
行技術として特開平3−248551号公報がある。こ
の先行技術について、図12にもとずいて簡単に説明す
る。この先行技術は、樹脂モールド型半導体装置を実装
基板等に実装したときの実装面積をできるだけ小さくす
るために、半導体チップ40のベース、エミッタ、及び
コレクタ電極と接続するリード端子41、42、43を
樹脂モールド44の側面より外側に導出させず、リード
端子41、42、43を樹脂モールド44側面と同一面
となるように形成することが記載されている。
However, in the above-mentioned prior art resin-encapsulated semiconductor device, as described above, the mounting area for mounting the semiconductor device has a large dead space. Has been one of the factors that hindered the miniaturization of the system. Incidentally, Japanese Patent Application Laid-Open No. 3-248551 is a prior art for improving the effective area ratio. This prior art will be briefly described with reference to FIG. In this prior art, lead terminals 41, 42, and 43 connected to a base, an emitter, and a collector electrode of a semiconductor chip 40 are formed in order to minimize a mounting area when a resin mold type semiconductor device is mounted on a mounting substrate or the like. It is described that the lead terminals 41, 42, and 43 are formed so as not to be led out from the side surface of the resin mold 44 and to be flush with the side surface of the resin mold 44.

【0011】この構成によれば、リード端子41、4
2、43の先端部分が導出しない分だけ実装面積を小さ
くすることができ、有効面積率を若干向上させることは
できる。しかし、上記の半導体装置では、半導体チップ
と接続されるリード端子の先端部分は樹脂モールド44
の底面部のコーナー部で折り曲げ加工されるために、そ
の折り曲げ工程時の応力に十分耐えられる構造すること
から、樹脂モールド内に埋め込まれた各リード端子の長
さを十分にしなければならず、結果的に樹脂モールドサ
イズが実装する半導体チップサイズに比べて大きくなり
有効面積率の低下には至らない。さらに、半導体チップ
と接続される各リード端子を必要とし、材料コスト面及
び製造工程が煩雑となり、製造コストを低減できない課
題がある。
According to this structure, the lead terminals 41, 4
The mounting area can be reduced by the extent that the leading end portions of 2, 43 are not led out, and the effective area ratio can be slightly improved. However, in the above-described semiconductor device, the tip end of the lead terminal connected to the semiconductor chip is formed by the resin mold 44.
Since it is bent at the corner of the bottom of the resin, it has a structure that can sufficiently withstand the stress during the bending process, so each lead terminal embedded in the resin mold must have a sufficient length, As a result, the resin mold size becomes larger than the semiconductor chip size to be mounted, and the effective area ratio does not decrease. Furthermore, each lead terminal connected to a semiconductor chip is required, and material cost and a manufacturing process become complicated, and there is a problem that manufacturing cost cannot be reduced.

【0012】有効面積率を最大限大きくするには、上記
したように、半導体チップを直接実装基板上に実装する
ことにより、半導体チップ面積と実装面積とがほぼ同一
となり有効面積率が最大となる。半導体チップを実装基
板等の基板上に実装する一つの先行技術として、例え
ば、特開平6−338504号公報に示すように、半導
体チップ45上に複数のバンプ電極46を形成したフリ
ップチップを実装基板47上にフェイスダウンボンディ
ングする技術が知られている(図13参照)。この先行
技術は、通常、MOSFET等、シリコン基板の同一主
面にゲート(ベース)電極、ソース(エミッタ)電極、
ドレイン(コレクタ)電極が形成され、電流或いは電圧
のパスが横方向に形成される比較的発熱量の少ない横型
の半導体装置に主に用いられる。
In order to maximize the effective area ratio, as described above, the semiconductor chip is directly mounted on the mounting board, so that the semiconductor chip area and the mounting area are almost the same and the effective area ratio is maximized. . As one prior art for mounting a semiconductor chip on a substrate such as a mounting substrate, for example, as shown in JP-A-6-338504, a flip chip in which a plurality of bump electrodes 46 are formed on a semiconductor chip 45 is mounted on a mounting substrate. A technique for performing face-down bonding on a surface 47 is known (see FIG. 13). In this prior art, a gate (base) electrode, a source (emitter) electrode,
A drain (collector) electrode is formed, and a current or voltage path is formed in a lateral direction, and is mainly used for a lateral semiconductor device having a relatively small amount of heat generation.

【0013】しかし、トランジスタデバイス等のように
シリコン基板が電極の一つとなり、各電極が異なる面に
形成され電流のパスが縦方向に流れる縦型の半導体装置
では、上記のフリップチップ技術を使用することは困難
である。半導体チップを実装基板等の基板上に実装する
他の先行技術として、例えば、特開平7−38334号
公報に示すように、実装基板51上に形成された導電パ
ターン52上に半導体チップ53をダイボンディング
し、半導体チップ53周辺に配置された導電パターン5
2と半導体チップ53との電極をワイヤ54で接続する
技術が知られている(図14参照)。この先行技術で
は、先に述べたシリコン基板が一つの電極を構成した縦
型構造のトランジスタ等の半導体チップに用いることは
できる。
However, in a vertical semiconductor device such as a transistor device in which a silicon substrate becomes one of the electrodes, each electrode is formed on a different surface, and a current path flows in a vertical direction, the above-mentioned flip chip technology is used. It is difficult to do. As another prior art for mounting a semiconductor chip on a substrate such as a mounting substrate, for example, as shown in JP-A-7-38334, a semiconductor chip 53 is mounted on a conductive pattern 52 formed on a mounting substrate 51 by die. Conductive pattern 5 bonded and placed around semiconductor chip 53
A technique for connecting the electrodes of the semiconductor chip 2 and the semiconductor chip 53 with wires 54 is known (see FIG. 14). In this prior art, the above-described silicon substrate can be used for a semiconductor chip such as a transistor having a vertical structure in which one electrode forms one electrode.

【0014】半導体チップ53とその周辺に配置された
導電パターン52とを接続するワイヤ54は通常、金細
線が用いられることから、金細線とボンディング接続さ
れるボンディング接合部のピール強度(引張力)を大き
くするために、約200℃〜300℃の加熱雰囲気中で
ボンディングを行うことが好ましい。しかし、絶縁樹脂
系の実装基板上に半導体チップをダイボンディングする
場合には、上記した温度まで加熱すると実装基板に歪み
が生じること、及び、実装基板上に実装されたチップコ
ンデンサ、チップ抵抗等の他の回路素子を固着する半田
が溶融するために、加熱温度を約100℃〜150℃程
度にしてワイヤボンディング接続が行われているため、
ボンディング接合部のピール強度が低下する問題があ
る。
The wire 54 for connecting the semiconductor chip 53 and the conductive pattern 52 disposed around the semiconductor chip 53 is usually a gold wire, and therefore, the peel strength (tensile force) of the bonding joint connected to the gold wire by bonding. Is preferably performed in a heating atmosphere at about 200 ° C. to 300 ° C. However, when a semiconductor chip is die-bonded on an insulating resin-based mounting substrate, the mounting substrate may be distorted when heated to the above-mentioned temperature, and a chip capacitor and a chip resistor mounted on the mounting substrate may be distorted. Since the solder for fixing other circuit elements is melted, the wire bonding connection is performed at a heating temperature of about 100 ° C. to about 150 ° C.,
There is a problem that the peel strength of the bonding portion is reduced.

【0015】この先行技術では、通常、ダイボンディン
グされた半導体チップはエポキシ樹脂等の封止用樹脂で
被覆保護されるために、ピール強度の低下はエポキシ樹
脂の熱硬化時の収縮等によって接合部が剥離されるとい
う問題がある。本発明は、上述した事情に鑑みて成され
たものであり、本発明は、トランジスタ、集積回路が形
成された半導体チップを内蔵した複合型の半導体装置の
各半導体チップの入出力用の外部接続電極を同一平面上
に配置し、各半導体チップの面積と実装基板上に実装さ
れる単一の半導体装置の実装面積との比率である有効面
積率を最大限向上させ、実装面積のデットスペース最小
限小さくした複合型の半導体装置を提供する。
In this prior art, usually, the die-bonded semiconductor chip is covered and protected with a sealing resin such as an epoxy resin, so that the decrease in peel strength is caused by shrinkage of the epoxy resin during thermosetting or the like. There is a problem that is peeled off. The present invention has been made in view of the circumstances described above, and the present invention provides an external connection for input / output of each semiconductor chip of a composite semiconductor device including a transistor and a semiconductor chip on which an integrated circuit is formed. The electrodes are arranged on the same plane to maximize the effective area ratio, which is the ratio of the area of each semiconductor chip to the mounting area of a single semiconductor device mounted on the mounting board, and minimize the dead space of the mounting area. Provided is a composite semiconductor device that is as small as possible.

【0016】[0016]

【課題を解決するための手段】本発明は、上記の課題を
解決するために以下の構成及び製造法を採用した。即
ち、本発明の半導体装置は、半導体基板内にトランジス
タが形成された第1の半導体チップ及び、集積回路が形
成された第2の半導体チップと、前記第1及び第2の半
導体チップ表面に設けられ電極パッドと電気的に接続さ
れる複数の外部接続手段とを有し、前記第1及び第2の
半導体チップは隣接配置されると共に電気的接続が行わ
れ、且つその近傍に配置された前記外部接続手段と電気
的接続が行われ、前記外部接続手段及び前記第1及び第
2の半導体チップの一主面を露出させて封止用樹脂で固
定されたことを特徴としている。
The present invention employs the following constitution and manufacturing method to solve the above-mentioned problems. That is, the semiconductor device of the present invention is provided on a first semiconductor chip having a transistor formed in a semiconductor substrate, a second semiconductor chip having an integrated circuit formed thereon, and provided on the surfaces of the first and second semiconductor chips. A plurality of external connection means electrically connected to the electrode pads, wherein the first and second semiconductor chips are arranged adjacent to each other, are electrically connected, and are arranged in the vicinity thereof. An electrical connection is made with the external connection means, and the main surfaces of the external connection means and the first and second semiconductor chips are exposed and fixed with a sealing resin.

【0017】ここで、複数の前記外部接続手段及び前記
第1及び第2の半導体チップの一主面は同一平面上に配
置されることを特徴としている。上述したように、本発
明の半導体装置によれば、トランジスタが形成された第
1の半導体チップと集積回路が形成された第2の半導体
チップとを隣接配置し、その各半導体チップの近傍に配
置された複数の外部接続手段と第1及び第2の半導体チ
ップとの電気的接続を行い、配線基板等の実装基板上に
実装固着するための外部電極となる第1及び第2の半導
体チップ及び複数の外部接続手段の一主面を露出させる
用に封止用樹脂で固定することにより、従来の半導体装
置のように、半導体チップをマウントする外部電極接続
用の金属製のリード端子を不要とし、且つ、前記リード
端子及び半導体チップの表面電極と接続する他のリード
端子が封止モールド樹脂から導出しないために、複数の
半導体チップを内蔵した複合型の半導体装置であっても
その外観寸法を著しく小型化にすることができる。
Here, the plurality of external connection means and one main surface of the first and second semiconductor chips are arranged on the same plane. As described above, according to the semiconductor device of the present invention, the first semiconductor chip on which the transistor is formed and the second semiconductor chip on which the integrated circuit is formed are arranged adjacent to each other, and arranged near each semiconductor chip. Electrical connection between the plurality of external connection means and the first and second semiconductor chips, and first and second semiconductor chips serving as external electrodes for mounting and fixing on a mounting board such as a wiring board; and By fixing with a sealing resin to expose one main surface of the plurality of external connection means, a metal lead terminal for connecting an external electrode for mounting a semiconductor chip, unlike a conventional semiconductor device, becomes unnecessary. In addition, since the lead terminals and other lead terminals connected to the surface electrodes of the semiconductor chip are not led out of the sealing mold resin, the composite semiconductor device includes a plurality of semiconductor chips. It can also significantly reduce the size of the appearance dimension.

【0018】[0018]

【発明の実施の形態】以下に、本発明の半導体装置の実
施形態について説明する。本発明の半導体装置は、図1
に示すように、トランジスタが形成された第1の半導体
チップ61と、集積回路が形成された第2の半導体チッ
プ81と、半導体チップ61、81の表面電極と電気的
接続が行われる複数の外部接続手段62、82、83、
84、85と、第1及び第2の半導体チップ61、81
と外部接続手段62、82、83、84、85とを固定
する封止用樹脂110とから構成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the semiconductor device according to the present invention will be described. FIG. 1 shows a semiconductor device according to the present invention.
As shown in FIG. 5, a first semiconductor chip 61 on which a transistor is formed, a second semiconductor chip 81 on which an integrated circuit is formed, and a plurality of external chips electrically connected to surface electrodes of the semiconductor chips 61 and 81. Connecting means 62, 82, 83,
84, 85 and first and second semiconductor chips 61, 81
And the sealing resin 110 for fixing the external connection means 62, 82, 83, 84, 85.

【0019】第1の半導体チップ61はトランジスタが
形成されており、例えば、図3に示すように、N+型の
単結晶シリコン基板11上にエピタキシャル成長技術に
よりN-型のエピタキシャル層12が形成され、その半導
体基板11にNPNトランジスタ等の能動素子が形成さ
れる。一方、第2の半導体チップ81には、集積回路が
形成されている。
In the first semiconductor chip 61, transistors are formed. For example, as shown in FIG. 3, an N- type epitaxial layer 12 is formed on an N + type single crystal silicon substrate 11 by an epitaxial growth technique. An active element such as an NPN transistor is formed on the semiconductor substrate 11. On the other hand, an integrated circuit is formed on the second semiconductor chip 81.

【0020】本発明は、特に、第1及び第2の半導体チ
ップ61、81の表面及び裏面側に外部接続電極を有す
る、いわゆる、縦型構造のデバイスに適合する。図3
は、先に説明した一般的なNPNトランジスタの断面図
であり、例えば、N-型のエピタキシャル層12をコレク
タ領域としたトランジスタを形成したもので、半導体基
板11上にホトレジストを形成し、ホトレジストによっ
て露出された領域にボロン(B)等のP型の不純物を選
択的に熱拡散して所定の深さを有した島状のベース領域
13が形成される。
The present invention is particularly applicable to a device having a so-called vertical structure having external connection electrodes on the front and back surfaces of the first and second semiconductor chips 61 and 81. FIG.
FIG. 2 is a cross-sectional view of the general NPN transistor described above. For example, a transistor in which an N− type epitaxial layer 12 is used as a collector region is formed. A photoresist is formed on a semiconductor substrate 11 and is formed by a photoresist. P-type impurities such as boron (B) are selectively thermally diffused into the exposed regions to form island-like base regions 13 having a predetermined depth.

【0021】ベース領域13形成後、半導体基板11上
に再度ホトレジストを形成し、ホトレジストによって露
出されたベース領域13内にリン(P)、アンチモン
(Sb)等のN型の不純物を選択的に熱拡散してトラン
ジスタのエミッタ領域14が形成される。このエミッタ
領域14を形成する際に、ベース領域13を囲むリング
状のガードリング用のN+型の拡散領域を形成しておく
場合もある。
After the formation of the base region 13, a photoresist is formed again on the semiconductor substrate 11, and N-type impurities such as phosphorus (P) and antimony (Sb) are selectively heated in the base region 13 exposed by the photoresist. The diffusion forms the emitter region 14 of the transistor. When forming the emitter region 14, a ring-shaped guard ring N + type diffusion region surrounding the base region 13 may be formed in some cases.

【0022】半導体基板11の表面には、ベース領域1
3表面を露出するベースコンタクト孔及びエミッタ領域
表面を露出するエミッタコンタクト孔を有するシリコン
酸化膜、或いはシリコン窒化膜等の絶縁膜15が形成さ
れる。ベースコンタクト孔、及びエミッタコンタクト孔
によって露出されたベース領域13、エミッタ領域14
上には、選択的にアルミニウム等の金属材料で蒸着され
たベース電極16、エミッタ電極17及びそれら電極の
外部接続用パッド(図示しない)が形成される。半導体
基板11の裏面には、金属メッキ処理が行われ、コレク
タ電極18として用いられる。
The base region 1 is provided on the surface of the semiconductor substrate 11.
An insulating film 15 such as a silicon oxide film or a silicon nitride film having a base contact hole exposing the three surfaces and an emitter contact hole exposing the emitter region surface is formed. Base region 13 and emitter region 14 exposed by base contact hole and emitter contact hole
A base electrode 16 and an emitter electrode 17 and a pad (not shown) for external connection of these electrodes are formed on the base electrode 16 and the emitter electrode 17 selectively deposited by a metal material such as aluminum. A metal plating process is performed on the back surface of the semiconductor substrate 11 to be used as the collector electrode 18.

【0023】第2の半導体チップ81は、例えば、単結
晶のP型半導体基板が用いられ、バイポーラIC、MO
SIC等の集積回路が形成される。例えば、図4に示す
ように、P型半導体基板に所定形状のフォトマスクを形
成し、アンチモン等のN型の高濃度不純物を拡散して島
状のN+型の埋め込みコレクタ領域101が形成され
る。フォトマスクを除去した後、基板100上にエピタ
キシャル成長技術によりN-型のエピタキシャル層102
が形成される。
As the second semiconductor chip 81, for example, a single-crystal P-type semiconductor substrate is used.
An integrated circuit such as an SIC is formed. For example, as shown in FIG. 4, a photomask of a predetermined shape is formed on a P-type semiconductor substrate, and an N-type high concentration impurity such as antimony is diffused to form an island-shaped N + type buried collector region 101. You. After removing the photomask, the N− type epitaxial layer 102 is formed on the substrate 100 by an epitaxial growth technique.
Is formed.

【0024】エピタキシャル層102上にアイソレーシ
ョン拡散領域を露出するマスクを形成し、かかる、アイ
ソレーション拡散領域にボロン等のP+型の不純物を拡
散してアイソレーション拡散領域103が形成される。
このアイソレーション拡散領域103によりトランジス
タの活性領域となるN型領域はP型の不純物で囲まれ
る。
A mask for exposing the isolation diffusion region is formed on the epitaxial layer 102, and a P + type impurity such as boron is diffused into the isolation diffusion region to form an isolation diffusion region 103.
The N-type region serving as the active region of the transistor is surrounded by the P-type impurity by the isolation diffusion region 103.

【0025】エピタキシャル層102にホトレジストを
形成し、ホトレジストによって露出された領域にボロン
(B)等のP型の不純物を選択的に熱拡散して所定の深
さを有した島状のベース領域104が形成される。ベー
ス領域104形成後、エピタキシャル層102上に再度
ホトレジストを形成し、ホトレジストによって露出され
たベース領域104内及びコレクタ領域内にリン
(P)、アンチモン(Sb)等のN型の不純物を選択的
に熱拡散してトランジスタのエミッタ領域105及びコ
レクタコンタクト拡散領域106が形成される。
A photoresist is formed on the epitaxial layer 102, and a P-type impurity such as boron (B) is selectively thermally diffused into a region exposed by the photoresist to form an island-shaped base region 104 having a predetermined depth. Is formed. After the formation of the base region 104, a photoresist is formed again on the epitaxial layer 102, and N-type impurities such as phosphorus (P) and antimony (Sb) are selectively formed in the base region 104 and the collector region exposed by the photoresist. By thermal diffusion, an emitter region 105 and a collector contact diffusion region 106 of the transistor are formed.

【0026】ベース領域104表面を露出するベースコ
ンタクト孔、エミッタ領域105表面を露出するエミッ
タコンタクト孔及びコレクタコンタクト拡散領域表面を
露出するコレクタコンタクト孔を有するシリコン酸化
膜、或いはシリコン窒化膜等の絶縁膜107が形成され
る。ベースコンタクト孔、エミッタコンタクト孔、コレ
クタコンタクト孔によって露出されたベース領域10
4、エミッタ領域106、コレクタコンタクト領域10
7には、選択的にアルミニウム等の金属材料で蒸着され
たベース電極107、エミッタ電極108、コレクタ電
極109が形成される。
An insulating film such as a silicon oxide film or a silicon nitride film having a base contact hole exposing the surface of the base region 104, an emitter contact hole exposing the surface of the emitter region 105, and a collector contact hole exposing the surface of the collector contact diffusion region. 107 is formed. Base region 10 exposed by base contact hole, emitter contact hole, and collector contact hole
4. Emitter region 106, collector contact region 10
7, a base electrode 107, an emitter electrode 108, and a collector electrode 109 selectively formed of a metal material such as aluminum are formed.

【0027】本発明の特徴とするところは、第1及び第
2の半導体チップ61、81の表面側に設けられた外部
接続用電極パッド(ベース電極、エミッタ電極等)を複
数のの外部接続手段62、82、83、84、85を介
して封止用樹脂110より導出することなく各半導体チ
ップ61、81裏面の外部接続用電極(コレクタ電極、
アース電極)と同一面側に配置し、封止用樹脂サイズを
最小限、コンパクトにして有効面積率を向上させるとこ
ろにある。
A feature of the present invention is that an external connection electrode pad (base electrode, emitter electrode, etc.) provided on the surface side of the first and second semiconductor chips 61 and 81 is connected to a plurality of external connection means. An external connection electrode (collector electrode, collector electrode, etc.) on the back surface of each semiconductor chip 61, 81 without being led out of the sealing resin 110 via 62, 82, 83, 84, 85.
(Earth electrode) on the same surface side to minimize the size of the sealing resin and to improve the effective area ratio.

【0028】外部接続手段62、82、83、84、8
5は、第1及び第2の半導体チップ61、81表面に設
けられたベース、エミッタ等の複数の外部接続用電極パ
ッド数と対応するように各半導体チップ61、81の周
辺近傍に配置される(図2参照)。外部接続手段62、
82、83、84、85と第1及び第2の半導体チップ
61、81のベース、エミッタ用等の電極パッドとは、
金又はアルミニウム等の金属細線からなるワイヤにより
電気的接続が成され、第1及び第2の半導体チップ6
1、81はこのワイヤによって電気的に接続された状態
となる。例えば、図2に示すように、外部接続電極82
には、ワイヤで第1の半導体チップ61のベース電極と
接続し、さらに、第2の半導体チップ81の電極と接続
することで、両半導体チップ61、81の接続がなされ
る。この実施形態では、外部接続電極を介して両チップ
の接続を行っていが、直接ワイヤで接続できることは説
明するまでもない。
External connection means 62, 82, 83, 84, 8
Reference numeral 5 is disposed near the periphery of each of the semiconductor chips 61 and 81 so as to correspond to the number of a plurality of external connection electrode pads such as bases and emitters provided on the surfaces of the first and second semiconductor chips 61 and 81. (See FIG. 2). External connection means 62,
82, 83, 84, 85 and the electrode pads for the base and the emitter of the first and second semiconductor chips 61, 81 are
The first and second semiconductor chips 6 are electrically connected by wires made of a thin metal wire such as gold or aluminum.
Numerals 1 and 81 are electrically connected by these wires. For example, as shown in FIG.
Is connected to the base electrode of the first semiconductor chip 61 by a wire, and further connected to the electrode of the second semiconductor chip 81, whereby the two semiconductor chips 61, 81 are connected. In this embodiment, the two chips are connected via the external connection electrodes. However, it is needless to say that they can be directly connected by wires.

【0029】外部接続手段62、82、83、84、8
5は銅、インバー、テルル等の金属片又はシリコン材料
から成るシリコンチップ等の導電材料から構成されるも
のであれば特に限定されるものではない。本実施形態で
は、作業性及びコスト面を考慮し、シリコンチップが用
いられている。ワイヤで電気的に接続がなされた半導体
チップ61、81と外部接続用シリコンチップ62、8
2、83、84、85とはエポキシ樹脂等の熱硬化性の
封止用樹脂110で固定される。この時、コレクタ電極
及びアース電極となる第1及び第2の半導体チップ6
1、81の裏面と、入出力用の電極となる各外部接続用
シリコンチップ62、82、83、84、85の裏面と
は同一平面上に配置される。
External connection means 62, 82, 83, 84, 8
5 is not particularly limited as long as it is made of a metal piece such as copper, invar, tellurium, or a conductive material such as a silicon chip made of a silicon material. In the present embodiment, a silicon chip is used in consideration of workability and cost. Semiconductor chips 61 and 81 electrically connected by wires and silicon chips 62 and 8 for external connection
2, 83, 84 and 85 are fixed with a thermosetting sealing resin 110 such as an epoxy resin. At this time, the first and second semiconductor chips 6 serving as a collector electrode and an earth electrode
The back surface of each of the external connection silicon chips 62, 82, 83, 84, and 85 serving as input / output electrodes is arranged on the same plane.

【0030】上述したように、本発明では、従来の半導
体装置のように、半導体チップをマウントする外部電極
接続用の金属製のリード端子を不要とし、且つ、そのリ
ード端子及び半導体チップの表面電極と接続する他のリ
ード端子が封止モールド樹脂から導出しために、半導体
装置の外観寸法を著しく小型化にすることができる。さ
らに述べれば、本発明では単一の半導体装置内にトラン
ジスタが形成された第1の半導体チップ61と集積回路
が形成された第2の半導体チップ81とを内蔵し、その
半導体チップ61、81の裏面側を実装基板上に直接接
続すること、及び各半導体チップ61、81の表面電極
と接続される各外部接続手段をシリコンチップ62、8
2、83、84、85とする構造としたので、半導体チ
ップ61、81と接続する金属製のリード端子を不要と
することができる。
As described above, according to the present invention, unlike the conventional semiconductor device, the metal lead terminal for connecting the external electrode for mounting the semiconductor chip is not required, and the lead terminal and the surface electrode of the semiconductor chip are not required. Since the other lead terminals connected to the semiconductor device are led out of the sealing mold resin, the external dimensions of the semiconductor device can be significantly reduced. More specifically, in the present invention, a single semiconductor device incorporates a first semiconductor chip 61 having transistors formed therein and a second semiconductor chip 81 having an integrated circuit formed therein. The back side is directly connected to the mounting substrate, and the external connection means connected to the surface electrodes of the semiconductor chips 61 and 81 is connected to the silicon chips 62 and 8.
With the structure of 2, 83, 84, 85, metal lead terminals connected to the semiconductor chips 61, 81 can be eliminated.

【0031】以下の本発明の半導体装置の製造方法につ
いて説明する。先ず、図5に示すように、支持基板70
の一主面上にポリイミド樹脂等の絶縁樹脂層71上に複
数の第1及び第2の半導体チップ61、81及び複数の
シリコンチップ62、82、83、84、85を規則的
に配置する。第1及び第2の半導体チップ61、81
は、例えば、図6に示すように、支持基板70のn行及
びn行+偶数番目の行方向にトランジスタの第1の半導
体チップ61を実装し、n+奇数番目の行方向に第1の
半導体チップ61に隣接して集積回路の第2の半導体チ
ップ81を実装する。隣接実装された各半導体チップ6
1、81を挟んで複数のシリコンチップ62、82、8
3、84、85を実装する。
The following is a description of a method of manufacturing a semiconductor device according to the present invention. First, as shown in FIG.
A plurality of first and second semiconductor chips 61, 81 and a plurality of silicon chips 62, 82, 83, 84, 85 are regularly arranged on an insulating resin layer 71 such as a polyimide resin on one main surface. First and second semiconductor chips 61, 81
For example, as shown in FIG. 6, the first semiconductor chips 61 of the transistors are mounted on the n-th row and the n-th row + even-numbered row direction of the support substrate 70, and the first semiconductor chip 61 is mounted on the n + odd-numbered row direction. A second semiconductor chip 81 of an integrated circuit is mounted adjacent to the chip 61. Each semiconductor chip 6 mounted adjacently
A plurality of silicon chips 62, 82, 8
3, 84 and 85 are implemented.

【0032】支持基板70は比較的熱伝導性が良好な材
料からなるものが用いられ、例えば、銅、アルミニウ
ム、セラミックス、ガラスエポキシ等から形成された厚
さ約0.3mm〜1.2mmの薄状基板を用いる。その支持
基板70上に膜厚約2μ〜5μ厚のポリイミド系の樹脂
が約300℃〜約400℃の加熱温度で貼着される。複
数の半導体チップ61、81及び複数のシリコンチップ
62、82、83、84、85は、支持基板70を上記
した加熱温度よりも低い加熱温度、例えば約200℃〜
約300℃に加熱した状態で支持基板70上に実装す
る。この時の加熱温度を最初の加熱温度より高温にして
おくと、各半導体チップ61、81等を絶縁樹脂層71
上にダイボンドしたときに接着力が高くなりすぎて,後
述する支持基板70の剥離に悪影響を及ぼす。
The support substrate 70 is made of a material having relatively good thermal conductivity. For example, the support substrate 70 is made of copper, aluminum, ceramics, glass epoxy, or the like, and has a thickness of about 0.3 mm to 1.2 mm. Substrate is used. A polyimide resin having a thickness of about 2 μ to 5 μ is adhered on the supporting substrate 70 at a heating temperature of about 300 ° C. to about 400 ° C. The plurality of semiconductor chips 61, 81 and the plurality of silicon chips 62, 82, 83, 84, 85 heat the support substrate 70 at a heating temperature lower than the above-described heating temperature, for example, about 200 °
It is mounted on the support substrate 70 while being heated to about 300 ° C. If the heating temperature at this time is set higher than the first heating temperature, the semiconductor chips 61, 81 and the like are placed on the insulating resin layer 71.
When die-bonding is performed on the upper side, the adhesive strength becomes too high, which adversely affects peeling of the support substrate 70 described later.

【0033】本実施形態では、外部接続用手段62、8
2、83、84、85は上述したように、シリコンチッ
プを用いている。このシリコンチップ62、82、8
3、84、85のサイズは、各半導体チップ61、81
サイズに依存するが、例えば、半導体チップサイズが
0.40〜0.8mm×0.40〜0.8mmである場合に
は、シリコンチップサイズは0.25〜0.5mm×0.
25〜0.5mm程度に設計すればよい。従って、シリコ
ンチップ62、82、83、84、85も半導体チップ
61、81同様に半導体ウエハを周知のダイシング技術
により個別に形成することができる。本実施形態で使用
されるシリコンチップ62、82、83、84、85に
は、内部抵抗を低減化する目的から表面から反主面まで
高濃度不純物が拡散されている。
In this embodiment, the external connection means 62, 8
2, 83, 84 and 85 use silicon chips as described above. These silicon chips 62, 82, 8
The sizes of 3, 84 and 85 are the same as those of the semiconductor chips 61 and 81.
Although it depends on the size, for example, when the semiconductor chip size is 0.40 to 0.8 mm × 0.40 to 0.8 mm, the silicon chip size is 0.25 to 0.5 mm × 0.
What is necessary is just to design about 25-0.5 mm. Therefore, similarly to the semiconductor chips 61 and 81, the silicon chips 62, 82, 83, 84 and 85 can be formed individually by using a well-known dicing technique on a semiconductor wafer. In the silicon chips 62, 82, 83, 84, 85 used in the present embodiment, high-concentration impurities are diffused from the surface to the opposite main surface for the purpose of reducing internal resistance.

【0034】支持基板70上には、それぞれのチップが
個々に形成されたシリコンウエハからダイボンディング
装置により、それぞれピックアップされ、図6に示すよ
うに、支持基板70上に指定された領域に規則的に複数
の第1及び第2の半導体チップ61、81、及び、シリ
コンチップ62、82、83、84、85を上述した配
列でダイボンディンする。ダイボンディングされた両チ
ップは支持基板70上に形成された絶縁樹脂層71の接
着力によって、支持基板70上に仮固着されることにな
る。
Each chip is picked up from the individually formed silicon wafer on the support substrate 70 by a die bonding apparatus, and regularly arranged in a region designated on the support substrate 70 as shown in FIG. Then, a plurality of first and second semiconductor chips 61 and 81 and silicon chips 62, 82, 83, 84 and 85 are die-bonded in the above-described arrangement. The two die-bonded chips are temporarily fixed on the support substrate 70 by the adhesive force of the insulating resin layer 71 formed on the support substrate 70.

【0035】両チップを支持基板70上に実装した後、
図6に示すように、各半導体チップ61、81の表面に
形成された外部接続用電極パッドと対応する各外部接続
用のシリコンチップ62、82、83、84、85とを
それぞれ金、アルミニウム等の金属細線でワイヤーボン
ディング接続し電気的接続を行う。この際、例えば、同
図に示すように、シリコンチップ82(外部接続電極8
2)には第1の半導体チップ61のベース電極と第2の
半導体チップ81の電極とがそれぞれワイヤーボンディ
ング接続され、シリコンチップ82を介してトランジス
タが形成された第1の半導体チップ61と集積回路が形
成された第2の半導体チップ81とが電気的に接続され
る。この実施形態では、シリコンチップ82を介して両
チップ61、81の接続を行っていが、両チップを直接
ワイヤで接続できることは説明するまでもない。
After mounting both chips on the support substrate 70,
As shown in FIG. 6, the external connection electrode pads formed on the surface of each of the semiconductor chips 61 and 81 and the corresponding external connection silicon chips 62, 82, 83, 84 and 85 are made of gold, aluminum or the like, respectively. Wire connection with the thin metal wire for electrical connection. At this time, for example, as shown in FIG.
In 2), the base electrode of the first semiconductor chip 61 and the electrode of the second semiconductor chip 81 are connected by wire bonding, respectively, and the first semiconductor chip 61 in which transistors are formed via the silicon chip 82 and the integrated circuit Are electrically connected to the second semiconductor chip 81 on which is formed. In this embodiment, the two chips 61 and 81 are connected via the silicon chip 82, but it is needless to say that the two chips can be directly connected by wires.

【0036】次に、図7に示すように、支持基板70上
にエポキシ樹脂等の熱硬化性の封止用樹脂110を塗布
し、約150℃〜約200℃の温度で加熱処理を行い、
支持基板70上に実装した複数の第1及び第2の半導体
チップ61、81、及び複数のシリコンチップ62、8
2、83、84、85を封止用樹脂110で固定する。
この時、半導体チップ61、81及びシリコンチップ6
2、82、83、84、85の表面が露出しないように
封止用樹脂110の厚みを考慮する。
Next, as shown in FIG. 7, a thermosetting sealing resin 110 such as an epoxy resin is applied on the support substrate 70, and a heat treatment is performed at a temperature of about 150 ° C. to about 200 ° C.
A plurality of first and second semiconductor chips 61 and 81 mounted on a support substrate 70 and a plurality of silicon chips 62 and 8
2, 83, 84 and 85 are fixed with a sealing resin 110.
At this time, the semiconductor chips 61 and 81 and the silicon chip 6
The thickness of the sealing resin 110 is considered so that the surfaces of 2, 82, 83, 84 and 85 are not exposed.

【0037】両チップを封止用樹脂110で固定した
後、図8に示すように、封止用樹脂110と密着した支
持基板70を封止用樹脂110から剥離する。封止用樹
脂110は、溶剤を用いて溶かす科学的剥離を行うか、
又は支持基板70を約150℃〜約200℃に加熱し樹
脂層の接着力を低下させた状態で機械的な剥離を行う。
支持基板70を剥離し半導体チップ61、81及びシリ
コンチップ62、82、83、84、85の表面を露出
させた後、封止用樹脂110で固定された少なくとも第
1及び第2の半導体チップ61、81とその半導体チッ
プ61、81と接続される各シリコンチップ62、8
2、83、84、85とを含む領域、具体的には、例え
ば、図8に示す矢印線及び図6に示す点線領域の封止用
樹脂110をダイシング装置等の切断装置を用いて切断
し個々に分割することにより、図1に示したトランジス
タ及び集積回路の半導体チップを内蔵した複合型の半導
体装置を製造することができる。
After the two chips are fixed with the sealing resin 110, the supporting substrate 70 in close contact with the sealing resin 110 is peeled off from the sealing resin 110, as shown in FIG. The sealing resin 110 is subjected to scientific peeling to be dissolved using a solvent,
Alternatively, the support substrate 70 is heated to about 150 ° C. to about 200 ° C., and mechanical peeling is performed in a state where the adhesive strength of the resin layer is reduced.
After the support substrate 70 is peeled off and the surfaces of the semiconductor chips 61 and 81 and the silicon chips 62, 82, 83, 84 and 85 are exposed, at least the first and second semiconductor chips 61 fixed with the sealing resin 110 , 81 and respective silicon chips 62, 8 connected to the semiconductor chips 61, 81
The sealing resin 110 in the region including 2, 83, 84, and 85, specifically, for example, the region indicated by the arrow line in FIG. 8 and the region indicated by the dotted line in FIG. 6 is cut using a cutting device such as a dicing device. By dividing the semiconductor device into individual components, a composite semiconductor device including the transistor and the integrated circuit semiconductor chip illustrated in FIG. 1 can be manufactured.

【0038】上述した本発明の半導体装置の有効面積率
を従来の半導体装置と比較してみると、従来例で説明し
た半導体装置のチップサイズは、0.40mm×0.40
mmで、この半導体チップ61を金属リード端子とワイヤ
ーで接続し、樹脂モールドすると半導体装置の全体のサ
イズが1.6mm×1.6mmとなる。チップ面積は0.1
6mm2に対して、半導体装置を実装する実装面積は半導
体装置の面積とほぼ同様として考えて2.56mm2であ
るため、従来の半導体装置の有効面積率は約6.25%
であった。
When the effective area ratio of the semiconductor device of the present invention is compared with that of the conventional semiconductor device, the chip size of the semiconductor device described in the conventional example is 0.40 mm × 0.40.
When the semiconductor chip 61 is connected to a metal lead terminal by a wire and molded with a resin, the overall size of the semiconductor device becomes 1.6 mm × 1.6 mm. Chip area is 0.1
The mounting area for mounting the semiconductor device is 2.56 mm2 with respect to 6 mm2, assuming that the mounting area is almost the same as the area of the semiconductor device. Therefore, the effective area ratio of the conventional semiconductor device is about 6.25%
Met.

【0039】それに対して、本発明の半導体装置はトラ
ンジスタ及び集積回路の半導体チップが内蔵され、その
チップサイズは多少異なるにしても、金属製リード端子
が不要となる。従来のトランジスタ、集積回路の半導体
装置2個分と比較した場合、実装基板上に実装する実装
面積のデットスペースを小さくすることができ、実装基
板の小型化に寄与することができる。
On the other hand, the semiconductor device of the present invention incorporates a transistor and a semiconductor chip of an integrated circuit, and does not require metal lead terminals even if the chip sizes are slightly different. Compared to two conventional transistors and integrated circuit semiconductor devices, the dead space of the mounting area mounted on the mounting substrate can be reduced, which can contribute to the miniaturization of the mounting substrate.

【0040】上述した、本発明の半導体装置の製造法に
よれば、支持基板70上に半導体チップ61、81及び
シリコンチップ62、82、83、84、85を実装し
電気的接続を行い封止用樹脂110で固定した後、支持
基板70を剥離し少なくとも半導体チップ61、81と
その半導体チップ61、81と接続される外部接続手段
62、82、83、84、85とを含んだ封止用樹脂1
10領域で個々に分割することにより、従来の半導体装
置のような金属製のリード端子を不要にでき生産コスト
の低減化およびトランジスタと集積回路とを内蔵した半
導体装置を多量生産することができる。
According to the above-described method for manufacturing a semiconductor device of the present invention, the semiconductor chips 61 and 81 and the silicon chips 62, 82, 83, 84 and 85 are mounted on the support substrate 70, and are electrically connected and sealed. After fixing with the resin 110, the support substrate 70 is peeled off, and at least the semiconductor chips 61 and 81 and the external connection means 62, 82, 83, 84 and 85 connected to the semiconductor chips 61 and 81 are used for sealing. Resin 1
By dividing into ten regions individually, metal lead terminals as in the conventional semiconductor device are not required, the production cost can be reduced, and a large number of semiconductor devices incorporating transistors and integrated circuits can be manufactured.

【0041】本実施形態では、第1の半導体チップ61
にトランジスタを形成したが、縦型或いは比較的発熱量
の少ない横型のデバイスであればこれに限らず、例え
ば、パワーMOSFET、IGBT、HBT等のデバイ
スを形成した半導体チップ61、であっても、本発明に
応用ができることは説明するまでもない。
In the present embodiment, the first semiconductor chip 61
However, the invention is not limited to this as long as the device is a vertical device or a horizontal device that generates a relatively small amount of heat. For example, a semiconductor chip 61 formed with a device such as a power MOSFET, IGBT, or HBT may be used. It goes without saying that the present invention can be applied.

【0042】[0042]

【発明の効果】以上に詳述したように、本発明の半導体
装置によれば、トランジスタが形成された第1の半導体
チップと集積回路が形成された第2の半導体チップとを
隣接配置し、その各半導体チップの近傍に配置された複
数の外部接続手段と第1及び第2の半導体チップとの電
気的接続を行い、配線基板等の実装基板上に実装固着す
るための外部電極となる第1及び第2の半導体チップ及
び複数の外部接続手段の一主面を露出させる用に封止用
樹脂で固定することにより、従来の半導体装置のよう
に、半導体チップをマウントする外部電極接続用の金属
製のリード端子を不要とし、且つ、前記リード端子及び
半導体チップの表面電極と接続する他のリード端子が封
止モールド樹脂から導出しないために、複数の半導体チ
ップを内蔵した複合型の半導体装置であってもその外観
寸法を著しく小型化にすることができる。その結果、ト
ランジスタ及び集積回路の半導体チップを内蔵した半導
体装置の外観寸法を著しく小型化にすることができ、実
装基板上に実装したときの不必要なデットスペースを無
くすことができ、実装基板の小型化に大きく寄与するこ
とができる。
As described in detail above, according to the semiconductor device of the present invention, the first semiconductor chip on which the transistor is formed and the second semiconductor chip on which the integrated circuit is formed are arranged adjacent to each other. A plurality of external connection means arranged in the vicinity of each of the semiconductor chips is electrically connected to the first and second semiconductor chips, and an external electrode serving as an external electrode for mounting and fixing on a mounting substrate such as a wiring substrate. By fixing the first and second semiconductor chips and a plurality of external connection means with a sealing resin so as to expose one main surface thereof, an external electrode connection for mounting the semiconductor chip as in a conventional semiconductor device is performed. A composite that incorporates a plurality of semiconductor chips to eliminate the need for metal lead terminals and to prevent the lead terminals and other lead terminals connected to the surface electrodes of the semiconductor chip from being led out of the sealing mold resin. Even the semiconductor device can be greatly miniaturized its appearance dimensions. As a result, the external dimensions of a semiconductor device incorporating a transistor and an integrated circuit semiconductor chip can be significantly reduced, and unnecessary dead space when mounted on a mounting substrate can be eliminated. This can greatly contribute to miniaturization.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体装置を示す断面図。FIG. 1 is a cross-sectional view illustrating a semiconductor device of the present invention.

【図2】本発明の半導体装置の裏面を示す図。FIG. 2 is a diagram showing a back surface of the semiconductor device of the present invention.

【図3】一般的なトランジスタの断面図。FIG. 3 is a cross-sectional view of a general transistor.

【図4】一般的な集積回路の断面図。FIG. 4 is a cross-sectional view of a general integrated circuit.

【図5】本発明の半導体装置の製造方法を説明する図。FIG. 5 illustrates a method for manufacturing a semiconductor device of the present invention.

【図6】本発明の半導体装置の製造方法を説明する図。FIG. 6 illustrates a method for manufacturing a semiconductor device of the present invention.

【図7】本発明の半導体装置の製造方法を説明する図。FIG. 7 illustrates a method for manufacturing a semiconductor device of the present invention.

【図8】本発明の半導体装置の製造方法を説明する図。FIG. 8 illustrates a method for manufacturing a semiconductor device of the present invention.

【図9】従来の半導体装置の断面図。FIG. 9 is a cross-sectional view of a conventional semiconductor device.

【図10】従来の半導体装置を実装基板上に実装した断
面図。
FIG. 10 is a cross-sectional view of a conventional semiconductor device mounted on a mounting substrate.

【図11】従来の半導体装置の平面図。FIG. 11 is a plan view of a conventional semiconductor device.

【図12】従来の半導体装置の平面図。FIG. 12 is a plan view of a conventional semiconductor device.

【図13】従来の半導体装置を実装基板上に実装した断
面図。
FIG. 13 is a cross-sectional view of a conventional semiconductor device mounted on a mounting board.

【図14】従来の半導体装置を実装基板上に実装した断
面図。
FIG. 14 is a cross-sectional view in which a conventional semiconductor device is mounted on a mounting board.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板内にトランジスタが形成され
た第1の半導体チップ及び、集積回路が形成された第2
の半導体チップと、前記第1及び第2の半導体チップ表
面に設けられ電極パッドと電気的に接続される複数の外
部接続手段とを有し、前記第1及び第2の半導体チップ
は隣接配置されると共に電気的接続が行われ、且つその
近傍に配置された前記外部接続手段と電気的接続が行わ
れ、前記外部接続手段及び前記第1及び第2の半導体チ
ップの一主面を露出させて封止用樹脂で固定されたこと
を特徴とする半導体装置。
1. A first semiconductor chip having a transistor formed in a semiconductor substrate and a second semiconductor chip having an integrated circuit formed therein.
And a plurality of external connection means provided on the surfaces of the first and second semiconductor chips and electrically connected to the electrode pads, wherein the first and second semiconductor chips are arranged adjacent to each other. Electrical connection is made, and electrical connection is made with the external connection means disposed in the vicinity thereof, exposing one main surface of the external connection means and the first and second semiconductor chips. A semiconductor device fixed by a sealing resin.
【請求項2】 複数の前記外部接続手段及び前記第1及
び第2の半導体チップの一主面は同一平面上に配置され
ることを特徴とする請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein said plurality of external connection means and one main surface of said first and second semiconductor chips are arranged on the same plane.
JP27494396A 1996-10-17 1996-10-17 Semiconductor device Expired - Fee Related JP3639390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27494396A JP3639390B2 (en) 1996-10-17 1996-10-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27494396A JP3639390B2 (en) 1996-10-17 1996-10-17 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH10125855A true JPH10125855A (en) 1998-05-15
JP3639390B2 JP3639390B2 (en) 2005-04-20

Family

ID=17548722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27494396A Expired - Fee Related JP3639390B2 (en) 1996-10-17 1996-10-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3639390B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274315A (en) * 2000-03-24 2001-10-05 Sony Corp Semiconductor device and its manufacturing method
JP2007531270A (en) * 2004-03-24 2007-11-01 フリースケール セミコンダクター インコーポレイテッド Land grid array package device and method of forming the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274315A (en) * 2000-03-24 2001-10-05 Sony Corp Semiconductor device and its manufacturing method
JP2007531270A (en) * 2004-03-24 2007-11-01 フリースケール セミコンダクター インコーポレイテッド Land grid array package device and method of forming the same

Also Published As

Publication number Publication date
JP3639390B2 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
US6410363B1 (en) Semiconductor device and method of manufacturing same
KR100737204B1 (en) Method of manufacturing semiconductor device
KR100272686B1 (en) Semiconductor device and method for manufacturing the same
US6569764B1 (en) Method of manufacturing a semiconductor package by attaching a lead frame to a semiconductor chip via projecting electrodes and an insulating sheet of resin material
US20070045785A1 (en) Reversible-multiple footprint package and method of manufacturing
JP4026882B2 (en) Semiconductor device
JP2956786B2 (en) Synthetic hybrid semiconductor structure
JP3500015B2 (en) Semiconductor device and manufacturing method thereof
JP3639390B2 (en) Semiconductor device
JP3500016B2 (en) Semiconductor device and manufacturing method thereof
JP2000243880A (en) Semiconductor device and its manufacture
JP3717597B2 (en) Semiconductor device
JP2007027654A (en) Semiconductor device
KR970007178B1 (en) Semiconductor integrated circuit device and its manufacture method
JPH1027767A (en) Manufacture of semiconductor device
JPH1032284A (en) Semiconductor device
JP3663036B2 (en) Semiconductor device and manufacturing method thereof
JP4127872B2 (en) Semiconductor device
JPH11111977A (en) Semiconductor device
JPH1022336A (en) Manufacture of semiconductor device
JP4017625B2 (en) Manufacturing method of semiconductor device
KR100722322B1 (en) Semiconductor package
JP4318723B2 (en) Semiconductor device
JP2006005366A (en) Semiconductor device
JPH1022330A (en) Semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees