JP2007027654A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2007027654A
JP2007027654A JP2005211653A JP2005211653A JP2007027654A JP 2007027654 A JP2007027654 A JP 2007027654A JP 2005211653 A JP2005211653 A JP 2005211653A JP 2005211653 A JP2005211653 A JP 2005211653A JP 2007027654 A JP2007027654 A JP 2007027654A
Authority
JP
Japan
Prior art keywords
electrode
semiconductor device
region
substrate
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005211653A
Other languages
Japanese (ja)
Inventor
Mamoru Ando
守 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005211653A priority Critical patent/JP2007027654A/en
Publication of JP2007027654A publication Critical patent/JP2007027654A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device that improves its effective area rate. <P>SOLUTION: The semiconductor device has a semiconductor substrate having a first area where an active element is provided at a specified position on the semiconductor substrate, and a second area for external connection which is disposed around the first area and provided on the semiconductor substrate; a plating film which is electrically connected to an electrode of the active element and provided so that the reverse surface of the second area is a mount surface; an insulating adhesive resin layer covering the top surface of the first area and the surface of the second area in one body; and a wiring line which is provided on the top surface of the insulating adhesive resin layer, and electrically connects the electrode of the active element to an electrode disposed on the top surface of the second area. Consequently, the need for a metallic lead terminal connected to an external electrode and a sealing mold for protection is eliminated and the outward appearance size can be made extremely small. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は半導体装置に関し、特に、半導体装置のチップ面積と、半導体装置をプリント基板等の実装基板上に実装する実装面積との比率で表す実装有効面積率を向上させた半導体装置に関する。       The present invention relates to a semiconductor device, and more particularly to a semiconductor device having an improved mounting effective area ratio expressed by a ratio between a chip area of the semiconductor device and a mounting area where the semiconductor device is mounted on a mounting substrate such as a printed circuit board.

一般的にシリコン基板上にトランジスタ素子が形成された半導体装置は、図4に示すような構成が主に用いられる。1はシリコン基板、2はシリコン基板1が実装される放熱板等のアイランド、3はリード端子、及び4は封止用の樹脂モールドである。   In general, a semiconductor device in which a transistor element is formed on a silicon substrate is mainly configured as shown in FIG. 1 is a silicon substrate, 2 is an island such as a heat sink on which the silicon substrate 1 is mounted, 3 is a lead terminal, and 4 is a resin mold for sealing.

シリコン基板11に形成されるトランジスタ素子は、図5に示すように、例えば、N型シリコン基板11にコレクタ領域となるN型のエピタキシャル層12にボロン等のP型の不純物を拡散してベース領域13が形成され、そのベース領域13内にリン等のN型の不純物を拡散してエミッタ領域14が形成される。シリコン基板11の表面にベース領域13、エミッタ領域14の一部を露出させる開口部を有した絶縁膜15が形成され、その露出されたベース領域13、エミッタ領域14上にアルミニウム等の金属が蒸着されベース電極16、エミッタ電極17が形成される。このような構成のトランジスタではシリコン基板がコレクタ電極18となる。   As shown in FIG. 5, the transistor element formed on the silicon substrate 11 has a base region formed by, for example, diffusing a P-type impurity such as boron into the N-type epitaxial layer 12 serving as a collector region in the N-type silicon substrate 11. 13 is formed, and an emitter region 14 is formed by diffusing N-type impurities such as phosphorus in the base region 13. An insulating film 15 having openings for exposing portions of the base region 13 and the emitter region 14 is formed on the surface of the silicon substrate 11, and a metal such as aluminum is deposited on the exposed base region 13 and emitter region 14. Then, the base electrode 16 and the emitter electrode 17 are formed. In the transistor having such a configuration, the silicon substrate serves as the collector electrode 18.

上記のように、トランジスタ素子が形成されたシリコン基板1は、図4に示すように、銅ベースの放熱板等のアイランド2に半田等のろう材5を介して固着実装され、シリコン基板1の周辺に配置されたリード端子3にトランジスタ素子のベース電極、エミッタ電極とがそれぞれワイヤーボンディングによってワイヤーで電気的に接続されている。コレクタ電極に接続されるリード端子はアイランドと一体に形成されており、シリコン基板をアイランド上に実装することで電気的に接続された後、エポキシ樹脂等の熱硬化型樹脂4によりトランスファーモールドによって、シリコン基板とリード端子の一部を完全に被覆保護し、3端子構造の半導体装置が提供される。   As described above, the silicon substrate 1 on which the transistor element is formed is fixedly mounted on an island 2 such as a copper-based heat sink via a brazing material 5 such as solder, as shown in FIG. A base electrode and an emitter electrode of the transistor element are electrically connected to the lead terminals 3 arranged in the periphery by wires by wire bonding. The lead terminal connected to the collector electrode is formed integrally with the island, and after being electrically connected by mounting the silicon substrate on the island, transfer molding with a thermosetting resin 4 such as epoxy resin, A semiconductor device having a three-terminal structure in which a silicon substrate and a part of a lead terminal are completely covered and protected is provided.

樹脂モールドされた半導体装置は、通常、ガラスエポキシ基板等の実装基板に実装され、実装基板上に実装された他の半導体装置、回路素子と電気的に接続され所定の回路動作を行うための一部品として取り扱われる。   A resin-molded semiconductor device is usually mounted on a mounting substrate such as a glass epoxy substrate, and is electrically connected to other semiconductor devices and circuit elements mounted on the mounting substrate to perform a predetermined circuit operation. Treated as a part.

図7は、実装基板上に半導体装置を実装したときの断面図を示し、20は半導体装置、21、23はベース又はエミッタ電極用のリード端子、22はコレクタ用のリード端子、30は実装基板である。   FIG. 7 shows a cross-sectional view when a semiconductor device is mounted on a mounting substrate. 20 is a semiconductor device, 21 and 23 are base or emitter electrode lead terminals, 22 is a collector lead terminal, and 30 is a mounting substrate. It is.

実装基板30上に半導体装置20が実装される実装面積は、リード端子21、22、23とそのリード端子と接続される導電パッドで囲まれた領域によって表される。実装面積は半導体装置20内のシリコン基板(半導体チップ)面積に比べ大きく、実際に機能を持つ半導体チップの面積に比べ実装面積の殆どはモールド樹脂、リード端子によって取られている。   A mounting area where the semiconductor device 20 is mounted on the mounting substrate 30 is represented by a region surrounded by lead terminals 21, 22, and 23 and conductive pads connected to the lead terminals. The mounting area is larger than the area of the silicon substrate (semiconductor chip) in the semiconductor device 20, and most of the mounting area is taken by the mold resin and the lead terminal as compared with the area of the semiconductor chip that actually has a function.

ここで、実際に機能を持つ半導体チップ面積と実装面積との比率を有効面積率として考慮すると、樹脂モールドされた半導体装置では有効面積率が極めて低いことが確認されている。有効面積率が低いことは、半導体装置20を実装基板30上の他の回路素子と接続使用とする場合に、実装面積の殆どが機能を有する半導体チップとは直接関係のないデッドスペースとなる。有効面積率が小さいと上記したように、実装基板30上でデットスペースが大きくなり、実装基板30の高密度小型化の妨げとなる。   Here, it is confirmed that the effective area ratio is extremely low in the resin-molded semiconductor device when the effective area ratio is considered as the ratio between the actually functioning semiconductor chip area and the mounting area. The low effective area ratio means that when the semiconductor device 20 is connected to other circuit elements on the mounting substrate 30, most of the mounting area becomes a dead space that is not directly related to a functioning semiconductor chip. If the effective area ratio is small, the dead space is increased on the mounting substrate 30 as described above, which hinders high-density downsizing of the mounting substrate 30.

特に、この問題はパッケージサイズが小さい半導体装置に顕著に現れる。例えば、EIAJ規格であるSC−75A外形に搭載される半導体チップの最大サイズは、図7に示すように、0.40mmX0.40mmが最大である。この半導体チップを金属リード端子とワイヤーで接続し、樹脂モールドすると半導体装置の全体のサイズは、1.6mmx1.6mmとなる。この半導体装置のチップ面積は0.16mmで、半導体装置を実装する実装面積は半導体装置の面積とほぼ同様として考えて、2.56mmであるため、この半導体装置の有効面積率は約6.25%となり、実装面積の殆どが機能を持つ半導体チップ面積と直接関係のないデットスペースとなっている。   This problem is particularly noticeable in a semiconductor device having a small package size. For example, the maximum size of a semiconductor chip mounted on the outer shape of the SC-75A, which is an EIAJ standard, is 0.40 mm × 0.40 mm as shown in FIG. When this semiconductor chip is connected to a metal lead terminal with a wire and resin-molded, the overall size of the semiconductor device is 1.6 mm × 1.6 mm. The chip area of this semiconductor device is 0.16 mm, and the mounting area for mounting the semiconductor device is 2.56 mm, assuming that it is almost the same as the area of the semiconductor device. Therefore, the effective area ratio of this semiconductor device is about 6.25. Therefore, most of the mounting area is a dead space not directly related to the area of the functioning semiconductor chip.

この有効面積率に関する問題は、特に、上記したようにパッケージサイズが極めて小さく、チップサイズが大きい半導体装置において顕著に現れるが、半導体チップを金属リード端子でワイヤー接続し、樹脂モールドする、樹脂封止型の半導体装置であれば同様に問題となる。   This problem regarding the effective area ratio is particularly noticeable in a semiconductor device having a very small package size and a large chip size as described above, but the semiconductor chip is wire-connected with a metal lead terminal, resin-molded, and resin-encapsulated. A similar problem arises in the case of a type semiconductor device.

近年の電子機器、例えば、パーソナルコンピュータ、電子手帳等の携帯情報処理装置、8mmビデオカメラ、携帯電話、カメラ、液晶テレビ等において用いられる実装基板は、電子機器本体の小型化に伴い、その内部に使用される実装基板も高密度小型化の傾向にある。   Mounting boards used in recent electronic devices, for example, portable information processing devices such as personal computers and electronic notebooks, 8 mm video cameras, mobile phones, cameras, liquid crystal televisions, etc. The mounting substrate used is also in the trend of high density and miniaturization.

しかし、上記の先行技術の樹脂封止型の半導体装置では、上述したように、半導体装置を実装する実装面積にデットスペースが大きいため、実装基板の小型化に限界があり、実装基板の小型化の妨げの一つの要因となっていた。   However, in the above-described prior art resin-encapsulated semiconductor device, as described above, since the mounting area for mounting the semiconductor device has a large dead space, there is a limit to downsizing of the mounting substrate, and downsizing of the mounting substrate. Was one of the obstacles.

ところで、有効面積率を向上させる先行技術として特開平3−248551号公報がある。この先行技術について、図8にもとずいて簡単に説明する。この先行技術は、樹脂モールド型半導体装置を実装基板等に実装したときの実装面積をできるだけ小さくするために、半導体チップ40のベース、エミッタ、及びコレクタ電極と接続するリード端子41、42、43を樹脂モールド44の側面より外側に導出させず、リード端子41、42、43を樹脂モールド44側面と同一面となるように形成することが記載されている。   By the way, there is JP-A-3-248551 as a prior art for improving the effective area ratio. This prior art will be briefly described with reference to FIG. In this prior art, lead terminals 41, 42, and 43 connected to the base, emitter, and collector electrodes of the semiconductor chip 40 are provided in order to minimize the mounting area when the resin mold type semiconductor device is mounted on a mounting substrate or the like. It is described that the lead terminals 41, 42, 43 are formed so as to be flush with the side surface of the resin mold 44 without being led out from the side surface of the resin mold 44.

この構成によれば、リード端子41、42、43の先端部分が導出しない分だけ実装面積を小さくすることができ、有効面積率を若干向上させることはできるが、デッドスペースの大きさはあまり改善されない。   According to this configuration, the mounting area can be reduced by an amount that does not lead out the leading end portions of the lead terminals 41, 42, and 43, and the effective area ratio can be slightly improved, but the size of the dead space is greatly improved. Not.

有効面積率を向上させるためには、半導体装置の半導体チップ面積と実装面積とをほぼ同一にするこが条件であり、樹脂モールド型の半導体装置では、この先行技術の様に、リード端子の先端部を導出させなくても、モールド樹脂の存在によって有効面積率を向上させることは困難である。   In order to improve the effective area ratio, it is necessary to make the semiconductor chip area and mounting area of the semiconductor device substantially the same. In the resin mold type semiconductor device, as in this prior art, the tip of the lead terminal Even if the part is not derived, it is difficult to improve the effective area ratio due to the presence of the mold resin.

また、上記の半導体装置では、半導体チップと接続するリード端子、モールド樹脂を必要不可欠とするために、半導体チップとリード端子とのワイヤ接続工程、モールド樹脂の射出成形工程という工程を必要とし、材料コスト面及び製造工程が煩雑となり、製造コストを低減できない課題がある。   Further, in the above semiconductor device, the lead terminal to be connected to the semiconductor chip and the mold resin are indispensable, and therefore, a process of wire connection process between the semiconductor chip and the lead terminal and an injection molding process of the mold resin are required. There is a problem that the cost and the manufacturing process are complicated, and the manufacturing cost cannot be reduced.

有効面積率を最大限大きくするには、上記したように、半導体チップを直接実装基板上に実装することにより、半導体チップ面積と実装面積とがほぼ同一となり有効面積率が最大となる。   In order to maximize the effective area ratio, as described above, by mounting the semiconductor chip directly on the mounting substrate, the area of the semiconductor chip and the mounting area are almost the same, and the effective area ratio is maximized.

半導体チップを実装基板等の基板上に実装する一つの先行技術として、例えば、特開平6−338504号公報に示すように、半導体チップ45上に複数のバンプ電極46を形成したフリップチップを実装基板47フェイスダウンボンディングする技術が知られている(図9参照)。この先行技術は、通常、MOSFET等、シリコン基板の同一主面にゲート(ベース)電極、ソース(エミッタ)電極、ドレイン(コレクタ)電極が形成され、電流或いは電圧のパスが横方向に形成される比較的発熱量の少ない横型の半導体装置に主に用いられる。   As one prior art for mounting a semiconductor chip on a substrate such as a mounting substrate, for example, as shown in JP-A-6-338504, a flip chip in which a plurality of bump electrodes 46 are formed on a semiconductor chip 45 is used as a mounting substrate. A technique for 47 face down bonding is known (see FIG. 9). In this prior art, a gate (base) electrode, a source (emitter) electrode, and a drain (collector) electrode are usually formed on the same main surface of a silicon substrate such as a MOSFET, and a current or voltage path is formed in a horizontal direction. It is mainly used for horizontal semiconductor devices that generate a relatively small amount of heat.

しかし、トランジスタデバイス等のようにシリコン基板が電極の一つとなり、各電極が異なる面に形成され電流のパスが縦方向に流れる縦型の半導体装置では、上記のフリップチップ技術を使用することは困難である。   However, in a vertical semiconductor device such as a transistor device where a silicon substrate is one of the electrodes and each electrode is formed on a different surface and the current path flows in the vertical direction, the above-described flip chip technology is not used. Have difficulty.

半導体チップを実装基板等の基板上に実装する他の先行技術として、例えば、特開平7−38334号公報に示すように、実装基板51上に形成された導電パターン52上に半導体チップ53をダイボンディングし、半導体チップ53周辺に配置された導電パターン52と半導体チップ53との電極をワイヤ54で接続する技術が知られている(図10参照)。この先行技術では、先に述べたシリコン基板が一つの電極を構成した縦型構造のトランジスタ等の半導体チップに用いることはできる。   As another prior art for mounting a semiconductor chip on a substrate such as a mounting substrate, for example, as shown in Japanese Patent Laid-Open No. 7-38334, a semiconductor chip 53 is formed on a conductive pattern 52 formed on a mounting substrate 51. A technique for bonding and connecting electrodes of the conductive pattern 52 and the semiconductor chip 53 arranged around the semiconductor chip 53 with a wire 54 is known (see FIG. 10). This prior art can be used for a semiconductor chip such as a transistor having a vertical structure in which the above-described silicon substrate constitutes one electrode.

半導体チップ53とその周辺に配置された導電パターン52とを接続するワイヤ54は通常、金細線が用いられることから、金細線とボンディング接続されるボンディング接合部のピール強度(引張力)を大きくするために、約200°C〜300°Cの加熱雰囲気中でボンディングを行うことが好ましい。しかし、絶縁樹脂系の実装基板上に半導体チップをダイボンディングする場合には、上記した温度まで加熱すると実装基板に歪みが生じること、及び、実装基板上に実装されたチップコンデンサ、チップ抵抗等の他の回路素子を固着する半田が溶融するために、加熱温度を約100°C〜150°C程度にしてワイヤボンディング接続が行われているため、ボンディング接合部のピール強度が低下する問題がある。   Since the wire 54 that connects the semiconductor chip 53 and the conductive pattern 52 disposed around the semiconductor chip 53 is usually a gold fine wire, the peel strength (tensile force) of the bonding joint that is bonded to the gold fine wire is increased. Therefore, it is preferable to perform bonding in a heated atmosphere of about 200 ° C. to 300 ° C. However, when die-bonding a semiconductor chip on an insulating resin-based mounting substrate, the mounting substrate is distorted when heated to the above temperature, and chip capacitors, chip resistors, etc. mounted on the mounting substrate Since the solder for fixing the other circuit elements melts, the wire bonding connection is performed at a heating temperature of about 100 ° C. to 150 ° C., and thus there is a problem that the peel strength of the bonding joint is lowered. .

この先行技術では、通常、ダイボンディングされた半導体チップはエポキシ樹脂等の熱硬化性樹脂で被覆保護されるために、ピール強度の低下はエポキシ樹脂の熱硬化時の収縮等によって接合部が剥離されるという問題がある。   In this prior art, since the die-bonded semiconductor chip is usually covered and protected with a thermosetting resin such as an epoxy resin, the reduction in peel strength is caused by the shrinkage during the thermosetting of the epoxy resin and the joint part is peeled off. There is a problem that.

本発明は、上述した事情に鑑みて成されたものであり、本発明は、半導体チップと接続されるリード端子、及びモールド樹脂を必要とせず、半導体チップ面積と実装基板上に実装する実装面積との比率である有効面積率を最大限向上させ、実装面積のデットスペース最小限小さくした半導体装置を提供する。   The present invention has been made in view of the above-described circumstances, and the present invention does not require a lead terminal connected to a semiconductor chip and a mold resin, and a semiconductor chip area and a mounting area mounted on a mounting substrate. The effective area ratio, which is a ratio of the above, is maximally improved, and a semiconductor device with a reduced dead space of a mounting area is provided.

本発明は、上記の課題を解決するために以下の構成を採用した。
第1に、半導体基板の裏面を実装面とし、外部との電気的接続に採用される金属製リード端子および保護用のモールドを不要とした半導体装置であり、
前記半導体基板の所定の位置に能動素子が設けられた第1の領域と、前記第1の領域の周囲に位置する半導体基板に設けられた外部接続用の第2の領域と、を有する半導体基板と、
前記能動素子の電極と電気的に接続され、前記第2の領域の裏面を前記実装面とするために設けられたメッキ膜と、
前記第1の領域の表面および前記第2の領域の表面を一体で被覆した絶縁性接着樹脂層と、
前記絶縁性接着樹脂層の表面に設けられ、前記能動素子の電極と前記第2の領域の表面に位置する電極とを電気的に接続する配線とを有することで解決するものである。
第2に、前記配線が設けられた前記絶縁性接着樹脂層の表面には、前記配線を被覆保護するように樹脂が設けられることで解決するものである。
第3に、前記メッキ膜は、前記第1の領域を挟むように複数設けられ、前記複数のメッキ膜は、同一平面状に配置されることで解決するものである。
その結果、従来の半導体装置のように、外部電極と接続する金属製のリード端子、保護用の封止モールドが不必要となり、半導体装置の外観寸法を著しく小型化にすることができる。
The present invention employs the following configuration in order to solve the above problems.
First, a semiconductor device in which the back surface of the semiconductor substrate is a mounting surface, and a metal lead terminal used for electrical connection with the outside and a protective mold are unnecessary,
A semiconductor substrate comprising: a first region in which an active element is provided at a predetermined position of the semiconductor substrate; and a second region for external connection provided in a semiconductor substrate located around the first region. When,
A plating film that is electrically connected to the electrode of the active element and is provided to make the back surface of the second region the mounting surface;
An insulating adhesive resin layer integrally covering the surface of the first region and the surface of the second region;
The problem is solved by having a wiring provided on the surface of the insulating adhesive resin layer and electrically connecting the electrode of the active element and the electrode located on the surface of the second region.
Second, the problem is solved by providing a resin on the surface of the insulating adhesive resin layer provided with the wiring so as to cover and protect the wiring.
Third, a plurality of the plating films are provided so as to sandwich the first region, and the plurality of plating films are arranged on the same plane.
As a result, unlike the conventional semiconductor device, a metal lead terminal connected to the external electrode and a protective sealing mold are unnecessary, and the external dimensions of the semiconductor device can be significantly reduced.

上記構造を採用することにより、従来の半導体装置のように、外部電極と接続する金属製のリード端子、保護用の封止モールドが不必要となり、半導体装置の外観寸法を著しく小型化にすることができる。 Adopting the above structure eliminates the need for metal lead terminals and protective sealing molds that connect to external electrodes, as in conventional semiconductor devices, and significantly reduces the external dimensions of semiconductor devices. Can do.

以下に、本発明の半導体装置の実施形態について説明する。   Hereinafter, embodiments of the semiconductor device of the present invention will be described.

本発明の半導体装置は、図1に示すように、半導体基板60と、能動素子が形成される能動素子形成領域61と、能動素子形成領域61に形成された能動素子の一の電極であり、外部接続するための一の外部接続用電極62と、能動素子形成領域61と電気的に分離され基板60の一部分を能動素子の他の電極の外部電極とする他の外部接続用電極63、64と、能動素子の他の電極と他の外部接続用電極63、64とを接続する接続手段65とをから構成されている。   As shown in FIG. 1, the semiconductor device of the present invention includes a semiconductor substrate 60, an active element formation region 61 in which an active element is formed, and one electrode of the active element formed in the active element formation region 61. One external connection electrode 62 for external connection, and other external connection electrodes 63 and 64 that are electrically separated from the active element formation region 61 and use a part of the substrate 60 as an external electrode of another electrode of the active element. And a connecting means 65 for connecting the other electrode of the active element and the other external connection electrodes 63 and 64.

半導体基板60は、N+型の単結晶シリコン基板が用いられ、その基板60上にエピタキシャル成長技術によりN-型のエピタキシャル層66が形成される。半導体基板60の所定領域はパワーMOS、トランジスタ等の能動素子が形成され能動素子形成領域61と能動素子の電極接続され外部接続用電極63、64となる外部接続電極領域63A,64Aとが設けられている。   The semiconductor substrate 60 is an N + type single crystal silicon substrate, and an N − type epitaxial layer 66 is formed on the substrate 60 by an epitaxial growth technique. In a predetermined region of the semiconductor substrate 60, active elements such as power MOSs and transistors are formed, and an active element forming region 61 and external connection electrode regions 63A and 64A which are connected to the electrodes of the active elements and become external connection electrodes 63 and 64 are provided. ing.

この能動素子形成領域61に上記した能動素子が形成される。ここでは、N-型のエピタキシャル層をコレクタ領域66Aとしたトランジスタが形成される。能動素子形成領域61上にホトレジストを形成し、ホトレジストによって露出された領域にボロン(B)等のP型の不純物を選択的に熱拡散して所定の深さを有した島状のベース領域71が形成される。   The active element described above is formed in the active element formation region 61. Here, a transistor having an N− type epitaxial layer as a collector region 66A is formed. A photoresist is formed on the active element formation region 61, and P-type impurities such as boron (B) are selectively thermally diffused into the region exposed by the photoresist to form an island-shaped base region 71 having a predetermined depth. Is formed.

ベース領域71形成後、能動素子形成領域61上に再度ホトレジストを形成し、ホトレジストによって露出されたベース領域71内にリン(P)、アンチモン(Sb)等のN型の不純物を選択的に熱拡散してトランジスタのエミッタ領域72が形成される。このエミッタ領域72を形成する際に、ベース領域71を囲むリング状のガードリング用のN+型の拡散領域73を形成しておく場合もある。   After the base region 71 is formed, a photoresist is formed again on the active element forming region 61, and N-type impurities such as phosphorus (P) and antimony (Sb) are selectively thermally diffused in the base region 71 exposed by the photoresist. Thus, the emitter region 72 of the transistor is formed. When the emitter region 72 is formed, an N + type diffusion region 73 for a ring-shaped guard ring surrounding the base region 71 may be formed.

半導体基板60の表面には、ベース領域71表面を露出するベースコンタクト孔 及びエミッタ領域72表面を露出するエミッタコンタクト孔を有するシリコン酸化膜、或いはシリコン窒化膜等の絶縁膜74が形成される。ガードリング用の拡散領域73を形成した場合には、かかる、拡散領域73表面を露出するガードリングコンタクト孔が形成される。この絶縁膜74は、外部接続用電極となる電極領域63A,64A上にも形成され、電極領域63A,64Aの表面を露出する外部接続用コンタクト孔が形成されている。   An insulating film 74 such as a silicon oxide film or a silicon nitride film having a base contact hole exposing the surface of the base region 71 and an emitter contact hole exposing the surface of the emitter region 72 is formed on the surface of the semiconductor substrate 60. When the guard ring diffusion region 73 is formed, the guard ring contact hole exposing the surface of the diffusion region 73 is formed. The insulating film 74 is also formed on the electrode regions 63A and 64A serving as external connection electrodes, and external connection contact holes are formed to expose the surfaces of the electrode regions 63A and 64A.

ベースコンタクト孔、エミッタコンタクト孔、外部接続用コンタクト孔及びガードリングコンタクト孔によって露出されたベース領域71、エミッタ領域72、電極領域63A,64A及びガードリング拡散領域73上には、選択的にアルミニウム等の金属材料で蒸着されたベース電極75、エミッタ電極76、接続用電極77が形成される。   On the base region 71, the emitter region 72, the electrode regions 63A and 64A, and the guard ring diffusion region 73 exposed by the base contact hole, the emitter contact hole, the external connection contact hole and the guard ring contact hole, aluminum or the like is selectively formed. A base electrode 75, an emitter electrode 76, and a connection electrode 77 deposited with the above metal material are formed.

能動素子形成領域61及び外部接続電極領域63A,64Aは、半導体基板60の所定の任意の領域に形成することができ、この実施形態では、図2に示すように、基板60の中央部分に能動素子形成領域61が形成され、その領域61の挟んでトライアングル形状に成るように外部接続用電極領域63A,64Aが形成される。   The active element formation region 61 and the external connection electrode regions 63A and 64A can be formed in a predetermined arbitrary region of the semiconductor substrate 60. In this embodiment, as shown in FIG. An element formation region 61 is formed, and external connection electrode regions 63A and 64A are formed so as to have a triangle shape with the region 61 interposed therebetween.

トランジスタが形成された能動素子形成領域61と外部接続電極領域63A,64Aとを有した半導体基板60表面上にはシリコン系、エポキシ系或いはポリイミド系の絶縁接着樹脂層78形成される。この樹脂層78上に形成された接続手段65によって、トランジスタのベース電極75、エミッタ電極76と外部接続電極領域63A,64Aとの電気的が接続がそれぞれ行われる。   A silicon-based, epoxy-based or polyimide-based insulating adhesive resin layer 78 is formed on the surface of the semiconductor substrate 60 having the active element forming region 61 where the transistors are formed and the external connection electrode regions 63A, 64A. The connection means 65 formed on the resin layer 78 electrically connects the transistor base electrode 75 and emitter electrode 76 to the external connection electrode regions 63A and 64A.

この樹脂層78は、上記したようにトランジスタのベース電極71、エミッタ電極72と外部接続用電極領域63A,64Aとを接続する接続手段65を基板から絶縁すると伴に、能動素子形成領域61と接続用電極領域63A,64Aを電気的に分離した際に、両領域61,63A,64Aが完全に分割されずに一体化支持される用に形成されたものである。樹脂層78としては、接着性と絶縁性とを備えていれば良く、例えば、ポリイミド系の樹脂を用いる。   As described above, the resin layer 78 insulates the connection means 65 for connecting the base electrode 71 and the emitter electrode 72 of the transistor and the external connection electrode regions 63A and 64A from the substrate, and connects to the active element formation region 61. When the electrode regions 63A, 64A are electrically separated, both the regions 61, 63A, 64A are formed to be integrally supported without being completely divided. The resin layer 78 only needs to have adhesiveness and insulation, and for example, a polyimide resin is used.

基板60表面に、例えばスピンナーにより、2μ〜50μ膜厚のポリイミド樹脂をコートし、所定時間焼成した後、その表面が研磨処理され平坦化された樹脂層 が形成される。能動素子形成領域61に形成されたトランジスタのベース電極71、エミッタ電極72、及び外部接続電極領域63A,64Aに形成された接続用電極77上の樹脂層78は、科学的或いは機械的に選択除去されたコンタクト孔が形成され、ベース電極71、エミッタ電極72、及び接続用電極663、64の表面が露出される。   The surface of the substrate 60 is coated with, for example, a polyimide resin having a thickness of 2 to 50 μm by a spinner and baked for a predetermined time, and then the surface is polished to form a flattened resin layer. The base layer 71 of the transistor formed in the active element formation region 61, the emitter electrode 72, and the resin layer 78 on the connection electrode 77 formed in the external connection electrode regions 63A and 64A are selectively removed scientifically or mechanically. The contact holes thus formed are formed, and the surfaces of the base electrode 71, the emitter electrode 72, and the connection electrodes 663 and 64 are exposed.

露出されたベース電極71と接続用電極64、エミッタ電極72と接続用電極63とはアルミニウム、銅等の金属膜から成る接続手段65によって電気的に接続される。接続手段65は、例えば、コンタクト孔が形成された樹脂層78上に、コンタクト孔及び各電極を接続するための接続手段65のパターン形状にパターニングされたレジストマスクを形成し、そのレジストマスク上からアルミニウム等の金属を蒸着し、レジストマスクを除去すれば樹脂層78上に所定のパターン形状を有した接続手段65が選択的に形成され、ベース電極71と接続用電極64、エミッタ電極72と接続用電極63とが電気的に接続される。接続手段65を形成した樹脂層78上には、シリコン系、エポキシ系、ポリイミド系の接着樹脂79が被覆され、接続手段65が外部から保護される。   The exposed base electrode 71 and the connection electrode 64, and the emitter electrode 72 and the connection electrode 63 are electrically connected by connection means 65 made of a metal film such as aluminum or copper. For example, the connection means 65 forms a resist mask patterned in the pattern shape of the connection means 65 for connecting the contact hole and each electrode on the resin layer 78 in which the contact hole is formed, and the resist mask is formed on the resist mask. If a metal such as aluminum is deposited and the resist mask is removed, the connection means 65 having a predetermined pattern shape is selectively formed on the resin layer 78, and the base electrode 71, the connection electrode 64, and the emitter electrode 72 are connected. The electrode 63 is electrically connected. The resin layer 78 on which the connecting means 65 is formed is covered with a silicon-based, epoxy-based, or polyimide-based adhesive resin 79 to protect the connecting means 65 from the outside.

同一基板1上に形成された能動素子形成領域61と外部接続電極領域63A,64Aとは、基板60の裏面側から形成されたスリット孔80によって、それぞれ電気的に分離され、個々の領域61、63A,64Aがトランジスタの外部接続用電極62、63、64となる。   The active element formation region 61 and the external connection electrode regions 63A and 64A formed on the same substrate 1 are electrically separated from each other by the slit holes 80 formed from the back side of the substrate 60. 63A and 64A become the external connection electrodes 62, 63 and 64 of the transistor.

即ち、能動素子形成領域61の基板60はトランジスタのコレクタ電極用の外部接続用電極62、一の外部接続電極領域64Aの基板60はトランジスタのベース電極用の外部接続用電極64、及び他の外部接続電極領域63Aの基板60はトランジスタのエミッタ電極用の外部接続用電極63となり、同一の半導体基板60を用い、且つ、同一平面上にトランジスタの各電極の外部接続用電極62、63、64が形成されることになる。   That is, the substrate 60 in the active element formation region 61 is the external connection electrode 62 for the collector electrode of the transistor, the substrate 60 in the one external connection electrode region 64A is the external connection electrode 64 for the base electrode of the transistor, and other external connection electrodes. The substrate 60 in the connection electrode region 63A becomes the external connection electrode 63 for the emitter electrode of the transistor. The same semiconductor substrate 60 is used, and the external connection electrodes 62, 63, 64 of each electrode of the transistor are formed on the same plane. Will be formed.

各外部接続用電極62、63、64を電気的に分離するスリット孔80は、上記のように、半導体基板60の裏面側から樹脂層78まで達するように形成され、例えば、イオンビーム、レーザ等を照射する光学的方法、ドライエッチング、ウエットエッチングによる化学的方法、或いはダイシング装置によるダイシングブレードを用いた機械的方法等により形成される。上記のいずれの方法によってもスリット孔80を形成することはできる。   As described above, the slit hole 80 for electrically separating the external connection electrodes 62, 63, 64 is formed so as to reach the resin layer 78 from the back surface side of the semiconductor substrate 60. For example, an ion beam, a laser, etc. Is formed by a chemical method using dry etching, wet etching, or a mechanical method using a dicing blade by a dicing apparatus. The slit hole 80 can be formed by any of the above methods.

ここで重要なことは、スリット孔80の深さが浅くなると各外部接続用電極62、63、64の電気分離が十分に行なわれず短絡不良となる不具合が生じるため、各外部接続用電極62、63、64が完全に電気的に分離するように、スリット孔80の先端部(底部)は樹脂層78内に約2μ〜6μ程度入るように形成される。スリット孔80によって各外部接続用電極62、63、64は完全に分離区画されるが、樹脂層78によって同一平面に支持固定される。また、各外部接続用電極62、63、64となる基板60表面には、半田メッキ等のメッキ層が形成され、実装基板上に形成された導電パターンとの半田接続を良好にする。   What is important here is that if the depth of the slit hole 80 becomes shallow, the electrical connection between the external connection electrodes 62, 63, 64 is not sufficiently performed, and a short circuit failure occurs. The front end portion (bottom portion) of the slit hole 80 is formed so as to be within the resin layer 78 by about 2 μ to 6 μ so that 63 and 64 are completely electrically separated. The external connection electrodes 62, 63, 64 are completely separated and partitioned by the slit hole 80, but are supported and fixed on the same plane by the resin layer 78. In addition, a plating layer such as solder plating is formed on the surface of the substrate 60 to be the external connection electrodes 62, 63, 64, so that the solder connection with the conductive pattern formed on the mounting substrate is improved.

半導体基板60にスリット孔80を設けて、トランジスタの各外部接続用電極62、63、64を電気的に分離した半導体装置は、セラミックス基板、ガラスエポキシ基板、フェノール基板、絶縁処理を施した金属基板等の実装基板上に形成された導電パターンのパッド上に固着実装される。このパッド上には半田クリームが予め印刷形成された半田層が形成されており、半田を溶融させて本発明の半導体装置を搭載すれば実装基板のパッド上に半導体装置を固着実装することができる。この固着実装工程は、図示されないが、実装基板上に実装されるチップコンデンサ、チップ抵抗等の半田実装される他の回路素子の実装工程と同一の工程でできる。   A semiconductor device in which a slit hole 80 is provided in a semiconductor substrate 60 and the external connection electrodes 62, 63, 64 of the transistor are electrically separated includes a ceramic substrate, a glass epoxy substrate, a phenol substrate, and a metal substrate subjected to insulation treatment. It is fixedly mounted on a pad of a conductive pattern formed on a mounting substrate such as. A solder layer in which solder cream is pre-printed is formed on the pad, and the semiconductor device can be fixedly mounted on the pad of the mounting substrate by melting the solder and mounting the semiconductor device of the present invention. . Although not shown, this fixed mounting process can be performed in the same process as the mounting process of other circuit elements to be mounted by solder such as chip capacitors and chip resistors mounted on the mounting substrate.

また、本発明の半導体装置を実装基板上に実装した時、各外部接続用電極62、63、64はスリット孔80の間隔分だけ離間されているために実装基板と固着する半田は隣接配置された外部接続用電極62、63、64を短絡させることはない。   Further, when the semiconductor device of the present invention is mounted on the mounting board, the external connection electrodes 62, 63, 64 are separated by the interval of the slit holes 80, so that the solder to be fixed to the mounting board is disposed adjacently. The external connection electrodes 62, 63, 64 are not short-circuited.

ところで、図2に示すように、本実施形態の半導体装置で、例えば、従来例で説明した半導体装置とほぼ同じ機能をもつ能動素子能動素子形成領域61を0.5mmx0.5mmサイズとし、ベース、エミッタ電極となる接続電極領域63A,64Aを0.3mmx0.2mmサイズとし、スリット孔80の幅を0.1mmとする半導体装置では有効面積率は次のようになる。即ち、素子面積が0.25mmであり、実装面積となる半導体装置の面積が1.28mmとなることから、有効面積率は約19.53%となる。   By the way, as shown in FIG. 2, in the semiconductor device of the present embodiment, for example, an active element active element forming region 61 having substantially the same function as the semiconductor device described in the conventional example is 0.5 mm × 0.5 mm in size, In the semiconductor device in which the connection electrode regions 63A and 64A serving as the emitter electrodes are 0.3 mm × 0.2 mm in size and the width of the slit hole 80 is 0.1 mm, the effective area ratio is as follows. That is, the element area is 0.25 mm, and the area of the semiconductor device as the mounting area is 1.28 mm, so that the effective area ratio is about 19.53%.

従来例で説明した0.40mmX0.40mmのチップサイズを有する半導体装置の有効面積率は上記したように6.25%であることから、本発明の半導体装置では有効面積率で約3.12倍大きくなり、実装基板上に実装する実装面積のデットスペースを小さくすることができ、実装基板の小型化に寄与することができる。   Since the effective area ratio of the semiconductor device having the chip size of 0.40 mm × 0.40 mm described in the conventional example is 6.25% as described above, the effective area ratio of the semiconductor device of the present invention is about 3.12 times. It becomes large, the dead space of the mounting area mounted on the mounting substrate can be reduced, and it can contribute to the miniaturization of the mounting substrate.

本実施形態では、実装基板との接続容易性を考慮し、外部接続用電極62、63、64がトライアングルとなるように配置したが、外部接続電極62、63、64を直線上に配置すれば、半導体基板1上の不使用領域を無くすことができ、有効面積率をさらに向上させることが可能である。   In the present embodiment, the external connection electrodes 62, 63, and 64 are arranged so as to form a triangle in consideration of the ease of connection with the mounting board. However, if the external connection electrodes 62, 63, and 64 are arranged on a straight line, The unused area on the semiconductor substrate 1 can be eliminated, and the effective area ratio can be further improved.

上述したように、本発明によれば、半導体基板60に半導体基板60をコレクタ電極用の外部接続用電極62としたトランジスタを形成した能動素子形成領域61と電気的に分離した半導体基板60の一部分をトランジスタのベース電極75、エミッタ電極76用の外部接続用電極63、64とし用いることにより、従来の半導体装置のように、外部電極と接続する金属製のリード端子、保護用の封止モールドが不必要となり、半導体装置の外観寸法を著しく小型化にすることができ、有効面積率を大きくすることができる。   As described above, according to the present invention, a portion of the semiconductor substrate 60 that is electrically isolated from the active element formation region 61 in which the transistor having the semiconductor substrate 60 as the external connection electrode 62 for the collector electrode is formed on the semiconductor substrate 60. Are used as the base electrode 75 of the transistor and the external connection electrodes 63 and 64 for the emitter electrode 76, so that a metal lead terminal connected to the external electrode and a protective sealing mold are provided as in the conventional semiconductor device. It becomes unnecessary, the external dimensions of the semiconductor device can be remarkably reduced, and the effective area ratio can be increased.

本実施形態では、能動素子形成領域61にトランジスタを形成したが、縦型或いは比較的発熱量の少ない横型のデバイスであればこれに限らず、例えば、パワーMOSFET、IGBT、HBT等のデバイスに本発明を応用することができることは説明するまでもない。   In the present embodiment, the transistor is formed in the active element formation region 61. However, the transistor is not limited to this as long as it is a vertical type or a horizontal type device with a relatively small amount of heat generation. Needless to say, the invention can be applied.

ところで、上記の実施形態では、接続手段65は樹脂層78上に金属配線パターンを形成したが、金属配線以外に、図3に示すように、ベース電極75と外部接続用電極64の接続電極77、エミッタ電極76と外部接続用電極63の接続電極77とをアルミニウム、金等のワイヤ線91を用いてワイヤーボンディング接続によって行うことも可能である。ワイヤ線91で接続した後、表面にエポキシ、ポリイミド樹脂等の絶縁樹脂92が形成されワイヤ線91の保護が行われる。   By the way, in the above embodiment, the connection means 65 forms the metal wiring pattern on the resin layer 78. However, in addition to the metal wiring, the connection electrode 77 of the base electrode 75 and the external connection electrode 64 is shown in FIG. The emitter electrode 76 and the connection electrode 77 of the external connection electrode 63 may be connected by wire bonding using a wire 91 such as aluminum or gold. After the connection with the wire line 91, an insulating resin 92 such as epoxy or polyimide resin is formed on the surface, and the wire line 91 is protected.

この図3の実施形態では、ワイヤ線91でベース電極75と外部接続用電極64の接続電極77、エミッタ電極76と外部接続用電極63の接続電極77とを接続し、絶縁樹脂92で表面を被覆保護した後、基板60にスリット孔80を形成しトランジスタの各外部接続用電極62、63、64を分離する。この実施形態では、ボンディングでベース電極75と外部接続用電極64の接続電極77、エミッタ電極76と外部接続用電極63の接続電極77との接続が行えるために工程を簡素化できる。   In the embodiment of FIG. 3, the base electrode 75 and the connection electrode 77 of the external connection electrode 64 are connected by the wire wire 91, and the emitter electrode 76 and the connection electrode 77 of the external connection electrode 63 are connected. After covering protection, a slit hole 80 is formed in the substrate 60 to separate the external connection electrodes 62, 63, 64 of the transistor. In this embodiment, since the base electrode 75 and the connection electrode 77 of the external connection electrode 64 and the emitter electrode 76 and the connection electrode 77 of the external connection electrode 63 can be connected by bonding, the process can be simplified.

以上に詳述したように、本発明の半導体装置によれば、半導体基板1に半導体基板1をエミッタ電極用の外部接続用電極としたトランジスタを形成した能動素子形成領域と、その能動素子形成領域と電気的に分離した半導体基板1の一部分をトランジスタのベース電極、エミッタ電極用の外部接続用電極とし用いることにより、従来の半導体装置のように、外部電極と接続する金属製のリード端子、保護用の封止モールドを不必要とした半導体装置を提供することができる。その結果、半導体装置の外観寸法を著しく小型化にすることができ、実装基板上に実装したときの不必要なデットスペースを無くすことができ、実装基板の小型化に大きく寄与することができる。   As described in detail above, according to the semiconductor device of the present invention, an active element forming region in which a transistor having the semiconductor substrate 1 as an external connection electrode for an emitter electrode is formed on the semiconductor substrate 1, and the active element forming region. A portion of the semiconductor substrate 1 that is electrically isolated from the semiconductor substrate 1 is used as an external connection electrode for a transistor base electrode and an emitter electrode, so that a metal lead terminal connected to the external electrode can be protected as in a conventional semiconductor device. It is possible to provide a semiconductor device that does not require a sealing mold for use. As a result, the external dimensions of the semiconductor device can be significantly reduced, unnecessary dead space when mounted on the mounting substrate can be eliminated, and the mounting substrate can be greatly reduced in size.

また、本発明の半導体装置では、上記したように、外部接続用の金属リード端子、及び樹脂封止用モールドが不要であるために、半導体装置の製造コストを著しく低減化することができる。   Further, in the semiconductor device of the present invention, as described above, the metal lead terminal for external connection and the resin sealing mold are unnecessary, and therefore the manufacturing cost of the semiconductor device can be significantly reduced.

本発明の半導体装置を示す断面図。Sectional drawing which shows the semiconductor device of this invention. 本発明の半導体装置の裏面を示す図。The figure which shows the back surface of the semiconductor device of this invention. 本発明の半導体装置を示す断面図。Sectional drawing which shows the semiconductor device of this invention. 従来の半導体装置を示す断面図。Sectional drawing which shows the conventional semiconductor device. 一般的なトランジスタの断面図。Sectional drawing of a general transistor. 従来の半導体装置を実装基板上に実装した断面図。Sectional drawing which mounted the conventional semiconductor device on the mounting substrate. 従来の半導体装置の平面図。The top view of the conventional semiconductor device. 従来の半導体装置の平面図。The top view of the conventional semiconductor device. 従来の半導体装置を示す図。The figure which shows the conventional semiconductor device. 従来の半導体装置を示す図。The figure which shows the conventional semiconductor device.

Claims (3)

半導体基板の裏面を実装面とし、外部との電気的接続に採用される金属製リード端子および保護用のモールドを不要とした半導体装置であり、
前記半導体基板の所定の位置に能動素子が設けられた第1の領域と、前記第1の領域の周囲に位置する半導体基板に設けられた外部接続用の第2の領域と、を有する半導体基板と、
前記能動素子の電極と電気的に接続され、前記第2の領域の裏面を前記実装面とするために設けられたメッキ膜と、
前記第1の領域の表面および前記第2の領域の表面を一体で被覆した絶縁性接着樹脂層と、
前記絶縁性接着樹脂層の表面に設けられ、前記能動素子の電極と前記第2の領域の表面に位置する電極とを電気的に接続する配線とを有することを特徴とする半導体装置。
It is a semiconductor device in which the back surface of the semiconductor substrate is a mounting surface, and metal lead terminals used for electrical connection with the outside and a protective mold are unnecessary.
A semiconductor substrate comprising: a first region in which an active element is provided at a predetermined position of the semiconductor substrate; and a second region for external connection provided in a semiconductor substrate located around the first region. When,
A plating film that is electrically connected to the electrode of the active element and is provided to make the back surface of the second region the mounting surface;
An insulating adhesive resin layer integrally covering the surface of the first region and the surface of the second region;
A semiconductor device comprising a wiring provided on a surface of the insulating adhesive resin layer and electrically connecting an electrode of the active element and an electrode positioned on the surface of the second region.
前記配線が設けられた前記絶縁性接着樹脂層の表面には、前記配線を被覆保護するように樹脂が設けられる請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein a resin is provided on a surface of the insulating adhesive resin layer provided with the wiring so as to cover and protect the wiring. 前記メッキ膜は、前記第1の領域を挟むように複数設けられ、前記複数のメッキ膜は、同一平面状に配置される請求項1または請求項2に記載の半導体装置。




The semiconductor device according to claim 1, wherein a plurality of the plating films are provided so as to sandwich the first region, and the plurality of plating films are arranged on the same plane.




JP2005211653A 2005-07-21 2005-07-21 Semiconductor device Pending JP2007027654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005211653A JP2007027654A (en) 2005-07-21 2005-07-21 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005211653A JP2007027654A (en) 2005-07-21 2005-07-21 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2007027654A true JP2007027654A (en) 2007-02-01

Family

ID=37787975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005211653A Pending JP2007027654A (en) 2005-07-21 2005-07-21 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2007027654A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012513128A (en) * 2010-04-30 2012-06-07 ウエイブニクス インク. Terminal integrated metal base package module and terminal integrated package method for metal base package module
US8746716B1 (en) 2012-01-09 2014-06-10 James Wurst Three wheel lean-steer skateboard
US11407379B2 (en) 2019-10-07 2022-08-09 Toyota Jidosha Kabushiki Kaisha Vehicle occupant restraint system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012513128A (en) * 2010-04-30 2012-06-07 ウエイブニクス インク. Terminal integrated metal base package module and terminal integrated package method for metal base package module
US8746716B1 (en) 2012-01-09 2014-06-10 James Wurst Three wheel lean-steer skateboard
US11407379B2 (en) 2019-10-07 2022-08-09 Toyota Jidosha Kabushiki Kaisha Vehicle occupant restraint system

Similar Documents

Publication Publication Date Title
US8105856B2 (en) Method of manufacturing semiconductor device with wiring on side surface thereof
JP3526788B2 (en) Method for manufacturing semiconductor device
JP4026882B2 (en) Semiconductor device
JP2000243887A (en) Semiconductor device and its manufacture
US6075279A (en) Semiconductor device
JP3500015B2 (en) Semiconductor device and manufacturing method thereof
JP2007027654A (en) Semiconductor device
JP3717597B2 (en) Semiconductor device
JP2007129068A (en) Semiconductor device and its manufacturing method therefor, substrate used for manufacturing semiconductor device
JP3819483B2 (en) Semiconductor device
JPH1027767A (en) Manufacture of semiconductor device
JP4127872B2 (en) Semiconductor device
JP3639390B2 (en) Semiconductor device
JP3663036B2 (en) Semiconductor device and manufacturing method thereof
JP3609542B2 (en) Semiconductor device
JP3609540B2 (en) Semiconductor device
JPH1022336A (en) Manufacture of semiconductor device
JP4190518B2 (en) Semiconductor device
JP3500016B2 (en) Semiconductor device and manufacturing method thereof
JP3883612B2 (en) Semiconductor device
JP3960641B2 (en) Semiconductor device
JP4318723B2 (en) Semiconductor device
JP2004297091A (en) Semiconductor device
JP2006032985A (en) Semiconductor device and semiconductor module
JP2006005366A (en) Semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071218