JPH1032284A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH1032284A
JPH1032284A JP8187622A JP18762296A JPH1032284A JP H1032284 A JPH1032284 A JP H1032284A JP 8187622 A JP8187622 A JP 8187622A JP 18762296 A JP18762296 A JP 18762296A JP H1032284 A JPH1032284 A JP H1032284A
Authority
JP
Japan
Prior art keywords
substrate
active element
semiconductor device
electrode
external connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8187622A
Other languages
Japanese (ja)
Other versions
JP3819483B2 (en
Inventor
Mamoru Ando
守 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP18762296A priority Critical patent/JP3819483B2/en
Publication of JPH1032284A publication Critical patent/JPH1032284A/en
Application granted granted Critical
Publication of JP3819483B2 publication Critical patent/JP3819483B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PROBLEM TO BE SOLVED: To improve a semiconductor device in effective area rate by a method wherein a first and a second active device are electrically connected together, a first semiconductor substrate is divided into sub-boards which are electrically isolated from each other, and the electrically isolated sub-boards are made to serve as the outer connecting electrodes of the first and the second active device. SOLUTION: A semiconductor device has such an integral structure that a first semiconductor substrate 60 where a first active device is formed and a second semiconductor substrate 100 where a second active device is formed are formed into one piece. In this case, the first active device and the second active device are electrically connected together, and the first semiconductor substrate is divided into sub-boards which are electrically isolated from each other, and the electrically isolated sub-boards are made to serve as the outer connecting electrodes 62, 63, 64... of the first and the second active devices.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置に関し、
特に、半導体装置のチップ面積と、半導体装置をプリン
ト基板等の実装基板上に実装する実装面積との比率で表
す実装有効面積率を向上させ、高機能化した半導体装置
に関する。
The present invention relates to a semiconductor device,
In particular, the present invention relates to a semiconductor device having an improved effective mounting area ratio, which is expressed as a ratio of a chip area of a semiconductor device to a mounting area for mounting the semiconductor device on a mounting substrate such as a printed circuit board, and having a higher function.

【0002】[0002]

【従来の技術】一般的にシリコン基板上にトランジスタ
素子が形成された半導体装置は、図12に示すような構
成が主に用いられる。1はシリコン基板、2はシリコン
基板1が実装される放熱板等のアイランド、3はリード
端子、及び4は封止用の樹脂モールドである。
2. Description of the Related Art Generally, a semiconductor device in which a transistor element is formed on a silicon substrate mainly has a structure as shown in FIG. 1 is a silicon substrate, 2 is an island such as a heat sink on which the silicon substrate 1 is mounted, 3 is a lead terminal, and 4 is a resin mold for sealing.

【0003】シリコン基板11に形成されるトランジス
タ素子は、図13に示すように、例えば、N型シリコン
基板11にコレクタ領域となるN型のエピタキシャル層
12にボロン等のP型の不純物を拡散してベース領域1
3が形成され、そのベース領域13内にリン等のN型の
不純物を拡散してエミッタ領域14が形成される。シリ
コン基板11の表面にベース領域13、エミッタ領域1
4の一部を露出させる開口部を有した絶縁膜15が形成
され、その露出されたベース領域13、エミッタ領域1
4上にアルミニウム等の金属が蒸着されベース電極1
6、エミッタ電極17が形成される。このような構成の
トランジスタではシリコン基板がコレクタ電極18とな
る。
As shown in FIG. 13, a transistor element formed on a silicon substrate 11 is formed, for example, by diffusing a P-type impurity such as boron into an N-type epitaxial layer 12 serving as a collector region in an N-type silicon substrate 11. Base area 1
3 is formed, and an N-type impurity such as phosphorus is diffused in the base region 13 to form an emitter region 14. Base region 13 and emitter region 1 are formed on the surface of silicon substrate 11.
An insulating film 15 having an opening exposing a part of the base region 4 and the exposed base region 13 and the emitter region 1 is formed.
4, a metal such as aluminum is deposited on the base electrode 1
6. An emitter electrode 17 is formed. In the transistor having such a configuration, the silicon substrate becomes the collector electrode 18.

【0004】上記のように、トランジスタ素子が形成さ
れたシリコン基板1は、図10に示すように、銅ベース
の放熱板等のアイランド2に半田等のろう材5を介して
固着実装され、シリコン基板1の周辺に配置されたリー
ド端子3にトランジスタ素子のベース電極、エミッタ電
極とがそれぞれワイヤーボンディングによってワイヤー
で電気的に接続されている。コレクタ電極に接続される
リード端子はアイランドと一体に形成されており、シリ
コン基板をアイランド上に実装することで電気的に接続
された後、エポキシ樹脂等の熱硬化型樹脂4によりトラ
ンスファーモールドによって、シリコン基板とリード端
子の一部を完全に被覆保護し、3端子構造の半導体装置
が提供される。
As described above, the silicon substrate 1 on which the transistor elements are formed is fixedly mounted on an island 2 such as a copper-based heat sink through a brazing material 5 such as solder, as shown in FIG. The base electrode and the emitter electrode of the transistor element are electrically connected to the lead terminals 3 arranged around the substrate 1 by wires by wire bonding. The lead terminal connected to the collector electrode is formed integrally with the island, and after being electrically connected by mounting a silicon substrate on the island, transfer molding is performed using a thermosetting resin 4 such as an epoxy resin. A semiconductor device having a three-terminal structure is provided by completely covering and protecting a silicon substrate and part of a lead terminal.

【0005】[0005]

【発明が解決しようとする課題】樹脂モールドされた半
導体装置は、通常、ガラスエポキシ基板等の配線基板に
実装され、実装基板上に実装された他の半導体装置、回
路素子と電気的に接続され所定の回路動作を行うための
一部品として取り扱われる。図14は、実装基板上に半
導体装置を実装したときの断面図を示し、20は半導体
装置、21、23はベース又はエミッタ電極用のリード
端子、22はコレクタ用のリード端子、30は実装基板
である。
A resin-molded semiconductor device is usually mounted on a wiring board such as a glass epoxy board and electrically connected to other semiconductor devices and circuit elements mounted on the mounting board. It is handled as one component for performing a predetermined circuit operation. FIG. 14 is a cross-sectional view of a semiconductor device mounted on a mounting substrate, wherein 20 is a semiconductor device, 21 and 23 are lead terminals for base or emitter electrodes, 22 is a lead terminal for collector, and 30 is a mounting substrate. It is.

【0006】実装基板30上に半導体装置20が実装さ
れる実装面積は、リード端子21、22、23とそのリ
ード端子と接続される導電パッドで囲まれた領域によっ
て表される。実装面積は半導体装置20内のシリコン基
板(半導体チップ)面積に比べ大きく、実際に機能を持
つ半導体チップの面積に比べ実装面積の殆どはモールド
樹脂、リード端子によって取られている。
The mounting area where the semiconductor device 20 is mounted on the mounting board 30 is represented by a region surrounded by the lead terminals 21, 22, and 23 and conductive pads connected to the lead terminals. The mounting area is larger than the area of the silicon substrate (semiconductor chip) in the semiconductor device 20, and most of the mounting area is taken by the mold resin and the lead terminals as compared with the area of the semiconductor chip having an actual function.

【0007】ここで、実際に機能を持つ半導体チップ面
積と実装面積との比率を有効面積率として考慮すると、
樹脂モールドされた半導体装置では有効面積率が極めて
低いことが確認されている。有効面積率が低いことは、
半導体装置20を配線基板30上の他の回路素子と接続
使用とする場合に、実装面積の殆どが機能を有する半導
体チップとは直接関係のないデッドスペースとなる。有
効面積率が小さいと上記したように、実装基板30上で
デットスペースが大きくなり、実装基板30の高密度小
型化の妨げとなる。
Here, considering the ratio between the area of the semiconductor chip having the actual function and the mounting area as the effective area ratio,
It has been confirmed that a resin-molded semiconductor device has an extremely low effective area ratio. The low effective area ratio means that
When the semiconductor device 20 is used for connection with another circuit element on the wiring board 30, most of the mounting area becomes a dead space which is not directly related to a semiconductor chip having a function. If the effective area ratio is small, the dead space on the mounting substrate 30 increases as described above, which hinders the high-density and miniaturization of the mounting substrate 30.

【0008】特に、この問題はパッケージサイズが小さ
い半導体装置に顕著に現れる。例えば、EIAJ規格の
SC75A外形に搭載される半導体チップの最大サイズ
は、図15に示すように、0.40mm×0.40mmが最
小である。この半導体チップを金属リード端子とワイヤ
ーで接続し、樹脂モールドすると半導体装置の全体のサ
イズは、1.6mm×1.6mmとなる。この半導体装置の
チップ面積は0.16mmで、半導体装置を実装する実装
面積は半導体装置の面積とほぼ同様として考えて、2.
56mmであるため、この半導体装置の有効面積率は約
6.25%となり、実装面積の殆どが機能を持つ半導体
チップ面積と直接関係のないデットスペースとなってい
る。
In particular, this problem appears remarkably in a semiconductor device having a small package size. For example, as shown in FIG. 15, the minimum size of a semiconductor chip mounted on an EIAJ standard SC75A outer shape is 0.40 mm × 0.40 mm. When this semiconductor chip is connected to metal lead terminals by wires and resin-molded, the overall size of the semiconductor device becomes 1.6 mm × 1.6 mm. The chip area of this semiconductor device is 0.16 mm, and the mounting area for mounting the semiconductor device is considered to be substantially the same as the area of the semiconductor device.
Since it is 56 mm, the effective area ratio of this semiconductor device is about 6.25%, and most of the mounting area is a dead space that is not directly related to the area of the semiconductor chip having functions.

【0009】この有効面積率に関する問題は、特に、上
記したようにパッケージサイズが極めて小さい半導体装
置において顕著に現れるが、半導体チップを金属リード
端子でワイヤー接続し、樹脂モールドする、樹脂封止型
の半導体装置であっても同様に問題となる。近年の電子
機器、例えば、パーソナルコンピュータ、電子手帳等の
携帯情報処理装置、8mmビデオカメラ、携帯電話、カ
メラ、液晶テレビ等において用いられる配線基板は、電
子機器本体の小型化に伴い、その内部に使用される実装
基板も高密度小型化の傾向にある。
The problem regarding the effective area ratio is particularly prominent in a semiconductor device having an extremely small package size as described above. However, the semiconductor chip is wire-connected with metal lead terminals and resin-molded. A problem also occurs in a semiconductor device. In recent years, wiring boards used in electronic devices such as personal computers, portable information processing apparatuses such as electronic notebooks, 8 mm video cameras, mobile phones, cameras, liquid crystal televisions, etc. There is also a tendency for high-density miniaturization of mounting boards used.

【0010】しかし、上記の先行技術の樹脂封止型の半
導体装置では、上述したように、半導体装置を実装する
実装面積にデットスペースが大きいため、実装基板の小
型化に限界があり、実装基板の小型化の妨げの一つの要
因となっていた。ところで、有効面積率を向上させる先
行技術として特開平3−248551号公報がある。こ
の先行技術について、図16にもとずいて簡単に説明す
る。この先行技術は、樹脂モールド型半導体装置を実装
基板等に実装したときの実装面積をできるだけ小さくす
るために、半導体チップ40のベース、エミッタ、及び
コレクタ電極と接続するリード端子41、42、43を
樹脂モールド44の側面より外側に導出させず、リード
端子41、42、43を樹脂モールド44側面と同一面
となるように形成することが記載されている。
However, in the above-mentioned prior art resin-encapsulated semiconductor device, as described above, the mounting area for mounting the semiconductor device has a large dead space. Has been one of the factors that hindered the miniaturization of the system. Incidentally, Japanese Patent Application Laid-Open No. 3-248551 is a prior art for improving the effective area ratio. This prior art will be briefly described with reference to FIG. In this prior art, lead terminals 41, 42, and 43 connected to a base, an emitter, and a collector electrode of a semiconductor chip 40 are formed in order to minimize a mounting area when a resin mold type semiconductor device is mounted on a mounting substrate or the like. It is described that the lead terminals 41, 42, and 43 are formed so as not to be led out from the side surface of the resin mold 44 and to be flush with the side surface of the resin mold 44.

【0011】この構成によれば、リード端子41、4
2、43の先端部分が導出しない分だけ実装面積を小さ
くすることができ、有効面積率を若干向上させることは
できるが、デッドスペースの大きさはあまり改善されな
い。有効面積率を向上させるためには、半導体装置の半
導体チップ面積と実装面積とをほぼ同一にするこが条件
であり、樹脂モールド型の半導体装置では、この先行技
術の様に、リード端子の先端部を導出させなくても、モ
ールド樹脂の存在によって有効面積率を向上させること
は困難である。
According to this structure, the lead terminals 41, 4
Although the mounting area can be reduced by the extent that the leading end portions of 2, 43 are not led out and the effective area ratio can be slightly improved, the size of the dead space is not significantly improved. In order to improve the effective area ratio, it is a condition that the semiconductor chip area and the mounting area of the semiconductor device are made substantially the same. In a resin-molded semiconductor device, as in this prior art, the tip of the lead terminal is not provided. Even if the portion is not led out, it is difficult to improve the effective area ratio due to the presence of the mold resin.

【0012】また、上記の半導体装置では、半導体チッ
プと接続するリード端子、モールド樹脂を必要不可欠と
するために、半導体チップとリード端子とのワイヤ接続
工程、モールド樹脂の射出成形工程という工程を必要と
し、材料コスト面及び製造工程が煩雑となり、製造コス
トを低減できない課題がある。有効面積率を最大限大き
くするには、上記したように、半導体チップを直接実装
基板上に実装することにより、半導体チップ面積と実装
面積とがほぼ同一となり有効面積率が最大となる。
In addition, in the above-mentioned semiconductor device, since a lead terminal for connecting to the semiconductor chip and a molding resin are indispensable, a step of connecting a wire between the semiconductor chip and the lead terminal and a step of injection molding of the molding resin are required. However, there is a problem that the material cost and the manufacturing process are complicated, and the manufacturing cost cannot be reduced. In order to maximize the effective area ratio, as described above, by mounting the semiconductor chip directly on the mounting board, the semiconductor chip area and the mounting area are almost the same, and the effective area ratio is maximized.

【0013】半導体チップを実装基板等の基板上に実装
する一つの先行技術として、例えば、特開平6−338
504号公報に示すように、半導体チップ45上に複数
のバンプ電極46を形成したフリップチップを実装基板
47フェイスダウンボンディングする技術が知られてい
る(図17参照)。この先行技術は、通常、MOSFE
T等、シリコン基板の同一主面にゲート(ベース)電
極、ソース(エミッタ)電極、ドレイン(コレクタ)電
極が形成され、電流或いは電圧のパスが横方向に形成さ
れる比較的発熱量の少ない横型の半導体装置に主に用い
られる。
One prior art for mounting a semiconductor chip on a substrate such as a mounting substrate is disclosed in, for example, JP-A-6-338.
As shown in JP-A-504-504, there is known a technique of performing face-down bonding of a flip chip having a plurality of bump electrodes 46 formed on a semiconductor chip 45 on a mounting substrate 47 (see FIG. 17). This prior art usually uses MOSFE
T (gate) electrode, source (emitter) electrode, drain (collector) electrode are formed on the same main surface of a silicon substrate such as T, and current or voltage paths are formed in the horizontal direction. Mainly used for semiconductor devices.

【0014】しかし、トランジスタデバイス等のように
シリコン基板が電極の一つとなり、各電極が異なる面に
形成され電流のパスが縦方向に流れる縦型の半導体装置
では、上記のフリップチップ技術を使用することは困難
である。半導体チップを実装基板等の基板上に実装する
他の先行技術として、例えば、特開平7−38334号
公報に示すように、実装基板51上に形成された導電パ
ターン52上に半導体チップ53をダイボンディング
し、半導体チップ53周辺に配置された導電パターン5
2と半導体チップ53との電極をワイヤ54で接続する
技術が知られている(図18参照)。この先行技術で
は、先に述べたシリコン基板が一つの電極を構成した縦
型構造のトランジスタ等の半導体チップに用いることは
できる。
However, in a vertical semiconductor device such as a transistor device in which a silicon substrate becomes one of the electrodes, each electrode is formed on a different surface, and a current path flows in a vertical direction, the above-described flip chip technology is used. It is difficult to do. As another prior art for mounting a semiconductor chip on a substrate such as a mounting substrate, for example, as shown in JP-A-7-38334, a semiconductor chip 53 is mounted on a conductive pattern 52 formed on a mounting substrate 51 by die. Conductive pattern 5 bonded and placed around semiconductor chip 53
A technique for connecting the electrodes of the semiconductor chip 53 and the semiconductor chip 53 with wires 54 is known (see FIG. 18). In this prior art, the above-described silicon substrate can be used for a semiconductor chip such as a transistor having a vertical structure in which one electrode forms one electrode.

【0015】半導体チップ53とその周辺に配置された
導電パターン52とを接続するワイヤ54は通常、金細
線が用いられることから、金細線とボンディング接続さ
れるボンディング接合部のピール強度(引張力)を大き
くするために、約200℃〜300℃の加熱雰囲気中で
ボンディングを行うことが好ましい。しかし、絶縁樹脂
系の実装基板上に半導体チップをダイボンディングする
場合には、上記した温度まで加熱すると配線基板に歪み
が生じること、及び、実装基板上に実装されたチップコ
ンデンサ、チップ抵抗等の他の回路素子を固着する半田
が溶融するために、加熱温度を約100℃〜150℃程
度にしてワイヤボンディング接続が行われているため、
ボンディング接合部のピール強度が低下する問題があ
る。
A wire 54 for connecting the semiconductor chip 53 and the conductive pattern 52 disposed around the semiconductor chip 53 is usually a gold wire, and therefore, the peel strength (tensile force) of a bonding portion bonded to the gold wire by bonding. Is preferably performed in a heating atmosphere at about 200 ° C. to 300 ° C. However, when a semiconductor chip is die-bonded on an insulating resin-based mounting substrate, the wiring substrate may be distorted when heated to the above-described temperature, and a chip capacitor, a chip resistor, etc. mounted on the mounting substrate may be distorted. Since the solder for fixing other circuit elements is melted, the wire bonding connection is performed at a heating temperature of about 100 ° C. to about 150 ° C.,
There is a problem that the peel strength of the bonding portion is reduced.

【0016】この先行技術では、通常、ダイボンディン
グされた半導体チップはエポキシ樹脂等の熱硬化性樹脂
で被覆保護されるために、ピール強度の低下はエポキシ
樹脂の熱硬化時の収縮等によって接合部が剥離されると
いう問題がある。さらに、従来ではトランジスタと例え
ばバイポーラIC、MOSIC等の能動素子を実装基板
上で接続する場合には、樹脂モールドされたトランジス
タとバイポーラICを個々に実装しなければならず、上
述したように実装基板の実装面積率を低下させる。
In this prior art, a die-bonded semiconductor chip is usually covered and protected with a thermosetting resin such as an epoxy resin. Therefore, a decrease in peel strength is caused by shrinkage of the epoxy resin during thermosetting or the like. There is a problem that is peeled off. Further, conventionally, when a transistor is connected to an active element such as a bipolar IC or a MOSIC on a mounting board, the transistor and the bipolar IC which have been resin-molded must be individually mounted. Lower the mounting area ratio.

【0017】本発明は、上述した事情に鑑みて成された
ものであり、本発明は、半導体チップと接続されるリー
ド端子、及びモールド樹脂を必要とせず、半導体チップ
面積と実装基板上に実装する実装面積との比率である有
効面積率を最大限向上させ、実装面積のデットスペース
最小限小さくし、且つ高機能化した半導体装置を提供す
る。
The present invention has been made in view of the above circumstances, and the present invention does not require a lead terminal connected to a semiconductor chip and a molding resin, and has a semiconductor chip area and mounting on a mounting substrate. Provided is a semiconductor device which has an effective area ratio, which is a ratio with respect to the mounting area to be improved, as much as possible, minimizes the dead space of the mounting area, and has high functionality.

【0018】[0018]

【課題を解決するための手段】本発明は、上記の課題を
解決するために以下の構成を採用した。即ち、第1に本
発明の半導体装置は、第1の能動素子が形成された第1
の半導体基板と、第2の能動素子が形成された第2の半
導体基板とが一体化された半導体装置において、前記第
1の能動素子と前記第2の能動素子とは電気的に接続さ
れ、且つ第1、第2の能動素子の外部接続電極は複数に
電気的に分離分割された前記第1の半導体基板を用いた
ことを特徴としている。
The present invention has the following features to attain the object mentioned above. That is, first, the semiconductor device of the present invention has a first device in which a first active element is formed.
In the semiconductor device in which the semiconductor substrate of the above and the second semiconductor substrate on which the second active element is formed are integrated, the first active element and the second active element are electrically connected, Further, the first and second active elements are characterized in that the external connection electrodes use the first semiconductor substrate which is electrically divided and divided into a plurality of parts.

【0019】第2に本発明の半導体装置は、基板の所定
の能動素子形成領域に第1の能動素子が形成され、前記
能動素子形成領域の前記基板を少なくとも前記能動素子
の一の電極とした一の外部接続用電極領域と、少なくと
も前記能動素子の他の電極と電気的に接続され前記基板
の一部分よりなる複数の他の外部接続用電極領域とを有
した第1の半導体基板と、少なくとも前記他の電極と前
記他の外部接続用電極とを電気的に接続する配線パター
ン及び第2の能動素子が形成された第2の半導体基板
と、前記第1の半導体基板と前記第2の半導体基板とが
一体化され、前記第2の半導体基板上に形成された前記
配線パターンを介して前記第1の能動素子の他の電極と
前記他の外部接続用電極領域、及び前記第2の能動素子
の電極と前記他の外部接続用電極領域とが接続され、前
記第1の半導体基板に設けられたスリットにより、前記
一の外部接続用電極領域と前記他の外部接続用電極領域
とが電気的に分離されていることを特徴としている。
Secondly, in the semiconductor device of the present invention, a first active element is formed in a predetermined active element forming region of a substrate, and the substrate in the active element forming region is at least one electrode of the active element. A first semiconductor substrate having one external connection electrode region and at least a plurality of other external connection electrode regions electrically connected to at least another electrode of the active element and formed of part of the substrate; A second semiconductor substrate on which a wiring pattern for electrically connecting the other electrode and the other external connection electrode and a second active element are formed; the first semiconductor substrate and the second semiconductor; A substrate, and the other electrode and the other external connection electrode region of the first active element via the wiring pattern formed on the second semiconductor substrate; The electrode of the element and the other outside The connection electrode region is connected to the first semiconductor substrate, and the slit provided in the first semiconductor substrate electrically separates the one external connection electrode region from the other external connection electrode region. Features.

【0020】ここで、前記第1の半導体基板と前記第2
の半導体基板とは絶縁接着樹脂層を介して配置されるこ
とを特徴している。また、前記第1の能動素子はトラン
ジスタ、パワーMOSFETであることを特徴としてい
る。また、前記第2の能動素子はバイポーラIC或いは
MOSIC及びそれらの複合ICであることを特徴とし
ている。
Here, the first semiconductor substrate and the second semiconductor substrate
The semiconductor device is characterized in that the semiconductor substrate is disposed via an insulating adhesive resin layer. Further, the first active element is a transistor or a power MOSFET. Further, the second active element is a bipolar IC or a MOSIC and a composite IC thereof.

【0021】上述したように、第1の能動素子が形成さ
れた第1の半導体基板と、第2の能動素子が形成された
第2の半導体基板とが一体化された半導体装置におい
て、前記第1の能動素子と前記第2の能動素子とは電気
的に接続され、且つ第1、第2の能動素子の外部接続電
極は複数に電気的に分離分割された前記第1の半導体基
板を用いることにより、従来の半導体装置のように、外
部電極と接続する金属製のリード端子、保護用の封止モ
ールドが不必要となり、半導体装置の外観寸法を著しく
小型化にすることができる。さらに、トランジスタ等の
第1の能動素子とバイポーラIC等の第2の能動素子を
複合化した高機能化された半導体装置を提供することが
できる。
As described above, in the semiconductor device in which the first semiconductor substrate on which the first active element is formed and the second semiconductor substrate on which the second active element is formed are integrated, The first active element is electrically connected to the second active element, and the external connection electrodes of the first and second active elements use the first semiconductor substrate which is electrically separated and divided into a plurality. This eliminates the need for a metal lead terminal connected to an external electrode and a protective sealing mold as in a conventional semiconductor device, and can significantly reduce the external dimensions of the semiconductor device. Further, a highly functional semiconductor device in which a first active element such as a transistor and a second active element such as a bipolar IC are combined can be provided.

【0022】また、上記したように、外部接続用の金属
リード端子、及び樹脂封止用モールドが不要であるため
に、半導体装置の製造コストを著しく低減化することが
できる。
Further, as described above, since the metal lead terminals for external connection and the mold for resin sealing are not required, the manufacturing cost of the semiconductor device can be significantly reduced.

【0023】[0023]

【発明の実施の形態】以下に、本発明の半導体装置の実
施形態について説明する。本発明の半導体装置は、図1
に示すように、第1の半導体基板60と、能動素子が形
成される能動素子形成領域61と、能動素子形成領域6
1に形成された第1の能動素子の一の電極であり、外部
接続するための一の外部接続用電極62と、能動素子形
成領域61と電気的に分離され第1の基板60の一部分
を少なくとも能動素子の他の電極の外部電極とする複数
の他の外部接続用電極63、64...と、第1の基板
60と対向配置された第2の半導体基板100と、第2
の基板100に形成された第2の能動素子とをから構成
されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the semiconductor device according to the present invention will be described. FIG. 1 shows a semiconductor device according to the present invention.
As shown in FIG. 1, a first semiconductor substrate 60, an active element formation region 61 where active elements are formed, and an active element formation region 6
One electrode of the first active element formed on the first substrate, one external connection electrode 62 for external connection, and a part of the first substrate 60 electrically separated from the active element formation region 61. A plurality of other external connection electrodes 63, 64, at least as external electrodes of other electrodes of the active element. . . A second semiconductor substrate 100 disposed opposite to the first substrate 60;
And a second active element formed on the substrate 100.

【0024】第1の半導体基板60は、例えば、N+型
の単結晶シリコン基板が用いられ、その第1の基板60
上にエピタキシャル成長技術によりN-型のエピタキシャ
ル層66が形成される。第1の半導体基板60の所定領
域はパワーMOS、トランジスタ等の第1の能動素子が
形成される能動素子形成領域61と少なくとも第1の能
動素子の電極接続される複数の外部接続用電極63、6
4...となる外部接続電極領域63A,64A...
とが設けられている。
As the first semiconductor substrate 60, for example, an N + type single crystal silicon substrate is used.
An N-type epitaxial layer 66 is formed thereon by an epitaxial growth technique. A predetermined region of the first semiconductor substrate 60 includes a plurality of external connection electrodes 63 connected to an active element forming region 61 in which a first active element such as a power MOS or a transistor is formed, and at least an electrode of the first active element. 6
4. . . The external connection electrode regions 63A, 64A. . .
Are provided.

【0025】この能動素子形成領域61に上記した第1
の能動素子が形成される。ここでは、N-型のエピタキシ
ャル層をコレクタ領域66Aとしたトランジスタが形成
される。能動素子形成領域61上にホトレジストを形成
し、ホトレジストによって露出された領域にボロン
(B)等のP型の不純物を選択的に熱拡散して所定の深
さを有した島状のベース領域71が形成される。
In the active element forming area 61, the first
Are formed. Here, a transistor in which the N− type epitaxial layer is the collector region 66A is formed. A photoresist is formed on the active element formation region 61, and a P-type impurity such as boron (B) is selectively thermally diffused into a region exposed by the photoresist to form an island-like base region 71 having a predetermined depth. Is formed.

【0026】ベース領域71形成後、能動素子形成領域
61上に再度ホトレジストを形成し、ホトレジストによ
って露出されたベース領域71内にリン(P)、アンチ
モン(Sb)等のN型の不純物を選択的に熱拡散してト
ランジスタのエミッタ領域72が形成される。このエミ
ッタ領域72を形成する際に、ベース領域71を囲むリ
ング状のガードリング用のN+型の拡散領域73を形成
しておく場合もある。さらに、N+型のエミッタ領域7
2を形成する際、N+型の拡散は外部接続用電極となる
電極領域63A,64A...上にも行われ、電極領域
63A、64A...に高濃度拡散層81が形成され
る。
After forming the base region 71, a photoresist is formed again on the active element forming region 61, and N-type impurities such as phosphorus (P) and antimony (Sb) are selectively formed in the base region 71 exposed by the photoresist. Is diffused to form an emitter region 72 of the transistor. When forming the emitter region 72, a ring-shaped guard ring N + type diffusion region 73 surrounding the base region 71 may be formed in some cases. Further, the N + type emitter region 7
2 is formed, the N + -type diffusion is performed by the electrode regions 63A, 64A. . . This is also done on the electrode regions 63A, 64A. . . Then, a high concentration diffusion layer 81 is formed.

【0027】第1の半導体基板60の表面には、ベース
領域71表面を露出するベースコンタクト孔及びエミッ
タ領域72表面を露出するエミッタコンタクト孔を有す
るシリコン酸化膜、或いはシリコン窒化膜等の絶縁膜7
4が形成される。ガードリング用の拡散領域73を形成
した場合には、かかる、拡散領域73表面を露出するガ
ードリングコンタクト孔が形成される。この絶縁膜74
は、外部接続用電極となる電極領域63A,64
A...上にも形成され、電極領域63A,64
A...の表面を露出する外部接続用コンタクト孔が形
成されている。
An insulating film 7 such as a silicon oxide film or a silicon nitride film having a base contact hole exposing the surface of the base region 71 and an emitter contact hole exposing the surface of the emitter region 72 is formed on the surface of the first semiconductor substrate 60.
4 are formed. When the guard ring diffusion region 73 is formed, a guard ring contact hole exposing the surface of the diffusion region 73 is formed. This insulating film 74
Are electrode regions 63A and 64 serving as external connection electrodes.
A. . . Electrode regions 63A, 64
A. . . The contact hole for external connection which exposes the surface of is formed.

【0028】ベースコンタクト孔、エミッタコンタクト
孔、外部接続用コンタクト孔及びガードリングコンタク
ト孔によって露出されたベース領域71、エミッタ領域
72、電極領域63A,64A及びガードリング拡散領
域73上には、選択的にアルミニウム等の金属材料で蒸
着されたベース電極75、エミッタ電極76、接続用電
極77が形成される。
The base region 71, the emitter region 72, the electrode regions 63A and 64A, and the guard ring diffusion region 73 exposed by the base contact hole, the emitter contact hole, the external connection contact hole, and the guard ring contact hole are selectively provided. A base electrode 75, an emitter electrode 76, and a connection electrode 77 are formed by depositing a metal material such as aluminum.

【0029】ベース電極75、エミッタ電極76、及び
接続用電極77にアルミニウムを用いた場合には、基板
60上にPSG膜、SiN、SiNx等の絶縁物からな
るパッシベーション膜74Aを形成し、ベース電極7
5、エミッタ電極76、接続用電極77上のパッシベー
ション膜74Aを選択的に除去し、各電極75、76、
77の表面を露出させる。さらに、露出された領域内に
クロム、銅等を選択的にメッキしてメッキ層79を形成
し各電極75、76、77の腐食による不具合を防止す
る必要がある。
When aluminum is used for the base electrode 75, the emitter electrode 76, and the connection electrode 77, a PSG film, a passivation film 74A made of an insulator such as SiN or SiNx is formed on the substrate 60, and the base electrode 75 is formed. 7
5, the passivation film 74A on the emitter electrode 76 and the connection electrode 77 is selectively removed, and the electrodes 75, 76,
The surface of 77 is exposed. Further, it is necessary to selectively plate chromium, copper, or the like in the exposed region to form a plating layer 79, thereby preventing the electrodes 75, 76, 77 from being damaged by corrosion.

【0030】トランジスタが形成された能動素子形成領
域61と複数の外部接続電極領域63A,64A...
とを有した第1の半導体基板60表面上にはシリコン
系、エポキシ系或いはポリイミド系或いは光硬化性の絶
縁接着樹脂層78を介して第2の半導体基板100が対
向配置されて固着される。第2の基板100上には、第
2の能動素子及び配線パターンが形成されており、この
配線パターンによって、トランジスタのベース電極7
5、或いはエミッタ電極76と所定の外部接続電極領域
63A,64A...との電気的が接続がそれぞれ行わ
れる。
An active element forming region 61 in which a transistor is formed and a plurality of external connection electrode regions 63A, 64A. . .
The second semiconductor substrate 100 is opposed to and fixed to the surface of the first semiconductor substrate 60 having a silicon-based, epoxy-based, or polyimide-based or photocurable insulating adhesive resin layer 78. On the second substrate 100, a second active element and a wiring pattern are formed, and the wiring pattern forms a base electrode 7 of the transistor.
5 or a predetermined external connection electrode region 63A, 64A. . . And electrical connection is made respectively.

【0031】第2の半導体基板100は、例えば、単結
晶のP型半導体基板が用いられ、その基板100にバイ
ポーラIC、MOSIC等の第2の能動素子が形成され
る。例えば、図1に示すように、P型半導体基板に所定
形状のフォトマスクを形成し、アンチモン等のN型の高
濃度不純物を拡散して島状のN+型の埋め込みコレクタ
領域101が形成される。フォトマスクを除去した後、
第2の基板100上にエピタキシャル成長技術によりN-
型のエピタキシャル層102が形成される。
As the second semiconductor substrate 100, for example, a single-crystal P-type semiconductor substrate is used, and a second active element such as a bipolar IC or a MOSIC is formed on the substrate 100. For example, as shown in FIG. 1, a photomask of a predetermined shape is formed on a P-type semiconductor substrate, and an N-type high-concentration impurity such as antimony is diffused to form an island-shaped N + -type buried collector region 101. You. After removing the photomask,
On the second substrate 100, N-
A type epitaxial layer 102 is formed.

【0032】エピタキシャル層102上にアイソレーシ
ョン拡散領域を露出するマスクを形成し、かかる、アイ
ソレーション拡散領域にボロン等のP+型の不純物を拡
散してアイソレーション拡散領域103が形成される。
このアイソレーション拡散領域103によりトランジス
タの活性領域となるN型領域はP型の不純物で囲まれ
る。
A mask for exposing the isolation diffusion region is formed on the epitaxial layer 102, and a P + type impurity such as boron is diffused into the isolation diffusion region to form an isolation diffusion region 103.
The N-type region serving as the active region of the transistor is surrounded by the P-type impurity by the isolation diffusion region 103.

【0033】エピタキシャル層102にホトレジストを
形成し、ホトレジストによって露出された領域にボロン
(B)等のP型の不純物を選択的に熱拡散して所定の深
さを有した島状のベース領域104が形成される。ベー
ス領域104形成後、エピタキシャル層102上に再度
ホトレジストを形成し、ホトレジストによって露出され
たベース領域104内及びコレクタ領域内にリン
(P)、アンチモン(Sb)等のN型の不純物を選択的
に熱拡散してトランジスタのエミッタ領域105及びコ
レクタコンタクト拡散領域106が形成される。
A photoresist is formed on the epitaxial layer 102, and a P-type impurity such as boron (B) is selectively thermally diffused into a region exposed by the photoresist to form an island-like base region 104 having a predetermined depth. Is formed. After the formation of the base region 104, a photoresist is formed again on the epitaxial layer 102, and N-type impurities such as phosphorus (P) and antimony (Sb) are selectively formed in the base region 104 and the collector region exposed by the photoresist. By thermal diffusion, an emitter region 105 and a collector contact diffusion region 106 of the transistor are formed.

【0034】第2の半導体基板100の表面には、ベー
ス領域104表面を露出するベースコンタクト孔、エミ
ッタ領域105表面を露出するエミッタコンタクト孔及
びコレクタコンタクト拡散領域表面を露出するコレクタ
コンタクト孔を有するシリコン酸化膜、或いはシリコン
窒化膜等の絶縁膜107が形成される。ベースコンタク
ト孔、エミッタコンタクト孔、コレクタコンタクト孔に
よって露出されたベース領域104、エミッタ領域10
6、コレクタコンタクト領域107には、選択的にアル
ミニウム等の金属材料で蒸着されたベース電極107、
エミッタ電極108、コレクタ電極109及び必要に応
じてそれら各電極から延在される配線Aが所定の位置ま
で配置形成される。本実施形態は、コレクタ電極配線1
09Aは第1の基板60の外部接続用電極と接続するた
めに所定の位置まで延在配置されている。
On the surface of the second semiconductor substrate 100, silicon having a base contact hole exposing the surface of the base region 104, an emitter contact hole exposing the surface of the emitter region 105, and a collector contact hole exposing the surface of the collector contact diffusion region is provided. An insulating film 107 such as an oxide film or a silicon nitride film is formed. Base region 104, emitter region 10 exposed by base contact hole, emitter contact hole, collector contact hole
6. In the collector contact region 107, a base electrode 107 selectively deposited with a metal material such as aluminum,
The emitter electrode 108, the collector electrode 109, and the wiring A extending from each of the electrodes as necessary are arranged and formed up to predetermined positions. In the present embodiment, the collector electrode wiring 1
The reference numeral 09 </ b> A extends to a predetermined position in order to connect to the external connection electrode of the first substrate 60.

【0035】ベース電極107、エミッタ電極108、
及びコレクタ電極109にアルミニウムを用いた場合に
は、第2の基板100上にPSG膜、SiN、SiNx
等の絶縁物からなるパッシベーション膜110を形成
し、ベース電極107、エミッタ電極108、コレクタ
電極109上或いは/及び必要に応じて各電極107、
108、109から延在された配線Aの所定位置上のパ
ッシベーション膜110を選択的に除去し、各電極10
7、108、109或いは/及び配線Aの表面を露出さ
せる。さらに、露出された領域内にクロム、銅等を選択
的にメッキしてメッキ層111を形成し各電極等の腐食
による不具合を防止している。
The base electrode 107, the emitter electrode 108,
When aluminum is used for the collector electrode 109, a PSG film, SiN, SiNx is formed on the second substrate 100.
Is formed on the base electrode 107, the emitter electrode 108, the collector electrode 109 or / and, if necessary, the respective electrodes 107.
The passivation film 110 on a predetermined position of the wiring A extending from 108 and 109 is selectively removed, and each electrode 10
7, 108, 109 or / and the surface of the wiring A is exposed. Further, chromium, copper, or the like is selectively plated in the exposed region to form a plating layer 111, thereby preventing a problem due to corrosion of each electrode and the like.

【0036】さらに、第2の基板100上には、第1の
基板60の能動素子形成領域61で形成された第1の能
動素子の電極と、第1の基板60から形成される外部接
続用電極とを接続するための冗長用のパターン配線11
2が形成される。このパターン配線112は、一般的な
多層配線技術が用いられ、例えば、アルミニウム等に金
属を選択的に蒸着して形成され、その上面にPSG膜、
SiN、SiNx等の絶縁物からなるパッシベーション
膜113を形成し、パターン配線の所定位置上のパッシ
ベーション膜を選択的に除去し、配線112の表面を露
出させる。さらに、露出された領域内に、上記したよう
にクロム、銅等を選択的にメッキしてメッキ層114を
形成し露出されたパターン配線112の腐食による不具
合を防止している。
Further, on the second substrate 100, the electrodes of the first active element formed in the active element forming region 61 of the first substrate 60 and the external connection electrodes formed from the first substrate 60 are formed. Redundant pattern wiring 11 for connecting to electrodes
2 are formed. The pattern wiring 112 is formed by using a general multilayer wiring technique, for example, by selectively depositing a metal on aluminum or the like, and forming a PSG film,
A passivation film 113 made of an insulator such as SiN or SiNx is formed, the passivation film on a predetermined position of the pattern wiring is selectively removed, and the surface of the wiring 112 is exposed. Further, as described above, chromium, copper, or the like is selectively plated in the exposed region to form a plating layer 114, thereby preventing a problem due to corrosion of the exposed pattern wiring 112.

【0037】第2の基板100上に形成されたメッキ層
111、114上には、高さ約3μ〜25μの金等の金
属からなるバンプ電極115が形成され、このバンプ電
極115により、第1の基板60上に形成された第1の
能動素子の電極、および外部接続電極領域に形成された
接続電極77との接触が行われ両基板60、100上に
形成された第1、第2の能動素子の電気的導通が成され
ることになる。
On the plating layers 111 and 114 formed on the second substrate 100, a bump electrode 115 made of a metal such as gold having a height of about 3 to 25 μ is formed. The electrodes of the first active element formed on the substrate 60 and the connection electrodes 77 formed on the external connection electrode region are brought into contact with each other, and the first and second electrodes formed on both the substrates 60 and 100 are made. Electrical conduction of the active element will be achieved.

【0038】第2の基板100上には、図1からは明ら
かにされないが、複数のトランジスタ、ダイオード等の
素子が形成され所定機能を有したバイポーラICが形成
されている。また、バンプ電極115は第2の基板10
0のみに形成されるものではなく、第1の基板60側に
形成しても良い。両半導体基板60、100を固着一体
化する樹脂層78は、上記したように、種々の材料が存
在するが、例えば、紫外線で硬化するアクリル樹脂等の
光硬化性樹脂とエポキシ樹脂等の熱硬化性樹脂とを混合
させたハイブリッドタイプの光熱硬化性樹脂を用いるも
のとする。光熱硬化性樹脂を例えば、基板60上に塗布
し、能動素子形成領域61上に形成されたトランジスタ
のベース電極75、エミッタ電極76および外部接続電
極領域63A、64A...上に形成された接続電極7
7と第2の基板100上に形成したバンプ電極115と
が一致するように両基板60、100との位置合わせを
行い密着させる。
Although not evident from FIG. 1, a bipolar IC having a plurality of elements such as transistors and diodes and having a predetermined function is formed on the second substrate 100. Further, the bump electrodes 115 are formed on the second substrate 10.
Instead of being formed only on 0, it may be formed on the first substrate 60 side. As described above, the resin layer 78 for fixing and integrating the two semiconductor substrates 60 and 100 includes various materials. For example, a photocurable resin such as an acrylic resin that is cured by ultraviolet rays and a thermosetting resin such as an epoxy resin are used. It is assumed that a hybrid type photothermosetting resin mixed with a conductive resin is used. A photo-thermosetting resin is applied on the substrate 60, for example, and the base electrode 75, the emitter electrode 76, and the external connection electrode regions 63A, 64A. . . Connection electrode 7 formed on top
The substrates 60 and 100 are aligned and brought into close contact with each other so that 7 and the bump electrodes 115 formed on the second substrate 100 match.

【0039】その後、約80℃〜100℃程度の加熱処
理を行い樹脂層78を熱硬化させ、両基板60、100
を固着一体化する。この時、各電極75、76、77と
バンプ電極115とは接触し電気的導通は行われている
が、十分な導通状態ではない。その後、紫外線を照射す
ることで樹脂層78中の光硬化性樹脂の硬化が始まり、
その光熱硬性樹脂の硬化時の収縮力で両基板60、10
0が互いに引き合わさられ、第1の基板60上の各電極
75、76、77とバンプ電極115との接触が十分に
保たれ電気的導通が確実に行われる。樹脂層78は各電
極75、76、77とバンプ電極115とを良好に導通
させるとともに、両基板60、100の接着をも同時に
行うものである。
Thereafter, a heat treatment at about 80 ° C. to 100 ° C. is performed to thermally cure the resin layer 78.
Is fixedly integrated. At this time, each of the electrodes 75, 76, and 77 and the bump electrode 115 are in contact with each other and are electrically connected, but are not in a sufficiently conductive state. Thereafter, by irradiating ultraviolet rays, curing of the photocurable resin in the resin layer 78 starts,
Both substrates 60, 10
0 are attracted to each other, the contacts between the electrodes 75, 76, 77 on the first substrate 60 and the bump electrodes 115 are sufficiently maintained, and electrical conduction is reliably performed. The resin layer 78 allows the electrodes 75, 76, 77 and the bump electrodes 115 to conduct well and simultaneously bonds the substrates 60, 100 together.

【0040】ところで、第2の基板100上に形成する
バンプ電極115の高さが低い場合には、第1の基板6
0上の形成した各電極上にも別のバンプ電極を形成する
ことが好ましい。第2の基板100上に形成したバンプ
電極115の高さが低すぎると両基板60、100の離
間距離、即ち樹脂層78の膜厚が薄くなり、後述するス
リット孔80を形成したときに、スリット孔80の先端
部分が第2の基板100の表面まで達し、配線パターン
112或いは第2の能動素子を切断する可能性があり、
両基板60、100の離間距離を十分に考慮する必要が
ある。
When the height of the bump electrode 115 formed on the second substrate 100 is low, the first substrate 6
It is preferable to form another bump electrode on each of the formed electrodes on zero. If the height of the bump electrode 115 formed on the second substrate 100 is too low, the distance between the two substrates 60 and 100, that is, the thickness of the resin layer 78 becomes thin, and when the slit hole 80 described later is formed, There is a possibility that the tip of the slit hole 80 reaches the surface of the second substrate 100 and cuts the wiring pattern 112 or the second active element.
It is necessary to sufficiently consider the distance between the two substrates 60 and 100.

【0041】第1の基板60上に形成された能動素子形
成領域61と外部接続電極領域63A,64A...と
は、第1の基板60の裏面側から形成されたスリット孔
80によって、それぞれ電気的に分離され、個々の領域
61、63A,64A...が半導体装置の外部接続用
電極62、63、64....となる。例えば、図2に
示すような、トランジスタQとそのトランジスタQを制
御する4入力端子を有する制御回路とからなる等価回路
を有する半導体装置の場合、トランジスタQは第1の基
板60に形成され、制御回路は第2の基板100に形成
される。この時、制御回路は例えば、バイポーラICで
構成されるものとする。図3は外部接続用電極となる第
1の基板60の裏面を示すものであり、この等価回路の
半導体装置の外部接続用電極は、例えば、図3に示すよ
うに配列することができる。トランジスタQのVCC(コ
レクタ端子)用の外部接続電極62は上段中央部に、出
力用の外部接続用電極63は下段左に配置される。制御
回路の3入力用の外部接続用電極64、65、66及び
アース用の外部接続用電極67は残りの位置に配置され
る。ここで、65A...67Aは分離前の電極領域を
示す。
The active element formation region 61 formed on the first substrate 60 and the external connection electrode regions 63A, 64A. . . Are electrically separated from each other by slit holes 80 formed from the back surface side of the first substrate 60, and the individual regions 61, 63A, 64A. . . Are the external connection electrodes 62, 63, 64. . . . Becomes For example, as shown in FIG. 2, in the case of a semiconductor device having an equivalent circuit including a transistor Q and a control circuit having four input terminals for controlling the transistor Q, the transistor Q is formed on the first substrate 60, The circuit is formed on the second substrate 100. At this time, the control circuit is configured by, for example, a bipolar IC. FIG. 3 shows the back surface of the first substrate 60 serving as an external connection electrode. The external connection electrodes of the semiconductor device of this equivalent circuit can be arranged, for example, as shown in FIG. The external connection electrode 62 for the VCC (collector terminal) of the transistor Q is arranged at the center of the upper stage, and the external connection electrode 63 for output is arranged at the lower left. The external connection electrodes 64, 65, 66 for three inputs of the control circuit and the external connection electrode 67 for grounding are arranged at the remaining positions. Here, 65A. . . 67A shows an electrode region before separation.

【0042】さらに、述べると、能動素子形成領域61
の第1の基板60は半導体装置のVCC用の外部接続用
電極62、外部接続電極領域63Aの第1の基板60は
半導体装置の入力用の外部接続用電極63、外部接続電
極領域64A...の基板60は半導体装置の入力用の
外部接続用電極64...となり、同一の第1の半導体
基板60を用い、且つ、同一平面上に半導体装置の各入
出力用の外部接続用電極62、63、64...が形成
されることになる。
More specifically, the active element forming region 61
The first substrate 60 of the semiconductor device has the external connection electrode 62 for VCC of the semiconductor device, and the first substrate 60 of the external connection electrode region 63A has the input external connection electrode 63 and the external connection electrode region 64A. . . The substrate 60 has an external connection electrode 64. . . , And the external connection electrodes 62, 63, 64,... For each input / output of the semiconductor device are formed on the same plane using the same first semiconductor substrate 60. . . Is formed.

【0043】半導体装置の外部接続用電極領域64A,
63A...には、上記したように、高濃度拡散層81
を形成していおり、外部接続用電極64.....と各
電極を接続する配線抵抗によるロスを緩和している。こ
の高濃度拡散層81は、電極領域64A,63A...
のエピタキシャル層66の膜厚が比較的薄い場合、上記
したように、エミッタ領域72を形成する拡散工程で形
成される。
The external connection electrode region 64A of the semiconductor device,
63A. . . As described above, the high concentration diffusion layer 81
Are formed, and the external connection electrode 64. . . . . And the loss due to the wiring resistance connecting the electrodes is reduced. The high-concentration diffusion layer 81 has electrode regions 64A, 63A. . .
When the thickness of the epitaxial layer 66 is relatively small, the epitaxial layer 66 is formed in the diffusion step of forming the emitter region 72 as described above.

【0044】エピタキシャル層60の膜厚が比較的厚い
場合には、エピタキシャル層60を形成する前に、電極
領域63A,64A...上にN+型の不純物をデポジ
ションし、その後、エピタキシャル層60を形成し、さ
らに熱拡散工程を行い第1の基板60側から高濃度拡散
領域81を成長させておいた状態にしておけば、エミッ
タ領域72を形成するときに高濃度拡散領域81、81
が接触し、電極領域63A,64A...内に高濃度拡
散層81を形成することができる。
When the thickness of the epitaxial layer 60 is relatively large, before forming the epitaxial layer 60, the electrode regions 63A, 64A. . . If an N + type impurity is deposited thereon, then an epitaxial layer 60 is formed, and a thermal diffusion process is further performed to grow the high concentration diffusion region 81 from the first substrate 60 side. When forming the emitter region 72, the high concentration diffusion regions 81, 81
Contact the electrode regions 63A, 64A. . . The high concentration diffusion layer 81 can be formed therein.

【0045】各外部接続用電極62、63、6
4....を電気的に分離するスリット孔80は、上記
のように、第1の半導体基板60の裏面側から樹脂層7
8まで達するように形成され、例えば、イオンビーム、
レーザ等を照射する光学的方法、ドライエッチング、ウ
エットエッチングによる化学的方法、或いはダイシング
装置によるダイシングブレードを用いた機械的方法等に
より形成される。上記のいずれの方法によってもスリッ
ト孔80を形成することはできる。
Each external connection electrode 62, 63, 6
4. . . . As described above, the slit hole 80 that electrically separates the resin layer 7 from the back side of the first semiconductor substrate 60 is formed.
8, for example, an ion beam,
It is formed by an optical method of irradiating a laser or the like, a chemical method by dry etching or wet etching, or a mechanical method using a dicing blade by a dicing device. The slit hole 80 can be formed by any of the above methods.

【0046】ここで重要なことは、スリット孔80の深
さが浅くなると各外部接続用電極62、63、6
4...の電気分離が十分に行なわれず短絡不良となる
不具合が生じるため、各外部接続用電極62、63、6
4....が完全に電気的に分離するように、スリット
孔80の先端部(底部)は樹脂層78内に約2μ〜6μ
程度入るように形成される。スリット孔80によって各
外部接続用電極62、63、64...は完全に分離区
画されるが、樹脂層78によって同一平面に支持固定さ
れる。また、各外部接続用電極62、63、6
4....となる第1の基板60表面には、半田メッキ
等のメッキ層が形成され、実装基板上に形成された導電
パターンとの半田接続を良好にする。
It is important to note that when the depth of the slit hole 80 becomes shallower, the external connection electrodes 62, 63, 6
4. . . Of the external connection electrodes 62, 63, 6
4. . . . The tip (bottom) of the slit hole 80 is approximately 2 μm to 6 μm
It is formed so that it can enter. The external connection electrodes 62, 63, 64. . . Are completely separated from each other, but are supported and fixed on the same plane by the resin layer 78. In addition, each of the external connection electrodes 62, 63, 6
4. . . . A plating layer such as solder plating is formed on the surface of the first substrate 60 to improve the solder connection with the conductive pattern formed on the mounting substrate.

【0047】スリット孔80内にはエポキシ樹脂等の熱
硬化性樹脂が充填され絶縁樹脂層95が形成される。こ
の樹脂層95は分離された各外部接続用電極62、6
3、64...の電気的分離を確実に行う。また、この
樹脂層95をスリット孔80に充填することにより、各
外部接続用電極62、63、64...間の接着強度が
向上し、ストレス等の外部応力に対する悪影響を予防す
ることができる。スリット孔80の幅は数十μと非常に
小さいので含浸性の熱硬化性の樹脂を用いることで容易
にスリット孔80内に充填することができる。
A thermosetting resin such as an epoxy resin is filled in the slit hole 80 to form an insulating resin layer 95. The resin layer 95 is formed of the separated external connection electrodes 62 and 6.
3, 64. . . Electrical separation of By filling the resin layer 95 into the slit holes 80, the external connection electrodes 62, 63, 64. . . The adhesive strength between them is improved, and adverse effects on external stress such as stress can be prevented. Since the width of the slit hole 80 is as small as several tens of μ, the inside of the slit hole 80 can be easily filled by using an impregnating thermosetting resin.

【0048】スリット孔80によって電気的に個々に分
離された各外部接続用電極62、63、64...のエ
ッヂ部分はテーパー部91が形成されている。このテー
パー部91は、実装基板上に本発明の半導体装置を実装
したときに、図4に示すように、各外部接続用電極6
2、63、64...と実装基板上に形成されたパッド
(ランド)とを半田接合部分の半田フィレット形状を最
適化にし、例えば、熱収縮等による半田接合部分の外部
応力に対する強度を向上させるために形成されるもので
ある。
Each of the external connection electrodes 62, 63, 64. . . Is formed with a tapered portion 91. When the semiconductor device of the present invention is mounted on a mounting board, as shown in FIG.
2, 63, 64. . . And a pad (land) formed on the mounting board are formed in order to optimize the shape of the solder fillet at the solder joint and to improve the strength of the solder joint against external stress due to, for example, thermal contraction. is there.

【0049】テーパー部91及び絶縁樹脂層95は以下
の様に形成される。図5に示すように、各外部接続用電
極62、63、64を分離形成するスリット孔80を形
成する。スリット孔80を形成した後、基板60表面上
に含浸性の熱硬化性樹脂を塗布しスリット孔80内に含
浸材の絶縁樹脂層95を充填する。この時、スリット孔
80内に確実に含浸材を充填するために基板表面上にも
塗布された含浸材が残存し、熱処理後も薄膜状態で残存
する。
The tapered portion 91 and the insulating resin layer 95 are formed as follows. As shown in FIG. 5, slit holes 80 for separately forming the external connection electrodes 62, 63, 64 are formed. After forming the slit holes 80, an impregnating thermosetting resin is applied on the surface of the substrate 60, and the insulating resin layer 95 of the impregnating material is filled in the slit holes 80. At this time, the applied impregnating material remains on the substrate surface to ensure that the slit hole 80 is filled with the impregnating material, and remains in a thin film state even after the heat treatment.

【0050】次に、図6に示すように、第1の基板60
表面をバックグライダ等の研磨装置を用いて第1の基板
60表面に残存した含浸材を研磨除去し、その基板60
表面を露出させる。その後、図7に示すように、半導体
基板60にスリット孔80が形成される領域に、ダイシ
ング装置を用いて台形状のダイシングブレードで基板6
0を所定の深さでダイシング処理(基板60の表面を削
る)を行う。このダイシング処理工程でテーパー部91
を有した凹部92が基板60に形成される。テーパー部
91の角度はダイシングブレードの形状によって決定さ
れ、半田接合部分の大きさ、半田量によって任意に設定
することができる。
Next, as shown in FIG.
The surface of the first substrate 60 is polished and removed using a polishing device such as a back glider, and the surface of the first substrate 60 is removed.
Expose the surface. Thereafter, as shown in FIG. 7, the substrate 6 is formed with a trapezoidal dicing blade using a dicing apparatus in a region where the slit hole 80 is formed in the semiconductor substrate 60.
0 is subjected to a dicing process (shaving the surface of the substrate 60) at a predetermined depth. In this dicing process, the tapered portion 91 is formed.
A concave portion 92 having a shape is formed on the substrate 60. The angle of the tapered portion 91 is determined by the shape of the dicing blade, and can be arbitrarily set according to the size of the solder joint and the amount of solder.

【0051】第1の基板60に凹部92を形成した後、
図8に示すように、第1の基板60の表面に半田等の金
属のメッキ層93を形成する。メッキ層93はスリット
孔80内に充填された樹脂層95表面以外の基板60全
面に形成されるために凹部92のテーパー部91の表面
上にも形成される。従って、この実施形態では、メッキ
処理工程を挟んで2種類のダイシング工程が行われるこ
とになる。
After forming the concave portion 92 in the first substrate 60,
As shown in FIG. 8, a metal plating layer 93 such as solder is formed on the surface of the first substrate 60. Since the plating layer 93 is formed on the entire surface of the substrate 60 other than the surface of the resin layer 95 filled in the slit holes 80, it is also formed on the surface of the tapered portion 91 of the concave portion 92. Therefore, in this embodiment, two types of dicing steps are performed with the plating step interposed.

【0052】上記したように、凹部92形成後、スリッ
ト孔80を形成することにより、凹部92のテーパー部
91が残存し、各外部接続用電極62、63、6
4...のエッヂ部分をテーパーすることができる。ま
た、凹部92を形成した後、メッキ層93を形成し、ス
リット孔80を形成するとテーパー部91にも同一のメ
ッキ処理工程でメッキ層を形成することができる。
As described above, by forming the slit hole 80 after forming the concave portion 92, the tapered portion 91 of the concave portion 92 remains, and the external connection electrodes 62, 63, 6 are formed.
4. . . Can be tapered. When the plating layer 93 is formed after forming the concave portion 92 and the slit hole 80 is formed, the plating layer can be formed on the tapered portion 91 in the same plating process.

【0053】第1の半導体基板60にスリット孔80を
設けて、各外部接続用電極62、63、64を電気的に
分離形成した半導体装置は、セラミックス基板、ガラス
エポキシ基板、フェノール基板、絶縁処理を施した金属
基板等の配線基板上に形成された導電パターンのパッド
上に固着実装される。このパッド上には半田クリームが
予め印刷形成された半田層が形成されており、半田を溶
融させて本発明の半導体装置を搭載すれば実装基板のパ
ッド上に半導体装置を固着実装することができる。
The semiconductor device in which the slit holes 80 are provided in the first semiconductor substrate 60 and the external connection electrodes 62, 63, 64 are electrically separated and formed is a ceramic substrate, a glass epoxy substrate, a phenol substrate, an insulation treatment, and the like. Is fixedly mounted on a pad of a conductive pattern formed on a wiring substrate such as a metal substrate subjected to the above. A solder layer on which solder cream is pre-printed is formed on the pad. If the semiconductor device of the present invention is mounted by melting the solder, the semiconductor device can be fixedly mounted on the pad of the mounting board. .

【0054】この際、上記したように、各外部接続用電
極62、63、64...のエッヂ部分にテーパー部9
1が形成されていることにより、実装基板の導電パッド
(ランド)との半田接合部分の半田フィレットを最適化
することができ半田接合部分の接合強度が向上し接続信
頼性を向上させる事ができる。この固着実装工程は、図
示されないが、実装基板上に実装されるチップコンデン
サ、チップ抵抗等の半田実装される他の回路素子の実装
工程と同一の工程でできる。
At this time, as described above, each of the external connection electrodes 62, 63, 64. . . Tapered section 9 at the edge
With the formation of 1, the solder fillet at the solder joint with the conductive pad (land) of the mounting board can be optimized, the joint strength at the solder joint can be improved, and the connection reliability can be improved. . Although not shown, this fixed mounting process can be performed in the same process as the mounting process of other circuit elements to be solder-mounted such as chip capacitors and chip resistors mounted on a mounting board.

【0055】また、本発明の半導体装置を実装基板上に
実装した時、各外部接続用電極62、63、64はスリ
ット孔80の間隔分だけ離間されているために実装基板
と固着する半田は隣接配置された外部接続用電極62、
63、64を短絡させることはない。ところで、図9に
示すように、本実施形態の半導体装置で、例えば、従来
例で説明した半導体装置とほぼ同じ機能をもつ能動素子
能動素子形成領域61を0.5mm×0.5mmサイズと
し、ベース、エミッタ電極となる接続電極領域63A,
64Aを0.3mm×0.2mmサイズとし、スリット孔8
0の幅を0.1mmとする半導体装置では有効面積率は次
のようになる。即ち、素子面積が0.25mmであり、実
装面積となる半導体装置の面積が1.28mmとなること
から、有効面積率は約19.53%となる。
When the semiconductor device of the present invention is mounted on a mounting substrate, the external connection electrodes 62, 63, and 64 are separated by the interval of the slit holes 80, so that the solder fixed to the mounting substrate does not External connection electrodes 62 arranged adjacent to each other,
There is no short circuit between 63 and 64. By the way, as shown in FIG. 9, in the semiconductor device of the present embodiment, for example, an active element active element forming region 61 having almost the same function as the semiconductor device described in the conventional example is set to a size of 0.5 mm × 0.5 mm. Connection electrode regions 63A serving as base and emitter electrodes,
64A is 0.3mm x 0.2mm size, and slit hole 8
In a semiconductor device in which the width of 0 is 0.1 mm, the effective area ratio is as follows. That is, since the element area is 0.25 mm and the area of the semiconductor device which is the mounting area is 1.28 mm, the effective area ratio is about 19.53%.

【0056】従来例で説明した0.40mm×0.40mm
のチップサイズを有する半導体装置の有効面積率は上記
したように6.25%であることから、本発明の半導体
装置では有効面積率で約3.12倍大きくなり、実装基
板上に実装する実装面積のデットスペースを小さくする
ことができ、実装基板の小型化に寄与することができ
る。
0.40 mm × 0.40 mm explained in the conventional example
Since the effective area ratio of the semiconductor device having the chip size of 6.25% is 6.25% as described above, the effective area ratio of the semiconductor device of the present invention is about 3.12 times larger, and the semiconductor device of the present invention is mounted on a mounting substrate. The dead space of the area can be reduced, which can contribute to downsizing of the mounting substrate.

【0057】上述したように、第1の能動素子が形成さ
れた第1の半導体基板60と、第2の能動素子が形成さ
れた第2の半導体基板100とを一体化し、第1の能動
素子と第2の能動素子とを電気的に接続し、且つ第1、
第2の能動素子の外部接続電極は複数に電気的に分離分
割された第1の半導体基板60を用いることにより、従
来の半導体装置のように、外部電極と接続する金属製の
リード端子、保護用の封止モールドが不必要となり、半
導体装置の外観寸法を著しく小型化にすることができ
る。さらに、トランジスタ等の第1の能動素子とバイポ
ーラIC等の第2の能動素子を複合化した高機能化され
た半導体装置を提供することができる。
As described above, the first semiconductor substrate 60 on which the first active element is formed and the second semiconductor substrate 100 on which the second active element is formed are integrated to form the first active element. And the second active element are electrically connected, and the first,
The external connection electrode of the second active element uses the first semiconductor substrate 60 which is electrically separated and divided into a plurality of parts, so that the metal lead terminal connected to the external electrode and the protection can be provided as in the conventional semiconductor device. This eliminates the need for a sealing mold for the semiconductor device, and can significantly reduce the external dimensions of the semiconductor device. Further, a highly functional semiconductor device in which a first active element such as a transistor and a second active element such as a bipolar IC are combined can be provided.

【0058】また、上記したように、外部接続用の金属
リード端子、及び樹脂封止用モールドが不要であるため
に、半導体装置の製造コストを著しく低減化することが
できる。さらに、本発明では、第1、第2の半導体基板
60、100を用いて半導体装置を提供しているので、
第1に、既存の半導体製造装置をそのまま使用すること
ができ、新たに設備導入を行う必要がない。第2に、両
基板60、100が共にシリコン基板であると熱膨張係
数αが等しいため外部加熱或いは自己発熱による熱発生
が生じた場合でも上下で同一応力が加わり相殺するため
に基板60、100の歪による悪影響を抑制することが
できる。
Further, as described above, since the metal lead terminals for external connection and the mold for resin sealing are unnecessary, the manufacturing cost of the semiconductor device can be significantly reduced. Further, in the present invention, since the semiconductor device is provided using the first and second semiconductor substrates 60 and 100,
First, existing semiconductor manufacturing equipment can be used as it is, and there is no need to newly introduce equipment. Secondly, if both substrates 60 and 100 are silicon substrates, they have the same thermal expansion coefficient α, so that even when heat is generated by external heating or self-heating, the same stress is applied to the upper and lower sides to cancel each other. Can be suppressed from being adversely affected by distortion.

【0059】本実施形態では、第1の基板60の能動素
子形成領域61にトランジスタを形成したが、縦型或い
は比較的発熱量の少ない横型のデバイスであればこれに
限らず、例えば、パワーMOSFET、IGBT、HB
T等のデバイスを能動素子形成領域61に形成すること
ができることは説明するまでもない。また、第2の基板
100上にMOSIC、BiCMOS等のデバイスを形
成してもよい。
In the present embodiment, the transistor is formed in the active element formation region 61 of the first substrate 60. However, the present invention is not limited to this, as long as it is a vertical device or a horizontal device having a relatively small amount of heat generation. , IGBT, HB
It goes without saying that a device such as T can be formed in the active element formation region 61. Further, devices such as MOSIC and BiCMOS may be formed on the second substrate 100.

【0060】ところで、上記の実施形態では、樹脂層7
8に光熱硬化性樹脂を用いて基板60の各電極と第2の
基板100の電極及び配線パターンとの電気的導通を行
ったが、本発明では、この両者の電気的導通はいかなる
手段にも応用することができ、例えば、図10に示す用
に異方導電性樹脂を樹脂層78として用いても基板60
の各電極と第2の基板100の電極及び配線パターンと
の接続が容易に行うことができる。
Incidentally, in the above embodiment, the resin layer 7
8, the electrical conduction between each electrode of the substrate 60 and the electrode and the wiring pattern of the second substrate 100 was performed using a photo-thermosetting resin. For example, even if an anisotropic conductive resin is used as the resin layer 78 as shown in FIG.
Can easily be connected to the electrodes of the second substrate 100 and the wiring patterns.

【0061】異方導電性樹脂は、粒径の導電物81を樹
脂ペースト中に混入したものと、粒径の導電物を樹脂シ
ート中に散布したものとがあり、どちらのタイプの樹脂
を用いることも可能である。異方導電性樹脂は両基板6
0、100上に形成された電極或いは配線パターン等が
重畳する領域が粒径の導電物81を介して電気的接続が
行われるもである。異方導電性樹脂を用いる場合には、
第1の基板60上の各電極75、76、77及び第2の
基板100上電極及び配線パターン上、即ち、メッキ層
79、111、114上のそれぞれにバンプ電極115
A、115Bを形成することが好ましい。
The anisotropic conductive resin includes a resin in which a conductive material 81 having a particle size is mixed in a resin paste and a resin in which a conductive material having a particle size is dispersed in a resin sheet. It is also possible. Anisotropic conductive resin is used for both substrates 6
A region where electrodes, wiring patterns, and the like formed on 0 and 100 overlap with each other is electrically connected via a conductor 81 having a particle size. When using an anisotropic conductive resin,
The bump electrodes 115 are provided on the electrodes 75, 76, 77 on the first substrate 60 and on the electrodes and the wiring patterns on the second substrate 100, that is, on the plating layers 79, 111, 114, respectively.
A and 115B are preferably formed.

【0062】例えば、異方導電性シートを第1の基板6
0上に配置し、その基板60上のバンプ電極115Aと
第2の基板100上のバンプ電極115Bとが一致する
ように位置あわせを行い両基板60、100に所定の圧
力を加えながら約120℃程度の加熱処理を行い導電性
シートを溶かして樹脂層78とし、粒径の導電物81に
より第1の基板60上に形成された各電極75、76、
77と第2の基板100上に形成された電極及び配線パ
ターンとの導通が行われる。両基板60、100上にバ
ンプ電極115A,115Bを形成することで、配線パ
ターンAと重畳す電極等とは異方導電性樹脂の導電物が
接触されないため導通せず、確実に第1の基板上の各電
極75、76、77のバンプ電極115Aと第2の基板
100上のバンプ電極115Bとが接触し電気的導通が
行われる。
For example, an anisotropic conductive sheet is applied to the first substrate 6
0, and the bump electrodes 115A on the substrate 60 and the bump electrodes 115B on the second substrate 100 are aligned with each other. A heat treatment is performed to a degree to melt the conductive sheet to form a resin layer 78, and the electrodes 75, 76 formed on the first substrate 60 by the conductive material 81 having a particle size.
The connection between 77 and the electrodes and the wiring pattern formed on the second substrate 100 is performed. By forming the bump electrodes 115A and 115B on both substrates 60 and 100, the conductive material of the anisotropic conductive resin does not come into contact with the electrode or the like overlapping with the wiring pattern A, so that the first substrate is securely connected. The bump electrodes 115A of the upper electrodes 75, 76, and 77 come into contact with the bump electrodes 115B on the second substrate 100, and electrical conduction is performed.

【0063】他の電気的導通の方法として、図11に示
すように、両基板60、100上に形成したバンプ電極
115A、115Bを一致するように両基板60、10
0の位置合わせを行い、溶融しバンプ電極115A,1
15Bの接続を行い、第1の基板60上の各電極75、
76、77と第2の基板100上の電極及び配線パター
ンとの電気的導通が行われる。その後、両基板60、1
00に圧力を加えながら、両基板60、100のすき間
に液状の熱硬化性樹脂からなる含浸材を流し込み熱処理
を行い樹脂層78形成し、スリット孔80が形成され
る。
As another method of electrical conduction, as shown in FIG. 11, bumps 115A and 115B formed on both
Alignment of the bump electrodes 115A, 1
15B, the electrodes 75 on the first substrate 60,
Electrical conduction between the electrodes 76 and 77 and the electrodes and wiring patterns on the second substrate 100 is performed. Thereafter, both substrates 60, 1
While applying pressure to 00, an impregnating material made of a liquid thermosetting resin is poured into the gap between the substrates 60 and 100, and heat treatment is performed to form the resin layer 78, and the slit holes 80 are formed.

【0064】本発明は、トランジスタ等の能動素子が形
成された第1の半導体基板とバイポーラIC等が形成さ
れた第2の半導体基板を対向配置した半導体装置の外部
接続電極を第1の半導体基板に形成したスリット孔80
によって分離された第1の半導体基板を外部接続用電極
として用いるところを特徴としており、両基板60、1
00との接続手段は、上記した接続手段に限定されるも
のではなく、いかなる構造、いかなる材料を用いても本
発明を成し得ることは説明するまでもない。
According to the present invention, an external connection electrode of a semiconductor device in which a first semiconductor substrate on which an active element such as a transistor is formed and a second semiconductor substrate on which a bipolar IC or the like is formed is opposed to each other is used. Slit hole 80 formed in
Is characterized in that the first semiconductor substrate separated by the above is used as an electrode for external connection.
The means for connecting to 00 is not limited to the above-mentioned means for connection, and it is needless to say that the present invention can be achieved using any structure and any material.

【0065】[0065]

【発明の効果】以上に詳述したように、本発明によれ
ば、第1の能動素子が形成された第1の半導体基板と、
第2の能動素子が形成された第2の半導体基板とを一体
化し、第1の能動素子と第2の能動素子とを電気的に接
続し、且つ第1、第2の能動素子の外部接続電極は複数
に電気的に分離分割された第1の半導体基板を用いるこ
とにより、従来の半導体装置のように、外部電極と接続
する金属製のリード端子、保護用の封止モールドが不必
要となり、半導体装置の外観寸法を著しく小型化にする
ことができる。さらに、トランジスタ等の第1の能動素
子とバイポーラIC等の第2の能動素子を複合化した高
機能化された半導体装置を提供することができる。
As described in detail above, according to the present invention, a first semiconductor substrate on which a first active element is formed;
Integrating a second semiconductor substrate on which a second active element is formed, electrically connecting the first active element and the second active element, and externally connecting the first and second active elements The use of the first semiconductor substrate, which is electrically separated and divided into a plurality of electrodes, eliminates the need for a metal lead terminal connected to an external electrode and a protective sealing mold as in a conventional semiconductor device. In addition, the external dimensions of the semiconductor device can be significantly reduced. Further, a highly functional semiconductor device in which a first active element such as a transistor and a second active element such as a bipolar IC are combined can be provided.

【0066】また、本発明では、上記したように、外部
接続用の金属リード端子、及び樹脂封止用モールドが不
要であるために、半導体装置の製造コストを著しく低減
化することができる。さらに、本発明では、第1、第2
の半導体基板を用いて半導体装置を提供しているので、
第1に、既存の半導体製造装置をそのまま使用すること
ができ、新たに設備導入を行う必要がない。第2に、両
基板が共にシリコン基板であると熱膨張係数αが等しい
ため外部加熱或いは自己発熱による熱発生が生じた場合
でも上下で同一応力が加わり相殺するために基板の歪に
よる悪影響を抑制することができ信頼性が低下すること
はない。
Further, according to the present invention, as described above, the metal lead terminal for external connection and the resin sealing mold are not required, so that the manufacturing cost of the semiconductor device can be significantly reduced. Furthermore, in the present invention, the first and second
Since semiconductor devices are provided using semiconductor substrates of
First, existing semiconductor manufacturing equipment can be used as it is, and there is no need to newly introduce equipment. Secondly, if both substrates are silicon substrates, the thermal expansion coefficient α is equal, so even when heat is generated by external heating or self-heating, the same stress is applied to the upper and lower sides to cancel each other, so that the adverse effect due to the distortion of the substrate is suppressed. Can be performed without reducing the reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体装置を示す断面図。FIG. 1 is a cross-sectional view illustrating a semiconductor device of the present invention.

【図2】本発明の半導体装置の裏面を示す図。FIG. 2 is a diagram showing a back surface of the semiconductor device of the present invention.

【図3】本発明の半導体装置を示す断面図。FIG. 3 is a cross-sectional view illustrating a semiconductor device of the present invention.

【図4】本発明の半導体装置を示す断面図。FIG. 4 is a cross-sectional view illustrating a semiconductor device of the present invention.

【図5】本発明の半導体装置を示す断面図。FIG. 5 is a cross-sectional view illustrating a semiconductor device of the present invention.

【図6】本発明の半導体装置を示す断面図。FIG. 6 is a cross-sectional view illustrating a semiconductor device of the present invention.

【図7】本発明の半導体装置を示す断面図。FIG. 7 is a cross-sectional view illustrating a semiconductor device of the present invention.

【図8】本発明の半導体装置を示す断面図。FIG. 8 is a cross-sectional view illustrating a semiconductor device of the present invention.

【図9】本発明の半導体装置を示す断面図。FIG. 9 is a cross-sectional view illustrating a semiconductor device of the present invention.

【図10】本発明の半導体装置を示す断面図。FIG. 10 is a cross-sectional view illustrating a semiconductor device of the present invention.

【図11】本発明の半導体装置を示す断面図。FIG. 11 is a cross-sectional view illustrating a semiconductor device of the present invention.

【図12】従来の半導体装置を示す断面図。FIG. 12 is a cross-sectional view illustrating a conventional semiconductor device.

【図13】一般的なトランジスタの断面図。FIG. 13 is a cross-sectional view of a general transistor.

【図14】従来の半導体装置を配線基板上に実装した断
面図。
FIG. 14 is a cross-sectional view in which a conventional semiconductor device is mounted on a wiring board.

【図15】従来の半導体装置の平面図。FIG. 15 is a plan view of a conventional semiconductor device.

【図16】従来の半導体装置の平面図。FIG. 16 is a plan view of a conventional semiconductor device.

【図17】従来の半導体装置を示す図。FIG. 17 illustrates a conventional semiconductor device.

【図18】従来の半導体装置を示す図。FIG. 18 illustrates a conventional semiconductor device.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 第1の能動素子が形成された第1の半導
体基板と、第2の能動素子が形成された第2の半導体基
板とが一体化された半導体装置において、前記第1の能
動素子と前記第2の能動素子とは電気的に接続され、且
つ第1、第2の能動素子の外部接続電極は複数に電気的
に分離分割された前記第1の半導体基板を用いたことを
特徴とする半導体装置。
1. A semiconductor device in which a first semiconductor substrate on which a first active element is formed and a second semiconductor substrate on which a second active element is formed are integrated, wherein the first active element is The element and the second active element are electrically connected, and the external connection electrodes of the first and second active elements use the first semiconductor substrate that is electrically separated and divided into a plurality. Characteristic semiconductor device.
【請求項2】 基板の所定の能動素子形成領域に第1の
能動素子が形成され、前記能動素子形成領域の前記基板
を少なくとも前記能動素子の一の電極とした一の外部接
続用電極領域と、少なくとも前記能動素子の他の電極と
電気的に接続され前記基板の一部分よりなる複数の他の
外部接続用電極領域とを有した第1の半導体基板と、少
なくとも前記他の電極と前記他の外部接続用電極とを電
気的に接続する配線パターン及び第2の能動素子が形成
された第2の半導体基板と、前記第1の半導体基板と前
記第2の半導体基板とが一体化され、前記第2の半導体
基板上に形成された前記配線パターンを介して前記第1
の能動素子の他の電極と前記他の外部接続用電極領域、
及び前記第2の能動素子の電極と前記他の外部接続用電
極領域とが接続され、前記第1の半導体基板に設けられ
たスリットにより、前記一の外部接続用電極領域と前記
他の外部接続用電極領域とが電気的に分離されているこ
とを特徴とする半導体装置。
2. An external connection electrode region in which a first active element is formed in a predetermined active element formation region of a substrate, and wherein the substrate in the active element formation region has at least one electrode of the active element. A first semiconductor substrate having at least a plurality of other external connection electrode regions electrically connected to another electrode of the active element and being a part of the substrate, and at least the other electrode and the other A second semiconductor substrate on which a wiring pattern for electrically connecting an external connection electrode and a second active element are formed, the first semiconductor substrate and the second semiconductor substrate are integrated, The first pattern via the wiring pattern formed on the second semiconductor substrate;
Other electrodes of the active element and the other external connection electrode area,
And an electrode of the second active element is connected to the other external connection electrode region, and the one external connection electrode region and the other external connection are formed by a slit provided in the first semiconductor substrate. A semiconductor device characterized in that the electrode region is electrically separated from the electrode region.
【請求項3】 前記第1の半導体基板と前記第2の半導
体基板とは絶縁接着樹脂層を介して配置されることを特
徴する請求項1記載の半導体装置。
3. The semiconductor device according to claim 1, wherein said first semiconductor substrate and said second semiconductor substrate are arranged via an insulating adhesive resin layer.
【請求項4】 前記第1の能動素子はトランジスタ、パ
ワーMOSFETであることを特徴とする請求項1又は
2記載の半導体装置。
4. The semiconductor device according to claim 1, wherein said first active element is a transistor or a power MOSFET.
【請求項5】 前記第2の能動素子はバイポーラIC或
いはMOSIC及びそれらの複合ICであることを特徴
とする請求項1又は2記載の半導体装置。
5. The semiconductor device according to claim 1, wherein said second active element is a bipolar IC, a MOSIC, or a composite IC thereof.
JP18762296A 1996-07-17 1996-07-17 Semiconductor device Expired - Fee Related JP3819483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18762296A JP3819483B2 (en) 1996-07-17 1996-07-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18762296A JP3819483B2 (en) 1996-07-17 1996-07-17 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH1032284A true JPH1032284A (en) 1998-02-03
JP3819483B2 JP3819483B2 (en) 2006-09-06

Family

ID=16209336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18762296A Expired - Fee Related JP3819483B2 (en) 1996-07-17 1996-07-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3819483B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11261001A (en) * 1998-03-13 1999-09-24 Japan Science & Technology Corp Manufacture of three dimensional semiconductor integrated circuit device
JP2006270036A (en) * 2005-02-28 2006-10-05 Sony Corp Hybrid module and its manufacturing process
CN100392807C (en) * 2005-03-29 2008-06-04 三洋电机株式会社 Semiconductor device manufacturing method
JP2009259898A (en) * 2008-04-14 2009-11-05 Denso Corp Semiconductor device and manufacturing method thereof
WO2010001495A1 (en) * 2008-07-04 2010-01-07 ソーバスメモリ株式会社 Laminated chip

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11261001A (en) * 1998-03-13 1999-09-24 Japan Science & Technology Corp Manufacture of three dimensional semiconductor integrated circuit device
JP2006270036A (en) * 2005-02-28 2006-10-05 Sony Corp Hybrid module and its manufacturing process
CN100392807C (en) * 2005-03-29 2008-06-04 三洋电机株式会社 Semiconductor device manufacturing method
JP2009259898A (en) * 2008-04-14 2009-11-05 Denso Corp Semiconductor device and manufacturing method thereof
WO2010001495A1 (en) * 2008-07-04 2010-01-07 ソーバスメモリ株式会社 Laminated chip

Also Published As

Publication number Publication date
JP3819483B2 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
KR100272686B1 (en) Semiconductor device and method for manufacturing the same
JP4026882B2 (en) Semiconductor device
US6075279A (en) Semiconductor device
JP2009516369A (en) Chip assembly and method of manufacturing the chip assembly
JP3819483B2 (en) Semiconductor device
JP3500015B2 (en) Semiconductor device and manufacturing method thereof
JPH1027767A (en) Manufacture of semiconductor device
JP3717597B2 (en) Semiconductor device
JP2007027654A (en) Semiconductor device
JP4127872B2 (en) Semiconductor device
JPH1022336A (en) Manufacture of semiconductor device
JP3663036B2 (en) Semiconductor device and manufacturing method thereof
JP3883612B2 (en) Semiconductor device
JP3609542B2 (en) Semiconductor device
JP3609540B2 (en) Semiconductor device
JP4318723B2 (en) Semiconductor device
JP3960641B2 (en) Semiconductor device
JP4190518B2 (en) Semiconductor device
JP2006005366A (en) Semiconductor device
JP3639390B2 (en) Semiconductor device
JP2006032985A (en) Semiconductor device and semiconductor module
JP2004297091A (en) Semiconductor device
JPH1022331A (en) Semiconductor device
JP2004356643A (en) Semiconductor device
JP3500016B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20000127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050525

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees