JPH10101593A - 1,1,1,3,3−ペンタフルオロプロパンの製造方法 - Google Patents

1,1,1,3,3−ペンタフルオロプロパンの製造方法

Info

Publication number
JPH10101593A
JPH10101593A JP25348396A JP25348396A JPH10101593A JP H10101593 A JPH10101593 A JP H10101593A JP 25348396 A JP25348396 A JP 25348396A JP 25348396 A JP25348396 A JP 25348396A JP H10101593 A JPH10101593 A JP H10101593A
Authority
JP
Japan
Prior art keywords
reaction
catalyst
hydrogen fluoride
fluorination
fluorinating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25348396A
Other languages
English (en)
Other versions
JP3831987B2 (ja
Inventor
Keiichi Onishi
啓一 大西
Shuichi Okamoto
秀一 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP25348396A priority Critical patent/JP3831987B2/ja
Publication of JPH10101593A publication Critical patent/JPH10101593A/ja
Application granted granted Critical
Publication of JP3831987B2 publication Critical patent/JP3831987B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

(57)【要約】 【課題】工業的スケールでの製造が困難であった1,
1,1,3,3−ペンタフルオロプロパンを長期に亙り
高収率で製造する。 【解決手段】1,1,1,3,3−ペンタクロロプロパ
ンをフッ素化触媒の不存在下、フッ化水素によりフッ素
化して得られる部分フッ素化反応物を、フッ素化触媒の
存在下、フッ化水素によりフッ素化する1,1,1,
3,3−ペンタフルオロプロパンの製造方法。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は1,1,1,3,3
−ペンタフルオロプロパン(以下、R245faと略
す)の改良された製造方法に関する。R245faは、
発泡剤などとして有用なオゾン層を破壊しないヒドロフ
ルオロカーボン(HFC)である。
【0002】
【従来の技術】245faの製造方法としては、(1)
CF3 CH=CF2 にPd触媒の存在下で水素付加する
方法(Izvest.Akad.Nauk S.S.S.R.,Otdel.Khim.Nauk.19
60,1412 )、(2)CF3 CCl2 CClF2 をPd触
媒の存在下に水素還元する方法(米国特許第29420
36号明細書)、(3)CF3 CClHCClF2 をP
d触媒の存在下に水素還元する方法(特開平6−256
235号公報)、(4)CCl3 CH2 CCl3 をフッ
化水素でフッ素化し、CF3 CH2 CClF2 を生成さ
せた後に、水素化触媒存在下に水素により還元する方法
(特開平7−138194号公報)、(5)CFy Cl
3-y CH2 CHFw Cl2-w (y:0〜3の整数、w:
0〜2の整数)で示される化合物を触媒存在下に50〜
175℃の温度範囲でフッ化水素によりフッ素化する方
法(WO 96/01797)、および(6)CCl3
CH2 CHCl2 を触媒存在下液相中でフッ化水素によ
りフッ素化する方法(特開平8−104655号公報)
が知られている。
【0003】
【発明が解決しようとする課題】前記(1)の方法は原
料を工業的に入手することが困難である。(2)、
(3)の方法はいずれも還元触媒にPdを用いている
が、反応活性および耐熱性が不充分であり工業的製法と
して適しない。(4)の方法はフッ素化によって選択的
にCF3 CH2 CClF2 のみを生成させることが困難
であり、最終的にR245faの収率を上げることが困
難である。(5)、(6)の方法では、出発原料のCC
3 CH2 CHCl2 などは化学的に不安定で副反応に
よる収率低下が顕著になり、触媒も失活しやすい。
【0004】
【課題を解決するための手段】本発明は、従来法にみら
れる欠点を克服したR245faの製造方法であり、
1,1,1,3,3−ペンタクロロプロパン(以下、R
240fと略す)をフッ素化触媒の不存在下、フッ化水
素によりフッ素化して得られる部分フッ素化反応物を、
フッ素化触媒の存在下、フッ化水素によりフッ素化する
ことを特徴とするR245faの製造方法である。
【0005】R240fは、汎用のモノマーである塩化
ビニルと四塩化炭素のラジカル的な付加反応によって、
容易に合成できることが知られている(浅原照三他, 工
業化学雑誌,72,1516(1969)、T.A.Onishchenko et.al.,I
zv.Akad.Nauk SSSR,Ser.Khim.,1972,1770 、M.Kotora e
t.al.,React.Kinet.Catal.Lett.,44,415(1991)、M.Koto
ra et.al.,J.Mol.Catal.,77,51(1992))。
【0006】フッ素化触媒の不存在下、フッ化水素によ
りR240fをフッ素化して部分フッ素化反応物を得る
フッ素化反応(以下、前段反応と略す)、および、得ら
れる部分フッ素化反応物を、フッ素化触媒の存在下、フ
ッ化水素によりフッ素化してR245faを得るフッ素
化反応(以下、後段反応と略す)は、常圧または加圧下
の液相反応が好ましい。
【0007】前段反応で得られる部分フッ素化反応物と
は、好ましくは平均で1〜4個、より好ましくは平均で
1〜3個の割合でフッ素原子を有する部分フッ素化プロ
パン、および好ましくは平均で1〜4個、より好ましく
は平均で1〜3個の割合でフッ素原子を有する部分フッ
素化プロペンなどを含む混合物を意味する。
【0008】上記部分フッ素化プロパンとは、R240
f中の塩素原子がフッ素原子に置換された化合物、また
はR240fの脱塩化水素物である1,3,3,3−テ
トラクロロプロペンなどの副生塩素化プロペン中の二重
結合にフッ素原子が付加した付加化合物、またはこの付
加化合物中の塩素原子がフッ素原子に置換された化合物
などを意味する。
【0009】また、上記部分フッ素化プロペンとは、塩
素原子を有する部分フッ素化プロパンの脱塩化水素物、
またはR240fの脱塩化水素物である1,3,3,3
−テトラクロロプロペンなどの副生塩素化プロペン中の
塩素原子がフッ素原子に置換され化合物などを意味す
る。
【0010】この部分フッ素化反応物中の個々の化合物
としては、R240f、1,3,3,3−テトラクロロ
プロペンなどのフッ素化されていない化合物またはR2
45faなどの5個の塩素原子が完全にフッ素原子に置
換された化合物が含まれていてもよい。
【0011】部分フッ素化反応物としては、1,1,
3,3−テトラクロロ−1−フルオロプロパン(R24
1fa)、1,1,3−トリクロロ−1,3−ジフルオ
ロプロパン(R242fb)、1,3,3−トリクロロ
−1,1−ジフルオロプロパン(R242fa)、3,
3−ジクロロ−1,1,1−トリフルオロプロパン(R
243fa)、1,3−ジクロロ−1,1,3−トリフ
ルオロプロパン(R243fb)、1,1−ジクロロ−
1,3,3−トリフルオロプロパン(R243fc)、
3−クロロ−1,1,1,3−テトラフルオロプロパン
(R244fa)などの部分フッ素化プロパン、1−ク
ロロ−3,3,3−トリフルオロプロペン(R1233
zd)、1,3−ジクロロ−3,3−ジフルオロプロペ
ン(R1232zd)、3,3−ジクロロ−1,3−ジ
フルオロプロペン(R1232ze)、1,3,3−ト
リクロロ−3−フルオロプロペン(R1231zd)、
1,3,3,3−テトラフルオロプロペン(R1234
ze)などの部分フッ素化プロペンが挙げられる。
【0012】これらの部分フッ素化反応物は、R240
fに比べて安定であり、後段反応において触媒活性低下
の原因となる分解生成物を副生しにくい。
【0013】前段反応の反応温度は通常50℃〜300
℃、好ましくは80℃〜250℃、特に好ましくは10
0℃〜200℃である。後段反応の反応温度と同等また
はより高い反応温度で行うことが好ましい。
【0014】後段反応の反応温度は前段反応のフッ素化
で得られる部分フッ素化反応物の組成によっても異なる
が、通常は0℃〜200℃、好ましくは30℃〜150
℃である。部分フッ素化反応物中に部分フッ素化プロペ
ンが多く含まれる場合はより高温で反応を行うことが好
ましい。
【0015】前段反応においてR240fに対するフッ
化水素の供給モル比は、反応容器効率やフッ化水素の回
収によるロスなどを考えると、R240f:フッ化水素
=1:1〜1:30の範囲が好ましく、1:10の範囲
がより好ましい。未反応のフッ化水素は回収分離後リサ
イクルしてもよく、また部分フッ素化反応物とともに後
段反応に用いることもできる。
【0016】前段反応で得られた部分フッ素化反応物に
対するフッ化水素の供給モル比は、化学量論量以上であ
れば特に限定されない。反応容器効率やフッ化水素の回
収によるロスなどを考えると、化学量論量に対して1〜
10倍モルの範囲が好ましく、1〜5倍モルの範囲がよ
り好ましい。後段で供給されるフッ化水素は、前段反応
の未反応フッ化水素と併用してもよく、後段でフッ化水
素を新たに供給することなく前段反応の未反応フッ化水
素を用いてもよい。
【0017】前段または後段反応において、フッ化水素
は反応前にあらかじめ仕込んでおいてもよく、また反応
時に液相へ吹き込む方法でもよい。
【0018】前段反応の反応圧は、反応温度、加えるフ
ッ化水素の供給モル比などにもよるが、通常0〜100
kg/cm2 ・G、好ましくは0〜40kg/cm2
Gである。
【0019】後段反応の反応圧は通常0〜40kg/c
2 ・Gであるが、前段反応で得られた部分フッ素化反
応物中に部分フッ素化プロペンが多く含まれる場合は5
kg/cm2 ・G以上の高い圧力が好ましい。また、溶
媒を用いる場合は溶媒の種類などによっても異なる。
【0020】前段反応で得られる部分フッ素化反応物は
通常の分離操作、例えば蒸留精製などによって副生する
塩化水素、過剰のフッ化水素などを除いた後、後段反応
に用いてもよいが、前段反応で得られる塩化水素、フッ
化水素、部分フッ素化反応物などからなる反応混合物を
分離操作を経ることなく、そのまま後段の反応に用いる
方が好ましい。分離操作を経る場合、少なくとも塩化水
素を除くことが好ましい。
【0021】後段反応に用いるフッ素化触媒の存在量は
特に限定されない。フッ素化触媒としてはSb、Nbお
よびTaから選ばれる元素のハロゲン化物を含む触媒、
またはこれらの触媒を主触媒とし、助触媒としての他の
金属ハロゲン化物を含む触媒が好ましい。ハロゲン化S
bは、5価Sbのハロゲン化物、例えば一般式SbCl
xy (x、yはx+y=5、0≦x≦5および0≦y
≦5を満足する正数)で表されるハロゲン化Sbなどが
好ましい。
【0022】助触媒として働く金属ハロゲン化物触媒と
しては、Cr、Fe、Ni、Cu、Zn、Ti、Zr、
Hf、Sn、PbおよびAsから選ばれる金属のハロゲ
ン化物、3価Sbのハロゲン化物などから選ばれる1種
以上のハロゲン化物が好ましい。
【0023】具体的にはCrCl3 、FeCl3 、Ni
Cl2 、CuCl2 、ZnCl2 、TiCl4 、TiF
4 、ZrCl4 、ZrF4 、HfCl4 、HfF4 、S
nCl4 、SnF4 、SnCl2 、PbCl4 、AsC
5 、SbCl3 およびSbF3 から選ばれる1種以上
のハロゲン化物が好ましく、特にはSnCl4 、SnF
4 、SnCl2 、TiCl4 、TiF4 、SbCl3
よびSbF3 から選ばれる1種以上のハロゲン化物が好
ましい。
【0024】フッ素化触媒がハロゲン化Sbを含む場合
は、ハロゲン化Sbに対して常に過剰量のフッ化水素を
共存させることにより得られる一般式SbClxy
(xは0〜1の正数、yは4〜5の正数、かつx+y=
5)で表されるハロゲン化Sbが早期の触媒失活を抑制
できるため特に好ましい。
【0025】また、SbCl5 、SbCl23 などの
塩素含有量の多い触媒を初期触媒として用いた場合は、
あらかじめ過剰のフッ化水素と反応させることにより、
触媒中のフッ素量(上記一般式中のy値)を4以上にし
た後に原料供給を開始し、反応を行うとよい。
【0026】前段および後段反応は、通常、反応原料や
生成物を反応溶媒とするが、その他の反応溶媒を用いて
もよく、この場合に用いられる溶媒は、原料を溶かし込
み、さらに溶媒自身が原料よりフッ素化されにくいもの
であれば特に限定されない。このような溶媒としては、
ヒドロフルオロカーボン類、ペルフルオロオクタンなど
のペルフルオロカーボン類、ペルフルオロポリエーテル
類などが挙げられる。
【0027】生成物R245faとともに反応器より留
出する部分フッ素化反応物としては、R241fa、R
242fb、R242fa、R243fc、R243f
a、R243fb、R243fc、R244fa、R1
233zd、R1232zd、R1232ze、R12
31zd、R1234zeなどが挙げられる。
【0028】これらの部分フッ素化反応物は、原料であ
るR240fに比べてフッ素化触媒存在下でも安定であ
り、触媒活性低下の原因となる分解生成物を副生しにく
いので、R245faと分離精製後、前段または後段の
反応系に戻しR245faの原料として使用できる。
【0029】前段および後段反応は、バッチ反応または
連続反応で行いうる。連続反応器としては原料とフッ化
水素が充分に混合可能な完全混合槽型、スタティックミ
キサーなどを用いたピストンフロー型のいずれを用いて
もよい。
【0030】反応器の材質としては、SUS304、S
US316などのステンレス系材料、ハステロイ(商品
名)、インコネル(商品名)、モネル(商品名)などの
ニッケル系合金などの通常の材料が使用できる。上記ス
テンレス系材料はアルミニウムを含まず、上記ニッケル
系材料のアルミニウム含有率は最大で4重量%程度であ
ることが知られている。
【0031】上記ニッケル系合金は、ステンレス系材料
に比べ腐食性は低減されるが、アルミニウムからなる耐
食金属材料またはアルミニウムを10重量%以上含む耐
食金属材料はより腐食性が低減されるため好ましい。
【0032】耐食金属材料中のアルミニウムの好ましい
割合は、20重量%以上、特には30重量%以上であ
る。アルミニウムの割合の上限は、耐食金属材料が実質
的にアルミニウムからなる割合である。耐食金属材料が
実質的にアルミニウムからなるとは、製造上混入するア
ルミニウム以外の微量の金属不純物を含んでもよいこと
を意味する。
【0033】この耐食金属材料からなる内表面を有する
反応器を用いることにより腐食による装置の劣化を低減
し、触媒活性を損なうことなく、長期に亙って好成績で
反応を継続できる。
【0034】この耐食金属材料はそのまま反応器の材料
として、または耐食金属材料の1つ以上を表面材(以
下、クラッド材という)とし、それ以外の材料の1種以
上を耐食金属材料の下地となる基材(以下、コア材とい
う)とする複合材料としても使用できる。
【0035】コア材としては、耐食性以外の反応器に要
求される諸特性、例えば強度、溶接性、熱伝導性などを
満足するものであれば特に限定されず、通常炭素鋼、ス
テンレス鋼、ニッケル系合金、アルミニウムなどが用い
られる。コア材と耐食金属材料の接着性などを改善する
ため、コア材を2層以上にしてもよい。複合材料の製作
方法としては、耐食金属材料をコア材へメッキ、溶射、
爆着などの方法で複合化する方法が挙げられる。
【0036】クラッド材として用いる耐食金属材料はコ
ア材を腐食性の環境から保護するためにクラックのない
緻密な層を形成しているのが好ましく、その厚みは製作
方法および選ぶ耐食金属材料にもより、特に限定されな
いが、材料の耐久性、機械的強度を考慮するとある程度
の厚みを有すること、すなわち、好ましくは10μm〜
30mm、さらに好ましくは30μm〜10mm、特に
好ましくは100μm〜10mmが適当である。
【0037】一般に耐食性の金属材料の表面は金属酸化
物に覆われ、不動態が形成されている。本フッ素化反応
においては、耐食金属材料の表面の少なくとも一部が金
属フッ化物を含む保護皮膜により覆われていることが望
ましい。特にアルミニウム、マグネシウムなどの比較的
標準酸化電位の低い金属成分を含む耐食金属材料におい
ては、より望ましい。金属フッ化物を含む保護皮膜に覆
われることにより、より安定な不動態が形成され本フッ
素化反応系のような超強酸の環境下においても優れた耐
食性が発現する。
【0038】金属フッ化物を含む保護皮膜は反応の前に
形成させることが望ましいが、反応中に保護皮膜を形成
させることもできる。反応前に少なくとも金属フッ化物
を含む保護皮膜を形成させるためには、内表面が耐食金
属材料に覆われた反応器を適当なフッ素化剤で処理すれ
ばよい。
【0039】フッ素化剤は特に限定されず、例えばフッ
素ガス、フッ化水素、五フッ化アンチモンなどが用いら
れる。処理温度は使用する耐食金属材料にもよるがフッ
素ガスの場合は好ましくは0℃〜300℃、特に好まし
くは室温〜200℃であり、フッ素ガスは通常不活性ガ
ス、例えば窒素、でフッ素ガス濃度を20〜100体積
%に調整して用いる。
【0040】フッ化水素の場合は好ましくは0℃〜30
0℃、特に好ましくは室温〜300℃であり無水のフッ
化水素を液状またはガス状にて用いる。五フッ化アンチ
モンの場合は好ましくは0℃〜200℃、特に好ましく
は室温〜120℃である。これらフッ素化剤は単独で用
いてもよく、2種以上を同時または段階的に用いてもよ
い。
【0041】アルミニウムを耐食成分として含む耐食金
属材料において、本フッ素化反応環境下における耐食成
分は、本質的には耐食金属材料の最外面に存在するアル
ミニウムを含むフッ化物であるので、耐食金属材料表面
にこれらフッ化物の保護皮膜を形成するために必要なア
ルミニウムの成分量は少なくてもよく、耐食金属材料中
に金属成分として10重量%程度の含有量でも充分効果
を発揮できる。
【0042】本発明における耐食金属材料としては工業
用純アルミニウムでもよく、アルミニウムを10重量%
以上含み、かつ鉄、銅、マンガン、マグネシウム、コバ
ルトおよびクロムから選ばれる1種以上を副成分として
含む材料でもよく、例えばFe−Cr−Al系合金、C
u−Al系合金などが挙げられる。上記副成分を含むア
ルミニウムは工業用純アルミニウムに比べて強度などの
特性が改良され、反応器のクラッド材のみならずコア材
としても使用できる。
【0043】
【実施例】
例1(実施例) 2リットルのハステロイC製オートクレーブにR240
fを500g、HFを460gを仕込んだ。オートクレ
ーブを120℃まで加熱し、110℃に保温した冷却管
より反応で副生するHClなどをパージし、反応圧を2
2kg/cm2・G以下に維持しながら5時間反応を行
い、R241faおよびR1233zdを含む反応混合
物を得た。R240fの転化率は99モル%、R241
faの選択率は45モル%およびR1233zdの選択
率は55モル%であった。
【0044】次いで、ポリテトラフルオロエチレンでラ
イニングした1リットルのオートクレーブ内に、SbF
5 を360g、HFを330gを仕込んだ。オートクレ
ーブを80℃に昇温した後、HFを20g/hr(1.
0mol/hr)の平均供給速度で、また上記R241
faおよびR1233zdを含む反応混合物を、平均供
給速度が50g/hr(0. 31mol/hr)となる
ように供給し、反応を開始した。
【0045】反応圧を7. 5〜8. 5kg/cm2 ・G
に制御し、70℃に保温した冷却管より反応で副生する
HCl、未反応のHFとともに生成物を連続的に留出さ
せた。24時間後の留出ガス中の有機成分を表1に示
す。
【0046】例2(実施例) 触媒としてSbF5 を360g、SnCl4 を40g使
用する以外は例1と同様に反応を行った。24時間後の
留出ガス中の有機成分を表2に示す。
【0047】例3(実施例) 触媒としてSbF5 を360g、SbF3 を40g使用
する以外は例1と同様に反応を行った。24時間後の留
出ガス中の有機成分を表2に示す。
【0048】例4(実施例) 触媒としてSbF5 を360g、TiCl4 を40g使
用する以外は例1と同様に反応を行った。24時間後の
留出ガス中の有機成分を表2に示す。
【0049】例5(実施例) 触媒としてNbCl5 を360gを使用する以外は例1
と同様に反応を行った。24時間後の留出ガス中の有機
成分を表1に示す。
【0050】例6(実施例) 触媒としてTaCl5 を360gを使用する以外は例1
と同様に反応を行った。24時間後の留出ガス中の有機
成分を表1に示す。
【0051】例7(実施例) 例1の反応において、24時間後の留出ガスの代わりに
180時間後の留出ガス中の有機成分を表1に示す。
【0052】例8(比較例) ポリテトラフルオロエチレンでライニングした1リット
ルのオートクレーブ内に、SbF5 を360g、HFを
330gを仕込んだ。オートクレーブを80℃に昇温し
た後、HFを20g/hr(1.0mol/hr)の平
均供給速度で、またR240fを40g/hr(0. 1
8mol/hr)の平均供給速度で供給し、反応を開始
した。
【0053】反応圧を7. 5〜8. 5kg/cm2 ・G
に制御し、70℃に保温した冷却管より反応で副生する
HCl、未反応のHFとともに生成物を連続的に留出さ
せた。180時間後の留出ガス中の有機成分を表1に示
す。
【0054】
【表1】
【0055】
【表2】
【0056】
【発明の効果】本反応に用いる原料R240fは熱的、
化学的に不安定な化合物であり、脱塩酸などの分解反応
により1,3,3,3−テトラクロロプロペンなどの化
合物に分解しやすく、さらにはタール化、オレフィンな
どの分解生成物による触媒の還元により触媒の活性低下
を引き起こしやすい。
【0057】本発明に従い、原料R240fとフッ化水
素を触媒の非存在下に反応させて適度にフッ素化された
中間体を得た後、この中間体を触媒の存在下フッ化水素
によりさらにフッ素化することにより、触媒の耐久性を
向上させ、触媒を失活させることなく長期に亙って容易
に高収率でR245faを製造できる。本発明は、工業
的スケールで製造が困難であったR245faを、簡便
に、また触媒の失活を抑制することにより長期間高収率
で製造しうるという効果を有する。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07C 17/35 C07C 17/35 // C07B 61/00 300 C07B 61/00 300

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】1,1,1,3,3−ペンタクロロプロパ
    ンをフッ素化触媒の不存在下、フッ化水素によりフッ素
    化して得られる部分フッ素化反応物を、フッ素化触媒の
    存在下、フッ化水素によりフッ素化することを特徴とす
    る1,1,1,3,3−ペンタフルオロプロパンの製造
    方法。
  2. 【請求項2】フッ素化触媒の不存在下、フッ化水素によ
    るフッ素化における反応温度が50℃〜300℃である
    請求項1の製造方法。
  3. 【請求項3】フッ素化触媒の不存在下、フッ化水素によ
    るフッ素化における1,1,1,3,3−ペンタクロロ
    プロパンに対するフッ化水素の供給モル比が1,1,
    1,3,3−ペンタクロロプロパン:フッ化水素=1:
    1〜1:30の範囲である請求項1または2の製造方
    法。
  4. 【請求項4】フッ素化触媒の存在下、フッ化水素による
    フッ素化における反応温度が0℃〜200℃である請求
    項1、2または3の製造方法。
  5. 【請求項5】フッ素化触媒がアンチモン、ニオブおよび
    タンタルから選ばれる1種以上の元素のハロゲン化物を
    含むフッ素化触媒である請求項1、2、3または4の製
    造方法。
JP25348396A 1996-09-25 1996-09-25 1,1,1,3,3−ペンタフルオロプロパンの製造方法 Expired - Fee Related JP3831987B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25348396A JP3831987B2 (ja) 1996-09-25 1996-09-25 1,1,1,3,3−ペンタフルオロプロパンの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25348396A JP3831987B2 (ja) 1996-09-25 1996-09-25 1,1,1,3,3−ペンタフルオロプロパンの製造方法

Publications (2)

Publication Number Publication Date
JPH10101593A true JPH10101593A (ja) 1998-04-21
JP3831987B2 JP3831987B2 (ja) 2006-10-11

Family

ID=17252017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25348396A Expired - Fee Related JP3831987B2 (ja) 1996-09-25 1996-09-25 1,1,1,3,3−ペンタフルオロプロパンの製造方法

Country Status (1)

Country Link
JP (1) JP3831987B2 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043635A1 (fr) * 1998-02-26 1999-09-02 Solvay (Societe Anonyme) Procede d'hydrofluoration d'hydrocarbures chlores
WO2000037401A1 (fr) * 1998-12-18 2000-06-29 Solvay (Societe Anonyme) Procede de separation d'un melange comprenant au moins un hydrofluoroalcane et du fluorure d'hydrogene, procedes de preparation d'un hydrofluoroalcane et compositions azeotropiques
US6362382B1 (en) 2001-07-20 2002-03-26 Atofina Chemicals, Inc. Uncatalyzed fluorination of 240fa
US7361795B2 (en) 2001-06-01 2008-04-22 Honeywell International, Inc. Azeotrope-like compositions of 1,1,1,3,3-pentafluorobutane and hydrogen fluoride
JP2009084290A (ja) * 1995-10-23 2009-04-23 Solvay (Sa) 1,1,1,3,3−ペンタフルオロプロパンの製造方法
JP4617522B2 (ja) * 1999-10-01 2011-01-26 旭硝子株式会社 1,1,1,3,3−ペンタフルオロプロパンの精製方法
JP2014148675A (ja) * 2008-03-07 2014-08-21 Arkema Inc クロロ−3,3,3−トリフルオロプロペンによる安定した処方系
JP2015511244A (ja) * 2012-02-23 2015-04-16 ハネウェル・インターナショナル・インコーポレーテッド 1,1,1,3,3−ペンタクロロプロパンとフッ化水素の共沸組成物
JP2015511243A (ja) * 2012-02-23 2015-04-16 ハネウェル・インターナショナル・インコーポレーテッド 1,1,3,3−テトラクロロ−1−フルオロプロパンとフッ化水素の共沸組成物
US9254468B2 (en) 2008-03-07 2016-02-09 Arkema Inc. Stable formulated systems with chloro-3,3,3-trifluoropropene
JP2018515522A (ja) * 2015-05-12 2018-06-14 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. HCFO−1233zd及びHFC−245faを製造するための統合方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084290A (ja) * 1995-10-23 2009-04-23 Solvay (Sa) 1,1,1,3,3−ペンタフルオロプロパンの製造方法
US6362383B1 (en) 1998-02-26 2002-03-26 Solvay (Societe Anonyme) Hydro-fluorination of chlorinated hydrocarbons
WO1999043635A1 (fr) * 1998-02-26 1999-09-02 Solvay (Societe Anonyme) Procede d'hydrofluoration d'hydrocarbures chlores
US7566809B2 (en) 1998-12-18 2009-07-28 Solvay S.A. Process for separation of a mixture comprising at least one hydrofluoroalkane
US7223892B2 (en) 1998-12-18 2007-05-29 Solvay S.A. Process for the separation of a mixture comprising at least one hydrofluoroalkane
JP4785251B2 (ja) * 1998-12-18 2011-10-05 ソルヴェイ(ソシエテ アノニム) 少なくとも1種のハイドロフルオロアルカンとフッ化水素を含有する混合物の分離方法、ハイドロフルオロアルカンの調製方法及び共沸組成物
EP2368869A1 (fr) * 1998-12-18 2011-09-28 SOLVAY (Société Anonyme) Procédé catalytique de fabrication d'un hydrofluoroalcane
EP2078708A1 (fr) * 1998-12-18 2009-07-15 SOLVAY (Société Anonyme) Compositions azéotropiques, leur utilisation et procédés de synthèse d'un hydrofluoroalcane
WO2000037401A1 (fr) * 1998-12-18 2000-06-29 Solvay (Societe Anonyme) Procede de separation d'un melange comprenant au moins un hydrofluoroalcane et du fluorure d'hydrogene, procedes de preparation d'un hydrofluoroalcane et compositions azeotropiques
JP4617522B2 (ja) * 1999-10-01 2011-01-26 旭硝子株式会社 1,1,1,3,3−ペンタフルオロプロパンの精製方法
US7781626B2 (en) 2001-06-01 2010-08-24 Honeywell International Inc Azeotrope-like compositions of 1,1,1,3,3-pentafluorobutane and hydrogen fluoride
US7361795B2 (en) 2001-06-01 2008-04-22 Honeywell International, Inc. Azeotrope-like compositions of 1,1,1,3,3-pentafluorobutane and hydrogen fluoride
US6362382B1 (en) 2001-07-20 2002-03-26 Atofina Chemicals, Inc. Uncatalyzed fluorination of 240fa
JP2014148675A (ja) * 2008-03-07 2014-08-21 Arkema Inc クロロ−3,3,3−トリフルオロプロペンによる安定した処方系
US9254468B2 (en) 2008-03-07 2016-02-09 Arkema Inc. Stable formulated systems with chloro-3,3,3-trifluoropropene
JP2015511244A (ja) * 2012-02-23 2015-04-16 ハネウェル・インターナショナル・インコーポレーテッド 1,1,1,3,3−ペンタクロロプロパンとフッ化水素の共沸組成物
JP2015511243A (ja) * 2012-02-23 2015-04-16 ハネウェル・インターナショナル・インコーポレーテッド 1,1,3,3−テトラクロロ−1−フルオロプロパンとフッ化水素の共沸組成物
EP2817380A4 (en) * 2012-02-23 2015-10-07 Honeywell Int Inc AZEOTROPE COMPOSITIONS OF 1,1,3,3-TETRACHLOR-1-FLUORO-PROPANE AND HYDROGEN HYDROGEN
JP2018515522A (ja) * 2015-05-12 2018-06-14 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. HCFO−1233zd及びHFC−245faを製造するための統合方法

Also Published As

Publication number Publication date
JP3831987B2 (ja) 2006-10-11

Similar Documents

Publication Publication Date Title
JP6673395B2 (ja) 1,2−ジフルオロエチレン及び/又は1,1,2−トリフルオロエタンの製造方法
US7230146B2 (en) Process for producing fluoropropenes
EP0931043B1 (en) Vapor phase process for making 1,1,1,3,3-pentafluoropropane and 1-chloro-3,3,3-trifluoropropene
US8071825B2 (en) Method for producing fluorinated organic compounds
US7312367B2 (en) Method of making 1,1,3,3,3-pentafluoropropene
EP2773606B1 (en) Process for producing 2,3,3,3-tetrafluoropropene
JP3290668B2 (ja) ヒドロフルオロカーボンの製造法
KR20100040897A (ko) 할로겐화 하이드로카본의 촉매 디하이드로할로겐화에 의한 플루오르화 올레핀의 제조
AU2916095A (en) Process for the manufacture of 1,1,1,3,3-pentafluoropropane
EP2773605A1 (en) Process for producing 2,3,3,3-tetrafluoropropene
JP3831987B2 (ja) 1,1,1,3,3−ペンタフルオロプロパンの製造方法
JP2016511284A (ja) 段階的フッ素化方法及び反応器システム
JPH11158089A (ja) 1,1,1,3,3−ペンタフルオロプロパンの合成
JP3484824B2 (ja) 1,1,1,3,3−ペンタフルオロプロパンの製造方法
KR100481761B1 (ko) 수소함유플루오르화알칸의제조방법
JPH10101594A (ja) 1,1,1,3,3−ペンタフルオロプロパンの製造法
US20170253545A1 (en) Process for producing 2,3,3,3-tetrafluoropropene
JPH1072382A (ja) 1,1,1,3,3−ペンタフルオロプロパンの製造方法
CA2192843C (en) Process for the manufacture of 1,1,1,3,3-pentafluoropropane
JPH092983A (ja) 1,1,1,3,3−ペンタフルオロプロパンの製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060228

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060404

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060710

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees