JPH097602A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH097602A
JPH097602A JP7155913A JP15591395A JPH097602A JP H097602 A JPH097602 A JP H097602A JP 7155913 A JP7155913 A JP 7155913A JP 15591395 A JP15591395 A JP 15591395A JP H097602 A JPH097602 A JP H097602A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
current collector
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7155913A
Other languages
Japanese (ja)
Inventor
Akinori Awano
彰規 粟野
Akira Ota
璋 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7155913A priority Critical patent/JPH097602A/en
Publication of JPH097602A publication Critical patent/JPH097602A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To provide a nonaqueous electrolyte secondary battery in which a preservation characteristic is improved by forming a positive electrode active layer on the surface of a predetermined metal collector in which layer a compound expressed by a specific formula is used as a main active material to adopt it as a positive electrode plate. CONSTITUTION: A positive electrode active layer containing a compound expressed by a formula as a main active material is formed on a surface of a metal collector containing metal chrome in which aluminum is contained as a main component or containing a chrome component of 10 to 5000ppm as an aluminum alloy to adopt it as a positive electrode plate. As a result, Cr2 O3 having low electric resistance is created by a chrome component during the long-term preservation of a battery, so that increase of polarization of a positive electrode is prevented to make a nonaqueous electrolyte secondary battery having an improved preservation characteristic. In the formula, M is Co, Ni, Fe, Mn or the like and X is 0.05<=X<=1.10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水電解液二次電池の電
池特性、特にその保存特性の改善に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of battery characteristics of a non-aqueous electrolyte secondary battery, particularly storage characteristics thereof.

【0002】[0002]

【従来の技術】近年、民生用電子機器のポ−タブル化、
コ−ドレス化が急速に進んでいる。これにつれて駆動用
電源を担う小形、軽量で、かつ高エネルギ−密度を有す
る二次電池への要望も高まっている。このような観点か
ら非水電解液二次電池、特にリチウム二次電池は、高電
圧、高エネルギ−密度を有する電池としてその期待は大
きく、開発が急がれている。このような状況から、高い
充放電電圧を示すリチウム複合遷移金属酸化物、例え
ば、一般式LixMO2(但し0.05≦x≦1.10、
MはCo、Ni、Fe、Mnのいずれか少なくとも一種
の元素)で表される正極活物質を用い、リチウムイオン
の挿入、離脱を利用した非水電解液二次電池が提案され
ている。このような電池の正極集電体には一般的にアル
ミニウム(Al)が用いられている。
2. Description of the Related Art In recent years, portable electronic devices have become portable.
Cordless use is progressing rapidly. Accordingly, there is an increasing demand for a small, lightweight secondary battery having a high energy density, which serves as a driving power supply. From this point of view, non-aqueous electrolyte secondary batteries, especially lithium secondary batteries, are highly expected as batteries having high voltage and high energy density, and development is urgently needed. From such a situation, a lithium composite transition metal oxide showing a high charge / discharge voltage, for example, a general formula Li x MO 2 (where 0.05 ≦ x ≦ 1.10,
A non-aqueous electrolyte secondary battery has been proposed in which M is a positive electrode active material represented by at least one element selected from Co, Ni, Fe, and Mn), and lithium ion insertion and desorption are used. Aluminum (Al) is generally used for the positive electrode current collector of such a battery.

【0003】[0003]

【発明が解決しようとする課題】これらの電池は長期間
にわたる保存における充放電特性の維持が要望される。
その加速試験として高温での保存試験が行われ、例えば
60℃、20日間の保存試験は、常温(20℃)におけ
る1年間の保存に相当する。しかし、前記の非水電解液
二次電池を充電状態において、長期間の保存や高温にお
ける加速試験を行った場合、保存後に再充電を行っても
電池容量が保存前のレベルより著しく低下するという問
題があった。
These batteries are required to maintain charge / discharge characteristics during storage for a long period of time.
A storage test at high temperature is performed as the acceleration test. For example, a storage test at 60 ° C. for 20 days corresponds to storage at room temperature (20 ° C.) for one year. However, when the above non-aqueous electrolyte secondary battery is charged, when it is stored for a long period of time or subjected to an accelerated test at high temperature, the battery capacity is significantly lower than the level before storage even when recharged after storage. There was a problem.

【0004】本発明者はこのような特性劣化の原因が以
下のような現象によることを見出した。即ち、高温保存
を行う以前と充電状態で高温保存を行った後における正
極板の解析を行った結果、保存後電池の正極集電体の表
面に水酸化アルミニウム(Al(OH)3)および酸化
アルミニウム(Al23・XH2O)の被膜が形成され
ていた。これは、電解液中に僅かに存在する水が正極で
酸化分解され、集電体であるアルミニウムと反応し、集
電体表面に前述のAl23・XH2OおよびAl(O
H)3の被膜が形成されたためであると考えられる。こ
のAl23・XH2OおよびAl(OH)3の電気的抵抗
はAlと比べるとはるかに大きいために、正極集電体の
表面抵抗が電池の高温保存中に著しく増大し、保存後の
充電時に正極の分極が大きくなり、所定の充電電圧以内
で電池が十分に充電されず、放電容量が減少したものと
考えられる。
The present inventor has found that the cause of such characteristic deterioration is due to the following phenomenon. That is, as a result of analyzing the positive electrode plate before performing high temperature storage and after performing high temperature storage in a charged state, it was found that aluminum hydroxide (Al (OH) 3 ) and oxidation on the surface of the positive electrode current collector of the battery after storage. coating of aluminum (Al 2 0 3 · XH 2 O) was formed. This is because a small amount of water present in the electrolytic solution is oxidatively decomposed at the positive electrode and reacts with aluminum which is a current collector, and the above-mentioned Al 2 O 3 .XH 2 O and Al (O
It is considered that this is because the film of H) 3 was formed. For far larger electric resistance of the Al 2 0 3 · XH 2 O and Al (OH) 3 is compared with Al, the surface resistance of the positive electrode current collector is markedly increased during high temperature storage of the battery after storage It is conceivable that the polarization of the positive electrode increased during the charging, and the battery was not sufficiently charged within the predetermined charging voltage, and the discharge capacity decreased.

【0005】本発明はこのような問題点を解決するもの
であり、保存特性の優れた非水電解液二次電池を提供す
ることを目的としたものである。
The present invention is intended to solve such problems, and an object of the present invention is to provide a non-aqueous electrolyte secondary battery having excellent storage characteristics.

【0006】[0006]

【課題を解決するための手段】本発明は一般式Lix
2で表されるリチウム複合酸化物を主たる活物質とす
る正極と、負極板と、これらの正・負極板の間にセパレ
−タを介在して構成した極板群を備えた非水電解液二次
電池において、Alを主成分とし、クロム(Cr)を金
属もしくはAlとの合金として含む正極集電体を用いる
ことを特徴とする非水電解液二次電池である。
The present invention has the general formula Li x M
A non-aqueous electrolyte solution including a positive electrode containing a lithium composite oxide represented by O 2 as a main active material, a negative electrode plate, and an electrode plate group in which a separator is interposed between the positive and negative electrode plates. The non-aqueous electrolyte secondary battery is characterized in that a positive electrode current collector containing Al as a main component and chromium (Cr) as a metal or an alloy with Al is used in the secondary battery.

【0007】前記正極集電体のCrの含有量は10〜5
000ppm、好ましくは10〜500ppmとするの
が良く、さらに、表面から3μmの深さまでの表層のC
rの含有量は10〜10000ppm、好ましくは10
0〜5000ppmとするのが良い。
The content of Cr in the positive electrode current collector is 10 to 5
000 ppm, preferably 10 to 500 ppm, and C of the surface layer from the surface to a depth of 3 μm
The content of r is 10 to 10,000 ppm, preferably 10
It is good to set it to 0 to 5000 ppm.

【0008】[0008]

【作用】本発明による正極集電体の表層に存在するCr
成分は電池が充電された状態で保存されるとCr23
酸化される。この物質の電気的抵抗はAl23・XH2
OおよびAl(OH)3の抵抗と比べると小さいので、
電池保存中の正極集電体の表面抵抗の増大が抑制され
る。その結果、保存後の電池充電時の正極の分極の増大
を抑制でき、高温保存後においても保存前と殆ど変わら
ないレベルの電気量が充電でき、放電容量の低下を阻止
できる。この改良効果は集電体の表層に存在するCr成
分の作用によるものであり、集電体の内層よりもCr濃
度が高い表層を形成させることにより一層の効果が得ら
れる。
Function: Cr present on the surface layer of the positive electrode current collector according to the present invention
Components are oxidized when stored in a state in which the battery is charged to Cr 2 0 3. Electrical resistance of the material Al 2 0 3 · XH 2
Since it is smaller than the resistance of O and Al (OH) 3 ,
The increase in surface resistance of the positive electrode current collector during storage of the battery is suppressed. As a result, it is possible to suppress an increase in the polarization of the positive electrode when the battery is charged after storage, and it is possible to charge an amount of electricity that is almost the same as before storage even after storage at high temperature, and it is possible to prevent the discharge capacity from decreasing. This improving effect is due to the action of the Cr component existing in the surface layer of the current collector, and a further effect can be obtained by forming the surface layer having a higher Cr concentration than the inner layer of the current collector.

【0009】[0009]

【実施例】以下、図面と共に本発明を具体的な実施例に
沿って説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the accompanying drawings.

【0010】[実施例1]金属CrをAlに含有させた
正極集電体材料の作成を、金属Cr粉末を溶融したAl
に添加する方法によって行った。即ち、Alを窒素ある
いはアルゴンなどの不活性ガス中で溶融させ、このとき
の溶融温度をAlが溶融する660℃以上、またCrと
合金をつくり始める690℃以下の温度である670℃
にてAlを液体状にし、Alに対し金属Crの微粉末を
所定の重量比(10、50、100、500、100
0、および5000ppm)で添加し、さらにCrを均
一に分散させるため30分間撹拌した。これらCrを添
加したAlを冷却し、その後10〜30μm程度の厚み
の箔に圧延し、正極集電体として用いた。この正極集電
体の両面に正極組成物を含有する正極ペ−ストを塗着
し、乾燥して厚さO.2mmに圧延して幅36mm、長
さ250mmの大きさに切り出し正極板5とした。この
正極ペ−ストは正極活物質であるLiCoO2の粉末1
00重量部に、アセチレンブラック3重量部、グラファ
イト粉末4重量部、フッ素樹脂系結着剤7重量部を混合
した物を、カルボキシルメチルセルロ−ス水溶液に懸濁
させてペ−スト状にして作成した。
Example 1 A positive electrode current collector material containing metallic Cr in Al was prepared by melting metallic Cr powder in Al.
Was added to the above. That is, Al is melted in an inert gas such as nitrogen or argon, and the melting temperature at this time is 670 ° C. which is 660 ° C. or higher at which Al melts and 690 ° C. or lower at which alloying with Cr starts.
Al is made into a liquid state at a predetermined weight ratio (10, 50, 100, 500, 100) of fine metal Cr powder to Al.
0 and 5000 ppm), and further stirred for 30 minutes to uniformly disperse Cr. These Al to which Cr was added was cooled, then rolled into a foil having a thickness of about 10 to 30 μm, and used as a positive electrode current collector. A positive electrode paste containing a positive electrode composition was applied to both surfaces of this positive electrode current collector and dried to a thickness of O.D. It was rolled to 2 mm and cut into a size of 36 mm in width and 250 mm in length to obtain a positive electrode plate 5. This positive electrode paste is LiCoO2 powder 1 which is the positive electrode active material.
A mixture of 3 parts by weight of acetylene black, 4 parts by weight of graphite powder, and 7 parts by weight of a fluororesin binder in 100 parts by weight was suspended in an aqueous solution of carboxymethyl cellulose to prepare a paste. did.

【0011】図1に本実施例の実験で用いた円筒形電池
の縦断面図を示す。図1において1はステンレス鋼板を
加工した電池ケ−ス、2は安全弁を設けた封口板、3は
絶縁パッキングを示す。4は極板群であり正極板5及び
負極板6がポリプロピレン製のセパレ−タ7を介して渦
巻状に巻回されて直径13.8mm、高さ50mmの電
池ケ−ス1の中に収納されている。そして正極板5に接
続されたAl製の正極リ−ド5aの一端が封口板2に接
続され、負極板6に接続されたステンレス鋼製の負極リ
−ド6aが電池ケ−ス1の内底部に接続されている。8
は絶縁リングで極板群4の上下部にそれぞれ設けられて
いる。
FIG. 1 shows a vertical sectional view of a cylindrical battery used in the experiment of this embodiment. In FIG. 1, 1 is a battery case formed by processing a stainless steel plate, 2 is a sealing plate provided with a safety valve, and 3 is an insulating packing. Reference numeral 4 denotes an electrode plate group, in which a positive electrode plate 5 and a negative electrode plate 6 are spirally wound through a polypropylene separator 7 and housed in a battery case 1 having a diameter of 13.8 mm and a height of 50 mm. Has been done. One end of the positive electrode lead 5a made of Al connected to the positive electrode plate 5 is connected to the sealing plate 2, and the negative electrode lead 6a made of stainless steel connected to the negative electrode plate 6 is inside the battery case 1. Connected to the bottom. 8
Are insulating rings provided on the upper and lower portions of the electrode plate group 4, respectively.

【0012】負極板6は、コ−クスを加熱処理した炭素
粉100重量部に、フッ素樹脂系結着剤10重量部を混
合し、カルボキシルメチルセルロ−ス水溶液に懸濁させ
て調製したペ−スト状の負極組成物を厚さ15μmの銅
箔の表面に塗着し、乾燥後厚さ0.2mmに圧延し、幅
37mm、長さ280mmの大きさに切り出して負極板
とした。
The negative electrode plate 6 was prepared by mixing 100 parts by weight of carbon powder obtained by heat-treating coke with 10 parts by weight of a fluororesin binder and suspending it in an aqueous solution of carboxymethyl cellulose. The strike-shaped negative electrode composition was applied to the surface of a copper foil having a thickness of 15 μm, dried and rolled to a thickness of 0.2 mm, and cut into a width of 37 mm and a length of 280 mm to obtain a negative electrode plate.

【0013】電解液には炭酸エチレンと炭酸ジエチルを
等容積で混合した溶媒に、六フッ化燐酸リチウム(Li
PF6)を1モル/lの割合で溶解したものを用いて極
板群4に注入した後、電池を封口して密閉し実施例1の
電池とした。
For the electrolytic solution, a solvent prepared by mixing ethylene carbonate and diethyl carbonate in equal volumes is used, and lithium hexafluorophosphate (Li
A solution of PF 6 ) dissolved at a rate of 1 mol / l was used to inject into the electrode plate group 4, and then the battery was sealed and sealed to obtain the battery of Example 1.

【0014】[実施例2]次に、Al合金としてCrを
Alに含有させた正極集電体の実施例を述べる。溶融温
度を800℃とした以外は実施例1と同様の方法と条件
でAlを溶融させる。この溶融温度は、Alが溶融しC
rとの合金をつくり始める690℃以上の範囲で任意に
設定した温度である。溶融温度を高く設定すると取扱い
が困難になり、また、電力消費量が増すといった理由か
ら800℃とした。本実施例ではCr金属粉末をAlに
対し重量比で10、50、100、500、1000、
5000ppmを添加した。これらを冷却し、10〜3
0μmの厚さに圧延する。この両面に前記活物質を含む
ペ−ストを塗着し正極板5とした。上記方法で得られた
正極板を用い、実施例1と同様の方法で電池を構成し
た。
[Embodiment 2] Next, an embodiment of a positive electrode current collector containing Cr as an Al alloy in Al will be described. Al is melted by the same method and conditions as in Example 1 except that the melting temperature is 800 ° C. This melting temperature is C
The temperature is arbitrarily set in the range of 690 ° C. or higher at which an alloy with r is started to be formed. When the melting temperature is set high, the handling becomes difficult, and the power consumption increases, so the temperature is set to 800 ° C. In this embodiment, Cr metal powder is used in a weight ratio of 10, 50, 100, 500, 1000, to Al.
5000 ppm was added. Cool these, 10-3
Roll to a thickness of 0 μm. A paste containing the above-mentioned active material was applied to both surfaces thereof to form a positive electrode plate 5. A battery was constructed in the same manner as in Example 1 using the positive electrode plate obtained by the above method.

【0015】[実施例3]次に、Al集電体の表層にC
r濃度の高い層を形成する実施例を述べる。まず、実施
例1と同様の方法と条件でAlにCrを分散させた10
〜30μm程度の厚みの箔を作成した。次に、Al中に
存在するCrをこの箔の表面へと拡散させ、その表面に
Cr濃度の高い層を形成させるために、200〜350
℃の温度範囲で熱処理を3時間以上施した。この温度範
囲設定の理由は200℃以上でないと金属Crの拡散が
起こらず、また350℃以上になるとAlが軟化し、展
性、延性が著しく強くなり、集電体としての強度が確保
出来ないためである。Alに添加したCr濃度とこの熱
処理工程により、箔の表面から深さ3μmのCr濃度を
調べると図4の結果が得られた。この熱処理を施した箔
を正極集電体に用い、その両面に実施例1と同様の正極
組成物を含むペ−ストを塗着し正極板5とした。上記方
法で得られた正極板を用い、実施例1と同様の方法で電
池を構成した。
Example 3 Next, C was formed on the surface of the Al current collector.
An example of forming a layer having a high r concentration will be described. First, Cr was dispersed in Al under the same method and conditions as in Example 1 10
A foil with a thickness of about 30 μm was prepared. Next, in order to diffuse Cr existing in Al to the surface of this foil and form a layer having a high Cr concentration on the surface, 200 to 350 is used.
The heat treatment was performed in the temperature range of ° C for 3 hours or more. The reason for setting this temperature range is that if the temperature is not higher than 200 ° C, the diffusion of metallic Cr does not occur, and if the temperature is higher than 350 ° C, Al softens, the malleability and ductility become remarkably strong, and the strength as a current collector cannot be secured. This is because. When the Cr concentration added to Al and the Cr concentration at a depth of 3 μm from the surface of the foil were examined by this heat treatment step, the results shown in FIG. 4 were obtained. The heat-treated foil was used as a positive electrode current collector, and a paste containing the same positive electrode composition as in Example 1 was applied to both surfaces of the positive electrode current collector to obtain a positive electrode plate 5. A battery was constructed in the same manner as in Example 1 using the positive electrode plate obtained by the above method.

【0016】[比較例]Crを添加しないAlを10〜
30μmの厚さに圧延して正極集電体とし、実施例1と
同様の方法で電池を作成した。
[Comparative example] 10% of Al containing no Cr added
A positive electrode current collector was obtained by rolling to a thickness of 30 μm, and a battery was prepared in the same manner as in Example 1.

【0017】このようにして作成した実施例1、2、3
および比較例の電池を、20℃、充電終止電圧4.1
V、放電終止電圧3.0V、充放電電流100mAで充
放電を行い、保存前の放電容量を確認した。その後、充
電状態において60℃で20日間保存を行った。保存後
の電池を100mAで5サイクルの充放電を行った後、
500mAで高率放電試験を行い、保存後の容量維持率
を(式1)から算出した。
Examples 1, 2, and 3 thus prepared
And the battery of the comparative example at 20 ° C. and the end-of-charge voltage 4.1.
V, discharge end voltage 3.0 V, charge / discharge current 100 mA were charged and discharged to confirm the discharge capacity before storage. Then, it was stored in a charged state at 60 ° C. for 20 days. After charging and discharging the stored battery at 100 mA for 5 cycles,
A high rate discharge test was performed at 500 mA, and the capacity retention rate after storage was calculated from (Equation 1).

【0018】[0018]

【数1】 [Equation 1]

【0019】実施例1および比較例の電池の試験結果、
Crの含有率に対する保存後の容量維持率を図2に示し
た。この結果から、本発明による金属Crを含有したA
lを正極集電体に用いた電池(図2の●印)は比較例に
おけるCrを含有しないAlを正極集電体に用いた電池
(図2の○印)に比べ、保存後の容量維持率が向上して
いることが認められる。
Test results of the batteries of Example 1 and Comparative Example,
The capacity retention rate after storage with respect to the Cr content rate is shown in FIG. From this result, A containing metal Cr according to the present invention
The battery using 1 as the positive electrode current collector (● in FIG. 2) maintains the capacity after storage compared to the battery using Al containing no Cr in the positive electrode current collector (○ in FIG. 2) in the comparative example. It is recognized that the rate is improving.

【0020】実施例1において、Crの含有量が10〜
500ppmの範囲で著しく保存後の容量維持率が向上
していることがわかる。また、500ppmを越えると
改良効果が減少する傾向はあるが、5000ppm以下
のCrの含有量の場合では比較例よりも高い容量維持率
が得られており、本発明の効果が認められる。しかし、
過剰のCrを含有させると、電気抵抗が増大し、分極が
大きくなって保存前の充放電容量の絶対値が小さくな
る。また保存後も未酸化状態のCrが残留する量が多く
なり、この未酸化状態のCrの電気抵抗が大きいため、
充放電時の分極が大きくなり充放電容量が小さくなり、
改良効果が少なくなる。従って、5000ppm以上の
過剰のCrを含有させた場合の改良効果は期待出来な
い。以上の結果から、Crの含有率は10〜5000p
pmの範囲で効果があり、特に10〜500ppmの範
囲で著しい効果がみられた。
In Example 1, the Cr content is 10 to 10.
It can be seen that the capacity retention rate after storage is significantly improved in the range of 500 ppm. Further, when it exceeds 500 ppm, the improvement effect tends to decrease, but when the Cr content is 5000 ppm or less, a higher capacity retention rate than that of the comparative example is obtained, and the effect of the present invention is recognized. But,
When excessive Cr is contained, electric resistance increases, polarization increases, and the absolute value of charge / discharge capacity before storage decreases. In addition, the amount of unoxidized Cr remaining after storage increases, and the electrical resistance of this unoxidized Cr is large,
The polarization during charging and discharging increases and the charging and discharging capacity decreases,
The improvement effect decreases. Therefore, the improvement effect cannot be expected when the excess Cr of 5000 ppm or more is contained. From the above results, the Cr content is 10 to 5000 p.
It was effective in the range of pm, and particularly remarkable in the range of 10 to 500 ppm.

【0021】実施例2および比較例の電池の試験結果、
Crの含有率に対する保存後の容量維持率をを図3に示
した。図3より、実施例1と同様の効果がみられた。即
ち、Crの含有量が10〜500ppmの範囲で著しく
保存後の容量維持率が向上している。500ppmを越
える含有量では改良効果が減少する傾向があるが、50
00ppm以内の含有率では比較例よりも高い容量維持
率が得られており、本発明の効果が認められる。しか
し、5000ppm以上のCrの含有量の場合は、実施
例1と同じ理由で改良の効果は期待できない。以上の結
果から、Crの含有率は10〜5000ppmの範囲で
効果があり、特に10〜500ppmの範囲で著しい効
果が見られた。
Test results of the batteries of Example 2 and Comparative Example,
The capacity retention rate after storage with respect to the Cr content rate is shown in FIG. From FIG. 3, the same effect as in Example 1 was observed. That is, when the Cr content is in the range of 10 to 500 ppm, the capacity retention rate after storage is significantly improved. If the content exceeds 500 ppm, the improvement effect tends to decrease, but 50
When the content is within 00 ppm, a higher capacity retention rate than that of the comparative example is obtained, and the effect of the present invention is recognized. However, if the Cr content is 5000 ppm or more, the improvement effect cannot be expected for the same reason as in Example 1. From the above results, it was found that the Cr content is effective in the range of 10 to 5000 ppm, and particularly remarkable in the range of 10 to 500 ppm.

【0022】なお、本実施例2ではCr金属粉末を用い
た例を示したが、合金CrAl7粉末を添加しても同様
の効果が得られた。
In the second embodiment, an example in which Cr metal powder is used is shown, but the same effect was obtained even if the alloy CrAl 7 powder was added.

【0023】実施例3および比較例の電池の試験結果、
深さ3μmのCrの含有率に対する保存後の容量維持率
を図5に示した。図5に示す通り正極集電体の表層部の
深さ3μmの層においてCrの含有量が100〜500
0ppmの範囲にある場合は保存後の容量維持率向上の
著しい改良効果が見られる。5000ppmを越える含
有量では改良効果が減少する傾向があるが、10000
ppm以内のCrの含有率では比較例よりも高い容量維
持率が得られており、本発明の効果が認められる。しか
し、10000ppmを越えると実施例1と同様の理由
で改良効果は期待できない。以上の結果から、Crの含
有率は10〜10000ppmの範囲で効果があり、特
に100〜500ppmの範囲で著しい効果が見られ
た。
Test results of the batteries of Example 3 and Comparative Example,
FIG. 5 shows the capacity retention rate after storage with respect to the Cr content rate at a depth of 3 μm. As shown in FIG. 5, the Cr content in the surface layer portion of the positive electrode current collector having a depth of 3 μm was 100 to 500.
When it is in the range of 0 ppm, a remarkable improvement effect of improving the capacity retention rate after storage is observed. If the content exceeds 5000 ppm, the improvement effect tends to decrease, but 10,000
When the Cr content is within ppm, a higher capacity retention rate is obtained than in the comparative example, and the effect of the present invention is recognized. However, if it exceeds 10000 ppm, the improvement effect cannot be expected for the same reason as in Example 1. From the above results, it was found that the Cr content is effective in the range of 10 to 10,000 ppm, and particularly remarkable in the range of 100 to 500 ppm.

【0024】これらの結果から、上記実施例1〜3に示
した本発明のCrを含有した正極集電体を用いた電池の
保存特性が向上したのは、以下の理由による。本発明に
よる正極集電板にCrを含有するアルミニウムを用いた
場合、保存後の正極集電体表面には、Crの酸化物が形
成されており、アルミニムの酸化物あるいは水酸化物は
検出されなかった。この結果より、本発明におけるCr
が優先的に電解液中に僅かに存在する水と酸化反応を起
こすものと考えられる。このため、正極集電体上にアル
ミニウム酸化物やアルミニウム水酸化物は生成されず高
率放電時の分極が小さくなり、これにより高温で充電状
態での電池保存を行った後においても、保存前と同様の
高い容量維持率が維持できたものと考えられる。
Based on these results, the storage characteristics of the batteries using the Cr-containing positive electrode current collectors of the present invention shown in Examples 1 to 3 were improved for the following reasons. When aluminum containing Cr is used for the positive electrode current collector according to the present invention, oxides of Cr are formed on the surface of the positive electrode current collector after storage, and oxides or hydroxides of aluminum are detected. There wasn't. From this result, Cr in the present invention
Is preferentially caused to undergo an oxidation reaction with a slight amount of water present in the electrolytic solution. Therefore, aluminum oxide or aluminum hydroxide is not generated on the positive electrode current collector, and the polarization at the time of high-rate discharge becomes small, which allows the battery to be stored in a charged state at a high temperature even before storage. It is considered that the same high capacity maintenance ratio as in the above could be maintained.

【0025】なお、本実施例において負極には炭素質材
料を用いたが、本発明の効果は正極板表面上において作
用するため、リチウムを吸蔵・放出可能な他の負極材
料、例えば金属化合物(酸化鉄、酸化タングステンな
ど)、無機層状化合物(BC2N、LiN3など)、有機
高分子化合物(ポリアセチレン、ポリチォフェンなど)
やリチウム金属、リチウム合金等を用いても同様の効果
が得られた。
Although a carbonaceous material is used for the negative electrode in this embodiment, the effect of the present invention works on the surface of the positive electrode plate, so that another negative electrode material capable of inserting and extracting lithium, such as a metal compound ( Iron oxide, tungsten oxide, etc.), inorganic layered compounds (BC 2 N, LiN 3, etc.), organic polymer compounds (polyacetylene, polythiophene, etc.)
Similar effects were obtained by using lithium metal, lithium alloy, or the like.

【0026】また、本実施例では正極活物質としてLi
CoO2を用いた電池により本発明の効果を評価した
が、LiNiO2、LiMnO2、およびLiCo0.9
0.1 2、LiNi0.9Mn0.12、LiCo0.8Ni
0.1Mn0.12などを正極活物質として用いて作成した
電池においても上記の実施例と同様の効果が確認され
た。いずれの場合も電池構成時の正極活物質として、便
宜上、ほぼ完全な放電状態の物質であるLixMO
2(M;Co、Ni、Fe、Mnのいずれか少なくとも
一種の元素、x=1)を用いたが、これらの正極活物質
は電池構成後の充電反応によりLiが放出されてxの値
が減少し、放電反応によりLiが放出されてxの値が増
加した状態となる。その間のx値が変化する可能性のあ
る幅は0.05≦x≦1.10であるので、本発明は一
般式LixMO2(但し0.05≦x≦1.10、MはC
o、Ni、Fe、Mnのいずれか少なくとも一種の元
素)で表される正極活物質を用いた電池に適用して効果
があるものといえる。
In this embodiment, Li is used as the positive electrode active material.
CoO2The effect of the present invention was evaluated by the battery using
But LiNiO2, LiMnO2, And LiCo0.9M
n0.1O 2, LiNi0.9Mn0.1O2, LiCo0.8Ni
0.1Mn0.1O2Etc. were used as the positive electrode active material.
It was confirmed that the same effect as in the above example was applied to the battery.
Was. In either case, as a positive electrode active material for battery construction,
For convenience, Li, which is a substance in an almost completely discharged statexMO
2(M: at least one of Co, Ni, Fe, and Mn
One element, x = 1) was used, but these positive electrode active materials
Is the value of x when Li is released by the charging reaction after the battery is constructed.
Decrease and the discharge reaction releases Li to increase the value of x.
It will be in the added state. There is a possibility that the x value during that time may change.
The width of the present invention is 0.05 ≦ x ≦ 1.10.
General formula LixMO2(However, 0.05 ≦ x ≦ 1.10, M is C
an element of at least one of o, Ni, Fe, and Mn
The effect when applied to a battery using the positive electrode active material represented by
It can be said that there is.

【0027】また、本実施例では電解液として炭酸エチ
レンと炭酸ジエチレンの混合溶媒を用いたが、他の非水
溶媒例えば、プロピレンカ−ボネ−トなどの環状エステ
ル、テトラヒドロフランなどの環状エ−テル、ジメトキ
シエタンなどの鎖状エ−テル、プロピオン酸メチルなど
の鎖状エステルなどの非水溶媒や、これらの多元系混合
溶媒を用いても同様の効果が得られた。
Although a mixed solvent of ethylene carbonate and diethylene carbonate was used as the electrolytic solution in this embodiment, other non-aqueous solvents such as cyclic ester such as propylene carbonate and cyclic ether such as tetrahydrofuran are used. Similar effects were obtained by using a chain ether such as dimethoxyethane, a non-aqueous solvent such as chain ester such as methyl propionate, or a multi-component mixed solvent thereof.

【0028】[0028]

【発明の効果】以上の説明で明らかなように、本発明に
よればアルミニウムを主成分とした正極集電体に金属ク
ロムもしくはアルミニウムとの合金としてクロム成分を
10〜5000ppm含有することによって、保存後の
放電特性が良好で、長期信頼性に優れた非水電解液二次
電池を提供することができる。
As is apparent from the above description, according to the present invention, the positive electrode current collector containing aluminum as the main component contains 10 to 5000 ppm of the chromium component as metallic chromium or an alloy with aluminum, and thus is preserved. It is possible to provide a non-aqueous electrolyte secondary battery having excellent discharge characteristics after that and excellent in long-term reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における円筒形非水電解液二次
電池の縦断面図
FIG. 1 is a longitudinal sectional view of a cylindrical nonaqueous electrolyte secondary battery according to an embodiment of the present invention.

【図2】実施例1および比較例の電池の保存後の容量維
持率を示す図
FIG. 2 is a diagram showing the capacity retention rate of the batteries of Example 1 and Comparative Example after storage.

【図3】実施例2および比較例の電池の保存後の容量維
持率を示す図
FIG. 3 is a diagram showing the capacity retention rate of the batteries of Example 2 and Comparative Example after storage.

【図4】添加したCr濃度に対する深さ3μmにおける
Cr濃度を示す図
FIG. 4 is a diagram showing the Cr concentration at a depth of 3 μm with respect to the added Cr concentration.

【図5】実施例3および比較例の電池の保存後の容量維
持率を示す図
FIG. 5 is a diagram showing the capacity retention rate of the batteries of Example 3 and Comparative Example after storage.

【符号の説明】[Explanation of symbols]

1 電池ケ−ス 2 封口板 3 絶縁パッキング 4 極板群 5 正極板 5a 正極リ−ド 6 負極板 6a 負極リ−ド 7 セパレ−タ 8 絶縁リング DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulation packing 4 Electrode plate group 5 Positive electrode plate 5a Positive electrode lead 6 Negative electrode plate 6a Negative electrode lead 7 Separator 8 Insulation ring

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属集電体の表面に一般式LixMO
2(但し0.05≦x≦1.10、MはCo、Ni、F
e、Mnのいずれか少なくとも一種の元素)で表される
化合物を主たる活物質とした正極活物質層を形成した正
極板と、負極板と、これら正・負極板との間に介在する
セパレ−タとを備えた非水電解液二次電池において、前
記金属集電体がアルミニウムを主成分とし、金属クロム
もしくはアルミニウムとの合金としてクロム成分を10
〜5000ppm含有することを特徴とする非水電液二
次電池。
1. The general formula Li x MO on the surface of a metal current collector.
2 (however, 0.05 ≦ x ≦ 1.10, M is Co, Ni, F
a positive electrode plate having a positive electrode active material layer containing a compound represented by at least one of e and Mn) as a main active material, a negative electrode plate, and a separator interposed between these positive and negative electrode plates. In a non-aqueous electrolyte secondary battery including a battery, the metal current collector contains aluminum as a main component, and a chromium component of 10 as a metal chromium or an alloy with aluminum.
A non-aqueous liquid electrolyte secondary battery characterized by containing up to 5,000 ppm.
【請求項2】 前記金属集電体の表面から深さ3μmま
での表層に、クロム成分を10〜10000ppm含有
することを特徴とする請求項1記載の非水電解液二次電
池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the surface layer from the surface of the metal current collector to a depth of 3 μm contains a chromium component in an amount of 10 to 10000 ppm.
JP7155913A 1995-06-22 1995-06-22 Nonaqueous electrolyte secondary battery Pending JPH097602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7155913A JPH097602A (en) 1995-06-22 1995-06-22 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7155913A JPH097602A (en) 1995-06-22 1995-06-22 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH097602A true JPH097602A (en) 1997-01-10

Family

ID=15616257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7155913A Pending JPH097602A (en) 1995-06-22 1995-06-22 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH097602A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109454A (en) * 2005-10-12 2007-04-26 Toyota Motor Corp Lithium secondary battery, and its manufacturing method
JP2008501213A (en) * 2004-03-16 2008-01-17 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ インコーポレイテッド Corrosion prevention using a protective current collector
JP2008251265A (en) * 2007-03-29 2008-10-16 Tdk Corp Electrode and electrochemical device
JP2008251264A (en) * 2007-03-29 2008-10-16 Tdk Corp Electrode and lithium ion secondary battery
JP2013016324A (en) * 2011-07-01 2013-01-24 Gs Yuasa Corp Nonaqueous electrolyte secondary battery and collector for nonaqueous electrolyte secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008501213A (en) * 2004-03-16 2008-01-17 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ インコーポレイテッド Corrosion prevention using a protective current collector
JP2007109454A (en) * 2005-10-12 2007-04-26 Toyota Motor Corp Lithium secondary battery, and its manufacturing method
JP2008251265A (en) * 2007-03-29 2008-10-16 Tdk Corp Electrode and electrochemical device
JP2008251264A (en) * 2007-03-29 2008-10-16 Tdk Corp Electrode and lithium ion secondary battery
US8088515B2 (en) 2007-03-29 2012-01-03 Tdk Corporation Electrode and lithium-ion secondary battery
US9412995B2 (en) 2007-03-29 2016-08-09 Tdk Corporation Electrode and electrochemical device
JP2013016324A (en) * 2011-07-01 2013-01-24 Gs Yuasa Corp Nonaqueous electrolyte secondary battery and collector for nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP4159212B2 (en) Nonaqueous electrolyte secondary battery
JP4543085B2 (en) Additive for lithium secondary battery
EP0832505B1 (en) Process for improving lithium ion cell
US20090181305A1 (en) Non-Aqueous Electrolyte Secondary Battery
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
EP2161776B1 (en) Polyvinylpyridine additives for nonaqueous electrolytes
JP5082198B2 (en) Lithium ion secondary battery
US20110250506A1 (en) Non-aqueous electrolyte secondary battery
JPH0536439A (en) Nonaqueous electrolytic secondary battery
US4874680A (en) Lithium secondary battery
US10090510B2 (en) Non-aqueous electrolyte secondary battery
JP3003431B2 (en) Non-aqueous electrolyte secondary battery
JPH04332479A (en) Nonaqueous electrolyte secondary battery
JP2004014352A (en) Nonaqueous electrolyte secondary battery
JP2004087226A (en) Lithium secondary battery
JPH0513105A (en) Nonaqueous electrolyte battery
JPH097602A (en) Nonaqueous electrolyte secondary battery
JPH04329269A (en) Nonaqueous electrolyte secondary battery
JP4456668B2 (en) Nonaqueous secondary battery and its positive electrode
JP2003157896A (en) Nonaqueous electrolyte secondary battery
JP2002110251A (en) Lithium ion secondary battery
JP2003217568A (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3303319B2 (en) Non-aqueous electrolyte secondary battery
JPH0574490A (en) Nonaqueous electrolyte secondary battery
JP2000188132A (en) Nonaqueous electrode secondary battery