JPH0513105A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH0513105A
JPH0513105A JP3184064A JP18406491A JPH0513105A JP H0513105 A JPH0513105 A JP H0513105A JP 3184064 A JP3184064 A JP 3184064A JP 18406491 A JP18406491 A JP 18406491A JP H0513105 A JPH0513105 A JP H0513105A
Authority
JP
Japan
Prior art keywords
lithium
battery
methyl
weight parts
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3184064A
Other languages
Japanese (ja)
Other versions
JP2970086B2 (en
Inventor
Koichi Tanaka
浩一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP3184064A priority Critical patent/JP2970086B2/en
Publication of JPH0513105A publication Critical patent/JPH0513105A/en
Application granted granted Critical
Publication of JP2970086B2 publication Critical patent/JP2970086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To enhance safety and reliability by putting either of meth propionate and methyl butyrate in a nonaqueous solvent of an electrolyte. CONSTITUTION:Lithium carbonate and cobalt carbonate both on the market are mixed with each other at a composition ratio Li/Co = 1:1 and baked in the atmosphere to form a positive electrode active material LiCoO2. The active material 91 weight parts, graphite 6 weight parts and polyvinyliden fluoride 3 weight parts are kneaded with N-methyl-2-pyrolidone to form a paste. The paste is applied to both faces of a, belt-like Al foil to form a positive electrode 1. Pulverized pitch coke 90 weight parts and polyvinylidene fluoride 10 weight parts are kneaded with N-methyl--2-pyrolidone and applied to both faces of a belt-like copper foil to form a negative electrode 2. An Al positive electrode lead 3 and an Ni negative electrode lead 4 are welded. A polypropylene made porous separator 5 is unterposed between both the electrodes, and they are mutually laminated and wound. This electrode body is housed in an Ni plated container 6 and the lead 4 is welded to an inner bottom while the lead 3 to an opening sealing plate 7. An electrolyte wherein lithium phosphate hexafluoride is dissolved in a predetermined nonaqueous solvent is filled and tightly sealed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液電池に関
し、特に非水溶媒の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery, and more particularly to improvement of a non-aqueous solvent.

【0002】[0002]

【従来の技術】負極にリチウム等の軽金属を用いた非水
電解液電池は、高電圧かつ高エネルギー密度を有するた
め広く民生用電子機器等の電源として用いられており、
最近ではこの種の電池の二次電池化の研究、開発が盛ん
である。しかし、リチウムを負極に用いた二次電池の場
合、充電過程において、負極上に金属がデンドライト状
に析出し、その結果、電池が内部短絡を起こして、破
裂、発火等の事故が起こる危険性が極めて高い。
2. Description of the Related Art A non-aqueous electrolyte battery using a light metal such as lithium as a negative electrode is widely used as a power source for consumer electronic devices because of its high voltage and high energy density.
Recently, research and development of secondary batteries for this type of battery have been actively conducted. However, in the case of a secondary battery using lithium as the negative electrode, metal may deposit in the form of dendrites on the negative electrode during the charging process, resulting in an internal short circuit of the battery, which may lead to accidents such as rupture and ignition. Is extremely high.

【0003】そこで、リチウムをそのまま負極として用
いずに、リチウムを炭素質材料や化合物中にドープさせ
たり、合金化させたものを負極として用いる非水電解液
二次電池が提案されている。この電池は、リチウム金属
をそのまま負極として用いた非水電解液二次電池に比べ
て前記金属析出が生じる可能性が低く、破裂,発火等の
問題はかなり改善されている。
Therefore, there has been proposed a non-aqueous electrolyte secondary battery in which a carbonaceous material or compound is doped or alloyed with lithium as a negative electrode without using lithium as a negative electrode as it is. This battery is less likely to cause the metal deposition as compared with a non-aqueous electrolyte secondary battery in which lithium metal is directly used as a negative electrode, and problems such as rupture and ignition have been considerably improved.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、近年、
電池の用途は益々広がり、それに伴って安全性に対する
要求もさらに高まり、これまで以上に高度な信頼性が求
められるようになってきている。例えば、電源回路や充
電器が故障した場合を想定すると、電池電圧を上回る高
電圧や、通常の充電条件を上回る高電流を電池に直接か
けても、破裂、発火等の異常が起こらない事が要求され
る。ところが、この様な過酷な条件を想定した試験にお
いては、前述のリチウムをドープ脱ドープし得る負極を
使用する電池でも十分な信頼性を得る事はできない。
However, in recent years,
The use of batteries is expanding more and more, and accordingly, the demand for safety is further increasing, and higher reliability than ever has been demanded. For example, assuming that the power supply circuit or charger fails, even if a high voltage that exceeds the battery voltage or a high current that exceeds the normal charging conditions is directly applied to the battery, an abnormality such as rupture or ignition does not occur. Required. However, in a test assuming such a severe condition, sufficient reliability cannot be obtained even in a battery using the above-mentioned negative electrode capable of doping and dedoping lithium.

【0005】そこで、本発明は、このような従来の実情
に鑑みて提案されたものであり、電池電圧を上回る高電
圧や通常の充電条件を上回る高電流をかけても破裂、発
火等の生じない安全性の高い非水電解液電池を提供する
ことを目的とする。
Therefore, the present invention has been proposed in view of such a conventional situation, and even if a high voltage exceeding a battery voltage or a high current exceeding a normal charging condition is applied, rupture, ignition or the like occurs. It is an object of the present invention to provide a highly safe non-aqueous electrolyte battery.

【0006】[0006]

【課題を解決するための手段】本発明者らが上述の目的
を達成すべく鋭意検討を重ねた結果、電解液の非水溶媒
にプロピオン酸メチル,n−酪酸メチルの少なくともい
ずれか一方を含有させることにより、事故の発生率が低
減することを見いだすに至った。本発明はこのような知
見に基づいて提案されたものであり、リチウムまたはリ
チウム合金またはリチウムをドープ脱ドープし得る炭素
質材料または化合物または合金からなる負極と、正極
と、リチウム塩が非水溶媒に溶解してなる電解液より構
成される非水電解液電池において、前記非水溶媒がプロ
ピオン酸メチル, 酪酸メチルの少なくともいずれか一方
を含有することを特徴とするものである。
Means for Solving the Problems As a result of intensive studies by the present inventors to achieve the above-mentioned object, the nonaqueous solvent of the electrolytic solution contains at least one of methyl propionate and n-methyl butyrate. By doing so, we have found that the accident rate is reduced. The present invention has been proposed on the basis of such findings, a negative electrode made of a carbonaceous material or compound or alloy capable of doping or dedoping lithium or a lithium alloy or lithium, a positive electrode, and a lithium salt is a non-aqueous solvent. In a non-aqueous electrolyte battery composed of an electrolyte solution dissolved in, the non-aqueous solvent contains at least one of methyl propionate and methyl butyrate.

【0007】上記非水電解液電池において使用される負
極としては、リチウムやリチウム合金、あるいは充放電
反応に伴いリチウムをドープ脱ドープする材料を用い
る。後者の例としては、ポリアセチレン、ポリピロール
等の導電性ポリマー、あるいはコークス、ポリマー炭、
カーボン・ファイバー等の炭素材料を用いることができ
るが、単位体積当りのエネルギー密度が大きい点から、
炭素質材料を使用することが望ましい。炭素質材料とし
ては、熱分解炭素類、コークス類(石油コークス、ピッ
チコークス、石炭コークス等)、カーボンブラック(ア
セチレンブラック等)、ガラス状炭素、有機高分子材料
焼成体(有機高分子材料を500℃以上の適当な温度で
不活性ガス気流中、あるいは真空中で焼成したもの)、
炭素繊維等が用いられる。
As the negative electrode used in the above non-aqueous electrolyte battery, lithium, a lithium alloy, or a material that is doped with lithium and dedoped with a charge / discharge reaction is used. Examples of the latter include polyacetylene, conductive polymers such as polypyrrole, or coke, polymer charcoal,
Although carbon materials such as carbon fiber can be used, since the energy density per unit volume is large,
It is desirable to use carbonaceous materials. As the carbonaceous material, pyrolytic carbons, cokes (petroleum coke, pitch coke, coal coke, etc.), carbon black (acetylene black, etc.), glassy carbon, organic polymer material fired body (organic polymer material 500 Baked in an inert gas stream at a suitable temperature of ℃ or higher, or in vacuum),
Carbon fiber or the like is used.

【0008】一方、正極としては、二酸化マンガン、五
酸化バナジウムのような遷移金属酸化物や、硫化鉄、硫
化チタンのような遷移金属カルコゲン化物、さらにはこ
れらとリチウムとの複合化合物などを用いることができ
る。特に、高電圧、高エネルギー密度が得られ、サイク
ル特性にも優れることから、リチウム・コバルト複合酸
化物やリチウム・コバルト・ニッケル複合酸化物が望ま
しい。
On the other hand, for the positive electrode, transition metal oxides such as manganese dioxide and vanadium pentoxide, transition metal chalcogenides such as iron sulfide and titanium sulfide, and composite compounds of these with lithium are used. You can Particularly, a lithium / cobalt / nickel composite oxide or a lithium / cobalt / nickel composite oxide is preferable because a high voltage and a high energy density are obtained and the cycle characteristics are excellent.

【0009】また、電解液としては、リチウム塩を電解
質とし、これを非水溶媒に溶解した電解液が用いられ
る。
Further, as the electrolytic solution, an electrolytic solution in which a lithium salt is used as an electrolyte and this is dissolved in a non-aqueous solvent is used.

【0010】ここで、本発明の非水電解液電池において
は、過充電,高電圧印加された場合でも、発火,破裂等
の事故が発生しないように、上記非水溶媒にプロピオン
酸メチル,n−酪酸メチルの少なくともいずれか一方を
含有させる。このプロピオン酸メチル,n−酪酸メチル
の非水溶媒中の含有量は、十分な事故防止効果を得るた
めに、10体積%以上であることが好ましく、30体積
%であることがより好ましい。
In the non-aqueous electrolyte battery of the present invention, the non-aqueous solvent contains methyl propionate, n so that accidents such as ignition and rupture do not occur even when overcharged or a high voltage is applied. -Contain at least one of methyl butyrate. The content of methyl propionate and methyl n-butyrate in the non-aqueous solvent is preferably 10% by volume or more, more preferably 30% by volume, in order to obtain a sufficient accident prevention effect.

【0011】また、上記プロピオン酸メチル,n−酪酸
メチルと混合されて非水溶媒を構成する相手溶媒として
は、特に限定されるものではないが、例えば炭酸プロピ
レン、炭酸エチレン、炭酸ジエチル等の炭酸エステル
や、スルフォラン等の単独もしくは二種類以上の混合溶
媒が使用できる。
The other solvent which is mixed with the above-mentioned methyl propionate and n-methyl butyrate to form the non-aqueous solvent is not particularly limited, but for example, carbonates such as propylene carbonate, ethylene carbonate and diethyl carbonate. A single solvent or a mixed solvent of two or more kinds such as ester and sulfolane can be used.

【0012】電解質も従来より公知のものがいずれも使
用でき、LiClO4 、LiAsF6 、LiPF6 、L
iBF4 、LiB(C6 5 4 、LiCl、LiB
r、CH3 SO3 LI、CF3 SO3 Li等がある。
Any known electrolyte can be used as the electrolyte, and LiClO 4 , LiAsF 6 , LiPF 6 , L
iBF 4 , LiB (C 6 H 5 ) 4 , LiCl, LiB
r, CH 3 SO 3 LI, CF 3 SO 3 Li and the like.

【0013】[0013]

【作用】従来の非水電解液電池に、過充電,高電圧印加
を行うと、負極表面にリチウムがデンドライト状に析出
して正極にまで到達し、破裂,発火等の事故が発生す
る。これに対して、電解液の非水溶媒にプロピオン酸メ
チル, n−酪酸メチルの少なくともどちらかを含有させ
た非水電解液電池では、過充電,高電圧印加によっても
事故が生じない。
When a conventional non-aqueous electrolyte battery is overcharged and a high voltage is applied, lithium deposits on the surface of the negative electrode in the form of dendrite and reaches the positive electrode, causing accidents such as rupture and ignition. On the other hand, in a non-aqueous electrolyte battery in which the non-aqueous solvent of the electrolyte contains at least either methyl propionate or methyl n-butyrate, no accident occurs even when overcharged or a high voltage is applied.

【0014】これは、プロピオン酸メチル,n−酪酸メ
チルに析出リチウムのデンドライト状化を抑える作用が
あり、これによって析出リチウムによる内部短絡が原因
となる事故が防止されたものと考えられる。また、高電
圧印加によって事故が発生するもうひとつの原因とし
て、非水溶媒の分解によるガス発生が知られているが、
これらプロピオン酸メチル,n−酪酸メチルは、分解電
圧が高いために高電圧印加によっても分解せず、ガス発
生が原因となる事故も防止される。
It is considered that this is because methyl propionate and methyl n-butyrate have the effect of suppressing the dendrite formation of the deposited lithium, which prevents accidents caused by the internal short circuit due to the deposited lithium. Another known cause of accidents due to the application of high voltage is gas generation due to decomposition of non-aqueous solvent.
Since methyl methyl propionate and n-methyl n-butyrate have a high decomposition voltage, they are not decomposed even when a high voltage is applied, and an accident caused by gas generation is prevented.

【0015】[0015]

【実施例】以下、本発明の好適な実施例について図面を
参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings.

【0016】図1に示す円筒型非水電解液電池を下記の
ようにして作製した。
The cylindrical non-aqueous electrolyte battery shown in FIG. 1 was produced as follows.

【0017】先ず、正極活物質(リチウムコバルト酸化
物LiCoO2 )は、市販の炭酸リチウムと炭酸コバル
トを、組成比Li/Co=1:1となるように混合し、
空気中で900℃,5時間焼成して得た。そして、この
正極活物質91重量部と導電剤となる黒鉛6重量部、結
着剤となるポリフッ化ビニリデン3重量部とを混合し、
更にN−メチル−2−ピロリドンで混練してペースト状
にし、このペーストを帯状のアルミニウム箔の両面に塗
布して帯状正極1を作製した。
First, as the positive electrode active material (lithium cobalt oxide LiCoO 2 ), commercially available lithium carbonate and cobalt carbonate were mixed so that the composition ratio Li / Co = 1: 1,
It was obtained by firing in air at 900 ° C. for 5 hours. Then, 91 parts by weight of this positive electrode active material, 6 parts by weight of graphite as a conductive agent, and 3 parts by weight of polyvinylidene fluoride as a binder were mixed,
Further, it was kneaded with N-methyl-2-pyrrolidone to form a paste, and this paste was applied to both sides of a strip-shaped aluminum foil to prepare a strip-shaped positive electrode 1.

【0018】次に、粉砕したピッチコークス90重量部
に、結着剤となるポリフッ化ビニリデン10重量部を混
合し、N−メチル−2−ピロリドンで混練してペースト
状にし、このペーストを帯状の銅箔の両面に塗布して帯
状負極2を作製した。なお、帯状正極1及び帯状負極2
には、集電を行うためのアルミニウム製の正極リード端
子3、ニッケル製の負極リード端子4をそれぞれ溶接し
た。
Next, 90 parts by weight of the crushed pitch coke was mixed with 10 parts by weight of polyvinylidene fluoride as a binder, and kneaded with N-methyl-2-pyrrolidone to form a paste, and this paste was formed into a strip shape. The strip-shaped negative electrode 2 was prepared by applying the copper foil on both sides. In addition, the strip positive electrode 1 and the strip negative electrode 2
A positive electrode lead terminal 3 made of aluminum and a negative electrode lead terminal 4 made of nickel for collecting current were welded to each.

【0019】そして、帯状正極1と帯状負極2の間に、
ポリプロピレン製のマイクロポーラス・フィルムからな
るセパレータ5を介在させて互いに積層し、多数回巻回
して、渦巻型の電極体を作成した。そして、この渦巻型
の電極体をニッケル・メッキを施した鉄製電池容器6中
に収納した。負極リード端子4を、電池容器6の内底部
にスポット溶接により接続し、正極リード端子3は、電
池封口板7に同様にして接続した。
Between the strip-shaped positive electrode 1 and the strip-shaped negative electrode 2,
Laminated on each other with a separator 5 made of polypropylene microporous film interposed, and wound many times to form a spiral electrode body. Then, the spiral electrode body was housed in a nickel-plated iron battery container 6. The negative electrode lead terminal 4 was connected to the inner bottom of the battery container 6 by spot welding, and the positive electrode lead terminal 3 was similarly connected to the battery sealing plate 7.

【0020】次に、この電極体が収納された電池管容器
6中に、表1に示す組成を有する非水溶媒に六フッ化燐
酸リチウム1モル/lを溶解させた電解液を注液し、該
電池容器6と前記電池封口板7とをポリプロピレン製パ
ッキング8を介し、嵌合してかしめることで密封し、外
径20mm、高さ50mmの円筒型非水電解液電池(実
施例電池1,実施例電池2,比較例電池1,比較例電池
2)を作製した。
Next, an electrolyte solution prepared by dissolving 1 mol / l of lithium hexafluorophosphate in a non-aqueous solvent having the composition shown in Table 1 was poured into a battery tube container 6 containing this electrode assembly. The battery container 6 and the battery sealing plate 7 are sealed by fitting and caulking with a polypropylene packing 8 interposed therebetween, and a cylindrical non-aqueous electrolyte battery having an outer diameter of 20 mm and a height of 50 mm (example battery 1, Example battery 2, Comparative example battery 1, Comparative example battery 2) were produced.

【0021】[0021]

【表1】 [Table 1]

【0022】なお、実施例電池1,2および比較例電池
1,2の放電容量は、測定の結果いずれも1000mA
hrであった。
The discharge capacities of Example batteries 1 and 2 and Comparative batteries 1 and 2 were both 1000 mA as a result of measurement.
It was hr.

【0023】このようにして作製された各電池につい
て、定電圧充電により4.1Vまで充電した後、定電流
充電試験,高電圧充電試験をそれぞれ行った。
Each battery thus produced was charged to 4.1 V by constant voltage charging, and then subjected to a constant current charging test and a high voltage charging test.

【0024】まず、定電流充電試験を各電池20個につ
いて3mA/cm2 の定電流で充電することによって行
った。この定電流試験は、およそ1.5C充電に相当
し、例えば充電器の制御回路が故障して、急速充電条件
のまま過充電状態まで進んでしまった場合を想定したも
のである。表2に各電池の定電流充電試験後の破裂,発
火等の事故の発生率と、電池の到達電圧値を示す。
First, a constant current charging test was conducted by charging 20 batteries with a constant current of 3 mA / cm 2 . This constant current test corresponds to about 1.5 C charging, and assumes, for example, a case where the control circuit of the charger has failed and has advanced to the overcharged state under the rapid charging condition. Table 2 shows the occurrence rates of accidents such as rupture and ignition after constant current charging test of each battery and the ultimate voltage value of the battery.

【0025】[0025]

【表2】 [Table 2]

【0026】表2を見てわかるように、実施例電池1,
2では、試験後、破裂,発火等の事故は全く発生せず、
また比較例電池2においてもほとんど事故が発生してい
ない。これに対し、比較例電池1では事故発生率が70
%と他の電池と比べて極めて高い。この比較例電池1に
おける事故発生原因について検討すべく、試験後の電池
を分解調査したところ、実施例電池1では、負極表面に
リチウムがデンドライト状に多量に析出しているのが認
められ、一方、実施例電池1,2及び比較例電池2では
リチウムの析出は認められなかった。
As can be seen from Table 2, the example batteries 1,
In No. 2, after the test, no accidents such as rupture or ignition occurred,
Also, in the comparative battery 2, almost no accident occurred. In contrast, the comparative battery 1 has an accident rate of 70
%, Which is extremely high compared to other batteries. When the battery after the test was disassembled and examined in order to examine the cause of the accident in Comparative Example Battery 1, it was found that in Example Battery 1, a large amount of dendrite-like lithium was deposited on the negative electrode surface. In Example batteries 1 and 2, and Comparative battery 2, no precipitation of lithium was observed.

【0027】したがって、このことから比較例電池1で
は、過充電により、負極表面にリチウムがデンドライト
状に析出して内部短絡を引き起こし、これが破裂、発火
等の事故につながったものと推定された。
Therefore, in Comparative Example Battery 1, it was presumed that lithium was deposited in the form of dendrite on the surface of the negative electrode due to overcharge, causing an internal short circuit, which led to an accident such as rupture or ignition.

【0028】なお、このような過充電時に析出するリチ
ウムは、電解液の電気分解により、電解質である六フッ
化燐酸リチウムのリチウムが電析したものであり、この
ときの六フッ化燐酸リチウムの分解電位はおよそ6.5
V付近にあることが別の実験で確認されている。この点
から表1の電池到達電圧をみると、実施例電池1,2と
比較例電池2では、電圧が6.5Vに達していないのに
対し、比較例電池1では6.5Vを上回っている。すな
わち、このことからも比較例電池1においては、六フッ
化燐酸リチウムの分解が原因となってリチウムが析出し
て事故が発生し、電解液にプロピオン酸メチルを含有さ
せた実施例電池1、n−酪酸メチルを含有させた実施例
電池2および1,2−ジメトキシエタンを含有させた比
較例電池2では、このような六フッ化燐酸リチウムの分
解が抑えられていることが示唆された。
The lithium deposited during such overcharge is obtained by electrodeposition of lithium hexafluorophosphate, which is the electrolyte, by electrolysis of the electrolytic solution. The decomposition potential is about 6.5.
It was confirmed in another experiment that it was in the vicinity of V. From this point of view, when observing the voltage reached by the batteries in Table 1, the voltages of the example batteries 1 and 2 and the comparative battery 2 did not reach 6.5 V, while the voltage of the comparative battery 1 exceeded 6.5 V. There is. That is, also from this, in the comparative battery 1, the lithium hexafluorophosphate was decomposed to cause lithium deposition and an accident occurred, and the electrolytic battery contained methyl propionate in the example battery 1, It was suggested that such decomposition of lithium hexafluorophosphate was suppressed in Example battery 2 containing n-methyl butyrate and Comparative battery 2 containing 1,2-dimethoxyethane.

【0029】なお、比較例電池2においても、15%の
発生率で事故が発生していたが、これは、電池の内圧上
昇を原因とする破裂であった。
In the comparative battery 2 as well, an accident occurred at a rate of 15%, which was a rupture caused by an increase in the internal pressure of the battery.

【0030】次に、電池の高電圧信頼性を検討するため
に、各電池20個について、7Vの電圧を充電方向に印
加し、事故の発生率及びその時流れた電流値を調べた。
その結果を表3に示す。なお、7Vの電圧値は、充電回
路の破壊により、電池の電圧制御が不能になって、電池
に直接高電圧がかかった場合を想定して設定されたもの
である。
Next, in order to examine the high voltage reliability of the batteries, a voltage of 7 V was applied to each of the 20 batteries in the charging direction, and the occurrence rate of the accident and the current value flowing at that time were examined.
The results are shown in Table 3. The voltage value of 7 V is set on the assumption that the voltage control of the battery is disabled due to the breakdown of the charging circuit and a high voltage is directly applied to the battery.

【0031】[0031]

【表3】 [Table 3]

【0032】表3からわかるように、実施例電池1,2
では全く事故が発生していないのに対し、比較例電池
1,2では、高圧印加によって極めて高い率で発火,破
損が生じてしまう。このような事故発生原因について検
討すべく試験後の電池を分解調査したところ、比較例電
池1では、前回と同様、負極表面に、多量のリチウムが
デンドライト状に析出しているのが確認され、定電流充
電試験の場合と同様、リチウムのデンドライト状析出が
事故の発生原因となっていることがわかった。
As can be seen from Table 3, Example batteries 1 and 2
In contrast, in Comparative Examples Batteries 1 and 2, no accidents occurred at all, but high voltage application causes ignition and damage at an extremely high rate. As a result of disassembling and examining the battery after the test to examine the cause of such an accident, it was confirmed that a large amount of lithium was dendrite-like deposited on the surface of the negative electrode in Comparative Example Battery 1 as in the previous time. As with the constant current charging test, it was found that dendrite-like deposition of lithium was the cause of the accident.

【0033】一方、実施例電池1,2及び比較例電池2
では、少量のリチウムの析出は認められたが、析出形態
は微粉状であり、デンドライト状ではなかった。このこ
とは、電解液中に含有されているプロピオン酸メチル,
n−酪酸メチル及び1,2−ジメトキシエタンに析出リ
チウムのデンドライト化を抑制する効果があることを示
しているものと考えられる。
On the other hand, Example batteries 1 and 2 and Comparative battery 2
In, a small amount of lithium was found to be deposited, but the form of precipitation was fine powder, not dendrite. This means that methyl propionate contained in the electrolyte solution,
This is considered to indicate that n-methyl butyrate and 1,2-dimethoxyethane have an effect of suppressing dendrite formation of precipitated lithium.

【0034】しかしながら、1,2−ジメトキシエタン
を電解液に含有する実施例電池2は、事故発生率が10
0%と極めて高い。これは混合溶媒の一成分である1、
2−ジメトキシエタンの分解電圧が4.6Vと低いた
め、高電圧印加により、溶媒の分解が急激に進み、これ
により大量のガスが発生し、電池の破裂を引き起こした
ものと判断される。
However, in the example battery 2 containing 1,2-dimethoxyethane in the electrolytic solution, the accident rate was 10%.
It is extremely high at 0%. This is one component of the mixed solvent1,
Since the decomposition voltage of 2-dimethoxyethane is as low as 4.6 V, it is considered that the decomposition of the solvent rapidly proceeded by the application of the high voltage, which generated a large amount of gas and caused the battery to burst.

【0035】したがって、リチウムのデンドライト化を
抑制し、高電圧印加によって分解しない点から、プロピ
オン酸メチル,n−酪酸メチルが電解液に含有させる成
分として最も優れていることがわかった。
Therefore, it was found that methyl propionate and methyl n-butyrate were the most preferable components to be contained in the electrolytic solution, in that they prevented dendrite formation of lithium and did not decompose by application of a high voltage.

【0036】そこで、次に、析出リチウムのデンドライ
ト化を抑えるのに必要なプロピオン酸メチル,n−酪酸
メチルの含有量を検討するために以下の実験を行った。
Then, the following experiment was conducted to examine the contents of methyl propionate and methyl n-butyrate necessary for suppressing the dendrite formation of the deposited lithium.

【0037】先ず、プロピオン酸メチルが表3に示す配
合比で含有された混合溶媒を使用する以外は上述と同様
にして各種円筒型非水電解液二次電池を作製した。そし
て、各電池について、7V定電圧を印加した後、リチウ
ム析出形態を観察した。その結果を表4に示す。
First, various cylindrical non-aqueous electrolyte secondary batteries were prepared in the same manner as described above except that the mixed solvent containing methyl propionate in the compounding ratio shown in Table 3 was used. Then, after applying a constant voltage of 7 V to each battery, the morphology of lithium deposition was observed. The results are shown in Table 4.

【0038】[0038]

【表4】 [Table 4]

【0039】表4からわかるように、プロピオン酸メチ
ルの配合比が5%では、デンドライト化抑制効果は認め
られないが、10%では、析出リチウムの一部が微粉状
に変わり、30%以上で、すべての析出リチウムが微粉
状になることが分かった。したがって、このことからプ
ロピオン酸メチルの配合比は、10%以上であることが
望ましく、更に好ましくは、30%以上であることが望
ましいことが示された。
As can be seen from Table 4, when the compounding ratio of methyl propionate is 5%, the effect of suppressing dendrite formation is not recognized, but when it is 10%, a part of the precipitated lithium changes into fine powder, and when it is 30% or more. , It was found that all the deposited lithium became fine powder. Therefore, from this, it was shown that the compounding ratio of methyl propionate is preferably 10% or more, more preferably 30% or more.

【0040】次に、n−酪酸メチルが表4に示す配合比
で含有された混合溶媒を使用する以外は上述と同様にし
て各種円筒型非水電解液二次電池を作製した。そして、
各電池について、7V定電圧を印加した後、リチウム析
出形態を観察した。その結果を表5に示す。
Next, various cylindrical non-aqueous electrolyte secondary batteries were produced in the same manner as described above except that the mixed solvent containing n-methyl butyrate in the mixing ratio shown in Table 4 was used. And
For each battery, after applying a constant voltage of 7 V, the lithium deposition morphology was observed. The results are shown in Table 5.

【0041】[0041]

【表5】 [Table 5]

【0042】表5から、n−酪酸メチルの配合比が5%
では、デンドライト化抑制効果は認められないが、10
%では、析出リチウムの一部が微粉状に変わり、30%
以上で、すべての析出リチウムが微粉状になることが分
かり、n−酪酸メチルの配合比は、10%以上であるこ
とが望ましく、30%以上であることがより望ましいこ
とが示された。
From Table 5, the compounding ratio of n-methyl butyrate is 5%.
Then, the effect of suppressing dendrite formation is not recognized, but 10
%, Part of the deposited lithium changes to fine powder, and 30%
From the above, it was found that all precipitated lithium was in the form of fine powder, and it was shown that the blending ratio of n-methyl butyrate is preferably 10% or more, and more preferably 30% or more.

【0043】なお、本実施例では、電解液の電解質とし
て六フッ化燐酸リチウムを使用したが、六フッ化燐酸リ
チウムの代わりに、ホウフッ化リチウムや過塩素酸リチ
ウム等の他のリチウム塩にした場合でも同様に、上述の
炭酸プロピレン,n−酪酸メチルの効果は発揮された。
また、プロピオン酸メチルと混合する相手溶媒として、
炭酸プロピレンの代わりに炭酸エチレン、炭酸ジエチル
等の炭酸エステルやスルフォラン等の電解質の分解析出
リチウムがデンドライト状を呈する様な他の溶媒を使用
した場合にも、また、溶媒を1成分に限らず、2成分以
上の混合系としても同様に上記効果が得られた。
In this example, lithium hexafluorophosphate was used as the electrolyte of the electrolytic solution, but other lithium salts such as lithium borofluoride and lithium perchlorate were used instead of lithium hexafluorophosphate. In the same manner, the effects of propylene carbonate and methyl n-butyrate described above were exhibited.
Also, as a partner solvent to be mixed with methyl propionate,
In the case of using other solvent such as carbonic acid ester such as ethylene carbonate or diethyl carbonate or electrolyte such as sulfolane, which causes dendrite-like lithium in the form of dendrite, instead of propylene carbonate, the solvent is not limited to one component. The same effect was obtained even when a mixed system of two or more components was used.

【0044】さらに、本実施例では負極にカーボン材料
を用いたが、負極にリチウムまたはリチウム合金を用い
た場合にも同様に事故防止効果が得られた。本実施例で
は、二次電池仕様の非水電解液電池についてのみ説明し
たが、同様な材料構成による一次電池仕様の非水電解液
電池においても、電池の使用機器への逆装填などで、充
電方向に異常な電圧がかかることによる事故も多く、そ
のメカニズムは、二次電池の場合と同様である。したが
って、本発明の効果が、一次電池において発揮されるこ
とは明白である。
Further, although the carbon material is used for the negative electrode in this example, the accident prevention effect is similarly obtained when lithium or a lithium alloy is used for the negative electrode. In this embodiment, only the non-aqueous electrolyte battery of the secondary battery specification has been described, but even a non-aqueous electrolyte battery of the primary battery specification with a similar material configuration is charged by reverse loading into a device in which the battery is used. There are many accidents due to an abnormal voltage applied in the direction, and the mechanism is the same as in the case of the secondary battery. Therefore, it is clear that the effect of the present invention is exerted in the primary battery.

【0045】[0045]

【発明の効果】以上の説明からも明らかなように、本発
明において、非水電解液電池の電解液にプロピオン酸メ
チル,n−酪酸メチルの少なくともいずれかが含まれて
いるので、過充電,高電圧印加によっておこる破裂、発
火等の異常が防止できる。したがって、本発明によれば
高電圧,高エネルギー密度を有するとともに電源回路や
充電器の故障等の過酷な条件においても事故が起こら
ず、極めて安全性、信頼性の高い非水電解液電池を得る
ことができる。
As is apparent from the above description, in the present invention, since the electrolyte of the non-aqueous electrolyte battery contains at least one of methyl propionate and methyl n-butyrate, overcharge, Abnormalities such as rupture and ignition caused by high voltage application can be prevented. Therefore, according to the present invention, it is possible to obtain a highly safe and reliable non-aqueous electrolyte battery which has high voltage and high energy density and does not cause an accident even under severe conditions such as a failure of a power supply circuit or a charger. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の非水電解液電池の一例を示す一半部分
の縦断面図である。
FIG. 1 is a longitudinal sectional view of a half portion showing an example of a non-aqueous electrolyte battery of the present invention.

【符号の説明】[Explanation of symbols]

1・・・帯状正極 2・・・帯状負極 3・・・正極リード端子 4・・・負極リード端子 5・・・セパレータ 6・・・電池容器 7・・・電池封口板 8・・・パッキング 9・・・絶縁板 10・・・絶縁板 DESCRIPTION OF SYMBOLS 1 ... Strip positive electrode 2 ... Strip negative electrode 3 ... Positive electrode lead terminal 4 ... Negative electrode lead terminal 5 ... Separator 6 ... Battery container 7 ... Battery sealing plate 8 ... Packing 9・ ・ ・ Insulation plate 10 ・ ・ ・ Insulation plate

Claims (1)

【特許請求の範囲】 【請求項1】 リチウムまたはリチウム合金またはリチ
ウムをドープ脱ドープし得る炭素質材料または化合物ま
たは合金からなる負極と、正極と、リチウム塩が非水溶
媒に溶解してなる電解液より構成される非水電解液電池
において、 前記非水溶媒がプロピオン酸メチル, 酪酸メチルの少な
くともいずれか一方を含有することを特徴とする非水電
解液電池。
Claim: What is claimed is: 1. A negative electrode comprising a carbonaceous material or compound or alloy capable of doping or dedoping lithium, a lithium alloy, or lithium; a positive electrode; and an electrolysis in which a lithium salt is dissolved in a non-aqueous solvent. A non-aqueous electrolyte battery comprising a liquid, wherein the non-aqueous solvent contains at least one of methyl propionate and methyl butyrate.
JP3184064A 1991-06-28 1991-06-28 Non-aqueous electrolyte battery Expired - Fee Related JP2970086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3184064A JP2970086B2 (en) 1991-06-28 1991-06-28 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3184064A JP2970086B2 (en) 1991-06-28 1991-06-28 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH0513105A true JPH0513105A (en) 1993-01-22
JP2970086B2 JP2970086B2 (en) 1999-11-02

Family

ID=16146747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3184064A Expired - Fee Related JP2970086B2 (en) 1991-06-28 1991-06-28 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2970086B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586138B2 (en) 2000-02-04 2003-07-01 Amtek Research International Llc Freestanding microporous separator including a gel-forming polymer
WO2005053066A1 (en) * 2003-11-24 2005-06-09 The Gillette Company Battery including aluminum components
US7479348B2 (en) 2005-04-08 2009-01-20 The Gillette Company Non-aqueous electrochemical cells
US7524581B2 (en) 2004-07-23 2009-04-28 The Gillette Company Non-aqueous electrochemical cells
JP2009123707A (en) * 2009-01-13 2009-06-04 Nec Corp Electrolyte and nonaqueous electrolyte secondary battery
US7566350B2 (en) 2002-02-28 2009-07-28 The Gillette Company Method of making non-aqueous electrochemical cell
US7927739B2 (en) 2001-12-14 2011-04-19 The Gillette Company Non-aqueous electrochemical cells
JP2013084598A (en) * 2011-10-11 2013-05-09 Samsung Sdi Co Ltd Lithium secondary battery
JPWO2012077712A1 (en) * 2010-12-07 2014-05-22 日本電気株式会社 Lithium secondary battery
CN112635739A (en) * 2020-12-25 2021-04-09 湖州凯金新能源科技有限公司 Graphite material with long-cycle characteristic for lithium battery and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4056663A (en) * 1975-11-03 1977-11-01 P. R. Mallory & Co. Inc. Performance in an organic electrolyte
JPH03295178A (en) * 1990-04-12 1991-12-26 Asahi Chem Ind Co Ltd Nonaqueous secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4056663A (en) * 1975-11-03 1977-11-01 P. R. Mallory & Co. Inc. Performance in an organic electrolyte
JPH03295178A (en) * 1990-04-12 1991-12-26 Asahi Chem Ind Co Ltd Nonaqueous secondary battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586138B2 (en) 2000-02-04 2003-07-01 Amtek Research International Llc Freestanding microporous separator including a gel-forming polymer
US7927739B2 (en) 2001-12-14 2011-04-19 The Gillette Company Non-aqueous electrochemical cells
US7749288B2 (en) 2002-02-28 2010-07-06 The Gillette Company Method of making non-aqueous electrochemical cell
US7566350B2 (en) 2002-02-28 2009-07-28 The Gillette Company Method of making non-aqueous electrochemical cell
US7744659B2 (en) 2002-02-28 2010-06-29 The Gillette Company Method of making non-aqueous electrochemical cell
WO2005053066A1 (en) * 2003-11-24 2005-06-09 The Gillette Company Battery including aluminum components
US7459234B2 (en) 2003-11-24 2008-12-02 The Gillette Company Battery including aluminum components
US8435670B2 (en) 2003-11-24 2013-05-07 The Gillette Company Battery including aluminum components
US7524581B2 (en) 2004-07-23 2009-04-28 The Gillette Company Non-aqueous electrochemical cells
US7479348B2 (en) 2005-04-08 2009-01-20 The Gillette Company Non-aqueous electrochemical cells
JP2009123707A (en) * 2009-01-13 2009-06-04 Nec Corp Electrolyte and nonaqueous electrolyte secondary battery
JPWO2012077712A1 (en) * 2010-12-07 2014-05-22 日本電気株式会社 Lithium secondary battery
JP6138490B2 (en) * 2010-12-07 2017-05-31 日本電気株式会社 Lithium secondary battery
JP2013084598A (en) * 2011-10-11 2013-05-09 Samsung Sdi Co Ltd Lithium secondary battery
US10461358B2 (en) 2011-10-11 2019-10-29 Samsung Sdi Co., Ltd. Rechargeable lithium battery
CN112635739A (en) * 2020-12-25 2021-04-09 湖州凯金新能源科技有限公司 Graphite material with long-cycle characteristic for lithium battery and preparation method thereof

Also Published As

Publication number Publication date
JP2970086B2 (en) 1999-11-02

Similar Documents

Publication Publication Date Title
US9843044B2 (en) Positive electrode
JP2000348768A (en) Nitric ester additive for nonaqueous electrolytic solution in rechargeable electrochemical battery
JP2002313415A (en) Non-aqueous electrolyte secondary battery
JPH11176470A (en) Organic electrolyte secondary battery
JP2016062810A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same
JP5109349B2 (en) Secondary battery
JP2970086B2 (en) Non-aqueous electrolyte battery
JPH05315006A (en) Noaqueous electrolyte cell and manufacture thereof
JPH08306364A (en) Nonaqueous electrolytic solution and nonaqueous electrolyte battery
JP2001126765A (en) Nonaqueous electrolyte secondary battery
JP2019016482A (en) Nonaqueous electrolyte secondary battery
JP3232636B2 (en) Non-aqueous electrolyte battery
JP2002289159A (en) Nonaqueous electrolyte secondary battery pack
JPH04329268A (en) Nonaqueous electrolyte secondary battery
JP2003100278A (en) Nonaqueous electrolyte secondary battery
JP3438364B2 (en) Non-aqueous electrolyte
JPH04329269A (en) Nonaqueous electrolyte secondary battery
JP4636650B2 (en) Non-aqueous secondary battery
JP4456668B2 (en) Nonaqueous secondary battery and its positive electrode
JP2002110251A (en) Lithium ion secondary battery
JP2001297763A (en) Nonaqueous electrolyte secondary cell
JP4240422B2 (en) Organic electrolyte secondary battery
JP2003187863A (en) Secondary battery using organic electrolyte
JP4488558B2 (en) Non-aqueous electrolyte secondary battery
JP2000188132A (en) Nonaqueous electrode secondary battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees