JPH05315006A - Noaqueous electrolyte cell and manufacture thereof - Google Patents
Noaqueous electrolyte cell and manufacture thereofInfo
- Publication number
- JPH05315006A JPH05315006A JP4143764A JP14376492A JPH05315006A JP H05315006 A JPH05315006 A JP H05315006A JP 4143764 A JP4143764 A JP 4143764A JP 14376492 A JP14376492 A JP 14376492A JP H05315006 A JPH05315006 A JP H05315006A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- free acid
- electrolyte
- acid content
- aqueous electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、炭素質材料を負極に用
いる非水電解液電池及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery using a carbonaceous material as a negative electrode and a method for producing the same.
【0002】[0002]
【従来の技術】たとえば負極材料としてリチウムを、電
解液として非水溶媒に電解質を溶解してなるものを用い
た非水電解液電池は、自己放電が少なく、作動電圧が高
く、保存性能が優れている等の特徴を有している。この
ため、長期間使用に耐え、信頼性が高いことから、時計
や種々のメモリーバックアップ用電源として広く利用さ
れており、さらにビデオカメラや小型オーディオ機器、
マイクロコンピュータ等のポータブル機器の電源として
も注目されている。2. Description of the Related Art A non-aqueous electrolyte battery using, for example, lithium as a negative electrode material and an electrolyte in which an electrolyte is dissolved in a non-aqueous solvent has low self-discharge, high operating voltage, and excellent storage performance. It has features such as For this reason, it has been used for a long time and is highly reliable, so it is widely used as a power source for clocks and various memory backups.
It has also attracted attention as a power source for portable devices such as microcomputers.
【0003】ところで、上述の非水電解液電池を含めて
非水電解液電池は、一次電池仕様のものが主流である
が、ビデオカメラ等のポータブル機器の電源として使用
するには、経済性を考慮すると再充電可能な二次電池仕
様であることが望ましく、さらには、軽量且つ大容量で
あることも望まれる。このような点から、非水電解液電
池は、二次電池化、軽量化、大容量化へ向けて研究・開
発が進められている。By the way, the non-aqueous electrolyte batteries including the above-mentioned non-aqueous electrolyte batteries are mainly those having primary battery specifications, but they are economically disadvantageous when used as a power source for portable equipment such as video cameras. Considering this, it is desirable that the rechargeable secondary battery has specifications, and further that it is lightweight and has a large capacity. From this point of view, research and development of non-aqueous electrolyte batteries are being promoted to make them secondary batteries, reduce their weight, and increase their capacity.
【0004】二次電池仕様の非水電解液電池としては、
負極材料としてリチウム,リチウム合金あるいはリチウ
ム吸蔵物質を、正極材料としてMnO2 ,TiS2 ,M
oO3 ,MoS2 ,V2 O5 ,WO3 ,LiCoO2 等
を用いたものが提案されている。As the non-aqueous electrolyte battery of the secondary battery specification,
As a negative electrode material, lithium, a lithium alloy or a lithium occlusion material, and as a positive electrode material, MnO 2 , TiS 2 , M
Those using oO 3 , MoS 2 , V 2 O 5 , WO 3 , LiCoO 2 and the like have been proposed.
【0005】その中で特に、負極材料としてリチウムの
ドープ・脱ドープ可能な炭素材料を、正極材料としてリ
チウム・コバルト複合酸化物もしくはリチウム・ニッケ
ル・コバルト複合酸化物を使用した非水電解液二次電池
は、作動電圧が高く、高いエネルギー密度が得らるとと
もにサイクル性能が金属リチウムあるいはリチウム合金
を負極活物質として使用する非水電解液二次電池に比較
して格段に優れていることから大いに期待されている。Among them, in particular, a non-aqueous electrolyte secondary using a carbon material capable of being doped / dedoped with lithium as a negative electrode material and a lithium / cobalt composite oxide or a lithium / nickel / cobalt composite oxide as a positive electrode material. The battery has high operating voltage, high energy density, and excellent cycle performance compared to non-aqueous electrolyte secondary battery using metallic lithium or lithium alloy as the negative electrode active material. Is expected.
【0006】[0006]
【発明が解決しようとする課題】ところで、上述のよう
な炭素質材料を負極材料として使用する非水電解液二次
電池において、電解液としては、通常、非水溶媒に電解
質としてLiAsF6 ,LiPF6 ,LiBF4 ,Li
CF3 SO3 ,LiCF3 CO2 ,LiClO4,が溶
解されてなるものが用いられ、このうち特にLiAsF
6 とLiPF6 が溶解された電解液を用いると良好な充
放電性能が得られることが報告されている。By the way, in a non-aqueous electrolyte secondary battery using the above-mentioned carbonaceous material as a negative electrode material, the electrolyte is usually a non-aqueous solvent such as LiAsF 6 , LiPF 6 as an electrolyte. 6 , LiBF 4 , Li
CF 3 SO 3, LiCF 3 CO 2, LiClO 4, which is formed by dissolving is used, these particular LiAsF
It has been reported that good charge / discharge performance can be obtained by using an electrolytic solution in which 6 and LiPF 6 are dissolved.
【0007】しかしながら、炭素質材料を負極材料とし
て使用する非水電解液二次電池は、LiAsF6 ,Li
PF6 ,LiBF4 LiCF3 CO2 が溶解された電解
液を使用すると、充放電性能は得られるものの充放電を
繰り返すと容量が著しく低下するといった問題がある。However, the non-aqueous electrolyte secondary battery using the carbonaceous material as the negative electrode material is LiAsF 6 , Li
When an electrolytic solution in which PF 6 and LiBF 4 LiCF 3 CO 2 are dissolved is used, charge and discharge performance can be obtained, but there is a problem that the capacity remarkably decreases when charging and discharging are repeated.
【0008】これは、電解液中のLiAsF6 ,LiP
F6 ,LiBF4 ,LiCF3 CO2 から遊離する酸
分、特にフッ酸分が原因であることが見いだされてい
る。すなわち、電解液として例えばプロピレンカーボネ
ート(PC)と1,2ジメトキシエタン(DME)の等
量混合液にLiPF6 を1mol/l溶解させた電解液
を45℃で保存すると初期の遊離酸分が200ppm
に、10日後には2000ppmに増加する。この遊離
酸分が増えた電解液を上述の電池に用い、高温条件下に
おいて充放電を行うと、4.10V以上の充電電圧で活
物質の溶解や電解液の分解が起こり電池の放電容量が著
しく低下する。This is because LiAsF 6 and LiP in the electrolytic solution
It has been found that the cause is the acid content released from F 6 , LiBF 4 , and LiCF 3 CO 2 , especially the hydrofluoric acid content. That is, as an electrolyte solution, for example, an electrolyte solution in which 1 mol / l of LiPF 6 was dissolved in an equal amount mixture solution of propylene carbonate (PC) and 1,2 dimethoxyethane (DME) was stored at 45 ° C., the initial free acid content was 200 ppm.
After 10 days, it increases to 2000 ppm. When this electrolytic solution with an increased free acid content is used in the above-mentioned battery and charging / discharging is performed under high temperature conditions, the active material is dissolved or the electrolytic solution is decomposed at a charging voltage of 4.10 V or more, and the discharge capacity of the battery is Markedly reduced.
【0009】電解液中の遊離フッ酸分は、金属リチウム
を負極として用いる非水電解液電池では、負極の金属リ
チウムと反応してフッ化リチウムを生成するため、電池
性能に特に影響をおよぼさない。しかし、炭素質材料を
負極として用いる非水電解液二次電池では、このような
安定化合物の生成反応が生じないため、活物質の溶解,
非水溶媒の分解を引き起こし、結果的に電池容量を著し
く低下させることとなる。電解質からのフッ酸遊離を防
止するために、電解液に電解質を安定に存在させるため
種々の添加剤を加える方法が提案されている。しかしな
がら、電解液に添加剤を加えると、添加剤自身の電池性
能への影響が大きく、やはり、満足のいく特性は得られ
ない。In a non-aqueous electrolyte battery using metallic lithium as a negative electrode, the content of free hydrofluoric acid in the electrolytic solution reacts with metallic lithium in the negative electrode to form lithium fluoride, which has a particular effect on battery performance. I don't. However, in a non-aqueous electrolyte secondary battery using a carbonaceous material as a negative electrode, such a formation reaction of a stable compound does not occur, so that the active material is dissolved,
This causes decomposition of the non-aqueous solvent, resulting in a marked decrease in battery capacity. In order to prevent the release of hydrofluoric acid from the electrolyte, a method has been proposed in which various additives are added in order to make the electrolyte stably exist in the electrolytic solution. However, when the additive is added to the electrolytic solution, the effect of the additive itself on the battery performance is large, and satisfactory characteristics cannot be obtained.
【0010】そこで本発明は、かかる従来の実情に鑑み
て提案されたものであって、電解液の安定性が高く、充
放電サイクル性能に優れた非水電解液電池を提供するこ
とを目的とする。Therefore, the present invention has been proposed in view of the above conventional circumstances, and an object thereof is to provide a non-aqueous electrolyte battery having high stability of the electrolyte and excellent charge / discharge cycle performance. To do.
【0011】[0011]
【課題を解決するための手段】上述の目的を達成するた
めに、本発明の非水電解液電池は、リチウムのドープ・
脱ドープ可能な炭素質材料よりなる負極と、正極と、非
水溶媒に電解質が溶解されてなる非水電解液を有してな
る非水電解液電池において、上記非水電解液の遊離酸分
が100ppm以下であることを特徴とするものであ
る。In order to achieve the above-mentioned object, the non-aqueous electrolyte battery of the present invention comprises a lithium dope.
In a non-aqueous electrolyte battery comprising a negative electrode made of a carbonaceous material capable of dedoping, a positive electrode, and a non-aqueous electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent, a free acid content of the non-aqueous electrolytic solution Is 100 ppm or less.
【0012】また、本発明の製造方法は、非水電解液を
調製するに際し、非水溶媒に電解質を溶解した後、遊離
酸分を化学吸着または化学反応により除去することを特
徴とするものである。Further, the production method of the present invention is characterized in that, when preparing the non-aqueous electrolytic solution, the free acid content is removed by chemisorption or chemical reaction after dissolving the electrolyte in the non-aqueous solvent. is there.
【0013】本発明の非水電解液電池では、負極材料と
して炭素質材料を使用する。炭素質材料を負極材料とし
て使用する非水電解液電池は、LiAsF6 ,LiPF
6 ,LiBF4 ,LiCF3 CO2 が溶解された電解液
を使用した場合に良好な充放電性能を発揮する。ところ
が、このような電解液は、電解質からフッ酸が遊離する
ため、これによって活物質の溶解、非水溶媒の分解を誘
発し、電池容量が著しく低下させる。In the non-aqueous electrolyte battery of the present invention, a carbonaceous material is used as the negative electrode material. A non-aqueous electrolyte battery using a carbonaceous material as a negative electrode material is LiAsF 6 , LiPF
Good charge / discharge performance is exhibited when an electrolyte solution in which 6 , LiBF 4 , and LiCF 3 CO 2 are dissolved is used. However, in such an electrolytic solution, hydrofluoric acid is liberated from the electrolyte, which induces dissolution of the active material and decomposition of the non-aqueous solvent, resulting in a marked decrease in battery capacity.
【0014】そこで、本発明においては、このような電
池容量の低下を防止するために、電解液の遊離酸分濃度
を100ppm以下、好ましくは50ppm以下に規制
する。電解液の遊離酸分を100ppm以下に規制する
ことにより、遊離フッ酸による活物質の溶解,非水溶媒
の分解が抑えられ、良好な充放電サイクル性能を発揮す
るものとなる。Therefore, in the present invention, in order to prevent such a decrease in battery capacity, the concentration of free acid in the electrolytic solution is regulated to 100 ppm or less, preferably 50 ppm or less. By limiting the free acid content of the electrolytic solution to 100 ppm or less, dissolution of the active material due to free hydrofluoric acid and decomposition of the non-aqueous solvent are suppressed, and good charge / discharge cycle performance is exhibited.
【0015】遊離酸分が100ppm以下の電解液を調
製するには、非水溶媒に電解質を溶解した後、この電解
質溶液に対して遊離酸分除去処理を施せばよい。In order to prepare an electrolytic solution having a free acid content of 100 ppm or less, it is sufficient to dissolve the electrolyte in a non-aqueous solvent and then subject the electrolytic solution to a free acid removal treatment.
【0016】遊離酸分除去処理としては、遊離酸分を化
学吸着する粉末を用い、この化学吸着粉末に遊離酸分を
吸着させる方法、遊離酸分を化学反応させて化合物を生
成する方法、蒸留によって遊離酸分を除去する方法等が
あるが、操作が簡単であるとともに電解質に対する影響
がほとんどないことから化学吸着粉末を用いる方法が好
適である。すなわち、化合物を生成する方法では、最終
的に生成化合物を化学吸着物質等によって除去しなけれ
ばならないため、工程数が多く、操作が煩雑であり、蒸
留を用いる方法では、電解質が高温条件下において不安
定であるため、電解液の特性が劣化する虞れがある。As the free acid removal treatment, a powder that chemically adsorbs the free acid is used, a method of adsorbing the free acid to the chemisorbed powder, a method of chemically reacting the free acid to produce a compound, and a distillation. Although there is a method of removing the free acid content by the method, the method of using the chemisorption powder is preferable because the operation is simple and there is almost no influence on the electrolyte. That is, in the method of producing a compound, since the produced compound must be finally removed by a chemisorbed substance or the like, the number of steps is large and the operation is complicated. Since it is unstable, the characteristics of the electrolytic solution may deteriorate.
【0017】化学吸着粉末を用いる方法において、化学
吸着粉末としては、Al2 O3 ,BaO,MgO,活性
炭,モレキュラーシーブ,微粉化二酸化珪素,各種金属
酸化物の微粉末,熱処理したアセチレンブラック、コー
クス類等が使用される。In the method using the chemically adsorbed powder, the chemically adsorbed powder may be Al 2 O 3 , BaO, MgO, activated carbon, molecular sieve, finely divided silicon dioxide, fine powder of various metal oxides, heat-treated acetylene black, coke. Kinds etc. are used.
【0018】これら化学吸着粉末を使用して溶液中の遊
離酸分を除去するには、たとえば溶液中に化学吸着粉末
を添加して攪拌し、攪拌後、溶液を濾過する、あるいは
化学吸着粉末をカラムに充填し、このカラムに溶液を通
過させればよい。In order to remove the free acid content in the solution using these chemisorption powders, for example, the chemisorption powder is added to the solution and stirred, and after stirring, the solution is filtered, or the chemisorption powder is removed. It may be packed in a column and the solution may be passed through this column.
【0019】なお、上記非水電解液電池において負極材
料として使用される炭素質材料は、ポリアセチレン、ポ
リピロール等の導電性ポリマー、あるいはコークス、ポ
リマー炭、カーボン・ファイバー等の炭素材料を用いる
ことができるが、単位体積当りのエネルギー密度が大き
い点から、炭素質材料を使用することが望ましい。炭素
質材料としては、熱分解炭素類、コークス類(石油コー
クス、ピッチコークス、石炭コークス等)、カーボンブ
ラック(アセチレンブラック等)、ガラス状炭素、有機
高分子材料焼成体(有機高分子材料を500℃以上の適
当な温度で不活性ガス気流中、あるいは真空中で焼成し
たもの)、炭素繊維等が用いられる。The carbonaceous material used as the negative electrode material in the non-aqueous electrolyte battery may be a conductive polymer such as polyacetylene or polypyrrole, or a carbon material such as coke, polymer charcoal or carbon fiber. However, it is desirable to use a carbonaceous material because the energy density per unit volume is large. As the carbonaceous material, pyrolytic carbons, cokes (petroleum coke, pitch coke, coal coke, etc.), carbon black (acetylene black, etc.), glassy carbon, organic polymer material fired body (organic polymer material 500 Carbon fiber or the like is used, which is fired at a suitable temperature of ℃ or higher in an inert gas stream or in a vacuum).
【0020】一方、正極材料としては、二酸化マンガ
ン、五酸化バナジウムのような遷移金属酸化物や、硫化
鉄、硫化チタンのような遷移金属カルコゲン化物、さら
にはこれらとリチウムとの複合化合物などを用いること
ができる。特に、高電圧、高エネルギー密度が得られ、
サイクル特性にも優れることから、リチウム・コバルト
複合酸化物やリチウム・コバルト・ニッケル複合酸化物
が望ましい。On the other hand, as the positive electrode material, transition metal oxides such as manganese dioxide and vanadium pentoxide, transition metal chalcogenides such as iron sulfide and titanium sulfide, and composite compounds of these with lithium are used. be able to. In particular, high voltage and high energy density are obtained,
Lithium-cobalt composite oxide and lithium-cobalt-nickel composite oxide are preferable because they have excellent cycle characteristics.
【0021】電解液に用いる有機溶媒としては、特に限
定されるものではないが、プロピレンカーボネート、エ
チレンカーボネート、ブチレンカーボネート、γブチル
ラクトン、1,2−ジメトキシエタン、1,2−ジエト
キシエタン、テトラヒドロフラン、2−メチルテトラヒ
ドロフラン、1,3−ジオキソラン、4−メチル−1,
3−ジオキソラン、ジグライム類、トリグライム類、ス
ルホラン、炭酸ジメチル、炭酸ジエチル、炭酸ジプロピ
ル等の単独もしくは二種以上の混合溶媒が使用できる。The organic solvent used in the electrolytic solution is not particularly limited, but propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyl lactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran. , 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,
A single solvent or a mixture of two or more kinds of 3-dioxolane, diglymes, triglymes, sulfolane, dimethyl carbonate, diethyl carbonate, dipropyl carbonate and the like can be used.
【0022】[0022]
【作用】本発明では、炭素質材料を負極材料に使用する
非水電解液電池において、電解液の遊離酸分濃度を10
0ppm以下と低く抑える。遊離酸分の多い電解液を使
用する非水電解液電池では、電解液中に存在する活物質
の金属成分が高電位による溶解反応を引き起こしやすい
状態になっており、遊離酸分の作用によって金属成分が
容易に腐食・溶解し、充放電サイクルに伴う容量低下が
大きい。In the present invention, in a non-aqueous electrolyte battery using a carbonaceous material as the negative electrode material, the concentration of free acid in the electrolyte is 10%.
Keep it as low as 0 ppm or less. In a non-aqueous electrolyte battery that uses an electrolyte solution with a high free acid content, the metal components of the active material present in the electrolyte solution are in a state where they are likely to cause a dissolution reaction due to a high potential. The components easily corrode and dissolve, resulting in a large decrease in capacity with charge / discharge cycles.
【0023】遊離酸分濃度が100ppm以下の電解液
を使用する非水電解液電池では、このような遊離酸分に
よって引き起こされる容量低下が防止されるので、良好
な充放電サイクル特性を発揮する。なお、遊離酸分濃度
が100ppm以下の電解液は、電解質溶液をたとえば
Al2 O3 粉末等に接触させることによって該粉末に遊
離酸分を化学的に吸着させ、除去することにより容易に
調製される。In a non-aqueous electrolyte battery using an electrolytic solution having a free acid content concentration of 100 ppm or less, such a capacity reduction caused by the free acid content is prevented, and thus good charge / discharge cycle characteristics are exhibited. An electrolytic solution having a free acid content of 100 ppm or less is easily prepared by contacting an electrolyte solution with, for example, Al 2 O 3 powder to chemically adsorb the free acid content and removing the free acid content. It
【0024】[0024]
【実施例】以下、本発明の具体的な実施例について実験
結果に基づいて説明する。EXAMPLES Specific examples of the present invention will be described below based on experimental results.
【0025】実施例1 本実施例で作製した非水電解液電池の構成を図1に示
す。 Example 1 The constitution of the non-aqueous electrolyte battery produced in this example is shown in FIG.
【0026】まず、負極1は次のようにして作製した。
出発原料として石油ピッチを用い、これに酸素を含む官
能基を10〜20%導入(いわゆる酸素架橋)した後、
不活性ガス気流中1000℃で熱処理して、ガラス状炭
素に近い性質を持った炭素材料を得た。この炭素材料に
ついてX線回折測定を行った結果、(002)面の面間
隔は3.76Åであった。この炭素材料を粉砕し、平均
粒径10μmの炭素材料粉末とした。First, the negative electrode 1 was manufactured as follows.
After using petroleum pitch as a starting material and introducing 10 to 20% of a functional group containing oxygen into this (so-called oxygen crosslinking),
Heat treatment was performed at 1000 ° C. in an inert gas stream to obtain a carbon material having properties similar to glassy carbon. As a result of X-ray diffraction measurement of this carbon material, the spacing between (002) planes was 3.76Å. This carbon material was crushed to obtain a carbon material powder having an average particle size of 10 μm.
【0027】この様にして得た炭素材料粉末を負極活物
質とし、この炭素材料粉末90重量部、結着剤となるポ
リフッ化ビニリデン(PVDF)10重量部を混合し、
負極合剤を調製した。この負極合剤を溶剤となるN−メ
チル−2−ピロリドンに分散させてスラリー状にした。
そして、この負極合剤スラリーを負極集電体9となる厚
さ10μmの帯状の銅箔の両面に均一に塗布して乾燥さ
せた後、ロールプレス機で圧縮成形し、帯状負極1を作
製した。The carbon material powder thus obtained was used as a negative electrode active material, and 90 parts by weight of this carbon material powder and 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder were mixed,
A negative electrode mixture was prepared. This negative electrode mixture was dispersed in N-methyl-2-pyrrolidone as a solvent to form a slurry.
Then, this negative electrode mixture slurry was uniformly applied to both surfaces of a strip-shaped copper foil having a thickness of 10 μm to be the negative electrode current collector 9, dried and then compression-molded by a roll press machine to fabricate a strip-shaped negative electrode 1. ..
【0028】次に、正極2は次のように作製した。正極
活物質(LiCoO2 )は、炭酸リチウム0.5モルと
炭酸コバルト1モルを混合し、900℃で5時間空気中
において焼成して得た。このLiCoO291.0重量
部と結着剤となるポリフッ化ビニリデン3重量部を混合
して正極合剤を調製した。この正極合剤を溶剤となるN
−メチル−2−ピロリドンに分散させてスラリー状とし
た。この正極合剤スラリーを正極集電体10となる厚さ
20μmの帯状アルミニウム箔の両面に均一に塗布して
乾燥させた後、ロールプレス機で圧縮成形し、帯状正極
2を作製した。Next, the positive electrode 2 was manufactured as follows. The positive electrode active material (LiCoO 2 ) was obtained by mixing 0.5 mol of lithium carbonate and 1 mol of cobalt carbonate and firing the mixture in air at 900 ° C. for 5 hours. A positive electrode mixture was prepared by mixing 91.0 parts by weight of this LiCoO 2 and 3 parts by weight of polyvinylidene fluoride serving as a binder. This positive electrode mixture serves as a solvent for N
-Methyl-2-pyrrolidone was dispersed into a slurry. This positive electrode mixture slurry was uniformly applied to both sides of a 20 μm-thick strip-shaped aluminum foil serving as the positive electrode current collector 10, dried, and then compression-molded by a roll press machine to prepare a strip-shaped positive electrode 2.
【0029】帯状負極1と帯状正極2および厚さ25μ
mの微孔性ポリプロピレンフィルムより成るセパレータ
3を負極1、セパレータ3、正極2、セパレータ3の順
序に積層し、この積層体を渦巻体に多数回巻回すること
によって、図1に示したような渦巻式電極素子を作製し
た。Strip negative electrode 1, strip positive electrode 2 and thickness 25 μ
As shown in FIG. 1, the separator 3 made of the microporous polypropylene film of m was laminated in the order of the negative electrode 1, the separator 3, the positive electrode 2, and the separator 3, and the laminated body was wound many times around the spiral body. A spiral electrode element was manufactured.
【0030】このようにして作製した渦巻式電極素子を
ニッケルメッキを施した鉄製容器5に収納した。渦巻式
電極素子上下両面には絶縁板4を配置し、アルミニウム
製正極リード12を正極集電体10から導出して電池蓋
7に、ニッケル製負極リード11を負極集電体9から導
出して電池缶5に溶接した。The spirally-wound electrode element thus produced was housed in a nickel-plated iron container 5. Insulating plates 4 are arranged on both upper and lower surfaces of the spiral electrode element, and the aluminum positive electrode lead 12 is led out from the positive electrode current collector 10 to the battery lid 7, and the nickel negative electrode lead 11 is led out from the negative electrode current collector 9. It was welded to the battery can 5.
【0031】次に、電池缶内に注入する電解液を以下の
ようにして調製した。プロピレンカーボネート(PC)
50容量%と1,2−ジメトキシエタン(DME)50
容量%を混合した溶媒中にLiPF6 を1mol/l溶
解させた。そして、この溶液を乾燥したBaO粉末が充
填されたカラムを通過させ、遊離酸分濃度を測定した。Next, an electrolytic solution to be injected into the battery can was prepared as follows. Propylene carbonate (PC)
50% by volume and 1,2-dimethoxyethane (DME) 50
LiPF 6 was dissolved at 1 mol / l in a solvent mixed with volume%. Then, this solution was passed through a column filled with dried BaO powder to measure the concentration of free acid.
【0032】遊離酸分濃度を測定するには、まず、試料
10gをドライボックス中(水分100ppm以下)で
化学天秤を用いて共栓付きフラスコに精秤し、分取し
た。次いで、予め氷:蒸留水が50:50なる割合とな
るように混合した冷水を上記試料に加え100mlと
し、さらに指示薬としてブロムチモールブルー粉末を2
0g加え、溶液温度を0〜5℃とした。そして、この溶
液について、予めファクターFが求められているN/1
0NaOH溶液を用いて中和点をもとめた。なお、終点
は橙色から青紫色に変わり青紫色が5秒間持続した点と
した。もとめられた中和点より以下の式に基づいて酸分
濃度を計算した。In order to measure the concentration of free acid, first, 10 g of a sample was precisely weighed in a dry stopper (water content of 100 ppm or less) in a flask with a stopper, and collected. Then, cold water mixed in advance with ice: distilled water at a ratio of 50:50 was added to the above sample to make 100 ml, and further 2 mg of bromthymol blue powder was used as an indicator.
0 g was added, and the solution temperature was adjusted to 0 to 5 ° C. Then, for this solution, the factor F for which N is calculated in advance is N / 1.
The neutralization point was determined using 0 NaOH solution. The end point was changed from orange to bluish purple and the bluish purple continued for 5 seconds. From the obtained neutralization point, the acid concentration was calculated based on the following formula.
【0033】C=(0.002×A×F/S)×100 A:中和点(ml) C:酸分濃度(重量%) F:NaOHのファクターF S:試料重量(g) その結果、上記電解液の酸分濃度は、30ppmであっ
た。C = (0.002 × A × F / S) × 100 A: Neutralization point (ml) C: Acid content concentration (wt%) F: Factor of NaOH F S: Sample weight (g) Results The acid concentration of the electrolytic solution was 30 ppm.
【0034】このようにして調製した電解液を電池缶内
に注入し、アスファルトを塗布した絶縁封口ガスケット
6を介して電池缶5をかしめることで電池蓋7を固定
し、直径20mm、高さ50mmの円筒非水電解液電池
(実施例電池1)を作製した。The electrolyte thus prepared is poured into a battery can, and the battery can 5 is caulked through an asphalt-coated insulating sealing gasket 6 to fix the battery lid 7, and the diameter is 20 mm, and the height is 20 mm. A 50 mm cylindrical non-aqueous electrolyte battery (Example battery 1) was produced.
【0035】そして、作製した電池について、充電電流
1A、充電時間2.5時間、上限電圧4.1Vの条件で
充電を行い、抵抗6オーム、終止電圧2.5Vの条件で
放電する充放電サイクルを繰り返し行った。そして、1
0サイクル目および100サイクル目の放電容量を測定
した。その結果を表1に示す。A charging / discharging cycle in which the manufactured battery is charged under the conditions of a charging current of 1 A, a charging time of 2.5 hours and an upper limit voltage of 4.1 V, and is discharged under the conditions of a resistance of 6 ohms and an end voltage of 2.5 V. Was repeated. And 1
The discharge capacity at the 0th cycle and the 100th cycle was measured. The results are shown in Table 1.
【0036】実施例2 電解液を調製するに際し、PC50容量%、DME50
容量%の混合溶媒中にLiPF6 を1mol/l溶解し
て電解質溶液を調製し、この電解質溶液を、乾燥MgO
粉末の充填カラムを通過させたこと以外は実施例1と同
様にして非水電解液電池(実施例電池2)を作製した。
なお、調製した電解液の遊離酸分は45ppmであっ
た。 Example 2 In preparing an electrolytic solution, PC50% by volume, DME50
An electrolyte solution was prepared by dissolving 1 mol / l of LiPF 6 in a mixed solvent of volume%, and the electrolyte solution was dried with MgO.
A nonaqueous electrolyte battery (Example battery 2) was produced in the same manner as in Example 1 except that the powder was passed through a packed column.
The free acid content of the prepared electrolytic solution was 45 ppm.
【0037】作製した非水電解液電池について実施例1
と同様にして充放電サイクルを繰り返し行い、10サイ
クル目および100サイクル目の放電容量を測定した。
その結果を表1に示す。Example 1 of the produced non-aqueous electrolyte battery
The charge / discharge cycle was repeated in the same manner as in, and the discharge capacities at the 10th cycle and the 100th cycle were measured.
The results are shown in Table 1.
【0038】実施例3 電解液を調製するに際し、PC50容量L%とDME50
容量%を混合した溶媒中にLiPF6 を1mol/l溶
解して電解質溶液を調製し、この電解質溶液を、乾燥し
たAl2 03 粉末の充填カラムを通過させてこと以外は
実施例1と同様にして非水電解液電池(実施例電池3)
を作製した。なお、調製した電解液の遊離酸分は35p
pmであった。 Example 3 In preparing an electrolytic solution, PC50 volume L% and DME50
Same as Example 1 except that 1 mol / l of LiPF 6 was dissolved in a solvent mixed with volume% to prepare an electrolyte solution, and the electrolyte solution was passed through a packed column of dried Al 2 O 3 powder. And non-aqueous electrolyte battery (Example battery 3)
Was produced. The free acid content of the prepared electrolyte was 35 p.
It was pm.
【0039】作製した非水電解液電池について実施例1
と同様にして充放電サイクルを繰り返し行い、10サイ
クル目および100サイクル目の放電容量を測定した。
その結果を表1に示す。Example 1 of the produced non-aqueous electrolyte battery
The charge / discharge cycle was repeated in the same manner as in, and the discharge capacities at the 10th cycle and the 100th cycle were measured.
The results are shown in Table 1.
【0040】実施例4 電解液を調製するに際し、PC50容量%とDME50
容量%を混合した溶媒中にLiPF6 を1mol/l溶
解して電解質溶液を調製し、この電解質溶液を、乾燥し
た炭素(活性炭)粉末の充填カラムを通過させたこと以
外は実施例1と同様にして非水電解液電池(実施例電池
4)を作製した。なお、この電解液の遊離酸分は75p
pmであった。 Example 4 In preparing an electrolytic solution, PC50% by volume and DME50 were used.
LiPF 6 was dissolved in a solvent mixed with 1% by volume of 1 mol / l to prepare an electrolyte solution, and this electrolyte solution was passed through a packed column of dry carbon (activated carbon) powder, as in Example 1. A non-aqueous electrolyte battery (Example battery 4) was produced. The free acid content of this electrolyte is 75 p
It was pm.
【0041】作製した非水電解液電池について実施例1
と同様にして充放電サイクルを繰り返し行い、10サイ
クル目および100サイクル目の放電容量を測定した。
その結果を表1に示す。Example 1 of the produced non-aqueous electrolyte battery
The charge / discharge cycle was repeated in the same manner as in, and the discharge capacities at the 10th cycle and the 100th cycle were measured.
The results are shown in Table 1.
【0042】実施例5 電解液を調製するに際し、PC50容量%とDME50
容量%を混合した溶媒中にLiBF6 を1mol/l溶
解して電解質溶液を調製し、この電解質溶液を、乾燥し
たAl2 03 粉末の充填カラムを通過させたこと以外は
実施例1と同様にして非水電解液電池(実施例電池5)
を作製した。なお、この電解液の遊離酸分は30ppm
であった。 Example 5 In preparing an electrolytic solution, PC50% by volume and DME50 were used.
LiBF 6 was dissolved in a solvent mixed with 1% by volume of 1 mol / l to prepare an electrolyte solution, and this electrolyte solution was passed through a packed column of dried Al 2 O 3 powder, as in Example 1. Non-aqueous electrolyte battery (Example battery 5)
Was produced. The free acid content of this electrolyte was 30 ppm.
Met.
【0043】作製した非水電解液電池について実施例1
と同様にして充放電サイクルを繰り返し行い、10サイ
クル目および100サイクル目の放電容量を測定した。
その結果を表1に示す。Example 1 of the produced non-aqueous electrolyte battery
The charge / discharge cycle was repeated in the same manner as in, and the discharge capacities at the 10th cycle and the 100th cycle were measured.
The results are shown in Table 1.
【0044】実施例6 電解液を調製するに際し、PC50容量%とDME50
容量%を混合した溶媒中にLiCF3 CO2 を1mol
/l溶解して電解質溶液を調製し、この電解質溶液を、
乾燥したAl2 03 粉末の充填カラムを通過させたこと
以外は実施例1と同様にして非水電解液電池(実施例電
池6)を作製した。なお、この電解液の遊離酸分は60
ppmであった。 Example 6 In preparing an electrolytic solution, PC50% by volume and DME50 were used.
1 mol of LiCF 3 CO 2 was added to the solvent mixed with vol%.
/ L is dissolved to prepare an electrolyte solution, and this electrolyte solution is
Except that passed through a packed column of the dried Al 2 0 3 powder was formed in the same manner as in a non-aqueous electrolyte battery of Example 1 (Example battery 6). The free acid content of this electrolyte is 60
It was ppm.
【0045】作製した非水電解液電池について実施例1
と同様にして充放電サイクルを繰り返し行い、10サイ
クル目および100サイクル目の放電容量を測定した。
その結果を表1に示す。Example 1 of the produced non-aqueous electrolyte battery
The charge / discharge cycle was repeated in the same manner as in, and the discharge capacities at the 10th cycle and the 100th cycle were measured.
The results are shown in Table 1.
【0046】実施例7 電解液を調製するに際し、PC50容量%と炭酸ジエチ
ル(DEC)50容量%を混合した溶媒中にLiPF6
を1mol/l溶解して電解質溶液を調製し、この電解
質溶液を、乾燥したAl2 03 粉末の充填カラムを通過
させたこと以外は実施例1と同様にして非水電解液電池
(実施例電池7)を作製した。なお、この電解液の遊離
酸分は25ppmであった。 Example 7 In preparing an electrolytic solution, LiPF 6 was added to a solvent prepared by mixing 50% by volume of PC and 50% by volume of diethyl carbonate (DEC).
Was dissolved in an amount of 1 mol / l to prepare an electrolyte solution, and this electrolyte solution was passed through a packed column of dried Al 2 O 3 powder in the same manner as in Example 1 (non-aqueous electrolyte battery (Example A battery 7) was produced. The free acid content of this electrolytic solution was 25 ppm.
【0047】このようにして作製した非水電解液電池に
ついて実施例1と同様にして充放電サイクルを繰り返し
行い、10サイクル目および100サイクル目の放電容
量を測定した。その結果を表1に示す。The non-aqueous electrolyte battery thus produced was repeatedly charged and discharged in the same manner as in Example 1, and the discharge capacities at the 10th and 100th cycles were measured. The results are shown in Table 1.
【0048】比較例1 電解液を調製するに際し、PC50容量%とDME50
容量%を混合した溶媒中にLiPF6 を1mol/l溶
解し、この電解質溶液を遊離酸分除去処理を施さずにそ
のまま電解液として使用したこと以外は実施例1と同様
にして非水電解液電池(比較例電池1)を作製した。な
お、この電解液の遊離酸分は150ppmであった。 Comparative Example 1 In preparing an electrolytic solution, 50% by volume of PC and 50% of DME were used.
A non-aqueous electrolyte solution was prepared in the same manner as in Example 1 except that 1 mol / l of LiPF 6 was dissolved in a solvent mixed with a volume percentage, and this electrolyte solution was used as an electrolyte solution as it was without performing a treatment to remove free acid. A battery (Comparative Example Battery 1) was produced. The free acid content of this electrolytic solution was 150 ppm.
【0049】このようにして作製した非水電解液電池に
ついて実施例1と同様にして充放電サイクルを繰り返し
行い、10サイクル目および100サイクル目の放電容
量を測定した。その結果を表1に示す。The non-aqueous electrolyte battery thus produced was repeatedly charged and discharged in the same manner as in Example 1, and the discharge capacities at the 10th and 100th cycles were measured. The results are shown in Table 1.
【0050】比較例2 電解液を調製するに際し、PC50容量%と炭酸ジエチ
ル(DEC)50容量%を混合した溶媒中にLiPF6
を1mol/l溶解し、この電解質溶液を遊離酸分除去
処理を施さずにそのまま電解液として使用したこと以外
は実施例1と同様にして非水電解液電池(比較例電池
2)を作製した。なお、この電解液の遊離酸分は105
ppmであった。 Comparative Example 2 In preparing an electrolytic solution, LiPF 6 was added to a solvent prepared by mixing 50% by volume of PC and 50% by volume of diethyl carbonate (DEC).
Was dissolved in an amount of 1 mol / l, and a non-aqueous electrolyte battery (Comparative battery 2) was prepared in the same manner as in Example 1 except that this electrolyte solution was used as an electrolytic solution as it was without performing a treatment to remove free acid. .. The free acid content of this electrolyte was 105
It was ppm.
【0051】このようにして作製した非水電解液電池に
ついて実施例1と同様にして充放電サイクルを繰り返し
行い、10サイクル目および100サイクル目の放電容
量を測定した。その結果を表1に示す。The non-aqueous electrolyte battery thus produced was repeatedly charged and discharged in the same manner as in Example 1, and the discharge capacities at the 10th and 100th cycles were measured. The results are shown in Table 1.
【0052】比較例3 電解液を調製するに際し、PC50容量%と炭酸ジエチ
ル(DEC)50容量%を混合した溶媒中にLiPF6
を1mol/l溶解させ、この電解質溶液を常温で6か
月保存した後電解液として使用したこと以外は実施例1
と同様にして非水電解液電池(比較例電池3)を作製し
た。なお、この電解液の遊離酸分は250ppmであっ
た。 Comparative Example 3 When preparing an electrolytic solution, LiPF 6 was added to a solvent prepared by mixing 50% by volume of PC and 50% by volume of diethyl carbonate (DEC).
Was dissolved in 1 mol / l, and this electrolyte solution was stored at room temperature for 6 months and then used as an electrolyte solution.
A non-aqueous electrolyte battery (Comparative Example Battery 3) was produced in the same manner as in. The free acid content of this electrolytic solution was 250 ppm.
【0053】このようにして作製した非水電解液電池に
ついて実施例1と同様にして充放電サイクルを繰り返し
行い、10サイクル目および100サイクル目の放電容
量を測定した。その結果を表1に示す。The non-aqueous electrolyte battery thus produced was repeatedly charged and discharged in the same manner as in Example 1, and the discharge capacities at the 10th and 100th cycles were measured. The results are shown in Table 1.
【0054】[0054]
【表1】 [Table 1]
【0055】表1からわかるように、非水電解液電池に
おいては、電解液の遊離酸分濃度が低いもの程、充放電
サイクルに伴う容量低下が小さくなており、遊離酸分が
100ppm以下の電解液を用いた実施例電池1〜実施
例電池7はいずれも容量保持率(100サイクル目の放
電容量/10サイクル目の放電容量)が高い。さらに遊
離酸分が50ppm以下と低い電解液を用いた実施例電
池1〜実施例電池3,実施例電池6,実施例電池7は容
量保持率が89%以上となっている。As can be seen from Table 1, in the non-aqueous electrolyte battery, the lower the free acid concentration of the electrolytic solution, the smaller the decrease in capacity with charge / discharge cycles, and the free acid content is 100 ppm or less. Each of the example batteries 1 to 7 using the electrolytic solution has a high capacity retention rate (discharge capacity at 100th cycle / 10 discharge capacity at 10th cycle). Furthermore, the capacity retention of the example batteries 1 to example batteries 3, example batteries 6, and example batteries 7 using the electrolytic solution having a low free acid content of 50 ppm or less is 89% or more.
【0056】したがって、このことから、非水電解液電
池において、電解質の遊離酸分濃度を規制することは容
量保持率を向上させる上で有効であることがわかった。Therefore, it was found from the above that in the non-aqueous electrolyte battery, controlling the concentration of the free acid component of the electrolyte is effective in improving the capacity retention rate.
【0057】[0057]
【発明の効果】以上の説明からも明らかなように、本発
明の非水電解液電池においては、電解液の遊離酸分濃度
を100ppm以下と低く抑えているので、充放電サイ
クル性能、高温保存性能、自己放電性能、電解液の安定
性等の向上が可能である。しかも、電解液そのものの保
存性能も向上できる。As is clear from the above description, in the non-aqueous electrolyte battery of the present invention, the concentration of free acid in the electrolyte solution is kept as low as 100 ppm or less. It is possible to improve performance, self-discharge performance, stability of electrolyte, and the like. Moreover, the storage performance of the electrolytic solution itself can be improved.
【図1】本発明の非水電解液電池の一例を示す概略縦断
面図である。FIG. 1 is a schematic vertical sectional view showing an example of a non-aqueous electrolyte battery of the present invention.
1 ・・・負極 2 ・・・正極 3 ・・・セパレータ 4 ・・・絶縁板 5 ・・・電池缶 6 ・・・絶縁ガスケット 7 ・・・電池蓋 9 ・・・負極集電体 10・・・正極集電体 11・・・負極リード 12・・・正極リード 1 ... Negative electrode 2 ... Positive electrode 3 ... Separator 4 ... Insulating plate 5 ... Battery can 6 ... Insulating gasket 7 ... Battery lid 9 ... Negative electrode current collector 10 ... -Positive electrode current collector 11 ... Negative electrode lead 12 ... Positive electrode lead
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小島 哲雄 埼玉県富士見市水谷東3−11−1 富山薬 品工業株式会社志木工場内 (72)発明者 六角 隆広 埼玉県富士見市水谷東3−11−1 富山薬 品工業株式会社志木工場内 (72)発明者 市川 和人 埼玉県富士見市水谷東3−11−1 富山薬 品工業株式会社志木工場内 (72)発明者 藤野 高志 埼玉県富士見市水谷東3−11−1 富山薬 品工業株式会社志木工場内 (72)発明者 鹿子木 洋一 埼玉県富士見市水谷東3−11−1 富山薬 品工業株式会社志木工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuo Kojima 3-11-1, Mizutani Higashi, Fujimi City, Saitama Prefecture Toyama Yakuhin Kogyo Co., Ltd. Shiki Plant (72) Inventor Takahiro Rokkaku 3-11 Mizutani Higashi, Fujimi City, Saitama Prefecture -1 Toyama Yakuhin Kogyo Co., Ltd. Shiki Factory (72) Inventor Kazuto Ichikawa 3-11-1 Mizutani Higashi, Fujimi City, Saitama Prefecture Toyama Yakuhin Kogyo Co., Ltd. Inside Shiki Factory (72) Inventor Takashi Fujino Fujimi City, Saitama Prefecture 3-11-1 Mizutani Higashi Toyama Yakuhin Kogyo Co., Ltd. Shiki Factory (72) Inventor Yoichi Kagogi 3-11-1 Mizutani Higashi Fujimi, Saitama Prefecture Toyama Yakuhin Kogyo Co., Ltd. Shiki Factory
Claims (2)
質材料よりなる負極と、正極と、非水溶媒に電解質が溶
解されてなる非水電解液を有してなる非水電解液電池に
おいて、 上記非水電解液の遊離酸分が100ppm以下であるこ
とを特徴とする非水電解液電池。1. A non-aqueous electrolyte battery comprising a negative electrode made of a carbonaceous material capable of being doped and dedoped with lithium, a positive electrode, and a non-aqueous electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent, A non-aqueous electrolyte battery, wherein the free acid content of the non-aqueous electrolyte is 100 ppm or less.
に電解質を溶解して電解質溶液を調製した後、該電解質
溶液中の遊離酸分を化学吸着または化学反応により除去
することを特徴とする非水電解液電池の製造方法。2. When preparing a non-aqueous electrolyte, the electrolyte is dissolved in a non-aqueous solvent to prepare an electrolyte solution, and then the free acid component in the electrolyte solution is removed by chemisorption or chemical reaction. And a method for manufacturing a non-aqueous electrolyte battery.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4143764A JPH05315006A (en) | 1992-05-11 | 1992-05-11 | Noaqueous electrolyte cell and manufacture thereof |
JP2001306764A JP2002175835A (en) | 1992-05-11 | 2001-10-02 | Manufacturing method of nonaqueous electrolytic liquid and the nonaqueous electrolytic liquid secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4143764A JPH05315006A (en) | 1992-05-11 | 1992-05-11 | Noaqueous electrolyte cell and manufacture thereof |
JP2001306764A JP2002175835A (en) | 1992-05-11 | 2001-10-02 | Manufacturing method of nonaqueous electrolytic liquid and the nonaqueous electrolytic liquid secondary battery |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001306764A Division JP2002175835A (en) | 1992-05-11 | 2001-10-02 | Manufacturing method of nonaqueous electrolytic liquid and the nonaqueous electrolytic liquid secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05315006A true JPH05315006A (en) | 1993-11-26 |
Family
ID=59579323
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4143764A Pending JPH05315006A (en) | 1992-05-11 | 1992-05-11 | Noaqueous electrolyte cell and manufacture thereof |
JP2001306764A Pending JP2002175835A (en) | 1992-05-11 | 2001-10-02 | Manufacturing method of nonaqueous electrolytic liquid and the nonaqueous electrolytic liquid secondary battery |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001306764A Pending JP2002175835A (en) | 1992-05-11 | 2001-10-02 | Manufacturing method of nonaqueous electrolytic liquid and the nonaqueous electrolytic liquid secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (2) | JPH05315006A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07302613A (en) * | 1994-04-28 | 1995-11-14 | Zenichiro Takehara | Lithium system secondary battery |
WO1999034471A1 (en) * | 1997-12-26 | 1999-07-08 | Tonen Corporation | Electrolyte for lithium cells and method of producing the same |
WO1999067844A1 (en) * | 1998-06-20 | 1999-12-29 | Merck Patent Gmbh | Purification of battery electrolytes by means of physical adsorption |
EP1094537A2 (en) * | 1999-10-19 | 2001-04-25 | Ngk Insulators, Ltd. | Lithium secondary battery |
WO2003007416A1 (en) * | 2001-07-10 | 2003-01-23 | Mitsubishi Chemical Corporation | Non-aqueous electrolyte and secondary cell using the same |
US6632565B2 (en) | 1998-03-11 | 2003-10-14 | Ngk Insulators, Ltd. | Lithium secondary battery |
JP2005243458A (en) * | 2004-02-26 | 2005-09-08 | Japan Storage Battery Co Ltd | Nonaqueous electrolytic solution secondary battery |
JP2007258183A (en) * | 2007-05-11 | 2007-10-04 | Ube Ind Ltd | Nonaqueous secondary battery |
KR20190045193A (en) | 2016-08-03 | 2019-05-02 | 쿠리타 고교 가부시키가이샤 | Electrolyte for non-aqueous electrolyte secondary battery |
CN111961029A (en) * | 2020-08-31 | 2020-11-20 | 常熟聚和化学有限公司 | Method for reducing free acid of electronic propane sultone |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5230904B2 (en) | 2005-06-17 | 2013-07-10 | パナソニック株式会社 | Non-aqueous electrolyte secondary battery |
CN100466340C (en) * | 2005-06-17 | 2009-03-04 | 松下电器产业株式会社 | Non-aqueous electrolyte rechargeable battery |
JP2009016232A (en) * | 2007-07-06 | 2009-01-22 | Nec Tokin Corp | Nonaqueous electrolyte secondary battery |
EP3401282B1 (en) | 2016-11-14 | 2023-02-22 | Sumitomo Chemical Company, Limited | Alumina and slurry containing same, and alumina porous film using the same, laminated separator, nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery |
JP7258002B2 (en) * | 2020-10-30 | 2023-04-14 | プライムプラネットエナジー&ソリューションズ株式会社 | Method for producing nonaqueous electrolyte for lithium ion secondary battery and method for producing lithium ion secondary battery using the nonaqueous electrolyte |
-
1992
- 1992-05-11 JP JP4143764A patent/JPH05315006A/en active Pending
-
2001
- 2001-10-02 JP JP2001306764A patent/JP2002175835A/en active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07302613A (en) * | 1994-04-28 | 1995-11-14 | Zenichiro Takehara | Lithium system secondary battery |
WO1999034471A1 (en) * | 1997-12-26 | 1999-07-08 | Tonen Corporation | Electrolyte for lithium cells and method of producing the same |
JP4646399B2 (en) * | 1997-12-26 | 2011-03-09 | 三和油化工業株式会社 | Electrolytic solution for lithium battery and method for producing the same |
US6632565B2 (en) | 1998-03-11 | 2003-10-14 | Ngk Insulators, Ltd. | Lithium secondary battery |
WO1999067844A1 (en) * | 1998-06-20 | 1999-12-29 | Merck Patent Gmbh | Purification of battery electrolytes by means of physical adsorption |
EP1094537A3 (en) * | 1999-10-19 | 2004-03-24 | Ngk Insulators, Ltd. | Lithium secondary battery |
EP1094537A2 (en) * | 1999-10-19 | 2001-04-25 | Ngk Insulators, Ltd. | Lithium secondary battery |
WO2003007416A1 (en) * | 2001-07-10 | 2003-01-23 | Mitsubishi Chemical Corporation | Non-aqueous electrolyte and secondary cell using the same |
US6942948B2 (en) | 2001-07-10 | 2005-09-13 | Mitsubishi Chemical Corporation | Nonaqueous electrolyte solution and secondary battery employing the same |
EP1317013A4 (en) * | 2001-07-10 | 2009-01-21 | Mitsubishi Chem Corp | Non-aqueous electrolyte and secondary cell using the same |
EP1317013A1 (en) * | 2001-07-10 | 2003-06-04 | Mitsubishi Chemical Corporation | Non-aqueous electrolyte and secondary cell using the same |
JP2005243458A (en) * | 2004-02-26 | 2005-09-08 | Japan Storage Battery Co Ltd | Nonaqueous electrolytic solution secondary battery |
JP4649848B2 (en) * | 2004-02-26 | 2011-03-16 | 株式会社Gsユアサ | Non-aqueous electrolyte secondary battery |
JP2007258183A (en) * | 2007-05-11 | 2007-10-04 | Ube Ind Ltd | Nonaqueous secondary battery |
JP4702321B2 (en) * | 2007-05-11 | 2011-06-15 | 宇部興産株式会社 | Non-aqueous secondary battery |
KR20190045193A (en) | 2016-08-03 | 2019-05-02 | 쿠리타 고교 가부시키가이샤 | Electrolyte for non-aqueous electrolyte secondary battery |
CN111961029A (en) * | 2020-08-31 | 2020-11-20 | 常熟聚和化学有限公司 | Method for reducing free acid of electronic propane sultone |
Also Published As
Publication number | Publication date |
---|---|
JP2002175835A (en) | 2002-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3077218B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4061586B2 (en) | Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same | |
EP0573266A1 (en) | Lithium secondary battery and method of manufacturing carbonaceous material for negative electrode of the battery | |
JP3436033B2 (en) | Non-aqueous electrolyte secondary battery | |
EP1246290B1 (en) | Positive electrode active material and nonaqueous electrolyte secondary battery | |
JP2005259703A (en) | Lithium secondary battery | |
JPH06333594A (en) | Nonaqueous electrolyte secondary battery | |
JPH05315006A (en) | Noaqueous electrolyte cell and manufacture thereof | |
JPH08315817A (en) | Manufacture of carbon negative electrode material and nonaqueous electrolyte secondary battery | |
JP3588885B2 (en) | Non-aqueous electrolyte battery | |
JP2971403B2 (en) | Non-aqueous solvent secondary battery | |
JPH0785888A (en) | Lithium secondary battery | |
JP2022510186A (en) | Electrolyte composition and secondary battery using it | |
JPH1131513A (en) | Nonaqueous electrolyte secondary battery | |
JP4103487B2 (en) | Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery | |
JP4150087B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH0513105A (en) | Nonaqueous electrolyte battery | |
JPH10312807A (en) | Lithium secondary battery and manufacture of negative electrode | |
JP3696159B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same | |
JP3408250B2 (en) | Lithium secondary battery | |
JP3428034B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH07320785A (en) | Nonaqueous electrolytic secondary battery | |
JPH0521065A (en) | Lithium secondary battery | |
JP3624516B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH1197015A (en) | Nonaqueous electrolyte secondary cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20010807 |