JPH09312159A - Non-aqueous electrolyte liquid secondary battery and manufacture of positive pole active substance for non-aqueous electrolyte liquid secondary battery - Google Patents

Non-aqueous electrolyte liquid secondary battery and manufacture of positive pole active substance for non-aqueous electrolyte liquid secondary battery

Info

Publication number
JPH09312159A
JPH09312159A JP8126855A JP12685596A JPH09312159A JP H09312159 A JPH09312159 A JP H09312159A JP 8126855 A JP8126855 A JP 8126855A JP 12685596 A JP12685596 A JP 12685596A JP H09312159 A JPH09312159 A JP H09312159A
Authority
JP
Japan
Prior art keywords
secondary battery
active material
battery
positive electrode
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8126855A
Other languages
Japanese (ja)
Inventor
Naoyuki Kato
尚之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8126855A priority Critical patent/JPH09312159A/en
Publication of JPH09312159A publication Critical patent/JPH09312159A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte liquid secondary battery with its high energy density and good cycle characteristics. SOLUTION: A composite oxide including lithium is employed as a positive pole active substance, the lithium is doped, and a chloride ion of 0.001% or more and 1.0% or less is added to a positive pole active substance of a nonaqueous electrolyte liquid secondary battery in which a carbonic material to be de-doped is employed as a negative pole active substance. The positive pole active substance is thermally treated at 400 deg.C or more after ammonium chloride has been added to the active substance material and contains a chloride ion. An electrode element made of these positive pole active substance and negative pole active substance is stored in a battery can 5, an insulation plate 4 is arranged on both of the top and bottom faces of the electrode element, a nickel lead is led out from a negative pole power collector 10 to correct power from a negative pole 1 and welded to the battery can 5, in addition, to collect power from a positive pole 2 an aluminum lead is lead out from a positive pole power collector 11 and is welded to a battery cap 7. Then an electrolyte liquid is injected, the battery cap 7 and the battery can 5 are engaged with each other via a sealing port gasket 6, and a cylindrical non-aqueous electrolyte liquid secondary battery is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はリチウムを含む複合
酸化物を正極活物質とし、リチウムをドープし、且つ脱
ドープする炭素質材料を負極活物質とする非水電解液二
次電池のサイクル特性の改善に関するものである。
TECHNICAL FIELD The present invention relates to a cycle characteristic of a non-aqueous electrolyte secondary battery in which a composite oxide containing lithium is used as a positive electrode active material, and a carbonaceous material for doping and dedoping lithium is used as a negative electrode active material. It is about the improvement of.

【0002】[0002]

【従来の技術】近年の電子技術の進歩により電子機器の
小型、高性能、ポータブル化が進み、それに伴いこれら
電子機器に使用される電池の高エネルギー密度化の要求
が高まっている。従来、これらの電子機器に使用される
二次電池としてはニッケル・カドミウム電池や鉛電池等
があるが、これらの電池は放電電位が低く、エネルギー
密度が十分でないため、要求されるエネルギーを得るた
めには電池重量、電池体積を大きくしなければならず、
上述した要求には十分に応えられていないのが実情であ
る。
2. Description of the Related Art Due to recent advances in electronic technology, electronic devices have become smaller, more efficient, and more portable, and there has been an increasing demand for higher energy density of batteries used in these electronic devices. Conventionally, there are nickel-cadmium batteries, lead batteries, etc. as secondary batteries used in these electronic devices, but these batteries have low discharge potential and insufficient energy density, so to obtain the required energy. To increase the battery weight and battery volume,
The fact is that the above-mentioned demands have not been sufficiently met.

【0003】最近、リチウム二次電池はこれらの要求を
満たす電池システムとして注目され、盛んに研究が行わ
れている。しかし、金属リチウムやリチウム合金を負極
とするリチウム二次電池はサイクル寿命、急速充電性能
等が十分でなく、実用化に対して改善すべき問題点であ
った。これらの問題点は負極である金属リチウムの溶
解、析出時のデンドライト生成、微細化に起因するもの
と考えられている。
[0003] Recently, lithium secondary batteries have attracted attention as a battery system that meets these requirements, and are being actively studied. However, the lithium secondary battery using metal lithium or a lithium alloy as a negative electrode has insufficient cycle life, rapid charging performance, and the like, and has been a problem to be improved for practical use. It is considered that these problems are caused by dissolution of metallic lithium as a negative electrode, generation of dendrites at the time of precipitation, and miniaturization.

【0004】これらの問題を解決するために、炭素質材
料のようなリチウムイオンをドープ且つ脱ドープ可能な
物質を負極とする、非水電解液二次電池であるリチウム
イオン二次電池の研究開発が行われている。このリチウ
ムイオン二次電池はリチウムが金属状態で存在しないた
め、金属リチウム負極に起因するサイクル劣化等の問題
はなく、優れた二次電池特性を示す。また、ニッケル・
カドミウム電池に比して自己放電が少なく、且つメモリ
ー効果もなく、従って二次電池として必要な特性を十分
に有するものである。
In order to solve these problems, research and development of a lithium ion secondary battery, which is a non-aqueous electrolyte secondary battery, in which a substance such as carbonaceous material capable of doping and dedoping lithium ions is used as a negative electrode. Is being done. Since lithium does not exist in a metallic state in this lithium ion secondary battery, there is no problem such as cycle deterioration due to the metallic lithium negative electrode, and excellent secondary battery characteristics are exhibited. In addition, nickel
Compared to a cadmium battery, it has less self-discharge and no memory effect, and therefore has sufficient characteristics required for a secondary battery.

【0005】更に、正極に酸化還元電位の高いリチウム
を含む複合酸化物を用いることにより、電池の電圧が高
くなるため、高いエネルギー密度を有している。このよ
うな特徴を有していることからリチウムイオン二次電池
は、各種携帯機器の電源として用いられるようになって
きている。
Further, by using a composite oxide containing lithium having a high oxidation-reduction potential for the positive electrode, the voltage of the battery becomes high, so that it has a high energy density. Due to such characteristics, the lithium ion secondary battery has come to be used as a power source for various portable devices.

【0006】一方、リチウムイオン二次電池の正極の酸
化還元電位が高いため、特に充電時にはリチウムに対し
て4V以上の高い電位を示すので、電解液が正極表面で
分解され、正極活物質表面に抵抗の高い被膜が形成され
る。その結果、長期間充放電サイクルを繰り返すと容量
劣化が大きくなり、二次電池としての十分な電池特性が
得られていないのが現状である。
On the other hand, since the positive electrode of the lithium ion secondary battery has a high oxidation-reduction potential, it exhibits a high potential of 4 V or more with respect to lithium, especially during charging, so that the electrolytic solution is decomposed on the surface of the positive electrode and the surface of the positive electrode active material is decomposed. A highly resistant film is formed. As a result, when the charge / discharge cycle is repeated for a long period of time, the capacity deterioration becomes large, and it is the current situation that sufficient battery characteristics as a secondary battery are not obtained.

【0007】そこで、リチウムイオン二次電池の電池材
料に関して多方面から充放電サイクル特性の改良が検討
されている。例えば、非水電解液、正極活物質、負極活
物質、電極構造等の改良が行われており、その中でも耐
酸化性の高い安定な非水電解液(有機溶媒、溶質)の開
発が積極的に進められている。
[0007] Therefore, improvement of charge / discharge cycle characteristics has been studied from various viewpoints regarding battery materials of lithium ion secondary batteries. For example, non-aqueous electrolytes, positive electrode active materials, negative electrode active materials, electrode structures, etc. have been improved. Among them, active development of stable non-aqueous electrolytes (organic solvents, solutes) with high oxidation resistance is active. Is being advanced to.

【0008】例えば、Abstract No.19,
P33 in ExtendedAbstracts
of the 184th Electrochemi
cal Society ,New Orleans
(1993)で示されたように、非水電解液二次電池の
電解液に使用される溶質として、LiC(SO2
3 3 、LiC(SO2 CF3 2 F、LiC(SO
2 CF3 2 SO2 CH3等が新たに提案されている
が、まだ、実用化には至っていない。
For example, Abstract No. 19,
P33 in Extended Abstracts
of the 184th Electrochemi
cal Society, New Orleans
As shown in (1993), as a solute used for the electrolyte of the non-aqueous electrolyte secondary battery, LiC (SO 2 C
F 3) 3, LiC (SO 2 CF 3) 2 F, LiC (SO
Although 2 CF 3 ) 2 SO 2 CH 3 and the like have been newly proposed, they have not yet been put to practical use.

【0009】[0009]

【発明が解決しようとする課題】従って本発明の課題
は、リチウムを含む複合酸化物を正極活物質とし、リチ
ウムをドープ且つ脱ドープ可能な炭素質材料を負極活物
質とする非水電解液二次電池において、長期間充放電を
繰り返しても容量劣化の少ない、サイクル特性の優れた
非水電解液二次電池を提供しようとするものである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a non-aqueous electrolyte solution which uses a composite oxide containing lithium as a positive electrode active material and a carbonaceous material capable of doping and dedoping lithium as a negative electrode active material. An object of the present invention is to provide a non-aqueous electrolyte secondary battery which is excellent in cycle characteristics and has little capacity deterioration even after repeated charge / discharge for a long time.

【0010】[0010]

【課題を解決するための手段】本発明は上記課題に鑑み
なされたものであり、リチウムを含む複合酸化物を正極
活物質とし、リチウムをドープし、且つ脱ドープする炭
素質材料を負極活物質とする非水電解液二次電池におい
て、前記正極活物質は、略0.001%以上、1.0%
以下の塩素を含む構成とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and a composite oxide containing lithium is used as a positive electrode active material, and a carbonaceous material that is doped and dedoped with lithium is used as a negative electrode active material. In the non-aqueous electrolyte secondary battery, the positive electrode active material is approximately 0.001% or more, 1.0% or more.
The following chlorine is included.

【0011】また、前記正極活物質は、活物質材料に塩
化アンモニウムを添加した後、400℃以上で熱処理し
て塩素を含ませる製造方法を用いて形成し、上記課題を
解決する。
The positive electrode active material is formed by using a manufacturing method in which ammonium chloride is added to the active material material and then heat-treated at 400 ° C. or more to contain chlorine to solve the above problems.

【0012】従って、本発明の製造方法により塩素を含
む正極活物質を得ることができ、更にこの正極活物質を
非水電解液二次電池に用いることにより、高エネルギー
密度で容量劣化の少ない、サイクル特性の優れた二次電
池を得ることができる。
Therefore, a positive electrode active material containing chlorine can be obtained by the production method of the present invention, and by using this positive electrode active material in a non-aqueous electrolyte secondary battery, high energy density and little capacity deterioration can be obtained. A secondary battery having excellent cycle characteristics can be obtained.

【0013】[0013]

【発明の実施の形態】本発明者はリチウムを含む複合酸
化物を正極活物質とし、リチウムをドープし且つ脱ドー
プする炭素質材料を負極活物質とする非水電解液二次電
池において、正極活物質に塩素が略0.001%以上、
1.0%以下の割合で含まれることにより、容量劣化が
少なくサイクル特性の優れた非水電解液二次電池を得る
ことができることを見いだした。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventor uses a composite oxide containing lithium as a positive electrode active material and a carbonaceous material for doping and dedoping lithium as a negative electrode active material in a non-aqueous electrolyte secondary battery. Chlorine in the active material is approximately 0.001% or more,
It was found that the inclusion of 1.0% or less makes it possible to obtain a non-aqueous electrolyte secondary battery with less capacity deterioration and excellent cycle characteristics.

【0014】正極活物質に塩素を導入する方法としては
種々あるが、本発明では塩化アンモニウムを所定量添加
した後、400℃以上で熱処理することを特徴とするも
のである。また、熱処理は分解ガスが発生しなくなるま
で行うことが好ましい。
Although there are various methods of introducing chlorine into the positive electrode active material, the present invention is characterized by adding a predetermined amount of ammonium chloride and then performing heat treatment at 400 ° C. or higher. Further, it is preferable that the heat treatment is performed until no decomposition gas is generated.

【0015】上述のように正極活物質に塩化アンモニウ
ムを所定量添加した後、400℃で熱処理することによ
るサイクル特性の改善の理由については次のように考え
ることができる。
The reason why the cycle characteristics are improved by heat treatment at 400 ° C. after adding a predetermined amount of ammonium chloride to the positive electrode active material as described above can be considered as follows.

【0016】塩化アンモニウムは昇華温度337.8℃
を越えると、アンモニアと塩化水素に分解される。この
時、生成した塩化水素が正極活物質表面と接触して陰イ
オンである塩素イオン(Cl- )が正極活物質表面に吸
着することにより、電解液の分解を抑制すると考えられ
る。従って、熱処理温度としては塩化アンモニウムが分
解を開始する温度以上とすることが必要である。
Ammonium chloride has a sublimation temperature of 337.8 ° C.
When it exceeds, it is decomposed into ammonia and hydrogen chloride. At this time, it is considered that the generated hydrogen chloride comes into contact with the surface of the positive electrode active material and adsorbs chloride ions (Cl ) that are anions on the surface of the positive electrode active material, thereby suppressing decomposition of the electrolytic solution. Therefore, the heat treatment temperature needs to be higher than the temperature at which ammonium chloride starts to decompose.

【0017】即ち、正極活物質に塩化アンモニウムを添
加して昇華温度以上で熱処理をすることにより、塩化ア
ンモニウムが分解して生成される塩化水素の塩素イオン
が正極活物質表面に吸着し、電解液の分解を抑制してサ
イクル特性に効果をもたらすものである。従って、添加
される材料としては特に塩化アンモニウムに限定される
ことはなく、加熱すると塩化水素または塩素を発生する
塩化物であれば良いことは当然である。
That is, by adding ammonium chloride to the positive electrode active material and heat-treating at a temperature not lower than the sublimation temperature, chlorine ions of hydrogen chloride generated by decomposition of ammonium chloride are adsorbed on the surface of the positive electrode active material, and the electrolyte solution is formed. Is suppressed and the cycle characteristics are effectively affected. Therefore, the material to be added is not particularly limited to ammonium chloride, and it is needless to say that it may be hydrogen chloride or a chloride that generates chlorine when heated.

【0018】正極活物質としてLiCoO2 、LiNi
2 、LiNiX Co1-X 2 (0<X<1)、LiM
2 4 等のリチウムを含む複合酸化物を用いることが
でき、これらは例えばリチウム、コバルト、ニッケル、
マンガンの炭酸塩、硝酸塩、酸化物、水酸化物を出発原
料として合成することが可能である。上記出発原料を希
望の組成に応じて計量、混合し、酸素存在雰囲気下60
0〜1000℃で焼成することによりリチウム複合酸化
物を得ることができる。また、リチウム複合酸化物は上
記Co、Ni、Mnに限らず、他の好適な金属を添加す
ることも可能である。
LiCoO 2 , LiNi as the positive electrode active material
O 2 , LiNi X Co 1-X O 2 (0 <X <1), LiM
Lithium-containing composite oxides such as n 2 O 4 can be used, and these include, for example, lithium, cobalt, nickel,
It is possible to synthesize manganese carbonate, nitrate, oxide and hydroxide as starting materials. The above starting materials are weighed and mixed according to the desired composition, and the mixture is mixed in an oxygen-existing atmosphere at
A lithium composite oxide can be obtained by firing at 0 to 1000 ° C. Further, the lithium composite oxide is not limited to the above Co, Ni, and Mn, and other suitable metals can be added.

【0019】一方、負極に使用する活物質としては炭素
質材料を用いるが、リチウムをドープ且つ脱ドープ可能
なものであれば良く、熱分解炭素類、コークス類(ピッ
チコークス、ニードルコークス、石油コークス等)、黒
鉛類、ガラス状炭素類、有機高分子化合物焼成体(フラ
ン樹脂等を適当な温度で焼成し炭素化したもの)、炭素
繊維、活性炭等が使用可能である。好ましいものとして
は、(002)面の面間隔が3.70Å以上、真密度
1.70g/cc未満であり、且つ空気気流中における
示差熱分析で700℃以上に発熱ピークを有しない炭素
材料が用いられる。
On the other hand, although a carbonaceous material is used as the active material for the negative electrode, any material capable of doping and dedoping lithium may be used, and pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke). Etc.), graphites, glassy carbons, organic polymer compound fired bodies (furan resin etc. fired at a suitable temperature to be carbonized), carbon fibers, activated carbon and the like can be used. A carbon material having a (002) plane spacing of 3.70 Å or more and a true density of less than 1.70 g / cc and having no exothermic peak at 700 ° C. or more in a differential thermal analysis in an air stream is preferable. Used.

【0020】電解液としてはリチウム塩を支持電解質と
し、これを有機溶媒に溶解させた電解液が用いられる。
ここで有機溶媒は特に限定されるものではないが、プロ
ピレンカーボネート、エチレンカーボネート、1,2−
ジメトキシエタン、γ−ブチロラクトン、テトラヒドロ
フラン、ジメチルカーボネート、ジエチルカーボネー
ト、メチルエチルカーボネート、ジプロピルカーボネー
ト等の単独、もしくは2種類以上の混合溶媒が使用可能
である。
As the electrolytic solution, an electrolytic solution in which a lithium salt is used as a supporting electrolyte and this is dissolved in an organic solvent is used.
Here, the organic solvent is not particularly limited, but propylene carbonate, ethylene carbonate, 1,2-
Dimethoxyethane, γ-butyrolactone, tetrahydrofuran, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, dipropyl carbonate, etc. may be used alone, or two or more kinds of mixed solvents may be used.

【0021】電解質としては、一般にリチウム電池用と
して使用されるLiClO4 、LiAsF6 、LiPF
6 、LiBF4 、LiCl、LiBr、CH3 SO3
i、CF3 SO3 Li等の単独、若しくは2種類以上の
混合使用が可能である。
As the electrolyte, LiClO 4 , LiAsF 6 and LiPF 6 which are generally used for lithium batteries are used.
6 , LiBF 4 , LiCl, LiBr, CH 3 SO 3 L
i, CF 3 SO 3 Li and the like can be used alone or in combination of two or more kinds.

【0022】尚、前記非水電解液は液体状に限定される
ものではなく、従来より公知の固体電解質を用いること
も可能である。また、より安全性の高い密閉型非水電解
液二次電池を得るためには、過充電時の異常時に電池内
圧上昇に応じて電流を遮断させる手段を備えることが望
ましい。
The non-aqueous electrolyte is not limited to a liquid state, and it is possible to use a conventionally known solid electrolyte. Further, in order to obtain a more safe sealed non-aqueous electrolyte secondary battery, it is desirable to provide a means for interrupting the current in accordance with an increase in the battery internal pressure when an abnormality occurs during overcharging.

【0023】つぎに、本発明の実施形態例について図1
を参照して説明する。
Next, FIG. 1 shows an embodiment of the present invention.
This will be described with reference to FIG.

【0024】実施例1 負極1はつぎのように作製した。負極活物質は出発原料
に石油ピッチを用い、これを酸素を含む官能基を10〜
20%導入(酸素架橋)した後、不活性ガス中1000
℃で焼成して得られたガラス状炭素材料に近い性質の難
黒鉛化炭素材料を用いた。この様にして得られた炭素材
料を90重量%、結着剤としてポリフッ化ビニリデンを
10重量%の割合で混合して負極合剤を作成し、N−メ
チル−2−ピロリドンに分散させてスラリー状にした。
更に、このスラリーを負極集電体10である銅箔の両面
に塗布し、乾燥後ローラープレス機で圧縮成形して負極
1とした。
Example 1 Negative electrode 1 was prepared as follows. The negative electrode active material uses petroleum pitch as a starting material, and this is converted to a functional group containing oxygen of 10 to 10.
After introducing 20% (oxygen crosslinking), 1000% in an inert gas
A non-graphitizable carbon material having properties close to those of a glassy carbon material obtained by firing at ℃ was used. 90% by weight of the carbon material thus obtained and 10% by weight of polyvinylidene fluoride as a binder were mixed to prepare a negative electrode mixture, which was dispersed in N-methyl-2-pyrrolidone to form a slurry. I made it.
Further, this slurry was applied on both sides of a copper foil which is the negative electrode current collector 10, dried and then compression-molded by a roller press machine to obtain a negative electrode 1.

【0025】正極2はつぎのように作製した。まず、正
極活物質としてLiNi0.8 Co0.2 2 を作製した。
これはリチウム塩として水酸化リチウム、ニッケル塩と
して酸化ニッケル、コバルト塩として酸化コバルトを使
用し、水酸化リチウムと酸化ニッケルと酸化コバルト
を、Li/Ni/Coの比が1.0/0.80/0.2
0となるように計量および混合し、酸素雰囲気中で75
0℃、5時間焼成して、この成分比を有するLiNi
0.8Co0.2 2 を得た。その後、粉砕して所定の粒度
分布を有する粉末を作成した。
The positive electrode 2 was manufactured as follows. First, LiNi 0.8 Co 0.2 O 2 was prepared as a positive electrode active material.
This uses lithium hydroxide as a lithium salt, nickel oxide as a nickel salt, and cobalt oxide as a cobalt salt. Lithium hydroxide, nickel oxide, and cobalt oxide have a Li / Ni / Co ratio of 1.0 / 0.80. /0.2
Weigh and mix so that it becomes 0, and 75 in an oxygen atmosphere.
LiNi having this component ratio after firing at 0 ° C. for 5 hours
0.8 Co 0.2 O 2 was obtained. Then, it was pulverized to prepare a powder having a predetermined particle size distribution.

【0026】この正極活物質を99重量%、塩化アンモ
ニウムを1重量%の割合で混合した後、400℃で熱処
理を10時間行い、正極活物質表面に塩素を残存させ
た。この活物質を超音波抽出した後、イオンクロマトグ
ラフィ法により塩素の定量分析を行った結果、0.00
1%であった。
After mixing 99% by weight of this positive electrode active material and 1% by weight of ammonium chloride, heat treatment was carried out at 400 ° C. for 10 hours to leave chlorine on the surface of the positive electrode active material. After ultrasonically extracting this active material, the result of quantitative analysis of chlorine by ion chromatography was 0.00
It was 1%.

【0027】つぎに、塩化アンモニウムを添加し、熱処
理した正極活物質を91重量%、導電材としてグラファ
イトを6重量%、ポリフッ化ビニリデンを3重量%を混
合して正極合剤を作成し、N−メチル−2−ピロリドン
に分散させてスラリー状にした。更に、このスラリーを
正極集電体11であるアルミニウム箔に塗布し、乾燥後
ローラープレス機で圧縮成形して正極2とした。
Next, ammonium chloride was added to the mixture, 91% by weight of the heat-treated positive electrode active material, 6% by weight of graphite as a conductive material, and 3% by weight of polyvinylidene fluoride were mixed to prepare a positive electrode mixture. -Methyl-2-pyrrolidone was dispersed into a slurry. Further, this slurry was applied to an aluminum foil which is the positive electrode current collector 11, dried and then compression-molded by a roller press machine to obtain a positive electrode 2.

【0028】以上のように作成した帯状の負極1と正極
2と、厚さが25μmの微多孔性ポリエチレンフィルム
からなるセパレータ3を順に積層して多数巻回すること
により、渦巻式電極素子体を作成した。
The spiral-shaped electrode element body is obtained by sequentially laminating the strip-shaped negative electrode 1 and the positive electrode 2 prepared as described above, and the separator 3 made of a microporous polyethylene film having a thickness of 25 μm in sequence and winding a large number of layers. Created.

【0029】上述のように作成した渦巻式電極素子体
を、ニッケルメッキを施した鉄製の電池缶5に収納し
た。渦巻式電極素子体の上下両面に絶縁板4を配置し、
負極1から集電を行うために、ニッケルリードを負極集
電体10から導出して電池缶5に溶接し、また、正極2
から集電を行うために、アルミニウムリードを正極集電
体11から導出して電池蓋7に溶接した。
The spirally wound electrode element body prepared as described above was housed in a nickel-plated iron battery can 5. Insulating plates 4 are arranged on both upper and lower surfaces of the spiral electrode element body,
In order to collect current from the negative electrode 1, the nickel lead is led out from the negative electrode current collector 10 and welded to the battery can 5, and the positive electrode 2
In order to collect current from the aluminum lead, the aluminum lead was led out from the positive electrode current collector 11 and welded to the battery lid 7.

【0030】その後、電池缶5の中にプロピレンカーボ
ネート50体積%、ジエチルカーボネート50体積%の
混合溶媒にLiPF6 を1モル溶解させた電解液を注入
し、アスファルトを塗布した封口ガスケット6を介して
電流遮断機構とPTC素子9とを有する安全弁装置8が
配置した電池蓋7と電池缶5をかしめることで電池蓋7
を固定し、直径18mm、高さ65mmの円筒型非水電
解液二次電池を作製した。
Then, an electrolyte solution in which 1 mol of LiPF 6 was dissolved in a mixed solvent of 50% by volume of propylene carbonate and 50% by volume of diethyl carbonate was poured into the battery can 5, and the sealing gasket 6 coated with asphalt was used. By caulking the battery lid 7 and the battery can 5 in which the safety valve device 8 having the current interruption mechanism and the PTC element 9 is arranged,
Was fixed to prepare a cylindrical non-aqueous electrolyte secondary battery having a diameter of 18 mm and a height of 65 mm.

【0031】実施例2 正極活物質に塩化アンモニウムを5重量%添加したこと
以外は実施例1と同様にして円筒型非水電解液二次電池
を作製した。正極活物質に含まれる塩素量を分析した結
果、0.02%であった。
Example 2 A cylindrical non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that 5% by weight of ammonium chloride was added to the positive electrode active material. As a result of analyzing the amount of chlorine contained in the positive electrode active material, it was 0.02%.

【0032】実施例3 正極活物質に塩化アンモニウムを10重量%添加したこ
と以外は実施例1と同様にして円筒型非水電解液二次電
池を作製した。正極活物質に含まれる塩素量を分析した
結果、0.1%であった。
Example 3 A cylindrical non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that 10% by weight of ammonium chloride was added to the positive electrode active material. As a result of analyzing the amount of chlorine contained in the positive electrode active material, it was 0.1%.

【0033】実施例4 正極活物質に塩化アンモニウムを20重量%添加したこ
と以外は実施例1と同様にして円筒型非水電解液二次電
池を作製した。正極活物質に含まれる塩素量を分析した
結果、1.0%であった。
Example 4 A cylindrical non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that 20% by weight of ammonium chloride was added to the positive electrode active material. As a result of analyzing the amount of chlorine contained in the positive electrode active material, it was 1.0%.

【0034】比較例1正極活物質に塩化アンモニウムを
0.5重量%添加したこと以外は実施例1と同様にして
円筒型非水電解液二次電池を作製した。正極活物質に含
まれる塩素量を分析した結果、検出限界以下であった。
Comparative Example 1 A cylindrical non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that 0.5% by weight of ammonium chloride was added to the positive electrode active material. As a result of analyzing the amount of chlorine contained in the positive electrode active material, it was below the detection limit.

【0035】比較例2 正極活物質に塩化アンモニウムを30重量%添加したこ
と以外は実施例1と同様にして円筒型非水電解液二次電
池を作製した。正極活物質に含まれる塩素量を分析した
結果、3.5%であった。
Comparative Example 2 A cylindrical non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that 30% by weight of ammonium chloride was added to the positive electrode active material. As a result of analyzing the amount of chlorine contained in the positive electrode active material, it was 3.5%.

【0036】上記実施例1〜4および比較例1〜2の円
筒型非水電解液二次電池について、以下に示す条件でサ
イクル寿命試験を行った。充電電圧4.20V、充電電
流1000mA、充電時間2.5hの条件で充電を行
い、放電電流500mA、終止電圧2.75Vの条件で
放電を繰り返し行い、2サイクル目の容量と1000サ
イクル目の容量との比を容量維持率とし、その結果を表
1に示す。
A cycle life test was performed on the cylindrical non-aqueous electrolyte secondary batteries of Examples 1 to 4 and Comparative Examples 1 and 2 under the following conditions. Charging is performed under the conditions of a charging voltage of 4.20V, a charging current of 1000mA, and a charging time of 2.5h, and discharging is repeated under the conditions of a discharge current of 500mA and an end voltage of 2.75V, and the capacity of the second cycle and the capacity of the 1000th cycle. The capacity retention ratio is defined as the ratio with the above, and the results are shown in Table 1.

【0037】[0037]

【表1】 [Table 1]

【0038】表1から、塩素含有率が0.001%以上
になると容量維持率は高く、サイクルに伴う容量劣化は
小さいことが分かる。これは、正極活物質表面に塩素が
存在することにより電解液の分解を抑制したためと考え
られる。しかし、塩素含有率が1%を越えて3.5%に
なると、容量維持率は高いものの電池の初期容量は小さ
くなる欠点が見られる。これは、過剰の塩素が存在する
ことにより、リチウムイオンのドープおよび脱ドープを
阻害するためと考えられる。
It can be seen from Table 1 that when the chlorine content is 0.001% or more, the capacity retention rate is high and the capacity deterioration with the cycle is small. It is considered that this is because the presence of chlorine on the surface of the positive electrode active material suppressed the decomposition of the electrolytic solution. However, when the chlorine content exceeds 1% and becomes 3.5%, there is a drawback that the initial capacity of the battery becomes small although the capacity retention rate is high. It is considered that this is because the presence of excess chlorine hinders the doping and dedoping of lithium ions.

【0039】従って、電池の容量を損ねることなく、高
い容量維持率を確保するためには、正極活物質中の塩素
含有率を0.001%以上、1.0%以下にすることが
必要である。
Therefore, in order to secure a high capacity retention without deteriorating the capacity of the battery, it is necessary to make the chlorine content in the positive electrode active material 0.001% or more and 1.0% or less. is there.

【0040】実施例5つぎに、正極活物質としてリチウ
ムマンガン酸化物を作製した。これはリチウム塩として
炭酸リチウム、マンガン塩として二酸化マンガンを使用
し、二酸化マンガン1モルと炭酸リチウム0.25モル
とからなる混合物を空気中にて850℃で5時間焼成し
て塊状のLiMn2 4 を得た。この塊状の活物質をボ
ールミルにより粉砕、分級することにより所定の粒度に
調整し、正極活物質とした。
Example 5 Next, lithium manganese oxide was prepared as a positive electrode active material. Lithium carbonate was used as the lithium salt and manganese dioxide was used as the manganese salt. A mixture of 1 mol of manganese dioxide and 0.25 mol of lithium carbonate was fired in air at 850 ° C. for 5 hours to obtain a massive LiMn 2 O. Got four . The lump-shaped active material was crushed and classified by a ball mill to have a predetermined particle size to obtain a positive electrode active material.

【0041】この正極活物質を99重量%、塩化アンモ
ニウム1重量%を混合した後、400℃で熱処理を10
時間行い、正極活物質に塩素を残存させた。この活物質
を前述の方法により塩素の定量分析を行った結果、0.
001%であることがわかった。
99% by weight of this positive electrode active material and 1% by weight of ammonium chloride were mixed and then heat treated at 400 ° C. for 10 hours.
Chlorine remained in the positive electrode active material for a period of time. As a result of quantitative analysis of chlorine of this active material by the above-mentioned method, 0.
It was found to be 001%.

【0042】つぎに、この塩素を添加した正極活物質を
86重量%、導電体としてグラファイトを10重量%、
結着剤としてポリフッ化ビニリデンを4重量%混合して
正極合剤を作製し、N−メチル−2−ピロリドンに分散
させてスラリー状にした。この正極合剤スラリーを厚さ
20μmの帯状のアルミニウム箔の両面に均一に塗布
し、乾燥後にローラープレス機で圧縮成型することによ
り帯状正極を得た。上記正極を用いた以外は実施例1と
同様にして円筒型非水電解液二次電池を作製した。
Next, 86% by weight of the chlorine-added positive electrode active material, 10% by weight of graphite as a conductor,
4% by weight of polyvinylidene fluoride was mixed as a binder to prepare a positive electrode mixture, which was dispersed in N-methyl-2-pyrrolidone to form a slurry. This positive electrode mixture slurry was uniformly applied to both sides of a 20 μm-thick strip-shaped aluminum foil, dried and then compression-molded with a roller press to obtain a strip-shaped positive electrode. A cylindrical non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the above positive electrode was used.

【0043】実施例6 つぎに、正極活物質としてリチウムコバルト酸化物を作
製した。これはリチウム塩として炭酸リチウム、コバル
ト塩として酸化コバルトを使用し、酸化コバルトと炭酸
リチウムをLi/Co比=1となるように混合し、空気
中で900℃で5時間焼成してLiCoO2 を得た。こ
の塊状の活物質をボールミルにより粉砕、分級すること
により所定の粒度に調整し、正極活物質とした。
Example 6 Next, lithium cobalt oxide was prepared as a positive electrode active material. This uses lithium carbonate as a lithium salt and cobalt oxide as a cobalt salt. Cobalt oxide and lithium carbonate are mixed so as to have a Li / Co ratio of 1 and calcined in air at 900 ° C. for 5 hours to form LiCoO 2 . Obtained. The lump-shaped active material was crushed and classified by a ball mill to have a predetermined particle size to obtain a positive electrode active material.

【0044】この正極活物質を99重量%、塩化アンモ
ニウム1重量%を混合した後、400℃で熱処理を10
時間行い、正極活物質に塩素を残存させた。この活物質
を前述の方法により塩素の定量分析を行った結果、0.
001%であることがわかった。上記正極活物質を用い
た以外は実施例1と同様にして円筒型非水電解液二次電
池を作製した。
99% by weight of this positive electrode active material and 1% by weight of ammonium chloride were mixed and then heat treated at 400 ° C. for 10 hours.
Chlorine remained in the positive electrode active material for a period of time. As a result of quantitative analysis of chlorine of this active material by the above-mentioned method, 0.
It was found to be 001%. A cylindrical non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the above positive electrode active material was used.

【0045】実施例5ないし6の円筒型非水電解液二次
電池について、実施例1ないし4と同一のでサイクル寿
命試験を行った。2サイクル目の容量と1000サイク
ル目の容量との比を容量維持率とし、その結果を表2に
示す。
With respect to the cylindrical non-aqueous electrolyte secondary batteries of Examples 5 to 6, the cycle life test was conducted in the same manner as in Examples 1 to 4. The ratio of the capacity at the 2nd cycle and the capacity at the 1000th cycle was taken as the capacity retention rate, and the results are shown in Table 2.

【0046】[0046]

【表2】 [Table 2]

【0047】表2から分かるように、正極活物質にリチ
ウム・コバルト酸化物およびリチウム・マンガン酸化物
を使用しても、活物質に塩素を導入することにより、初
期容量を損ねることなく高い容量維持率を得ることがで
きる。
As can be seen from Table 2, even when lithium cobalt oxide and lithium manganese oxide are used as the positive electrode active material, the introduction of chlorine into the active material maintains a high capacity without impairing the initial capacity. You can get a rate.

【0048】以上の結果より、リチウムを含む複合酸化
物を正極活物質とし、リチウムをドープし、且つ脱ドー
プしうる炭素質材料を負極活物質とする非水電解液二次
電池において、正極活物質に塩素を導入することによ
り、長期間充放電サイクルを繰り返しても、電池の容量
劣化を抑制することができる。塩素を導入する方法とし
ては、塩化アンモニウムを添加した後、400℃以上で
熱処理することが好ましい。
From the above results, in a non-aqueous electrolyte secondary battery in which a composite oxide containing lithium is used as a positive electrode active material, and a carbonaceous material capable of doping and dedoping lithium is used as a negative electrode active material, By introducing chlorine into the substance, the capacity deterioration of the battery can be suppressed even if the charge / discharge cycle is repeated for a long time. As a method of introducing chlorine, it is preferable to add ammonium chloride and then perform heat treatment at 400 ° C. or higher.

【0049】また、実施例として円筒型電池を用いて説
明したが、角形、コイン型、ボタン型電池にも本発明を
適用することができ、同様の効果が得られることは論を
待たない。
Although a cylindrical battery has been described as an example, it is needless to say that the present invention can be applied to a prismatic, coin-type, or button-type battery and similar effects can be obtained.

【0050】[0050]

【発明の効果】以上の説明からも明らかなように、リチ
ウムを含む複合酸化物を正極活物質とし、リチウムをド
ープし且つ脱ドープする炭素質材料を負極活物質とする
非水電解液二次電池において、正極活物質に略0.00
1%以上、1.0%以下の塩素を含ませることにより長
期間充放電サイクルを繰り返しても、電池の容量劣化を
抑制することができ、高容量でサイクル特性に優れた二
次電池を得ることができる。
As is clear from the above description, a non-aqueous electrolyte secondary solution containing a lithium-containing composite oxide as a positive electrode active material and a lithium-doping and de-doping carbonaceous material as a negative electrode active material. In a battery, the positive electrode active material contains approximately 0.00
By containing 1% or more and 1.0% or less of chlorine, it is possible to suppress the capacity deterioration of the battery even after repeating the charge / discharge cycle for a long time, and obtain a secondary battery having a high capacity and excellent cycle characteristics. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を用いた実施例である筒形電池の側面
断面図である。
FIG. 1 is a side cross-sectional view of a tubular battery that is an embodiment using the present invention.

【符号の説明】[Explanation of symbols]

1…負極、2…正極、3…セパレータ、4…絶縁板、5
…電池缶 6…封口ガスケット、7…電池蓋、8…安全弁装置、9
…PTC素子 10…負極集電体、11…正極集電体、12…負極リー
ド、13…正極リード 14…センターピン
1 ... Negative electrode, 2 ... Positive electrode, 3 ... Separator, 4 ... Insulating plate, 5
... Battery can 6 ... Sealing gasket, 7 ... Battery lid, 8 ... Safety valve device, 9
... PTC element 10 ... Negative electrode current collector, 11 ... Positive electrode current collector, 12 ... Negative electrode lead, 13 ... Positive electrode lead 14 ... Center pin

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを含む複合酸化物を正極活物質
とし、リチウムをドープし、且つ脱ドープする炭素質材
料を負極活物質とする非水電解液二次電池において、 前記正極活物質は、略0.001%以上、1.0%以下
の塩素を含む構成であることを特徴とする非水電解液二
次電池。
1. A non-aqueous electrolyte secondary battery in which a composite oxide containing lithium is used as a positive electrode active material, and a carbonaceous material that is doped and dedoped with lithium is used as a negative electrode active material, wherein the positive electrode active material is: A non-aqueous electrolyte secondary battery having a structure containing approximately 0.001% or more and 1.0% or less chlorine.
【請求項2】 前記正極活物質は、活物質材料に塩化ア
ンモニウムを添加した後、400℃以上で熱処理して形
成されることを特徴とする、請求項1に記載の非水電解
液二次電池用正極活物質の製造方法。
2. The non-aqueous electrolyte secondary according to claim 1, wherein the positive electrode active material is formed by adding ammonium chloride to the active material and then performing a heat treatment at 400 ° C. or higher. A method for producing a positive electrode active material for a battery.
JP8126855A 1996-05-22 1996-05-22 Non-aqueous electrolyte liquid secondary battery and manufacture of positive pole active substance for non-aqueous electrolyte liquid secondary battery Pending JPH09312159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8126855A JPH09312159A (en) 1996-05-22 1996-05-22 Non-aqueous electrolyte liquid secondary battery and manufacture of positive pole active substance for non-aqueous electrolyte liquid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8126855A JPH09312159A (en) 1996-05-22 1996-05-22 Non-aqueous electrolyte liquid secondary battery and manufacture of positive pole active substance for non-aqueous electrolyte liquid secondary battery

Publications (1)

Publication Number Publication Date
JPH09312159A true JPH09312159A (en) 1997-12-02

Family

ID=14945522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8126855A Pending JPH09312159A (en) 1996-05-22 1996-05-22 Non-aqueous electrolyte liquid secondary battery and manufacture of positive pole active substance for non-aqueous electrolyte liquid secondary battery

Country Status (1)

Country Link
JP (1) JPH09312159A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406816B1 (en) * 2001-06-05 2003-11-21 삼성에스디아이 주식회사 Method of preparing positive active material for rechargeable lithium battery
KR102038422B1 (en) * 2018-12-19 2019-10-30 한국세라믹기술원 Surface treatment method of lithium transition metal oxide
KR102038421B1 (en) * 2018-12-19 2019-11-26 한국세라믹기술원 Purity degree increase method of electrode active material for lithium ion battery
EP4046966A1 (en) 2021-02-22 2022-08-24 Prime Planet Energy & Solutions, Inc. Positive electrode active material and lithium ion secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406816B1 (en) * 2001-06-05 2003-11-21 삼성에스디아이 주식회사 Method of preparing positive active material for rechargeable lithium battery
KR102038422B1 (en) * 2018-12-19 2019-10-30 한국세라믹기술원 Surface treatment method of lithium transition metal oxide
KR102038421B1 (en) * 2018-12-19 2019-11-26 한국세라믹기술원 Purity degree increase method of electrode active material for lithium ion battery
EP4046966A1 (en) 2021-02-22 2022-08-24 Prime Planet Energy & Solutions, Inc. Positive electrode active material and lithium ion secondary battery
KR20220120485A (en) 2021-02-22 2022-08-30 프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤 Positive electrode active material and lithium ion secondary battery
JP2022127991A (en) * 2021-02-22 2022-09-01 プライムプラネットエナジー&ソリューションズ株式会社 Positive electrode active material and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JPH0935715A (en) Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery
CN101355146A (en) Negative electrode, battery, and method for producing them
JP2002063940A (en) Nonaqueous electrolyte secondary battery
JP2002015735A (en) Lithium iron compound oxide for lithium secondary cell positive active material, its manufacturing method and lithium secondary cell using the same
JP4032744B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery using the same
JP3929548B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2002025617A (en) Nonaqueous electrolyte secondary battery
JPH0982360A (en) Nonaqueous electrolyte secondary battery
JP4560854B2 (en) Nonaqueous electrolyte secondary battery
JP3103899B2 (en) Non-aqueous electrolyte secondary battery
JP2003123843A (en) Cell and manufacturing method of the same
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JP2003331840A (en) Positive pole active substance for lithium ion secondary battery and method of manufacturing the active substance, and lithium ion secondary battery
JPH09199172A (en) Nonaqueous electrolyte secondary battery
JP2001052760A (en) Charging method of nonaqueous electrolyte secondary battery
JP2002203606A (en) Nonaqueous electrolyte solution battery
JPH09312159A (en) Non-aqueous electrolyte liquid secondary battery and manufacture of positive pole active substance for non-aqueous electrolyte liquid secondary battery
JP3079613B2 (en) Non-aqueous electrolyte secondary battery
JP2001080914A (en) Carbon material and its production as well as nonaqueous electrolytic battery and its production
JP2003217568A (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3089662B2 (en) Non-aqueous electrolyte secondary battery
JPH11185822A (en) Nonaqueous electrolyte secondary battery
JPH08180878A (en) Lithium secondary battery
JPH11214042A (en) Nonaqueous electrolyte secondary battery