JP2004014352A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2004014352A
JP2004014352A JP2002167363A JP2002167363A JP2004014352A JP 2004014352 A JP2004014352 A JP 2004014352A JP 2002167363 A JP2002167363 A JP 2002167363A JP 2002167363 A JP2002167363 A JP 2002167363A JP 2004014352 A JP2004014352 A JP 2004014352A
Authority
JP
Japan
Prior art keywords
secondary battery
aqueous electrolyte
electrolyte secondary
butyrolactone
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002167363A
Other languages
Japanese (ja)
Other versions
JP4128807B2 (en
JP2004014352A5 (en
Inventor
Takafumi Oura
尾浦 孝文
Masaki Deguchi
出口 正樹
Takashi Fujii
藤井 隆
Kenji Shizuka
志塚 賢治
Shinichi Kinoshita
木下 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Panasonic Holdings Corp
Original Assignee
Mitsubishi Chemical Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Matsushita Electric Industrial Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2002167363A priority Critical patent/JP4128807B2/en
Publication of JP2004014352A publication Critical patent/JP2004014352A/en
Publication of JP2004014352A5 publication Critical patent/JP2004014352A5/ja
Application granted granted Critical
Publication of JP4128807B2 publication Critical patent/JP4128807B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery excellent in storage characteristics under high temperature environment, and espetcally in high rate discharge characteristics after storage. <P>SOLUTION: This nonaqueous electrolyte secondary battery comprises a positive electrode, a negative electrode, and a nonaqueous electrolyte, the nonaqueous electrolyte comprises a nonaqueous solvent, a solute dissolved in the nonaqueous solvent, and an additive, the nonaqueous solvent contains a γ-butyrolactone derivative, and the additive is made of a compound having two pyridine rings. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質二次電池に関する。
【0002】
【従来の技術】
近年、パソコン、携帯電話等の電子機器の小型軽量化およびコードレス化が急速に進んでおり、これら電子機器の駆動用電源として高エネルギー密度を有する二次電池が要求されている。このような状況の下、リチウムを活物質とするリチウムイオン二次電池が、高電圧および高エネルギー密度を有する電池として現在商品化されている。リチウムイオン二次電池においては、例えば、正極にコバルト酸リチウム(LiCoO)、負極に黒鉛等の炭素材料、非水電解質にリチウム塩を溶解した非水溶媒、セパレータにポリエチレン等からなる多孔質膜が用いられている。
【0003】
エネルギー密度の高いリチウムイオン二次電池では、信頼性を含めた良好な電池特性を得るためには、正極と負極の特性のみならず、リチウムイオンの移送を担う非水電解質の特性が重要となる。この非水電解質を構成する非水溶媒としては、通常、溶質の溶解性の高い高誘電率溶媒と、溶質が解離して生成したイオンの移送能力の高い低粘性溶媒とを組み合わせた混合溶媒が用いられている。例えば高誘電率溶媒である環状カーボネートと低粘性溶媒である鎖状カーボネートとを含む混合溶媒および前記溶媒中に溶解したヘキサフロロリン酸リチウム(LiPF)等の溶質からなる非水電解質は、高い導電率と広い電気化学窓を有することから多用されている。
【0004】
高誘電率溶媒である環状カーボネートには、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等が用いられ、鎖状カーボネートには、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等が用いられる。
しかし、エチレンカーボネートやプロピレンカーボネートは、低温時に凝固したり、著しくイオン伝導度が低下したりするなどの問題を有している。この問題を解決するために、高誘電率溶媒としてγ−ブチロラクトン(GBL)を主体として含む非水溶媒を備えた非水電解質二次電池が検討されている(特開平11−9706号公報および特開平12−235868号公報)。
【0005】
【発明が解決しようとする課題】
しかしながら、特開平11−9706号公報に記載のように、γ−ブチロラクトンを含む非水電解質において溶質としてLiBFを用いた場合、現在のリチウムイオン二次電池の作動電圧では非水電解質が正極または負極上で酸化分解および還元分解されやすい。このため、特に高温環境下で電池を保存した場合、電池の自己放電が激しく、長期信頼性に対して大きな問題を有する。
【0006】
溶質として耐酸化性が高いLiPFを用いた場合にも、高温環境下において充電状態の電池を保存した場合には、非水電解質と正極または負極との反応により、電極表面に高いインピーダンスを有する被膜が生成する。この被膜により、保存後の電池の特性(特に高率放電特性と低温特性)は著しく低下する。したがって、高温保存時の電池のインピーダンス増大を抑制することが、非水電解質二次電池の実用化を図る上で重要となる。
【0007】
【課題を解決するための手段】
本発明は、上記を鑑み、高温環境下における保存特性、特に保存後の高率放電特性に優れた非水電解質二次電池を提供することを目的とする。
本発明者らが鋭意検討を重ねた結果、γ―ブチロラクトン誘導体を含有する非水溶媒に2個のピリジン環を有する化合物とLiPFなどの溶質とを溶解させた非水電解質を用いることにより、高温環境下における保存特性に優れた非水電解質二次電池が得られることを見出した。
【0008】
すなわち、本発明は、正極、負極および非水電解質からなり、前記非水電解質が、非水溶媒、前記非水溶媒に溶解した溶質および添加剤からなり、前記非水溶媒が、式(1):
【0009】
【化3】

Figure 2004014352
【0010】
(式(1)中、R〜Rはそれぞれ独立に、水素原子、ハロゲン原子、炭素数1〜6のアルキル基または炭素数1〜6のアセチル基)で表されるγ―ブチロラクトン誘導体を含み、前記添加剤が、式(2):
【0011】
【化4】
Figure 2004014352
【0012】
(式(2)中、R〜Rはそれぞれ独立で、ハロゲン原子、炭素数1〜3のアルキル基、フェニル基または水酸基であり、結合手Xは、共有結合、炭素数1〜3のアルキレン基またはイミノ基)で表される2個のピリジン環を有する化合物からなる非水電解質二次電池に関する。R〜Rは同一でも異なってもよい。また、R〜Rは同一でも異なってもよい。
【0013】
前記2個のピリジン環を有する化合物は、2,2’−ビピリジン、4,4’−ビピリジン、4,4’−ジメチル−2,2’−ビピリジン、2,2’−ジピリジルアミン、2,2’−ジピコリルアミンおよび3,3’−ジピコリルアミンよりなる群から選ばれた少なくとも1種であることが好ましい。
前記非水電解質に含まれる2個のピリジン環を有する化合物の量は、前記非水溶媒100体積部あたり0.01〜0.5体積部であることが好ましい。
【0014】
前記γ―ブチロラクトン誘導体は、γ−ブチロラクトン、γ−バレロラクトンおよびα−メチル−γ−ブチロラクトンよりなる群から選ばれた少なくとも1種であることが好ましい。
前記γ―ブチロラクトン誘導体の量は、前記非水溶媒全体の30体積%以上であることが好ましい。
前記正極は、リチウム含有遷移金属酸化物からなり、前記負極は、黒鉛からなることが好ましい。
【0015】
高温保存時における電池のインピーダンスの増大は、主に正極のインピーダンスの増大に起因する。一方、非水電解質に2個のピリジン環を有する化合物を含ませることにより、正極上でのγ―ブチロラクトン誘導体の酸化反応が著しく抑制され、被膜形成による正極のインピーダンス増大を抑制することができる。よって、高温環境下での保存後においても優れた充放電特性を有する電池を提供することができる。
γ―ブチロラクトン誘導体の酸化反応が著しく抑制される理由は、2個のピリジン環を有する化合物がγ―ブチロラクトン誘導体よりも優先的に分解して正極上に被膜を形成するためと考えられる。
【0016】
【発明の実施の形態】
本発明で用いる非水電解質は、高温環境下での保存特性、特に保存後の高率放電特性を向上させたものであり、式(1):
【0017】
【化5】
Figure 2004014352
【0018】
(式(1)中、R〜Rはそれぞれ独立に、水素原子、ハロゲン原子、炭素数1〜6のアルキル基または炭素数1〜6のアセチル基)で表されるγ―ブチロラクトン誘導体を含有する非水溶媒、前記非水溶媒に溶解した溶質および式(2):
【0019】
【化6】
Figure 2004014352
【0020】
(式(2)中、R〜Rはそれぞれ独立で、ハロゲン原子、炭素数1〜3のアルキル基、フェニル基または水酸基であり、結合手Xは、共有結合、炭素数1〜3のアルキレン基またはイミノ基)で表される添加剤としての2個のピリジン環を有する化合物からなる。
【0021】
式(1)で表されるγ―ブチロラクトン誘導体としては、γ−ブチロラクトン、γ−バレロラクトン、α−メチル−γ−ブチロラクトン、γ−カプロラクトン、α−メチレン−γ−ブチロラクトン、γ−ヘキサノラクトン、γ−ノナノラクトン、γ−オクタノラクトン、γ−メチル−γ−デカノラクトン等を用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらのうちでは、γ−ブチロラクトン、γ−バレロラクトンおよびα−メチル−γ−ブチロラクトンよりなる群から選ばれた少なくとも1種を用いることが特に好ましい。
【0022】
前記非水溶媒は、耐酸化性および耐還元性の観点から、環状炭酸エステル、鎖状炭酸エステル、γ−ブチロラクトン誘導体以外の環状カルボン酸エステルおよび鎖状カルボン酸エステルよりなる群から選ばれる少なくとも1種を含むことができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0023】
環状炭酸エステルとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)などを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらのうちでは、特にエチレンカーボネート、プロピレンカーボネートおよびビニレンカーボネートが好ましい。
【0024】
鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)などを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0025】
鎖状カルボン酸エステルとしては、メチルアセテート(MA)、エチルアセテート(EA)、メチルプロピオネート(MP)、メチルブチレート(MB)、エチルブチレート(EB)、ブチルアセテート(BA)、n−プロピルアセテート(PA)、イソブチルプロピオネート(iso−BP)などを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらのうちでは、特にメチルアセテート、エチルアセテートおよびメチルプロピオネートが好ましい。
【0026】
式(2)で表される2個のピリジン環を有する化合物としては、2,2’−ビピリジン、4,4’−ビピリジン、4,4’−ジメチル−2,2’−ビピリジン、2,2’−ジピリジルアミン、2,2’−ジピコリルアミン、3,3’−ジピコリルアミン等を用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらのうちでは、特に2,2’−ビピリジンおよび4,4’−ビピリジンが好ましい。
【0027】
非水電解質に含まれる2個のピリジン環を有する化合物の量は、非水溶媒100体積部あたり0.01〜0.5体積部、さらには0.05〜0.2体積部であることが好ましい。2個のピリジン環を有する化合物の量が非水溶媒100体積部あたり0.01体積部未満では、γ−ブチロラクトン誘導体の正極上での酸化分解を抑制するのに充分な2個のピリジン環を有する化合物由来の被膜が正極表面に形成されない。また、2個のピリジン環を有する化合物の量が非水溶媒100体積部あたり0.5体積部を超えると、電池容量の低下を引き起こす。
【0028】
γ−ブチロラクトン誘導体の量は、非水溶媒全体の30体積%以上、さらには50体積%以上であることが好ましい。非水溶媒中におけるγ−ブチロラクトン誘導体の含有量が30体積%未満になると、電解液の導電率、特に低温における導電率が低下する。
【0029】
環状炭酸エステルの量は、非水溶媒全体の10〜60体積%、さらには20〜40体積%であることが好ましい。非水溶媒中における環状炭酸エステルの含有量が10体積%未満になると、非水溶媒の誘電率が低下して溶質が溶媒に溶解しにくくなる。また、非水溶媒中における環状炭酸エステルの含有量が60体積%を超えると、電解液の導電率、特に低温における導電率が低下する。
【0030】
鎖状炭酸エステルの量は、非水溶媒全体の10〜80体積%であることが好ましい。非水溶媒中における鎖状炭酸エステルの含有量が10体積%未満になると、セパレータが電解液で濡れにくくなることがある。また、非水溶媒中における鎖状炭酸エステルの含有量が80体積%を超えると、非水溶媒の誘電率が低下して溶質が溶媒に溶解しにくくなる。
【0031】
非水溶媒に溶解させる溶質には、少なくともLiPFを用いることが好ましい。LiPFは単独で用いてもよく、非水電解質二次電池で通常に用いられているLiPF以外の溶質と組み合わせて用いてもよい。具体的には、LiClO、LiAsF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiB[C(CF−3,5]等から選ばれる1種以上を用いることができる。特にLiPFとLiBFとを組み合わせて用いることが好ましい。
【0032】
本発明の非水電解質二次電池の正極には、通常の非水電解質二次電池で用いられている正極材料を用いることができる。正極材料は、本願発明では特に限定されない。電池容量を向上させ、エネルギー密度を高める観点から、正極材料は、リチウムと1種以上の遷移金属とを含有する複合酸化物(リチウム含有遷移金属複合酸化物)を主体とすることが好ましい。例えばLiMO(式中、Mは1種以上の遷移金属を表し、xは電池の充放電状態により異なり、通常0.05≦x≦1.10である)で表されるリチウム含有遷移金属複合酸化物を主体とする活物質が好適である。LiMOにおいて、遷移金属Mには、Co、NiおよびMnよりなる群から選ばれる少なくとも1種を用いることが好ましい。上記の他、リチウム含有遷移金属複合酸化物としては、LiMnなどを用いることもできる。
【0033】
本発明の非水電解質二次電池の負極には、通常の非水電解質二次電池で用いられている負極材料を用いることができる。負極材料は、本願発明では特に限定されない。負極材料には、金属リチウム、リチウムをドープ・脱ドープすることが可能な材料等を用いることができる。リチウムをドープ・脱ドープすることが可能な材料としては、熱分解炭素、コークス(ピッチコークス、ニードルコークス、石油コークス等)、黒鉛、ガラス状炭素、有機高分子化合物焼成体(フェノール樹脂、フラン樹脂等を適当な温度で焼成して炭素化したもの)、炭素繊維、活性炭素等の炭素材料や、ポリアセチレン、ポリピロール、ポリアセン等のポリマー、Li4/3Ti5/3等のリチウム含有遷移金属酸化物、TiS等のリチウム含有遷移金属硫化物等が挙げられる。これらのうちでは、炭素材料が好ましく、特に(002)面の面間隔が0.340nm以下である黒鉛を用いることが、電池のエネルギー密度を向上させる上で好ましい。
【0034】
正極材料は、結着剤、導電剤等と混練され、得られた正極合剤から正極が作製される。前記結着剤および導電剤には、従来公知のものがいずれも使用可能である。また、負極材料は、結着剤等と混練され、得られた負極合剤から負極が作製される。前記結着剤には、従来公知のものがいずれも使用可能である。
【0035】
本発明は、あらゆる形状の電池に適用することができる。本発明は、例えば円筒型、角型、コイン型、ボタン型等の電池に適用することができ、大型の電池にも適用することができる。正極および負極の形態は電池の形状に応じて変更される。
【0036】
【実施例】
《実施例1》
(i)正極
LiCOとCoとを混合し、900℃で10時間焼成してLiCoOを合成した。次いで、100重量部のLiCoOに、導電剤としてアセチレンブラックを3重量部、結着剤としてポリ四フッ化エチレンを7重量部、カルボキシメチルセルロースの1重量%水溶液を100重量部添加し、攪拌・混合し、ペースト状の正極合剤を得た。次いで、厚さ30μmのアルミニウム箔の集電体の両面に前記正極合剤を塗布し、乾燥後、圧延ローラーを用いて圧延を行い、所定寸法に裁断して、正極とした。正極にはアルミニウム製正極リードを溶接した。
【0037】
(ii)負極
鱗片状黒鉛を平均粒径が約20μmになるように粉砕・分級した。得られた鱗片状黒鉛100重量部に、結着剤としてスチレン/ブタジエンゴムを3重量部、カルボキシメチルセルロースの1重量%水溶液を100重量部添加し、攪拌・混合し、ペースト状の負極合剤を得た。次いで、厚さ20μmの銅箔の集電体の両面に前記負極合剤を塗布し、乾燥後、圧延ローラーを用いて圧延を行い、所定寸法に裁断して、負極とした。負極にはニッケル製負極リードを溶接した。
【0038】
(iii)非水電解質
後述の表1に示した組成の非水溶媒に、1.5モル/リットルの濃度でLiPFを溶解し、さらに表1に示した2個のピリジン環を有する化合物を前記非水溶媒100体積部あたり0.1体積部添加して、非水電解質を調製した。
なお、表1において、ECはエチレンカーボネートを示し、EMCはエチルメチルカーボネートを示し、GBLはγ−ブチロラクトンを示し、VCはビニレンカーボネートを示す。
【0039】
(iv)電池の組み立て
図1に作製した電池の右半分断面正面図を示す
上記で作製した帯状の正極2と負極3とを、厚さ25μmの微多孔性ポリエチレン樹脂製セパレータ1を介して渦巻状に巻回し、極板群を得た。極板群の下にポリエチレン樹脂製底部絶縁板6を装着し、内面をニッケルメッキした鉄製電池ケース7内に極板群を収容した。電池ケース7の内定面には負極リード5の他端をスポット溶接した。極板群上面にポリエチレン樹脂製上部絶縁板8を載置してから、電池ケース7の開口部の所定位置に溝入れした。次いで、所定量の非水電解質を電池ケース7内に注入し、極板群に電解質を含浸させた。一方、ポリプロピレン樹脂製ガスケット9を周縁部に装着したステンレス鋼製の封口板10を準備した。封口板10の下面には正極リード4の他端をスポット溶接した。その後、電池ケース7の開口部に前記ガスケット9を介して封口板10を装着し、封口板10の周縁部に電池ケース7の上縁部をかしめ、電池を完成した。完成した非水電解質二次電池1〜14は、直径18mm、総高65mmの円筒型であった。
【0040】
(v)電池の評価
完成した各電池の充放電を環境温度20℃で行った。充電過程では、上限電圧を4.2Vに設定して、最大電流1050mAで2時間30分間の定電流・定電圧充電を行った。放電過程では、放電電流1500mA、放電終止電圧3.0Vで定電流放電を行った。充放電後の電池を再度充電し、充電状態の電池を環境温度60℃で10日間保存した。保存後の電池を環境温度20℃で放冷後、放電電流300mA、放電終止電圧3.0Vで定電流放電を行った。次いで、上限電圧を4.2Vに設定して、最大電流1050mAで2時間30分間の定電流・定電圧充電を行い、放電電流1500mA、放電終止電圧3.0Vで定電流放電を行った。
上記操作で得られた保存後の電池の放電電流1500mA時の放電容量C1500と放電電流300mA時の放電容量C300
計算式1:P(%)=(C1500/C300)×100
に代入することにより、保存後の電池の高率放電特性Pを求めた。結果を表1に示す。
【0041】
【表1】
Figure 2004014352
【0042】
表1からわかるように、電池7および電池14は、非水電解質が2個のピリジン環を有する化合物を含まないため、高率放電特性Pがそれぞれ60%および75%であった。それに対し、2個のピリジン環を有する化合物を非水溶媒100体積部あたり0.1体積部添加した非水電解質を用いた電池1〜6および電池8〜13では、高率放電特性Pが5〜25%も向上した。また、高率放電特性Pの向上の程度は、非水溶媒におけるγ−ブチロラクトン(GBL)の含有率が高いほど顕著であった。これらの結果から、非水溶媒にGBLを用いた場合には、高温保存による電池のインピーダンスが通常は著しく増大するが、2個のピリジン環を有する化合物を非水電解質に含ませることにより、インピーダンスの増大を抑制でき、高率放電特性Pの向上を図れることが示された。
【0043】
《実施例2》
次に、非水電解質に含ませる2個のピリジン環を有する化合物の量を検討した。2個のピリジン環を有する化合物を非水溶媒に添加した場合、電池の不可逆容量が増大するため、2個のピリジン環を有する化合物の量が多すぎると、電池容量が低下すると考えられる。また、2個のピリジン環を有する化合物は耐酸化性および耐還元性が低いため、余剰の2個のピリジン環を有する化合物が高温では酸化または還元分解されてガス発生量が増大するおそれがある。
【0044】
非水溶媒としてEC/EMC/GBL/VC=0/0/100/2(体積比)を用いた。また、非水溶媒には溶質として1.5モル/リットルの濃度でLiPFを溶解した。2個のピリジン環を有する化合物としては2,2’−ビピリジンを用いた。前記非水溶媒100体積部あたりの2個のピリジン環を有する化合物の添加量ΔVは、表2に示すように0.001〜5体積部の範囲で変化させた。上記以外は実施例1と同様にして電池15〜20を作製した。
【0045】
完成した各電池の高率放電特性Pを実施例1と同様に評価した。また、各電池の不可逆容量および高温保存時のガス発生量を求めた。得られた結果を表2に示す。
【0046】
【表2】
Figure 2004014352
【0047】
表2に示すように、2,2’−ビピリジンの添加量ΔVが非水溶媒100体積部あたり0.001体積部の電池15では、高率放電特性Pの向上は認められなかった。これは、インピーダンスの増大を抑制する被膜が正極表面に充分に形成されなかったためと考えられる。一方、2,2’−ビピリジンの添加量ΔVが非水溶媒100体積部あたり1体積部および5体積部の電池19および電池20の場合、2,2’−ビピリジンが過剰であるため、不可逆容量および高温保存時のガス発生量が増大した。電池20の高率放電特性Pの大きな低下は、発生したガスが電極間に残ることによる反応面積の低下によるものと考えられる。よって、2,2’−ビピリジンの添加量ΔVが非水溶媒100体積部あたり0.01〜0.5体積部の範囲が、良好な高率放電特性を示し、かつ、不可逆容量とガス発生量の著しい増大が認められない好適範囲である。
【0048】
《実施例3》
次に、非水溶媒に含ませるγ−ブチロラクトンの量を検討した。用いた非水溶媒の組成を表3に示す。また、非水溶媒には、溶質として1.5モル/リットルの濃度でLiPFを溶解し、さらに2,2’−ビピリジンを添加した。前記非水溶媒100体積部あたりの2,2’−ビピリジンの添加量ΔVは2体積部とした。上記以外は実施例1と同様にして電池21〜23を作製した。次いで、完成した各電池の高率放電特性Pを実施例1と同様に評価した。得られた結果を表3に示す。
【0049】
【表3】
Figure 2004014352
【0050】
表3に示すように、γ−ブチロラクトンの量が非水溶媒全体の30体積%以上の電池21および22では、実施例1の電池8と同程度の高率放電特性Pが得られた。一方、γ−ブチロラクトンの量が非水溶媒全体の30体積%未満の電池23では、電解液の導電率の低下により、高率放電特性Pが低下した。以上より、γ−ブチロラクトンの量は非水溶媒全体の30体積%以上が好適範囲であることが理解できる。
【0051】
《実施例4》
次に、γ−ブチロラクトンの代わりにγ−バレロラクトン(GVL)またはα−メチル−γ−ブチロラクトン(AMGBL)を含む表4に示す非水溶媒を用いたこと以外、実施例1の電池8と同様の構成の電池24および25を作製した。すなわち、非水溶媒には、溶質として1.5モル/リットルの濃度でLiPFを溶解し、さらに前記非水溶媒100体積部あたり0.1体積部の2,2’−ビピリジンを添加した。完成した各電池の高率放電特性Pを実施例1と同様に評価した。得られた結果を表4に示す。
【0052】
【表4】
Figure 2004014352
【0053】
表4の結果から、γ−ブチロラクトン以外のγ−ブチロラクトン誘導体を用いた場合にも、γ−ブチロラクトンを用いた場合と同程度の高率放電特性Pが得られることが理解できる。
【0054】
なお、本実施例では、γ―ブチロラクトン誘導体および2個のピリジン環を有する化合物として上記化合物を含む非水電解質について記載したが、上記以外のγ−ブチロラクトン誘導体や2個のピリジン環を有する化合物を用いた場合についても同様の効果が得られている。従って、本発明はここに記載の実施例に限定されるものではない。
【0055】
【発明の効果】
本発明によれば、高温環境下における保存特性、特に保存後の高率放電特性に優れた非水電解質二次電池を提供することができる。
【図面の簡単な説明】
【図1】図1は、本発明の非水電解質二次電池の一例の右半分断面正面図である。
【符号の説明】
1 セパレータ
2 正極
3 負極
4 正極リード
5 負極リード
6 底部絶縁板
7 電池ケース
8 上部絶縁板
9 ガスケット
10 封口板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery.
[0002]
[Prior art]
2. Description of the Related Art In recent years, electronic devices such as personal computers and mobile phones have been rapidly becoming smaller and lighter and cordless, and a secondary battery having a high energy density has been required as a power supply for driving these electronic devices. Under such circumstances, a lithium ion secondary battery using lithium as an active material is currently being commercialized as a battery having a high voltage and a high energy density. In a lithium ion secondary battery, for example, a positive electrode is made of lithium cobalt oxide (LiCoO 2 ), a negative electrode is a carbon material such as graphite, a nonaqueous solvent in which a lithium salt is dissolved in a nonaqueous electrolyte, and a separator is a porous film made of polyethylene or the like. Is used.
[0003]
In a lithium ion secondary battery with high energy density, in order to obtain good battery characteristics including reliability, not only the characteristics of the positive electrode and the negative electrode, but also the characteristics of the nonaqueous electrolyte that transports lithium ions are important. . As the non-aqueous solvent constituting the non-aqueous electrolyte, a mixed solvent obtained by combining a high-dielectric solvent having a high solubility of a solute and a low-viscosity solvent having a high ability to transport ions generated by dissociation of the solute is usually used. Used. For example, a mixed solvent containing a cyclic carbonate as a high dielectric constant solvent and a chain carbonate as a low viscosity solvent and a non-aqueous electrolyte made of a solute such as lithium hexafluorophosphate (LiPF 6 ) dissolved in the solvent are high. It is frequently used because of its conductivity and wide electrochemical window.
[0004]
Ethylene carbonate (EC), propylene carbonate (PC), and the like are used for the cyclic carbonate that is a high dielectric constant solvent, and dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC) are used for the linear carbonate. ) Etc. are used.
However, ethylene carbonate and propylene carbonate have problems such as solidification at low temperatures and a significant decrease in ionic conductivity. In order to solve this problem, a non-aqueous electrolyte secondary battery including a non-aqueous solvent mainly containing γ-butyrolactone (GBL) as a high dielectric constant solvent has been studied (Japanese Patent Application Laid-Open No. 11-9706 and Japanese Patent Application Laid-Open No. H11-9706). JP-A-12-235868).
[0005]
[Problems to be solved by the invention]
However, as described in JP-A-11-9706, when LiBF 4 is used as a solute in a non-aqueous electrolyte containing γ-butyrolactone, the non-aqueous electrolyte is a positive electrode or a non-aqueous electrolyte at the current operating voltage of a lithium ion secondary battery. It is easily oxidized and reduced on the negative electrode. For this reason, especially when the battery is stored in a high-temperature environment, self-discharge of the battery is severe, and there is a serious problem with respect to long-term reliability.
[0006]
Even when LiPF 6 having high oxidation resistance is used as a solute, when the battery in a charged state is stored under a high-temperature environment, the electrode surface has a high impedance due to the reaction between the nonaqueous electrolyte and the positive electrode or the negative electrode. A film forms. The characteristics (particularly, high-rate discharge characteristics and low-temperature characteristics) of the battery after storage are significantly reduced by this coating. Therefore, it is important to suppress the increase in the impedance of the battery during high-temperature storage in order to put the nonaqueous electrolyte secondary battery into practical use.
[0007]
[Means for Solving the Problems]
In view of the above, an object of the present invention is to provide a non-aqueous electrolyte secondary battery having excellent storage characteristics in a high-temperature environment, particularly excellent high-rate discharge characteristics after storage.
As a result of extensive studies by the present inventors, by using a non-aqueous electrolyte obtained by dissolving a compound having two pyridine rings and a solute such as LiPF 6 in a non-aqueous solvent containing a γ-butyrolactone derivative, It has been found that a nonaqueous electrolyte secondary battery having excellent storage characteristics under a high temperature environment can be obtained.
[0008]
That is, the present invention comprises a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the non-aqueous electrolyte comprises a non-aqueous solvent, a solute dissolved in the non-aqueous solvent, and an additive; :
[0009]
Embedded image
Figure 2004014352
[0010]
(In the formula (1), R 1 to R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms or an acetyl group having 1 to 6 carbon atoms) a γ-butyrolactone derivative represented by Wherein the additive comprises the formula (2):
[0011]
Embedded image
Figure 2004014352
[0012]
(In the formula (2), R 7 to R 8 are each independently a halogen atom, an alkyl group having 1 to 3 carbon atoms, a phenyl group or a hydroxyl group, and the bond X is a covalent bond, a 1 to 3 carbon atom. The present invention relates to a non-aqueous electrolyte secondary battery comprising a compound having two pyridine rings represented by an alkylene group or an imino group). R 1 to R 6 may be the same or different. Further, R 7 to R 8 may be the same or different.
[0013]
The compounds having two pyridine rings include 2,2′-bipyridine, 4,4′-bipyridine, 4,4′-dimethyl-2,2′-bipyridine, 2,2′-dipyridylamine, It is preferably at least one selected from the group consisting of '-dipicolylamine and 3,3'-dipicolylamine.
The amount of the compound having two pyridine rings contained in the nonaqueous electrolyte is preferably 0.01 to 0.5 parts by volume per 100 parts by volume of the nonaqueous solvent.
[0014]
The γ-butyrolactone derivative is preferably at least one selected from the group consisting of γ-butyrolactone, γ-valerolactone, and α-methyl-γ-butyrolactone.
The amount of the γ-butyrolactone derivative is preferably at least 30% by volume of the entire non-aqueous solvent.
Preferably, the positive electrode is made of a lithium-containing transition metal oxide, and the negative electrode is made of graphite.
[0015]
The increase in the impedance of the battery during high-temperature storage is mainly caused by the increase in the impedance of the positive electrode. On the other hand, by including a compound having two pyridine rings in the nonaqueous electrolyte, the oxidation reaction of the γ-butyrolactone derivative on the positive electrode is significantly suppressed, and an increase in the impedance of the positive electrode due to the formation of a film can be suppressed. Therefore, a battery having excellent charge / discharge characteristics even after storage in a high temperature environment can be provided.
It is considered that the reason why the oxidation reaction of the γ-butyrolactone derivative is remarkably suppressed is that the compound having two pyridine rings is decomposed more preferentially than the γ-butyrolactone derivative to form a film on the positive electrode.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The non-aqueous electrolyte used in the present invention has improved storage characteristics under a high-temperature environment, particularly improved high-rate discharge characteristics after storage.
[0017]
Embedded image
Figure 2004014352
[0018]
(In the formula (1), R 1 to R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms or an acetyl group having 1 to 6 carbon atoms) a γ-butyrolactone derivative represented by The nonaqueous solvent contained, the solute dissolved in the nonaqueous solvent, and the formula (2):
[0019]
Embedded image
Figure 2004014352
[0020]
(In the formula (2), R 7 to R 8 are each independently a halogen atom, an alkyl group having 1 to 3 carbon atoms, a phenyl group or a hydroxyl group, and the bond X is a covalent bond, a 1 to 3 carbon atom. It consists of a compound having two pyridine rings as an additive represented by an alkylene group or an imino group).
[0021]
Examples of the γ-butyrolactone derivative represented by the formula (1) include γ-butyrolactone, γ-valerolactone, α-methyl-γ-butyrolactone, γ-caprolactone, α-methylene-γ-butyrolactone, γ-hexanolactone, γ-nonanolactone, γ-octanolactone, γ-methyl-γ-decanolactone and the like can be used. These may be used alone or in combination of two or more. Among these, it is particularly preferable to use at least one selected from the group consisting of γ-butyrolactone, γ-valerolactone and α-methyl-γ-butyrolactone.
[0022]
The non-aqueous solvent is at least one selected from the group consisting of cyclic carbonates, chain carbonates, and cyclic carboxylic esters other than γ-butyrolactone derivatives, from the viewpoint of oxidation resistance and reduction resistance. Species can be included. These may be used alone or in combination of two or more.
[0023]
As the cyclic carbonate, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC) and the like can be used. These may be used alone or in combination of two or more. Among these, ethylene carbonate, propylene carbonate and vinylene carbonate are particularly preferred.
[0024]
As the chain carbonate, diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and the like can be used. These may be used alone or in combination of two or more.
[0025]
Examples of the linear carboxylic acid ester include methyl acetate (MA), ethyl acetate (EA), methyl propionate (MP), methyl butyrate (MB), ethyl butyrate (EB), butyl acetate (BA), and n- Propyl acetate (PA), isobutyl propionate (iso-BP), or the like can be used. These may be used alone or in combination of two or more. Of these, methyl acetate, ethyl acetate and methyl propionate are particularly preferred.
[0026]
Compounds having two pyridine rings represented by the formula (2) include 2,2′-bipyridine, 4,4′-bipyridine, 4,4′-dimethyl-2,2′-bipyridine, and 2,2′-bipyridine. '-Dipyridylamine, 2,2'-dipicolylamine, 3,3'-dipicolylamine and the like can be used. These may be used alone or in combination of two or more. Of these, 2,2′-bipyridine and 4,4′-bipyridine are particularly preferred.
[0027]
The amount of the compound having two pyridine rings contained in the nonaqueous electrolyte may be 0.01 to 0.5 part by volume, and more preferably 0.05 to 0.2 part by volume, per 100 parts by volume of the nonaqueous solvent. preferable. When the amount of the compound having two pyridine rings is less than 0.01 part by volume per 100 parts by volume of the nonaqueous solvent, two pyridine rings sufficient to suppress the oxidative decomposition of the γ-butyrolactone derivative on the positive electrode are formed. A film derived from the compound having no compound is formed on the positive electrode surface. On the other hand, when the amount of the compound having two pyridine rings exceeds 0.5 part by volume per 100 parts by volume of the nonaqueous solvent, the battery capacity is reduced.
[0028]
The amount of the γ-butyrolactone derivative is preferably 30% by volume or more, more preferably 50% by volume or more of the whole non-aqueous solvent. When the content of the γ-butyrolactone derivative in the non-aqueous solvent is less than 30% by volume, the conductivity of the electrolytic solution, particularly the conductivity at a low temperature, decreases.
[0029]
The amount of the cyclic carbonate is preferably 10 to 60% by volume, more preferably 20 to 40% by volume of the whole non-aqueous solvent. When the content of the cyclic carbonate in the non-aqueous solvent is less than 10% by volume, the dielectric constant of the non-aqueous solvent decreases, and the solute becomes difficult to dissolve in the solvent. When the content of the cyclic carbonate in the non-aqueous solvent exceeds 60% by volume, the conductivity of the electrolytic solution, particularly the conductivity at a low temperature, decreases.
[0030]
The amount of the chain carbonate is preferably 10 to 80% by volume of the whole non-aqueous solvent. When the content of the chain carbonate in the non-aqueous solvent is less than 10% by volume, the separator may not be easily wetted with the electrolytic solution. On the other hand, when the content of the chain carbonate in the non-aqueous solvent exceeds 80% by volume, the dielectric constant of the non-aqueous solvent is reduced, and the solute is difficult to dissolve in the solvent.
[0031]
It is preferable to use at least LiPF 6 as the solute dissolved in the non-aqueous solvent. LiPF 6 may be used alone, or may be used in combination with a solute other than LiPF 6 commonly used in nonaqueous electrolyte secondary batteries. Specifically, LiClO 4 , LiAsF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F) 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiB [C 6 F 3 (CF 3 ) 2 -3,5] 4 or the like can be used. Particularly, it is preferable to use a combination of LiPF 6 and LiBF 4 .
[0032]
For the positive electrode of the nonaqueous electrolyte secondary battery of the present invention, a positive electrode material used in a normal nonaqueous electrolyte secondary battery can be used. The positive electrode material is not particularly limited in the present invention. From the viewpoint of improving the battery capacity and increasing the energy density, the positive electrode material is preferably mainly composed of a composite oxide containing lithium and one or more transition metals (lithium-containing transition metal composite oxide). For example, a lithium-containing transition represented by Li x MO 2 (wherein M represents one or more transition metals, x varies depending on the charge / discharge state of the battery, and is usually 0.05 ≦ x ≦ 1.10.) An active material mainly composed of a metal composite oxide is preferable. In Li x MO 2 , it is preferable to use, as the transition metal M, at least one selected from the group consisting of Co, Ni, and Mn. In addition to the above, as the lithium-containing transition metal composite oxide, Li x Mn 2 O 4 or the like can also be used.
[0033]
For the negative electrode of the nonaqueous electrolyte secondary battery of the present invention, a negative electrode material used in a normal nonaqueous electrolyte secondary battery can be used. The negative electrode material is not particularly limited in the present invention. As the negative electrode material, metallic lithium, a material capable of doping / dedoping lithium, or the like can be used. Materials capable of doping and undoping lithium include pyrolytic carbon, coke (pitch coke, needle coke, petroleum coke, etc.), graphite, glassy carbon, and organic polymer compound fired bodies (phenol resin, furan resin) And carbonized materials such as carbon fibers and activated carbon, polymers such as polyacetylene, polypyrrole, and polyacene, and lithium-containing transitions such as Li 4/3 Ti 5/3 O 4. metal oxides, lithium-containing transition metal sulfides such as TiS 2 and the like. Among them, carbon materials are preferable, and it is particularly preferable to use graphite having a (002) plane spacing of 0.340 nm or less from the viewpoint of improving the energy density of the battery.
[0034]
The positive electrode material is kneaded with a binder, a conductive agent, and the like, and a positive electrode is produced from the obtained positive electrode mixture. Any conventionally known binder and conductive agent can be used. Further, the negative electrode material is kneaded with a binder and the like, and a negative electrode is produced from the obtained negative electrode mixture. As the binder, any conventionally known binder can be used.
[0035]
The present invention can be applied to batteries of any shape. The present invention can be applied to, for example, batteries of a cylindrical type, a square type, a coin type, a button type, and the like, and can also be applied to a large-sized battery. The shapes of the positive electrode and the negative electrode are changed according to the shape of the battery.
[0036]
【Example】
<< Example 1 >>
(I) Positive electrode Li 2 CO 3 and Co 3 O 4 were mixed and fired at 900 ° C. for 10 hours to synthesize LiCoO 2 . Next, 3 parts by weight of acetylene black as a conductive agent, 7 parts by weight of polytetrafluoroethylene as a binder, and 100 parts by weight of a 1% by weight aqueous solution of carboxymethylcellulose were added to 100 parts by weight of LiCoO 2 and stirred. The mixture was mixed to obtain a paste-like positive electrode mixture. Next, the positive electrode mixture was applied to both surfaces of a 30 μm-thick aluminum foil current collector, dried, rolled using a rolling roller, and cut into predetermined dimensions to obtain a positive electrode. An aluminum positive electrode lead was welded to the positive electrode.
[0037]
(Ii) The negative electrode flaky graphite was pulverized and classified so that the average particle size became about 20 μm. To 100 parts by weight of the obtained flaky graphite, 3 parts by weight of a styrene / butadiene rubber and 100 parts by weight of a 1% by weight aqueous solution of carboxymethylcellulose were added as binders, and the mixture was stirred and mixed to obtain a paste-like negative electrode mixture. Obtained. Next, the negative electrode mixture was applied to both sides of a copper foil current collector having a thickness of 20 μm, dried, rolled using a rolling roller, and cut into predetermined dimensions to obtain a negative electrode. A negative electrode lead made of nickel was welded to the negative electrode.
[0038]
(Iii) Non-aqueous electrolyte LiPF 6 is dissolved in a non-aqueous solvent having a composition shown in Table 1 below at a concentration of 1.5 mol / L, and a compound having two pyridine rings shown in Table 1 is further dissolved. A non-aqueous electrolyte was prepared by adding 0.1 part by volume per 100 parts by volume of the non-aqueous solvent.
In Table 1, EC indicates ethylene carbonate, EMC indicates ethyl methyl carbonate, GBL indicates γ-butyrolactone, and VC indicates vinylene carbonate.
[0039]
(Iv) Assembling of Battery The band-shaped positive electrode 2 and negative electrode 3 which are shown in the right half sectional front view of the battery prepared in FIG. 1 are spirally wound through a microporous polyethylene resin separator 1 having a thickness of 25 μm. To form an electrode group. A bottom insulating plate 6 made of polyethylene resin was mounted below the electrode group, and the electrode group was housed in an iron battery case 7 whose inner surface was nickel-plated. The other end of the negative electrode lead 5 was spot-welded to the inner surface of the battery case 7. After the upper insulating plate 8 made of polyethylene resin was placed on the upper surface of the electrode plate group, a groove was formed at a predetermined position in the opening of the battery case 7. Next, a predetermined amount of a non-aqueous electrolyte was injected into the battery case 7, and the electrode group was impregnated with the electrolyte. On the other hand, a stainless steel sealing plate 10 in which a polypropylene resin gasket 9 was attached to the periphery was prepared. The other end of the positive electrode lead 4 was spot-welded to the lower surface of the sealing plate 10. Thereafter, the sealing plate 10 was attached to the opening of the battery case 7 via the gasket 9, and the upper edge of the battery case 7 was swaged to the peripheral edge of the sealing plate 10 to complete the battery. The completed nonaqueous electrolyte secondary batteries 1 to 14 were cylindrical with a diameter of 18 mm and a total height of 65 mm.
[0040]
(V) Evaluation of batteries The completed batteries were charged and discharged at an ambient temperature of 20 ° C. In the charging process, the upper limit voltage was set to 4.2 V, and constant current and constant voltage charging was performed at a maximum current of 1050 mA for 2 hours and 30 minutes. In the discharge process, constant current discharge was performed at a discharge current of 1500 mA and a discharge end voltage of 3.0 V. The battery after charging and discharging was charged again, and the charged battery was stored at an ambient temperature of 60 ° C. for 10 days. The battery after storage was allowed to cool at an ambient temperature of 20 ° C., and then was subjected to constant current discharge at a discharge current of 300 mA and a discharge end voltage of 3.0 V. Next, the upper limit voltage was set to 4.2 V, constant current / constant voltage charging was performed at a maximum current of 1050 mA for 2 hours 30 minutes, and constant current discharging was performed at a discharge current of 1500 mA and a discharge end voltage of 3.0 V.
The calculation operation and the discharge capacity C 1500 at the time of discharging current 1500mA of battery after storage was obtained by the discharge current 300mA when the discharge capacity C 300 Formula 1: P h (%) = (C 1500 / C 300) × 100
By substituting was determined high rate discharge property P h of the battery after storage. Table 1 shows the results.
[0041]
[Table 1]
Figure 2004014352
[0042]
As can be seen from Table 1, the battery 7 and the battery 14, since the non-aqueous electrolyte does not contain a compound having two pyridine rings, high rate discharge property P h was 60% and 75%, respectively. In contrast, the two batteries 1-6 to a compound having a pyridine ring with a non-aqueous solvent 0.1 parts by volume of the added non-aqueous electrolyte per 100 parts by volume of and a battery 8-13, high-rate discharge characteristic P h It has improved by 5 to 25%. The degree of improvement of high rate discharge property P h, the content of γ- butyrolactone in the nonaqueous solvent (GBL) was higher significantly. From these results, when GBL is used as the non-aqueous solvent, the battery impedance due to high-temperature storage usually increases significantly. However, by including a compound having two pyridine rings in the non-aqueous electrolyte, the impedance is increased. the increase can be suppressed, it was shown that thereby improving the high rate discharge property P h.
[0043]
<< Example 2 >>
Next, the amount of the compound having two pyridine rings to be included in the nonaqueous electrolyte was examined. When a compound having two pyridine rings is added to a non-aqueous solvent, the irreversible capacity of the battery increases. Therefore, when the amount of the compound having two pyridine rings is too large, the battery capacity is considered to decrease. Further, since a compound having two pyridine rings has low oxidation resistance and resistance to reduction, an excess compound having two pyridine rings may be oxidized or reduced and decomposed at a high temperature to increase the amount of gas generated. .
[0044]
EC / EMC / GBL / VC = 0/0/100/2 (volume ratio) was used as the non-aqueous solvent. LiPF 6 was dissolved as a solute in the nonaqueous solvent at a concentration of 1.5 mol / liter. 2,2′-bipyridine was used as the compound having two pyridine rings. Amount [Delta] V h of a compound having two pyridine rings per the nonaqueous solvent 100 parts by volume was changed in the range of 0.001 to 5 parts by volume as shown in Table 2. Except for the above, batteries 15 to 20 were produced in the same manner as in Example 1.
[0045]
The finished high-rate discharge characteristics P h of each battery was evaluated in the same manner as in Example 1. In addition, the irreversible capacity of each battery and the amount of gas generated during high-temperature storage were determined. Table 2 shows the obtained results.
[0046]
[Table 2]
Figure 2004014352
[0047]
As shown in Table 2, the battery 15 of the amount [Delta] V h is a non-aqueous solvent 0.001 parts by volume per 100 parts by volume of 2,2'-bipyridine, improvement of high rate discharge property P h was observed. This is considered to be because the film for suppressing the increase in impedance was not sufficiently formed on the positive electrode surface. On the other hand, in the case of the batteries 19 and 20 in which the added amount ΔV h of 2,2′-bipyridine is 1 part by volume and 5 parts by volume per 100 parts by volume of the nonaqueous solvent, irreversible because the amount of 2,2′-bipyridine is excessive. The capacity and gas generation during high temperature storage increased. Greater reduction in high rate discharge property P h of the battery 20, the generated gas is considered to be due to reduction of the reaction area due to remain between the electrodes. Therefore, when the added amount ΔV h of 2,2′-bipyridine is in the range of 0.01 to 0.5 parts by volume per 100 parts by volume of the nonaqueous solvent, good high-rate discharge characteristics are exhibited, and irreversible capacity and gas generation are obtained. This is a preferred range in which no remarkable increase in the amount is observed.
[0048]
<< Example 3 >>
Next, the amount of γ-butyrolactone contained in the non-aqueous solvent was examined. Table 3 shows the composition of the non-aqueous solvent used. In the nonaqueous solvent, LiPF 6 was dissolved as a solute at a concentration of 1.5 mol / liter, and 2,2′-bipyridine was further added. Amount [Delta] V h of the non-aqueous solvent per 100 parts by volume of 2,2'-bipyridine was 2 parts by volume. Except for the above, batteries 21 to 23 were produced in the same manner as in Example 1. Were then evaluated high rate discharge property P h of each battery was completed in the same manner as in Example 1. Table 3 shows the obtained results.
[0049]
[Table 3]
Figure 2004014352
[0050]
As shown in Table 3, the amount of γ- butyrolactone in the battery 21 and 22 of more than 30% by volume of the total non-aqueous solvent, the high-rate discharge characteristics P h substantially equal to that of the battery 8 of Example 1 were obtained. On the other hand, the γ- butyrolactone in an amount of less than 30% by volume of the total non-aqueous solvent cell 23, a decrease in the conductivity of the electrolyte, the high rate discharge characteristics P h is lowered. From the above, it can be understood that the preferable range of the amount of γ-butyrolactone is 30% by volume or more of the whole non-aqueous solvent.
[0051]
<< Example 4 >>
Next, the same as Battery 8 of Example 1 except that a non-aqueous solvent shown in Table 4 containing γ-valerolactone (GVL) or α-methyl-γ-butyrolactone (AMGBL) instead of γ-butyrolactone was used. Batteries 24 and 25 having the above configuration were produced. That is, LiPF 6 was dissolved in the non-aqueous solvent at a concentration of 1.5 mol / L as a solute, and 0.1 part by volume of 2,2′-bipyridine was added to 100 parts by volume of the non-aqueous solvent. The finished high-rate discharge characteristics P h of each battery was evaluated in the same manner as in Example 1. Table 4 shows the obtained results.
[0052]
[Table 4]
Figure 2004014352
[0053]
The results in Table 4, .gamma. even when using butyrolactone other .gamma.-butyrolactone derivatives, .gamma.-butyrolactone can be seen that the high rate discharge property P h can be obtained in the same extent as if using.
[0054]
In this example, a non-aqueous electrolyte containing the above compound as a γ-butyrolactone derivative and a compound having two pyridine rings was described. However, other γ-butyrolactone derivatives and compounds having two pyridine rings were used. The same effect is obtained in the case where it is used. Accordingly, the present invention is not limited to the embodiments described herein.
[0055]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the nonaqueous electrolyte secondary battery excellent in the storage characteristics in high temperature environment, especially the high-rate discharge characteristics after storage can be provided.
[Brief description of the drawings]
FIG. 1 is a right half sectional front view of an example of a non-aqueous electrolyte secondary battery of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Separator 2 Positive electrode 3 Negative electrode 4 Positive electrode lead 5 Negative electrode lead 6 Bottom insulating plate 7 Battery case 8 Upper insulating plate 9 Gasket 10 Sealing plate

Claims (6)

正極、負極および非水電解質からなり、
前記非水電解質が、非水溶媒、前記非水溶媒に溶解した溶質および添加剤からなり、
前記非水溶媒が、式(1):
Figure 2004014352
(式(1)中、R〜Rはそれぞれ独立で、水素原子、ハロゲン原子、炭素数1〜6のアルキル基または炭素数1〜6のアセチル基)で表されるγ―ブチロラクトン誘導体を含み、
前記添加剤が、式(2):
Figure 2004014352
(式(2)中、R〜Rはそれぞれ独立で、ハロゲン原子、炭素数1〜3のアルキル基、フェニル基または水酸基であり、結合手Xは、共有結合、炭素数1〜3のアルキレン基またはイミノ基)で表される2個のピリジン環を有する化合物からなる非水電解質二次電池。
Consisting of a positive electrode, a negative electrode and a non-aqueous electrolyte,
The non-aqueous electrolyte comprises a non-aqueous solvent, a solute and an additive dissolved in the non-aqueous solvent,
The non-aqueous solvent has a formula (1):
Figure 2004014352
(In the formula (1), R 1 to R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an acetyl group having 1 to 6 carbon atoms) a γ-butyrolactone derivative represented by Including
The additive has the formula (2):
Figure 2004014352
(In the formula (2), R 7 to R 8 are each independently a halogen atom, an alkyl group having 1 to 3 carbon atoms, a phenyl group or a hydroxyl group, and the bond X is a covalent bond, a 1 to 3 carbon atom. A non-aqueous electrolyte secondary battery comprising a compound having two pyridine rings represented by an alkylene group or an imino group).
前記2個のピリジン環を有する化合物が、2,2’−ビピリジン、4,4’−ビピリジン、4,4’−ジメチル−2,2’−ビピリジン、2,2’−ジピリジルアミン、2,2’−ジピコリルアミンおよび3,3’−ジピコリルアミンよりなる群から選ばれた少なくとも1種である請求項1記載の非水電解質二次電池。The compound having two pyridine rings is 2,2'-bipyridine, 4,4'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine, 2,2'-dipyridylamine, 2,2 The non-aqueous electrolyte secondary battery according to claim 1, which is at least one selected from the group consisting of '-dipicolylamine and 3,3'-dipicolylamine. 前記非水電解質に含まれる2個のピリジン環を有する化合物の量が、前記非水溶媒100体積部あたり0.01〜0.5体積部である請求項1記載の非水電解質二次電池。The non-aqueous electrolyte secondary battery according to claim 1, wherein the amount of the compound having two pyridine rings contained in the non-aqueous electrolyte is 0.01 to 0.5 parts by volume per 100 parts by volume of the non-aqueous solvent. 前記γ―ブチロラクトン誘導体が、γ−ブチロラクトン、γ−バレロラクトンおよびα−メチル−γ−ブチロラクトンよりなる群から選ばれた少なくとも1種である請求項1記載の非水電解質二次電池。The non-aqueous electrolyte secondary battery according to claim 1, wherein the γ-butyrolactone derivative is at least one selected from the group consisting of γ-butyrolactone, γ-valerolactone, and α-methyl-γ-butyrolactone. 前記γ―ブチロラクトン誘導体の量が、前記非水溶媒全体の30体積%以上である請求項1記載の非水電解質二次電池。The non-aqueous electrolyte secondary battery according to claim 1, wherein the amount of the γ-butyrolactone derivative is 30% by volume or more of the whole non-aqueous solvent. 前記正極が、リチウム含有遷移金属酸化物からなり、前記負極が、黒鉛からなる請求項1記載の非水電解質二次電池。The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode is made of a lithium-containing transition metal oxide, and the negative electrode is made of graphite.
JP2002167363A 2002-06-07 2002-06-07 Nonaqueous electrolyte secondary battery and electrolyte used therefor Expired - Fee Related JP4128807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002167363A JP4128807B2 (en) 2002-06-07 2002-06-07 Nonaqueous electrolyte secondary battery and electrolyte used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002167363A JP4128807B2 (en) 2002-06-07 2002-06-07 Nonaqueous electrolyte secondary battery and electrolyte used therefor

Publications (3)

Publication Number Publication Date
JP2004014352A true JP2004014352A (en) 2004-01-15
JP2004014352A5 JP2004014352A5 (en) 2005-07-21
JP4128807B2 JP4128807B2 (en) 2008-07-30

Family

ID=30434635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002167363A Expired - Fee Related JP4128807B2 (en) 2002-06-07 2002-06-07 Nonaqueous electrolyte secondary battery and electrolyte used therefor

Country Status (1)

Country Link
JP (1) JP4128807B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010053162A1 (en) * 2008-11-07 2010-05-14 三井化学株式会社 Non-aqueous electrolysis solution containing pyridyl 5-membered heterocyclic derivative, and lithium secondary battery
CN102324565A (en) * 2011-09-05 2012-01-18 厦门华戎能源科技有限公司 Electrolyte addictive as well as electrolyte with addictive and lithium ion battery
US20130004859A1 (en) * 2011-07-01 2013-01-03 Sung-Hoon Yu Nonaqueous electrolyte and lithium secondary battery using the same
JP2014516203A (en) * 2011-06-08 2014-07-07 エルジー・ケム・リミテッド Non-aqueous electrolyte and lithium secondary battery using the same
JP2016134300A (en) * 2015-01-20 2016-07-25 株式会社クラレ Non-aqueous electrolyte
JP2016134294A (en) * 2015-01-20 2016-07-25 株式会社クラレ Lithium ion secondary battery and electric apparatus using the same
JP2017021986A (en) * 2015-07-10 2017-01-26 日立マクセル株式会社 Nonaqueous secondary battery
JP2018026327A (en) * 2016-07-28 2018-02-15 パナソニックIpマネジメント株式会社 battery
JP2020136167A (en) * 2019-02-22 2020-08-31 時空化学株式会社 Electrolyte additive and method of manufacturing the same
KR20220070974A (en) * 2020-11-23 2022-05-31 울산과학기술원 Electrolyte for lithium secondary battery and lithium secondary battery including the same
CN114899483A (en) * 2022-04-02 2022-08-12 香河昆仑新能源材料股份有限公司 Electrolyte and battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04337258A (en) * 1991-05-15 1992-11-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH07211351A (en) * 1994-01-20 1995-08-11 Sony Corp Nonaqueous electrolyte for secondary battery
JPH09106833A (en) * 1995-10-09 1997-04-22 Fujitsu Ltd Electrolyte solution for lithium secondary battery and lithium secondary battery
JP2000235868A (en) * 1998-10-29 2000-08-29 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2001307769A (en) * 2000-04-19 2001-11-02 Mitsui Chemicals Inc Electrolyt solution for lithium storage battery and secondary battery using the same
JP2002050328A (en) * 2000-08-02 2002-02-15 Seiko Instruments Inc Nonaqueous electrolyte secondary cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04337258A (en) * 1991-05-15 1992-11-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH07211351A (en) * 1994-01-20 1995-08-11 Sony Corp Nonaqueous electrolyte for secondary battery
JPH09106833A (en) * 1995-10-09 1997-04-22 Fujitsu Ltd Electrolyte solution for lithium secondary battery and lithium secondary battery
JP2000235868A (en) * 1998-10-29 2000-08-29 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2001307769A (en) * 2000-04-19 2001-11-02 Mitsui Chemicals Inc Electrolyt solution for lithium storage battery and secondary battery using the same
JP2002050328A (en) * 2000-08-02 2002-02-15 Seiko Instruments Inc Nonaqueous electrolyte secondary cell

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010053162A1 (en) * 2008-11-07 2012-04-05 三井化学株式会社 Non-aqueous electrolyte and lithium secondary battery containing pyridyl 5-membered heterocyclic derivative
JP5285082B2 (en) * 2008-11-07 2013-09-11 三井化学株式会社 Non-aqueous electrolyte and lithium secondary battery containing pyridyl 5-membered heterocyclic derivative
WO2010053162A1 (en) * 2008-11-07 2010-05-14 三井化学株式会社 Non-aqueous electrolysis solution containing pyridyl 5-membered heterocyclic derivative, and lithium secondary battery
JP2014516203A (en) * 2011-06-08 2014-07-07 エルジー・ケム・リミテッド Non-aqueous electrolyte and lithium secondary battery using the same
US9728805B2 (en) 2011-07-01 2017-08-08 Lg Chem, Ltd. Nonaqueous electrolyte and lithium secondary battery using the same
US20130004859A1 (en) * 2011-07-01 2013-01-03 Sung-Hoon Yu Nonaqueous electrolyte and lithium secondary battery using the same
JP2013016488A (en) * 2011-07-01 2013-01-24 Lg Chem Ltd Nonaqueous electrolyte and lithium secondary battery using the same
JP2015122322A (en) * 2011-07-01 2015-07-02 エルジー・ケム・リミテッド Nonaqueous electrolyte and lithium secondary battery comprising the same
CN102324565A (en) * 2011-09-05 2012-01-18 厦门华戎能源科技有限公司 Electrolyte addictive as well as electrolyte with addictive and lithium ion battery
JP2016134300A (en) * 2015-01-20 2016-07-25 株式会社クラレ Non-aqueous electrolyte
JP2016134294A (en) * 2015-01-20 2016-07-25 株式会社クラレ Lithium ion secondary battery and electric apparatus using the same
JP2017021986A (en) * 2015-07-10 2017-01-26 日立マクセル株式会社 Nonaqueous secondary battery
JP2018026327A (en) * 2016-07-28 2018-02-15 パナソニックIpマネジメント株式会社 battery
JP2020136167A (en) * 2019-02-22 2020-08-31 時空化学株式会社 Electrolyte additive and method of manufacturing the same
JP7250272B2 (en) 2019-02-22 2023-04-03 時空化学株式会社 Additive for electrolyte and manufacturing method thereof
KR20220070974A (en) * 2020-11-23 2022-05-31 울산과학기술원 Electrolyte for lithium secondary battery and lithium secondary battery including the same
KR102498343B1 (en) * 2020-11-23 2023-02-10 울산과학기술원 Electrolyte for lithium secondary battery and lithium secondary battery including the same
CN114899483A (en) * 2022-04-02 2022-08-12 香河昆仑新能源材料股份有限公司 Electrolyte and battery

Also Published As

Publication number Publication date
JP4128807B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
KR100709207B1 (en) A lithium secondary battery
JP4657403B2 (en) Nonaqueous electrolyte secondary battery
JP4423277B2 (en) Lithium secondary battery
JP2001023687A (en) Nonaqueous electrolyte battery
JP2004134261A (en) Non-aqueous electrolyte secondary battery
JP6739823B2 (en) Additive for non-aqueous electrolyte solution, non-aqueous electrolyte solution containing the same for lithium secondary battery, and lithium secondary battery
JP4968225B2 (en) Non-aqueous electrolyte battery
JP2012169253A (en) Electrolyte for lithium secondary battery and lithium secondary battery including the same
KR101431259B1 (en) Additive for non-aqueous electrolyte and secondary battery using the same
JP2004014351A (en) Nonaqueous electrolyte secondary battery
JP5082198B2 (en) Lithium ion secondary battery
JP2010118179A (en) Lithium-ion secondary battery
JP2009123474A (en) Nonaqueous electrolyte battery
JP4128807B2 (en) Nonaqueous electrolyte secondary battery and electrolyte used therefor
JP3564756B2 (en) Non-aqueous electrolyte secondary battery
JP2001015156A (en) Nonaqueous electrolyte battery
JP4560854B2 (en) Nonaqueous electrolyte secondary battery
JP5117649B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JPH0997626A (en) Nonaqueous electrolytic battery
JP4166295B2 (en) Non-aqueous electrolyte battery
JP3704589B2 (en) Non-aqueous electrolyte for secondary batteries
JPH1140193A (en) Nonaqueous electrolyte battery
JP2002075444A (en) Nonaqueous electrolyte cell
KR100709208B1 (en) A lithium secondary battery
JP4080110B2 (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees