JP2010118179A - Lithium-ion secondary battery - Google Patents

Lithium-ion secondary battery Download PDF

Info

Publication number
JP2010118179A
JP2010118179A JP2008288910A JP2008288910A JP2010118179A JP 2010118179 A JP2010118179 A JP 2010118179A JP 2008288910 A JP2008288910 A JP 2008288910A JP 2008288910 A JP2008288910 A JP 2008288910A JP 2010118179 A JP2010118179 A JP 2010118179A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
phosphorus
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008288910A
Other languages
Japanese (ja)
Other versions
JP5357517B2 (en
Inventor
Hironori Kondo
広規 近藤
Naoko Takechi
直子 武市
Shoichi Tsujioka
辻岡  章一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Toyota Central R&D Labs Inc
Original Assignee
Central Glass Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd, Toyota Central R&D Labs Inc filed Critical Central Glass Co Ltd
Priority to JP2008288910A priority Critical patent/JP5357517B2/en
Publication of JP2010118179A publication Critical patent/JP2010118179A/en
Application granted granted Critical
Publication of JP5357517B2 publication Critical patent/JP5357517B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium-ion secondary battery with an increase of battery resistance restrained and exhibiting superb battery characteristics even after repeated charge and discharge cycles. <P>SOLUTION: The lithium-ion secondary battery 10 includes a positive electrode sheet 13 having a positive electrode active material 12 containing transition metal formed on a collector 11, a negative electrode sheet 18 having a negative electrode active material 17 formed, and nonaqueous electrolyte solution 20 filling a space between the positive electrode and the negative electrode. The battery has a photoelectron spectrum of phosphorus by the X-ray photoelectron spectroscopy (XPS) on a positive electrode surface within a range of 133 eV to 137 eV, and a ratio of Ap/At is to be within 0.1 to 1.0, provided, a ratio of the atom number of phosphorus by the XPS on the positive electrode surface is Ap (at%), and a ratio of the sum of the atom number of transition metal elements is At (at%). With the battery, a compound containing phosphorus is considered to be formed on the surface of the positive electrode active material 12 in a film-like or an adsorbed state with a thickness less than 10 nm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery.

従来、リチウムイオン二次電池としては、遷移金属複合酸化物を構成する各粒子の表面部にホウ素、リン又は窒素を含有する層が形成されている正極活物質を備えたものが提案されている(例えば、特許文献1〜3参照)。この特許文献1〜3の電池では、短絡などにより電池温度が上昇した場合でも電解液の分解が起こりにくい。
特開平7−192720号公報 特開2005−190996号公報 特開2006−318815号公報
Conventionally, as a lithium ion secondary battery, a battery including a positive electrode active material in which a layer containing boron, phosphorus, or nitrogen is formed on the surface of each particle constituting the transition metal composite oxide has been proposed. (For example, see Patent Documents 1 to 3). In the batteries of Patent Documents 1 to 3, even when the battery temperature rises due to a short circuit or the like, the electrolytic solution is hardly decomposed.
JP-A-7-192720 JP-A-2005-190996 JP 2006-318815 A

しかしながら、この特許文献1〜3に記載されたリチウムイオン二次電池では、遷移金属複合酸化物の表面にリンなどを含む層が比較的厚く形成されているため、例えば電池抵抗が高く、電池出力自体に悪影響を与えるという問題があった。   However, in the lithium ion secondary batteries described in Patent Documents 1 to 3, since the layer containing phosphorus or the like is formed relatively thick on the surface of the transition metal composite oxide, for example, the battery resistance is high, and the battery output There was a problem of adversely affecting itself.

本発明は、このような課題に鑑みなされたものであり、電池抵抗の増加をより抑制すると共に充放電サイクルを繰り返したあとも良好な電池特性を示すリチウムイオン二次電池を提供することを主目的とする。   The present invention has been made in view of such problems, and it is a main object of the present invention to provide a lithium ion secondary battery that further suppresses an increase in battery resistance and exhibits good battery characteristics even after repeated charge and discharge cycles. Objective.

上述した目的を達成するために鋭意研究したところ、本発明者らは、リチウムイオンを吸蔵・放出可能であり遷移金属を含む正極表面のX線光電子分光法によるリンの光電子スペクトルが133eV以上137eV以下の範囲にあり、この正極表面のX線光電子分光法によるリンの原子数の割合をAp(at%)とし遷移金属元素の原子数の和の割合をAt(at%)としたときにAp/Atの値が0.1以上1.0以下の範囲にある正極を用いるものとすると、電池抵抗の増加をより抑制すると共に充放電サイクルを繰り返したあとも良好な電池特性を示すことを見いだし、本発明を完成するに至った。   As a result of diligent research to achieve the above-mentioned object, the present inventors have found that the photoelectron spectrum of phosphorous by X-ray photoelectron spectroscopy on the positive electrode surface capable of occluding and releasing lithium ions and containing a transition metal is 133 eV or more and 137 eV or less. When the ratio of the number of phosphorus atoms by X-ray photoelectron spectroscopy on the positive electrode surface is Ap (at%) and the ratio of the total number of atoms of the transition metal element is At (at%), Ap / Assuming that a positive electrode having an At value in the range of 0.1 or more and 1.0 or less is used, it is found that the increase in battery resistance is further suppressed and good battery characteristics are exhibited even after repeated charge and discharge cycles. The present invention has been completed.

即ち、本発明のリチウムイオン二次電池は、
リチウムイオンを吸蔵・放出可能な負極活物質を有する負極と、
リチウムイオンを吸蔵・放出可能であり遷移金属を含む正極活物質を有し、該正極表面のX線光電子分光法によるリンの光電子スペクトルが133eV以上137eV以下の範囲にあり、該正極表面のX線光電子分光法によるリンの原子数の割合をAp(at%)とし遷移金属元素の原子数の和の割合をAt(at%)としたときにAp/Atが0.1以上1.0以下の範囲にある正極と、
前記正極と前記負極との間に介在しリチウムイオンを伝導するイオン伝導媒体と、
を備えたものである。
That is, the lithium ion secondary battery of the present invention is
A negative electrode having a negative electrode active material capable of inserting and extracting lithium ions;
It has a positive electrode active material capable of occluding and releasing lithium ions and containing a transition metal, the photoelectron spectrum of phosphorus by X-ray photoelectron spectroscopy on the positive electrode surface is in the range of 133 eV to 137 eV, and the X-ray on the positive electrode surface When the ratio of the number of phosphorus atoms by photoelectron spectroscopy is Ap (at%) and the ratio of the total number of atoms of the transition metal element is At (at%), Ap / At is 0.1 or more and 1.0 or less. A positive electrode in range;
An ion conductive medium that is interposed between the positive electrode and the negative electrode and conducts lithium ions;
It is equipped with.

このリチウムイオン二次電池では、電池抵抗の増加をより抑制すると共に充放電サイクルを繰り返したあとも良好な電池特性を示す。このような効果が得られる理由は明らかではないが、以下のように推測される。例えば、Ap/Atの値が0.1以上1.0以下の範囲にあり、正極活物質の表面にリンが存在することによって正極の電荷移動反応や脱溶媒和反応など、正極での反応の律速となる素過程を円滑に行うことができることが考えられる。また、リンを含む物質が膜状態又は吸着された状態で正極活物質の表面に存在することにより、充放電の繰り返しにおける正極活物質に含まれる酸素の放出やそれに伴う遷移金属の価数の低下を抑制し、充放電サイクルを繰り返したあとも良好な電池特性を示すものと推察される。このとき、例えば正極活物質中にリンを含む化合物を添加するなどして正極活物質の表面に厚い層状態で形成されてしまうと電池抵抗が増加してしまう。本発明のリチウムイオン二次電池では、リンを含む化合物の層の厚さを好適なものとし、電池抵抗の増加を抑制することができると考えられる。また、X線光電子分光法によるリンの光電子スペクトルが133eV以上137eV以下の範囲にある、即ち、例えばリンと酸素との化合物及びリンと酸素とフッ素との化合物(PO2、PO3、PO22、PO3F、LiPO3F)などの好適な状態でリンが正極活物質の表面に存在することにより、本発明の効果を奏するものと推察される。 This lithium ion secondary battery further suppresses an increase in battery resistance and exhibits good battery characteristics even after repeated charge and discharge cycles. The reason why such an effect is obtained is not clear, but is presumed as follows. For example, the value of Ap / At is in the range of 0.1 to 1.0, and the presence of phosphorus on the surface of the positive electrode active material causes reaction of the positive electrode such as charge transfer reaction and desolvation reaction of the positive electrode. It can be considered that the rate-limiting elementary process can be performed smoothly. In addition, the presence of phosphorus-containing material on the surface of the positive electrode active material in a film state or adsorbed state causes the release of oxygen contained in the positive electrode active material during repeated charge and discharge, and the resulting reduction in the valence of the transition metal. It is presumed that good battery characteristics are exhibited even after charging and discharging cycles are repeated. At this time, for example, when a compound containing phosphorus is added to the positive electrode active material to form a thick layer on the surface of the positive electrode active material, battery resistance increases. In the lithium ion secondary battery of the present invention, it is considered that the thickness of the compound layer containing phosphorus can be made suitable to suppress an increase in battery resistance. Further, the photoelectron spectrum of phosphorus by X-ray photoelectron spectroscopy is in the range of 133 eV to 137 eV, that is, for example, a compound of phosphorus and oxygen and a compound of phosphorus, oxygen and fluorine (PO 2 , PO 3 , PO 2 F 2 , PO 3 F, LiPO 3 F), and the like, and the presence of phosphorus on the surface of the positive electrode active material is presumed to have the effect of the present invention.

本発明のリチウムイオン二次電池は、リチウムイオンを吸蔵・放出しうる正極活物質を有する正極と、リチウムイオンを吸蔵・放出しうる負極活物質を有する負極と、正極と負極との間に介在しリチウムイオンを伝導するイオン伝導媒体と、を備えている。   The lithium ion secondary battery of the present invention includes a positive electrode having a positive electrode active material capable of occluding and releasing lithium ions, a negative electrode having a negative electrode active material capable of occluding and releasing lithium ions, and interposed between the positive electrode and the negative electrode. And an ion conduction medium that conducts lithium ions.

本発明のリチウムイオン二次電池の正極は、例えば正極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の正極材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。正極活物質としては、遷移金属元素を含む硫化物や、リチウムと遷移金属元素とを含む酸化物などを用いることができる。具体的には、TiS2、TiS3、MoS3、FeS2などの遷移金属硫化物、Li(1-x)MnO2(0<x<1など、以下同じ)、Li(1-x)Mn24などのリチウムマンガン複合酸化物、Li(1-x)CoO2などのリチウムコバルト複合酸化物、Li(1-x)NiO2などのリチウムニッケル複合酸化物、LiV23などのリチウムバナジウム複合酸化物、V25などの遷移金属酸化物などを用いることができる。これらのうち、リチウムの遷移金属複合酸化物、例えば、LiCoO2、LiNiO2、LiMnO2、LiV23などが好ましい。また、Li(1-x)NiO2などのリチウムニッケル複合酸化物にCoやAlやMgを添加したものなども好適である。このうち、正極は、基本組成式がLiaNixCoyMezbで表される化合物を正極活物質とすることがより好ましい。この基本組成式において、MeはMn,Al,Mg,Ti,V,Cu,Zn,Cr,Zr,Sr,Siからなる群より選ばれる1種以上を表し、a,b,x,y,zは0.9≦a≦1.1、1.9≦b≦2.2、0.3≦x≦0.8、0.1≦y≦0.5、0.01≦z≦0.5、x+y+z=1の関係を満たすものである。こうすれば、電池性能をより高めることができる。 The positive electrode of the lithium ion secondary battery of the present invention is prepared by mixing a positive electrode active material, a conductive material, and a binder, and adding a suitable solvent to form a paste-like positive electrode material on the surface of the current collector. It may be formed by coating and drying, and compressing to increase the electrode density as necessary. As the positive electrode active material, a sulfide containing a transition metal element, an oxide containing lithium and a transition metal element, or the like can be used. Specifically, transition metal sulfides such as TiS 2 , TiS 3 , MoS 3 , FeS 2 , Li (1-x) MnO 2 (0 <x <1, etc., the same shall apply hereinafter), Li (1-x) Mn Lithium manganese composite oxide such as 2 O 4 , lithium cobalt composite oxide such as Li (1-x) CoO 2 , lithium nickel composite oxide such as Li (1-x) NiO 2 , lithium such as LiV 2 O 3 Vanadium composite oxides, transition metal oxides such as V 2 O 5, and the like can be used. Of these, lithium transition metal composite oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiV 2 O 3 are preferable. A lithium nickel composite oxide such as Li (1-x) NiO 2 to which Co, Al or Mg is added is also suitable. Of these, the positive electrode is more preferably basic composition formula is Li a Ni x Co y Me z O b positive active compound represented by the material. In this basic composition formula, Me represents one or more selected from the group consisting of Mn, Al, Mg, Ti, V, Cu, Zn, Cr, Zr, Sr, and Si, and a, b, x, y, and z 0.9 ≦ a ≦ 1.1, 1.9 ≦ b ≦ 2.2, 0.3 ≦ x ≦ 0.8, 0.1 ≦ y ≦ 0.5, 0.01 ≦ z ≦ 0.5 , X + y + z = 1. In this way, the battery performance can be further improved.

本発明のリチウムイオン二次電池の正極は、正極表面のX線光電子分光法によるリンの光電子スペクトルが133eV以上137eV以下の範囲にある。これより、正極表面に、リンと酸素との化合物及びリンと酸素とフッ素との化合物(PO2、PO3、PO22、PO3F、LiPO3F)などとしてリンが存在しているものと推察される。なお、後述する電解質のLiPF6では、光電子スペクトルがこの133eV以上137eV以下の範囲よりも高い範囲(例えば137.1eV以上141eV以下の範囲)となる。また、本発明のリチウムイオン二次電池の正極は、正極表面のX線光電子分光法(XPS)によるリンの原子数の割合をAp(at%)とし、同じく正極表面のXPSから得られる遷移金属元素の原子数の和の割合をAt(at%)としたときにAp/Atが0.1以上1.0以下の範囲にある。このAp/Atの値は、0.2以上0.8以下の範囲にあることがより好ましく、0.3以上0.6以下の範囲にあることが一層好ましい。このAp/Atが0.1以上であるとリンが十分に正極活物質の表面上に存在し、1.0以下ではリンが正極活物質の表面上に過剰に存在するのが抑制され、好ましい。 In the positive electrode of the lithium ion secondary battery of the present invention, the photoelectron spectrum of phosphorus by X-ray photoelectron spectroscopy on the positive electrode surface is in the range of 133 eV to 137 eV. Thus, phosphorus is present on the positive electrode surface as a compound of phosphorus and oxygen and a compound of phosphorus, oxygen and fluorine (PO 2 , PO 3 , PO 2 F 2 , PO 3 F, LiPO 3 F), etc. Inferred. Note that the electrolyte LiPF 6 described later has a photoelectron spectrum in a range higher than the range of 133 eV to 137 eV (for example, a range of 137.1 eV to 141 eV). Further, the positive electrode of the lithium ion secondary battery of the present invention is a transition metal obtained from XPS on the positive electrode surface, where the ratio of the number of phosphorus atoms by the X-ray photoelectron spectroscopy (XPS) on the positive electrode surface is Ap (at%). Ap / At is in the range of 0.1 or more and 1.0 or less when the ratio of the sum of the number of atoms of the element is At (at%). The Ap / At value is more preferably in the range of 0.2 to 0.8, and still more preferably in the range of 0.3 to 0.6. When Ap / At is 0.1 or more, phosphorus is sufficiently present on the surface of the positive electrode active material, and when 1.0 or less, it is preferable that phosphorus is excessively present on the surface of the positive electrode active material. .

本発明のリチウムイオン二次電池の正極は、高周波プラズマ発光分光分析(ICP)により正極中に存在する元素の存在量を測定し、正極活物質の重量をWt(g)、リンの重量をWp(g)としたときに、正極活物質中の遷移金属の重量の和(Wt)に対するリンの重量(Wp)の割合であるWp/Wt×100の値が、0.1重量%以上0.5重量%以下であることが好ましく、0.1重量%以上0.4重量%以下であることがより好ましく、0.1重量%以上0.25重量%以下であることが一層好ましい。この正極活物質中の遷移金属の重量の和に対するリンの重量が0.1重量%以上0.5重量%以下の範囲では電池抵抗をより低下させることができ好ましい。本発明のリチウムイオン二次電池の正極は、正極活物質の表面に厚さが10nm未満の膜状態又は吸着した状態でリンを含む化合物の層が形成されていることが好ましい。こうすれば、電池抵抗の増加をより抑制することができる。   The positive electrode of the lithium ion secondary battery of the present invention is measured for the amount of elements present in the positive electrode by high frequency plasma emission spectrometry (ICP), the weight of the positive electrode active material is Wt (g), and the weight of phosphorus is Wp. (G), the value of Wp / Wt × 100, which is the ratio of the weight of phosphorus (Wp) to the sum of the weights of transition metals in the positive electrode active material (Wt), is 0.1 wt% or more and 0.0. It is preferably 5% by weight or less, more preferably 0.1% by weight or more and 0.4% by weight or less, and further preferably 0.1% by weight or more and 0.25% by weight or less. When the weight of phosphorus with respect to the sum of the weights of transition metals in the positive electrode active material is in the range of 0.1 wt% or more and 0.5 wt% or less, battery resistance can be further reduced, which is preferable. In the positive electrode of the lithium ion secondary battery of the present invention, it is preferable that a layer of a compound containing phosphorus is formed on the surface of the positive electrode active material in a film state having a thickness of less than 10 nm or in an adsorbed state. In this way, the increase in battery resistance can be further suppressed.

正極に含まれる導電材は、正極の電池性能に悪影響を及ぼさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金など)などの1種又は2種以上を混合したものを用いることができる。これらの中で、導電材としては、電子伝導性及び塗工性の観点より、カーボンブラック及びアセチレンブラックが好ましい。結着材は、活物質粒子及び導電材粒子を繋ぎ止める役割を果たすものであり、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンマー(EPDM)、スルホン化EPDM、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。正極活物質、導電材、結着材を分散させる溶剤としては、例えばN−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどの有機溶剤を用いることができる。また、水に分散剤、増粘剤等を加え、SBRなどのラテックスで活物質をスラリー化してもよい。増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロースなどの多糖類を単独で、あるいは2種以上の混合物として用いることができる。集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、鉄、焼成炭素、導電性高分子、導電性ガラスなどのほか、接着性、導電性及び耐酸化性向上の目的で、アルミニウムや銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものを用いることができる。これらについては、表面を酸化処理することも可能である。集電体の形状については、箔状、フィルム状、シート状、ネット状、パンチ又はエキスパンドされたもの、ラス体、多孔質体、発泡体、繊維群の形成体などが挙げられる。集電体の厚さは、例えば1〜500μmのものが用いられる。   The conductive material contained in the positive electrode is not particularly limited as long as it is an electron conductive material that does not adversely affect the battery performance of the positive electrode. For example, graphite such as natural graphite (scale-like graphite, scale-like graphite) or artificial graphite, acetylene black , Carbon black, ketjen black, carbon whisker, needle coke, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) or a mixture of two or more thereof can be used. Among these, as the conductive material, carbon black and acetylene black are preferable from the viewpoints of electron conductivity and coatability. The binder serves to bind the active material particles and the conductive material particles. For example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-containing resin such as fluororubber, polypropylene, Thermoplastic resins such as polyethylene, ethylene-propylene-dienemer (EPDM), sulfonated EPDM, natural butyl rubber (NBR) and the like can be used alone or as a mixture of two or more. Examples of the solvent for dispersing the positive electrode active material, the conductive material, and the binder include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, and N, N-dimethylaminopropyl. Organic solvents such as amine, ethylene oxide, and tetrahydrofuran can be used. Moreover, a dispersing agent, a thickener, etc. may be added to water, and an active material may be slurried with latex, such as SBR. As the thickener, for example, polysaccharides such as carboxymethyl cellulose and methyl cellulose can be used alone or as a mixture of two or more. Current collectors include aluminum, titanium, stainless steel, nickel, iron, calcined carbon, conductive polymer, conductive glass, and aluminum, copper, etc. for the purpose of improving adhesion, conductivity, and oxidation resistance. A surface treated with carbon, nickel, titanium, silver or the like can be used. For these, the surface can be oxidized. Examples of the shape of the current collector include foil, film, sheet, net, punched or expanded, lath, porous, foam, and formed fiber group. For example, a collector having a thickness of 1 to 500 μm is used.

本発明のリチウムイオン二次電池の負極は、例えば負極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の負極材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。負極活物質としては、リチウム、リチウム合金、スズ化合物などの無機化合物、リチウムイオンを吸蔵・放出可能な炭素質材料、導電性ポリマーなどが挙げられるが、このうち炭素質材料が安定性の面から見て好ましい。この炭素質材料は、特に限定されるものではないが、コークス類、ガラス状炭素類、グラファイト類、難黒鉛化性炭素類、熱分解炭素類、炭素繊維などが挙げられる。このうち、人造黒鉛、天然黒鉛などのグラファイト類が、金属リチウムに近い作動電位を有し、高い作動電圧での充放電が可能であり電解質塩としてリチウム塩を使用した場合に自己放電を抑え、且つ充電時おける不可逆容量を少なくできるため、好ましい。また、負極に用いられる導電材、結着材、溶剤などは、それぞれ正極で例示したものを用いることができる。負極の集電体には、銅、ニッケル、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金などのほか、接着性、導電性及び耐還元性向上の目的で、例えば銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものも用いることができる。これらについては、表面を酸化処理することも可能である。集電体の形状は、正極と同様のものを用いることができる。   The negative electrode of the lithium ion secondary battery of the present invention is prepared by mixing a negative electrode active material, a conductive material, and a binder, and adding a suitable solvent to form a paste-like negative electrode material on the surface of the current collector. It may be formed by coating and drying, and compressing to increase the electrode density as necessary. Examples of negative electrode active materials include inorganic compounds such as lithium, lithium alloys and tin compounds, carbonaceous materials capable of occluding and releasing lithium ions, and conductive polymers. Of these, carbonaceous materials are used in terms of stability. It is preferable to see. The carbonaceous material is not particularly limited, and examples thereof include cokes, glassy carbons, graphites, non-graphitizable carbons, pyrolytic carbons, and carbon fibers. Of these, graphites such as artificial graphite and natural graphite have an operating potential close to that of metallic lithium, can be charged and discharged at a high operating voltage, and suppresses self-discharge when a lithium salt is used as an electrolyte salt. In addition, the irreversible capacity during charging can be reduced, which is preferable. In addition, as the conductive material, binder, solvent, and the like used for the negative electrode, those exemplified for the positive electrode can be used. The negative electrode current collector includes copper, nickel, stainless steel, titanium, aluminum, calcined carbon, conductive polymer, conductive glass, Al-Cd alloy, etc., as well as improved adhesion, conductivity and reduction resistance. For the purpose, for example, a copper surface treated with carbon, nickel, titanium, silver or the like can be used. For these, the surface can be oxidized. The shape of the current collector can be the same as that of the positive electrode.

本発明のリチウムイオン二次電池のイオン伝導媒体としては、電解質を含む非水系電解液や非水系ゲル電解液などを用いることができる。非水電解液の溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、フラン類、スルホラン類及びジオキソラン類などが挙げられ、これらを単独又は混合して用いることができる。具体的には、カーボネート類としてエチレンカーボネートやプロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネートなどの環状カーボネート類や、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチル−n−ブチルカーボネート、メチル−t−ブチルカーボネート、ジ−i−プロピルカーボネート、t−ブチル−i−プロピルカーボネートなどの鎖状カーボネート類、γ−ブチルラクトン、γ−バレロラクトンなどの環状エステル類、ギ酸メチル、酢酸メチル、酢酸エチル、酪酸メチルなどの鎖状エステル類、ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタンなどのエーテル類、アセトニトリル、ベンゾニトリルなどのニトリル類、
テトラヒドロフラン、メチルテトラヒドロフラン、などのフラン類、スルホラン、テトラメチルスルホランなどのスルホラン類、1,3−ジオキソラン、メチルジオキソランなどのジオキソラン類などが挙げられる。このうち、環状カーボネート類と鎖状カーボネート類との組み合わせが好ましい。この組み合わせによると、充放電の繰り返しでの電池特性を表すサイクル特性が優れているばかりでなく、電解液の粘度、得られる電池の電気容量、電池出力などをバランスの取れたものとすることができる。なお、環状カーボネート類は、比誘電率が比較的高く、電解液の導電率を高めていると考えられ、鎖状カーボネート類は、電解液の粘度を抑えていると考えられる。
As the ion conduction medium of the lithium ion secondary battery of the present invention, a non-aqueous electrolyte solution or a non-aqueous gel electrolyte solution containing an electrolyte can be used. Examples of the solvent for the nonaqueous electrolytic solution include carbonates, esters, ethers, nitriles, furans, sulfolanes and dioxolanes, and these can be used alone or in combination. Specifically, as carbonates, cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, butylene carbonate, chloroethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl-n-butyl carbonate, methyl-t -Chain carbonates such as butyl carbonate, di-i-propyl carbonate, t-butyl-i-propyl carbonate, cyclic esters such as γ-butyllactone and γ-valerolactone, methyl formate, methyl acetate, ethyl acetate, Chain esters such as methyl butyrate, ethers such as dimethoxyethane, ethoxymethoxyethane and diethoxyethane, nitriles such as acetonitrile and benzonitrile,
Examples include furans such as tetrahydrofuran and methyltetrahydrofuran, sulfolanes such as sulfolane and tetramethylsulfolane, and dioxolanes such as 1,3-dioxolane and methyldioxolane. Among these, the combination of cyclic carbonates and chain carbonates is preferable. According to this combination, not only the cycle characteristics representing the battery characteristics in repeated charge and discharge are excellent, but also the viscosity of the electrolyte, the electric capacity of the obtained battery, the battery output, etc. should be balanced. it can. In addition, it is considered that cyclic carbonates have a relatively high relative dielectric constant and increase the conductivity of the electrolytic solution, and chain carbonates are considered to suppress the viscosity of the electrolytic solution.

イオン伝導媒体に含まれている電解質は、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23、LiSbF6、LiSiF6、LiAlF4、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlCl4などが挙げられる。このうち、LiPF6及びLiBF4が、好ましい。また、電解質は、上述した群より選ばれる1種又は2種以上の塩を組み合わせて用いてもよい。この電解質塩は、イオン伝導媒体中の濃度が0.1mol/L以上3mol/L以下であることが好ましく、0.5mol/L以上2mol/L以下であることがより好ましい。電解質塩の濃度が0.1mol/L以上では、十分な電流密度を得ることができ、3mol/L以下では、塩が溶けきらなかったり充放電に伴い塩が析出してしまうのを抑制することができる。 Examples of the electrolyte contained in the ion conductive medium include LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiSbF 6 , LiSiF 6. , LiAlF 4 , LiSCN, LiClO 4 , LiCl, LiF, LiBr, LiI, LiAlCl 4 and the like. Of these, LiPF 6 and LiBF 4 are preferred. Moreover, you may use electrolyte combining 1 type or 2 or more types of salts chosen from the group mentioned above. This electrolyte salt preferably has a concentration in the ion conductive medium of 0.1 mol / L or more and 3 mol / L or less, and more preferably 0.5 mol / L or more and 2 mol / L or less. When the concentration of the electrolyte salt is 0.1 mol / L or more, a sufficient current density can be obtained, and when the concentration is 3 mol / L or less, the salt is not completely dissolved or the salt is prevented from being deposited due to charge / discharge. Can do.

本発明のリチウムイオン二次電池の正極において、イオン伝導媒体に一般式(1)で表されるアニオン化合物を含む添加化合物をイオン伝導媒体へ加えて充電することにより、正極活物質表面にリンを存在させることができる。即ち、本発明のリチウムイオン二次電池の正極は、正極表面でのリンのX線光電子分光法による光電子スペクトルが初回充電前にはなく初回充電後に現れるものとしてもよい。一般式(1)において、アニオンの価数bは1〜3であり、このうち1であることが好ましい。価数bが3より大きい場合には、アニオン化合物の塩が混合有機溶媒に溶解しにくくなる傾向があるので好ましくない。また、定数m,nは、配位子の数に関係する値であり、mは1〜4の整数、nは0〜8の整数である。定数qは、0又は1である。qが0の場合には、キレートリングが五員環となる。R1は、炭素数1〜10のアルキレン、炭素数1〜10のハロゲン化アルキレン、炭素数6〜20のアリーレン又は炭素数6〜20のハロゲン化アリーレンを表す。これらのアルキレン及びアリーレンはその構造中に置換基、ヘテロ原子を持っていてもよい。具体的には、アルキレン及びアリーレン上の水素の代わりに、ハロゲン、鎖状又は環状のアルキル基、アリール基、アルケニル基、アルコキシ基、アリーロキシ基、スルホニル基、アミノ基、シアノ基、カルボニル基、アシル基、アミド基、水酸基を置換基として持っていてもよいし、アルキレン及びアリーレン上の炭素の代わりに、窒素、硫黄、酸素が導入された構造であってもよい。またqが1でmが2〜4のときには、m個のR1はそれぞれが結合していてもよい。そのような例としては、エチレンジアミン四酢酸のような配位子を挙げることができる。R2は、ハロゲン、炭素数1〜10のアルキル、炭素数1〜10のハロゲン化アルキル、炭素数6〜20のアリール、炭素数6〜20のハロゲン化アリール又は−X33(X3,R3については後述)を表す。ここでのアルキル及びアリールも、R1と同様に、その構造中に置換基、ヘテロ原子を持っていてもよく、またnが2〜8のときにはn個のR2はそれぞれが結合して環を形成していてもよい。R2としては、電子吸引性の基が好ましく、特にフッ素原子が好ましい。フッ素原子の場合には、アニオン化合物の塩の溶解度や解離度が向上し、これに伴ってイオン伝導度が向上するからである。また、耐酸化性が向上し、これにより副反応の発生を抑制することができるからである。X1,X2及びX3は、それぞれが独立でO,S又はNR4を表す。つまり、配位子はこれらのヘテロ原子を介してリン(P)に結合することになる。R3及びR4は、それぞれが独立で水素、炭素数1〜10のアルキル、炭素数1〜10のハロゲン化アルキル、炭素数6〜20のアリール、炭素数6〜20のハロゲン化アリールを表す。これらのアルキル及びアリールも、R1と同様に、その構造中に置換基、ヘテロ原子を持っていてもよい。また、R3又はR4は複数個存在する場合にはそれぞれが結合して環を形成してもよい。

Figure 2010118179
In the positive electrode of the lithium ion secondary battery of the present invention, by adding an additive compound containing an anion compound represented by the general formula (1) to the ion conductive medium and charging the ion conductive medium, phosphorus is added to the surface of the positive electrode active material. Can exist. That is, the positive electrode of the lithium ion secondary battery of the present invention may have a photoelectron spectrum of phosphorus on the surface of the positive electrode that appears after the first charge rather than before the first charge. In the general formula (1), the valence b of the anion is 1 to 3, of which 1 is preferable. When the valence b is larger than 3, it is not preferable because the salt of the anion compound tends to be hardly dissolved in the mixed organic solvent. The constants m and n are values related to the number of ligands, m is an integer of 1 to 4, and n is an integer of 0 to 8. The constant q is 0 or 1. When q is 0, the chelate ring is a five-membered ring. R 1 represents alkylene having 1 to 10 carbons, halogenated alkylene having 1 to 10 carbons, arylene having 6 to 20 carbons, or halogenated arylene having 6 to 20 carbons. These alkylene and arylene may have a substituent or a hetero atom in the structure. Specifically, instead of hydrogen on alkylene and arylene, halogen, chain or cyclic alkyl group, aryl group, alkenyl group, alkoxy group, aryloxy group, sulfonyl group, amino group, cyano group, carbonyl group, acyl It may have a group, an amide group or a hydroxyl group as a substituent, or may have a structure in which nitrogen, sulfur or oxygen is introduced instead of carbon on alkylene and arylene. When q is 1 and m is 2 to 4, m R 1 s may be bonded to each other. Examples thereof include a ligand such as ethylenediaminetetraacetic acid. R 2 is halogen, alkyl having 1 to 10 carbon atoms, alkyl halide having 1 to 10 carbon atoms, aryl having 6 to 20 carbon atoms, aryl halide having 6 to 20 carbon atoms, or —X 3 R 3 (X 3 , R 3 will be described later. Alkyl and aryl here may also have a substituent or a hetero atom in the structure in the same manner as R 1, and when n is 2 to 8, n R 2 are bonded to each other to form a ring. May be formed. R 2 is preferably an electron-withdrawing group, particularly preferably a fluorine atom. This is because in the case of a fluorine atom, the solubility and dissociation degree of the salt of the anion compound are improved, and the ionic conductivity is improved accordingly. Moreover, it is because oxidation resistance improves and generation | occurrence | production of a side reaction can be suppressed by this. X 1 , X 2 and X 3 each independently represent O, S or NR 4 . That is, the ligand is bonded to phosphorus (P) through these heteroatoms. R 3 and R 4 each independently represent hydrogen, an alkyl having 1 to 10 carbon atoms, an alkyl halide having 1 to 10 carbon atoms, an aryl having 6 to 20 carbon atoms, or an aryl halide having 6 to 20 carbon atoms. . Similarly to R 1 , these alkyls and aryls may have a substituent or a hetero atom in the structure. Further, when a plurality of R 3 or R 4 are present, they may be bonded to each other to form a ring.
Figure 2010118179

アニオン化合物と対をなすカチオンとしては、例えばリチウム、ナトリウム、カリウム、マグネシウム、カルシウム、バリウム、セシウム、ルビジウム、銀、亜鉛、銅、コバルト、鉄、ニッケル、マンガン、チタン、鉛、クロム、バナジウム、ルテニウム、イットリウム、ランタノイド、アクチノイドなどのカチオンが挙げられるほか、テトラアルキルアンモニウム(アルキルはメチル、エチル、ブチルなど)、トリエチルアンモニウム、ピリジニウム、イミダゾリウムなどのアンモニウムカチオン、プロトン等が挙げられる。このうち、リチウムカチオン、ナトリウムカチオン又はカリウムカチオンが好ましい。   Examples of the cation paired with the anionic compound include lithium, sodium, potassium, magnesium, calcium, barium, cesium, rubidium, silver, zinc, copper, cobalt, iron, nickel, manganese, titanium, lead, chromium, vanadium, and ruthenium. In addition to cations such as yttrium, lanthanoid, and actinoid, tetraalkylammonium (alkyl is methyl, ethyl, butyl, etc.), ammonium cation such as triethylammonium, pyridinium, imidazolium, protons, and the like. Among these, a lithium cation, a sodium cation, or a potassium cation is preferable.

こうしたアニオン化合物は、リチウムイオン二次電池を少なくとも1回充電することにより、アニオン化合物のすべて又は一部が分解して、正極活物質及び/又は負極活物質の表面に被覆して被膜を形成すると考えられる。この被覆物は、例えばX線光電子分光分析(XPS)などにより検出することができる。こうしたアニオン化合物は、式(2)〜(4)に示す、PTFO,PFO,POの1種以上であること好ましい。その理由は、式(2)〜(4)に示すいずれかのアニオン化合物をイオン伝導媒体に含んだ状態で電池の充電を行うと、正極活物質の表面にリンを含む化合物の被膜若しくは吸着層が形成され、正極活物質を保護すると共に、その膜厚が薄く(例えば10nm未満や5nm未満など)、電池抵抗の増加を抑制することができる。このアニオン化合物のイオン伝導媒体中の濃度は、0.01mol%以上0.5mol%以下であることが好ましく、0.02mol%以上0.1mol%以下であることがより好ましく、0.03mol%以上0.08mol%以下であることが更に好ましい。この濃度が0.01mol%以上では、活物質表面にリンを含む皮膜を十分に形成する又は、リンを含む化合物を十分に吸着することができ、0.5mol%以下では、活物質表面に形成される膜が厚くなりすぎるのを抑制することができる。こうしたアニオン化合物の合成方法としては、例えばPFOの場合には、非水系溶媒中でLiPF6と4倍モルのリチウムアルコキシドとを反応させた後、シュウ酸を添加して、リンに結合しているアルコキシドをシュウ酸で置換する方法等がある。これらの場合には、アニオン化合物のリチウム塩を得ることができる。

Figure 2010118179
When such an anionic compound is charged at least once with a lithium ion secondary battery, all or part of the anionic compound is decomposed and coated on the surface of the positive electrode active material and / or the negative electrode active material to form a film. Conceivable. This coating can be detected by, for example, X-ray photoelectron spectroscopy (XPS). Such an anionic compound is preferably at least one of PTFO, PFO, and PO represented by formulas (2) to (4). The reason is that when the battery is charged in a state where any one of the anionic compounds represented by the formulas (2) to (4) is contained in the ion conductive medium, a film or adsorption layer of the compound containing phosphorus on the surface of the positive electrode active material. Is formed, the positive electrode active material is protected, and the film thickness thereof is thin (for example, less than 10 nm or less than 5 nm), thereby suppressing an increase in battery resistance. The concentration of the anionic compound in the ion conductive medium is preferably 0.01 mol% or more and 0.5 mol% or less, more preferably 0.02 mol% or more and 0.1 mol% or less, and 0.03 mol% or more. More preferably, it is 0.08 mol% or less. When this concentration is 0.01 mol% or more, a film containing phosphorus can be sufficiently formed on the surface of the active material, or a compound containing phosphorus can be sufficiently adsorbed, and when it is 0.5 mol% or less, it can be formed on the surface of the active material. It can suppress that the film | membrane made becomes too thick. As a method for synthesizing such anionic compounds, for example, in the case of PFO, LiPF 6 and 4 times moles of lithium alkoxide are reacted in a non-aqueous solvent, and then oxalic acid is added to bind to phosphorus. There is a method of substituting alkoxide with oxalic acid. In these cases, a lithium salt of an anionic compound can be obtained.
Figure 2010118179

リチウムイオン二次電池は、負極と正極との間にセパレータを備えていてもよい。セパレータとしては、リチウムイオン二次電池の使用範囲に耐えうる組成であれば特に限定されないが、例えば、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の薄い微多孔膜が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。   The lithium ion secondary battery may include a separator between the negative electrode and the positive electrode. The separator is not particularly limited as long as it is a composition that can withstand the range of use of the lithium ion secondary battery. For example, a polymer nonwoven fabric such as a polypropylene nonwoven fabric or a polyphenylene sulfide nonwoven fabric, or a thin olefin resin such as polyethylene or polypropylene is thin. A microporous membrane is mentioned. These may be used alone or in combination.

リチウムイオン二次電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、例えば、本発明のリチウムイオン二次電池を複数直列に接続するなどして電気自動車やハイブリッド電気自動車などに用いる大型の電気自動車用電源などとしてもよい。また、本発明のリチウムイオン二次電池は、携帯端末、携帯電子機器、小型電力貯蔵装置などに用いることができる。図1は、本発明のリチウムイオン二次電池10の一例を示す模式図である。このリチウムイオン二次電池10は、集電体11に正極活物質12を形成した正極シート13と、集電体14の表面に負極活物質17を形成した負極シート18と、正極シート13と負極シート18との間に設けられたセパレータ19と、正極シート13と負極シート18の間を満たす非水系電解液20と、を備えたものである。このリチウムイオン二次電池10では、正極シート13と負極シート18との間にセパレータ19を挟み、これらを捲回して円筒ケース22に挿入し、正極シート13に接続された正極端子24と負極シートに接続された負極端子26とを配設して形成されている。ここでは、正極シート13には正極活物質12としてリチウム含有遷移金属が含まれており、その正極活物質12の表面にリンを含有する化合物が厚さ5nm未満の膜状態又は吸着した状態で形成されている。   The shape of the lithium ion secondary battery is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a rectangular type. In addition, for example, a plurality of lithium ion secondary batteries of the present invention may be connected in series to provide a large power supply for an electric vehicle used for an electric vehicle, a hybrid electric vehicle, or the like. In addition, the lithium ion secondary battery of the present invention can be used for portable terminals, portable electronic devices, small power storage devices, and the like. FIG. 1 is a schematic view showing an example of a lithium ion secondary battery 10 of the present invention. The lithium ion secondary battery 10 includes a positive electrode sheet 13 in which a positive electrode active material 12 is formed on a current collector 11, a negative electrode sheet 18 in which a negative electrode active material 17 is formed on the surface of the current collector 14, a positive electrode sheet 13 and a negative electrode The separator 19 provided between the sheet | seat 18 and the non-aqueous electrolyte solution 20 satisfy | filled between the positive electrode sheet | seat 13 and the negative electrode sheet | seat 18 are provided. In this lithium ion secondary battery 10, a separator 19 is sandwiched between a positive electrode sheet 13 and a negative electrode sheet 18, these are wound and inserted into a cylindrical case 22, and a positive electrode terminal 24 and a negative electrode sheet connected to the positive electrode sheet 13. And a negative electrode terminal 26 connected to each other. Here, the positive electrode sheet 13 contains a lithium-containing transition metal as the positive electrode active material 12, and a phosphorus-containing compound is formed on the surface of the positive electrode active material 12 in a film state having a thickness of less than 5 nm or in an adsorbed state. Has been.

以上詳述した本実施形態のリチウムイオン二次電池10によれば、X線光電子分光法によるリンの光電子スペクトルが133eV以上137eV以下の範囲にあるため、リンを含む好適な化合物が例えばリンと酸素との化合物及びリンと酸素とフッ素との化合物などとして存在する。また、Ap/Atの値が0.1以上1.0以下の範囲にあるため、正極活物質表面でのリンの存在量が好適である。また、ICPによる正極活物質中の遷移金属の重量の和に対するリンの重量が0.1重量%以上0.5重量%以下であることから、膜状態又は吸着した状態などの好適な厚さ(おそらく10nm未満)でリンを含む化合物の層が正極活物質の表面に形成されているものと推察された。したがって、電池抵抗の増加をより抑制すると共に充放電サイクルを繰り返したあとも良好な電池特性を示すものと考えられる。   According to the lithium ion secondary battery 10 of this embodiment described in detail above, since the photoelectron spectrum of phosphorus by X-ray photoelectron spectroscopy is in the range of 133 eV to 137 eV, a suitable compound containing phosphorus is, for example, phosphorus and oxygen. And a compound of phosphorus, oxygen and fluorine. Moreover, since the value of Ap / At is in the range of 0.1 or more and 1.0 or less, the abundance of phosphorus on the surface of the positive electrode active material is suitable. Moreover, since the weight of phosphorus with respect to the sum of the weights of transition metals in the positive electrode active material by ICP is 0.1 wt% or more and 0.5 wt% or less, a suitable thickness (such as a film state or an adsorbed state) ( It was presumed that a compound layer containing phosphorus was formed on the surface of the positive electrode active material (probably less than 10 nm). Therefore, it is considered that the increase in battery resistance is further suppressed and good battery characteristics are exhibited even after repeated charge / discharge cycles.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

以下には、リチウムイオン二次電池を具体的に作製した例を、実施例として説明する。   Below, the example which produced the lithium ion secondary battery concretely is demonstrated as an Example.

[実施例1]
正極活物質として、LiNi0.8Co0.15Al0.052を用いた。この正極活物質を85重量%、導電材としてカーボンブラックを10重量%、結着材としてポリフッ化ビニリデンを5重量%混合し、分散剤としてN−メチル−2−ピロリドンを適量添加し、分散させてスラリー状の正極合材とした。このスラリー状の正極合材を20μm厚のアルミニウム箔集電体の両面に塗布し、乾燥後、ロールプレスで高密度化し、所定の形状に切り出して正極シートを作製した。また、負極活物質としては、人造黒鉛を用いた。この負極活物質を95重量%、結着剤としてポリフッ化ビニリデンを5重量%混合し、分散剤としてN−メチル−2−ピロリドンを適量添加し、分散させてスラリー状の負極合材とした。このスラリー状の負極合材を10μm厚の銅箔集電体の両面に塗布し、乾燥後、ロールプレスで高密度化し、所定の形状に切り出して負極シートを作製した。次に、正極シートと負極シートとを25μm厚のポリエチレン製セパレータを挟んで捲回し、ロール状の電極体を作製した。この電極体を18650型円筒ケースに格納し、イオン伝導媒体としての非水電解液に含浸させたあと密閉し、実施例1の円筒型リチウムイオン二次電池を作製した(図1参照)。非水電解液には、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)を体積比で3:7となるように混合した溶媒へ1.0mol/Lの濃度となるよう、LiPF6を入れると共に、上記式(1)に示すアニオン化合物(PTFO)を含むリチウム塩を、添加剤として0.05mol/%となるように溶解させたものを用いた。作製したリチウムイオン二次電池の正極活物質やイオン伝導媒体への添加剤、後述するAp/Atの値、正極活物質重量あたりのリンの重量%、内部抵抗値(mΩ)、繰返充放電の容量維持率(%)などをまとめて表1に示す。この表1には、実施例2〜15,比較例1〜4の数値も示した。作製した電池は、0.2C(100mA)の電流で、上限4.1V、下限3.0Vとして充放電を5サイクル実行した。なお、この初期の5回の充放電をコンディショニングと呼ぶものとする。
[Example 1]
LiNi 0.8 Co 0.15 Al 0.05 O 2 was used as the positive electrode active material. 85% by weight of this positive electrode active material, 10% by weight of carbon black as a conductive material, 5% by weight of polyvinylidene fluoride as a binder, and an appropriate amount of N-methyl-2-pyrrolidone as a dispersant is added and dispersed. Thus, a slurry-like positive electrode mixture was obtained. This slurry-like positive electrode mixture was applied to both surfaces of an aluminum foil current collector with a thickness of 20 μm, dried, then densified with a roll press, cut into a predetermined shape, and a positive electrode sheet was produced. Further, artificial graphite was used as the negative electrode active material. 95% by weight of this negative electrode active material, 5% by weight of polyvinylidene fluoride as a binder were mixed, an appropriate amount of N-methyl-2-pyrrolidone was added as a dispersant, and dispersed to obtain a slurry-like negative electrode mixture. This slurry-like negative electrode mixture was applied to both sides of a 10 μm-thick copper foil current collector, dried, then densified with a roll press, cut into a predetermined shape, and a negative electrode sheet was produced. Next, the positive electrode sheet and the negative electrode sheet were wound with a 25 μm-thick polyethylene separator interposed therebetween, and a roll-shaped electrode body was produced. This electrode body was housed in a 18650 type cylindrical case, impregnated with a non-aqueous electrolyte as an ion conducting medium, and then sealed to produce a cylindrical lithium ion secondary battery of Example 1 (see FIG. 1). In the non-aqueous electrolyte, LiPF 6 is added to a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 3: 7 so that the concentration becomes 1.0 mol / L. What dissolved the lithium salt containing the anion compound (PTFO) shown to the said Formula (1) so that it might become 0.05 mol /% as an additive was used. Additives to the positive electrode active material and ion conduction medium of the produced lithium ion secondary battery, the value of Ap / At described later, the weight percent of phosphorus per weight of the positive electrode active material, the internal resistance value (mΩ), repeated charge and discharge Table 1 summarizes the capacity maintenance ratio (%) of the above. In Table 1, numerical values of Examples 2 to 15 and Comparative Examples 1 to 4 are also shown. The manufactured battery was subjected to charge and discharge for 5 cycles with an upper limit of 4.1 V and a lower limit of 3.0 V at a current of 0.2 C (100 mA). This initial five charging / discharging operations will be referred to as conditioning.

Figure 2010118179
Figure 2010118179

[実施例2,3]
非水電解液に添加する添加剤を0.05mol/Lの濃度の上記(2)で示すアニオン化合物(PFO)を含むリチウム塩とした以外は実施例1と同様の工程を行い、得られたリチウムイオン二次電池を実施例2とした。また、非水電解液に添加する添加剤を0.05mol/Lの濃度の上記(3)で示すアニオン化合物(PO)を含むリチウム塩とした以外は実施例1と同様の工程を行い、得られたリチウムイオン二次電池を実施例3とした。
[Examples 2 and 3]
The same steps as in Example 1 were performed except that the additive added to the non-aqueous electrolyte was a lithium salt containing the anion compound (PFO) shown in (2) above at a concentration of 0.05 mol / L. A lithium ion secondary battery was defined as Example 2. Further, the same steps as in Example 1 were carried out except that the additive added to the non-aqueous electrolyte was a lithium salt containing the anion compound (PO) shown in (3) at a concentration of 0.05 mol / L. The obtained lithium ion secondary battery was defined as Example 3.

[実施例4〜6]
非水電解液に添加する添加剤を0.05mol/Lの濃度の上記(1)で示すアニオン化合物(PTFO)を含むナトリウム塩とした以外は実施例1と同様の工程を行い、得られたリチウムイオン二次電池を実施例4とした。また、非水電解液に添加する添加剤を0.05mol/Lの濃度の上記(2)で示すアニオン化合物(PFO)を含むナトリウム塩とした以外は実施例1と同様の工程を行い、得られたリチウムイオン二次電池を実施例5とした。また、非水電解液に添加する添加剤を0.05mol/Lの濃度の上記(3)で示すアニオン化合物(PO)を含むナトリウム塩とした以外は実施例1と同様の工程を行い、得られたリチウムイオン二次電池を実施例6とした。
[Examples 4 to 6]
The same steps as in Example 1 were carried out except that the additive to be added to the non-aqueous electrolyte was a sodium salt containing the anion compound (PTFO) shown in (1) above at a concentration of 0.05 mol / L. A lithium ion secondary battery was taken as Example 4. Further, the same steps as in Example 1 were carried out except that the additive added to the non-aqueous electrolyte was a sodium salt containing the anion compound (PFO) shown in (2) at a concentration of 0.05 mol / L. The obtained lithium ion secondary battery was named Example 5. Further, the same steps as in Example 1 were carried out except that the additive added to the non-aqueous electrolyte was a sodium salt containing the anion compound (PO) shown in (3) at a concentration of 0.05 mol / L. The obtained lithium ion secondary battery was referred to as Example 6.

[実施例7〜9]
非水電解液に添加する添加剤を0.05mol/Lの濃度の上記(1)で示すアニオン化合物(PTFO)を含むカリウム塩とした以外は実施例1と同様の工程を行い、得られたリチウムイオン二次電池を実施例7とした。また、非水電解液に添加する添加剤を0.05mol/Lの濃度の上記(2)で示すアニオン化合物(PFO)を含むカリウム塩とした以外は実施例1と同様の工程を行い、得られたリチウムイオン二次電池を実施例8とした。また、非水電解液に添加する添加剤を0.05mol/Lの濃度の上記(3)で示すアニオン化合物(PO)を含むカリウム塩とした以外は実施例1と同様の工程を行い、得られたリチウムイオン二次電池を実施例9とした。
[Examples 7 to 9]
The same steps as in Example 1 were carried out except that the additive added to the non-aqueous electrolyte was a potassium salt containing the anion compound (PTFO) shown in (1) above at a concentration of 0.05 mol / L. A lithium ion secondary battery was taken as Example 7. Further, the same steps as in Example 1 were carried out except that the additive added to the non-aqueous electrolyte was a potassium salt containing the anion compound (PFO) shown in (2) at a concentration of 0.05 mol / L. The obtained lithium ion secondary battery was designated as Example 8. Further, the same steps as in Example 1 were carried out except that the additive added to the non-aqueous electrolyte was a potassium salt containing the anion compound (PO) shown in (3) above at a concentration of 0.05 mol / L. The obtained lithium ion secondary battery was referred to as Example 9.

[実施例10〜12]
正極活物質としてLiNi0.75Co0.15Al0.05Mg0.052を用いた以外は実施例1と同様の工程を行い、得られたリチウムイオン二次電池を実施例10とした。また、正極活物質としてLiNi0.75Co0.15Al0.05Mg0.052を用いた以外は実施例2と同様の工程を行い、得られたリチウムイオン二次電池を実施例11とした。また、正極活物質としてLiNi0.75Co0.15Al0.05Mg0.052を用いた以外は実施例3と同様の工程を行い、得られたリチウムイオン二次電池を実施例12とした。
[Examples 10 to 12]
The same process as in Example 1 was performed except that LiNi 0.75 Co 0.15 Al 0.05 Mg 0.05 O 2 was used as the positive electrode active material. Further, except for using LiNi 0.75 Co 0.15 Al 0.05 Mg 0.05 O 2 as the positive electrode active material subjected to the same process as in Example 2, a lithium ion secondary battery obtained were as in Example 11. Further, the same process as in Example 3 was performed except that LiNi 0.75 Co 0.15 Al 0.05 Mg 0.05 O 2 was used as the positive electrode active material, and the obtained lithium ion secondary battery was defined as Example 12.

[実施例13〜15]
正極活物質としてLiNi1/3Co1/3Mn1/32を用いた以外は実施例1と同様の工程を行い、得られたリチウムイオン二次電池を実施例13とした。また、正極活物質としてLiNi1/3Co1/3Mn1/32を用いた以外は、実施例2と同様の工程を行い、得られたリチウムイオン二次電池を実施例14とした。また、正極活物質としてLiNi1/3Co1/3Mn1/32を用いた以外は、実施例3と同様の工程を行い、得られたリチウムイオン二次電池を実施例15とした。
[Examples 13 to 15]
The same process as in Example 1 was performed except that LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used as the positive electrode active material, and the obtained lithium ion secondary battery was taken as Example 13. Further, except for using LiNi 1/3 Co 1/3 Mn 1/3 O 2 as the positive electrode active material, the same procedure as in Example 2, a lithium ion secondary battery obtained were as in Example 14 . Further, except for using LiNi 1/3 Co 1/3 Mn 1/3 O 2 as the positive electrode active material, the same procedure as in Example 3, lithium ion secondary batteries obtained were as in Example 15 .

[比較例1〜4]
非水電解液へリンを含む添加剤を入れずに作製した以外は実施例1と同様の工程を行い、得られたリチウムイオン二次電池を比較例1とした。また、非水電解液へリンを含む添加剤を入れずに作製した以外は実施例10と同様の工程を行い、得られたリチウムイオン二次電池を比較例2とした。また、非水電解液へリンを含む添加剤を入れずに作製した以外は実施例13と同様の工程を行い、得られたリチウムイオン二次電池を比較例3とした。また、非水電解液に添加する添加剤を0.5mol/Lの濃度の上記(2)で示すアニオン化合物(PFO)を含むリチウム塩とした以外は実施例2と同様の工程を行い、得られたリチウムイオン二次電池を比較例4とした。
[Comparative Examples 1-4]
Except that the non-aqueous electrolyte was prepared without adding an additive containing phosphorus, the same steps as in Example 1 were performed, and the obtained lithium ion secondary battery was referred to as Comparative Example 1. Moreover, the same process as Example 10 was performed except having produced the non-aqueous electrolyte solution without adding the additive containing phosphorus, and the obtained lithium ion secondary battery was referred to as Comparative Example 2. Moreover, the same process as Example 13 was performed except having produced without adding the additive containing phosphorus to nonaqueous electrolyte solution, and the obtained lithium ion secondary battery was made into the comparative example 3. Further, the same steps as in Example 2 were carried out except that the additive added to the non-aqueous electrolyte was a lithium salt containing the anion compound (PFO) shown in (2) at a concentration of 0.5 mol / L. The obtained lithium ion secondary battery was referred to as Comparative Example 4.

[X線光電子分光(XPS)による正極活物質表面分析]
実施例1〜15及び比較例1〜4について、XPSによる正極表面分析を行った。まず、Arフローグローブボックス中で電池を解体し、取り出した電極をジエチルカーボネート(DEC)で十分洗浄した。洗浄したサンプルをグローブボックス内で十分に乾燥させ、XPS試料台に固定して専用のトランスファベッセルを用いて大気被爆することなくXPS測定装置(アルバックファイ製PHI−5500MC)の試料室に導入した。XPS測定は、X線源としてMgKαを用いて行った。光電子取り出し角は、45°とし、分析領域を正極活物質の粒径に対して十分に広くとった。例えば、正極活物質の粒径が10μmであるときに、分析領域は、直径800μmとした。得られた測定データは、C1sスペクトルに現れる、サンプル表面に存在するハイドロカーボン又は導電助剤(カーボン)のピークが285eVとなるように補正を行った。
[Surface analysis of positive electrode active material by X-ray photoelectron spectroscopy (XPS)]
The positive electrode surface analysis by XPS was performed about Examples 1-15 and Comparative Examples 1-4. First, the battery was disassembled in an Ar flow glove box, and the extracted electrode was sufficiently washed with diethyl carbonate (DEC). The washed sample was sufficiently dried in the glove box, fixed to the XPS sample stage, and introduced into the sample chamber of the XPS measurement apparatus (PHI-5500MC manufactured by ULVAC-PHI) without being exposed to the atmosphere using a dedicated transfer vessel. XPS measurement was performed using MgKα as an X-ray source. The photoelectron extraction angle was 45 °, and the analysis region was sufficiently wide with respect to the particle size of the positive electrode active material. For example, when the positive electrode active material has a particle size of 10 μm, the analysis region has a diameter of 800 μm. The obtained measurement data was corrected so that the peak of hydrocarbon or conductive additive (carbon) present on the sample surface appearing in the C1s spectrum was 285 eV.

[高周波プラズマ発光分光分析(ICP)による元素分析]
実施例1〜15及び比較例1〜4について、ICPによる元素分析を行った。まず、コンディショニング後の電池を解体して電極を取り出し、取り出した正極をDECで十分に洗浄し、乾燥したあと、電極の中心付近を1cm2角に切り出した。この切り出した試料を粉砕し、塩酸を30mL加えて200℃のヒータ上で11h加熱溶解した。溶液中の各成分をICP分析装置(リガク製CIROS120EOP)を用いて定量した。
[Elemental analysis by high frequency plasma emission spectroscopy (ICP)]
About Examples 1-15 and Comparative Examples 1-4, the elemental analysis by ICP was performed. First, the battery after conditioning was disassembled and the electrode was taken out. The taken out positive electrode was thoroughly washed with DEC and dried, and then the vicinity of the center of the electrode was cut into a 1 cm 2 square. The cut out sample was pulverized, 30 mL of hydrochloric acid was added, and the mixture was dissolved by heating on a heater at 200 ° C. for 11 hours. Each component in the solution was quantified using an ICP analyzer (CIROS120EOP manufactured by Rigaku).

[内部抵抗測定]
実施例1〜15及び比較例1〜4について、IV抵抗、即ち電池の内部抵抗の測定を行った。内部抵抗の測定は、電池容量の50%(SOC=50%)に調整したあとに0.5A、1A、2A、3A、5Aの電流を流し、10秒後の電池電圧を測定した。流した電流と電圧とを直線近似し、その傾きから内部抵抗を求めた。
[Internal resistance measurement]
About Examples 1-15 and Comparative Examples 1-4, IV resistance, ie, the internal resistance of a battery, was measured. The internal resistance was measured by adjusting the battery capacity to 50% (SOC = 50%), and then flowing currents of 0.5A, 1A, 2A, 3A, and 5A, and measuring the battery voltage after 10 seconds. The applied current and voltage were linearly approximated, and the internal resistance was determined from the slope.

[高温充放電サイクル測定]
実施例1〜15及び比較例1〜4について、高温(60℃)での充放電サイクル試験を行い、繰り返し充放電における放電容量が維持される程度を表す容量維持率を評価した。充放電サイクル試験は、60℃の温度条件下、電流密度2mA/cm2の定電流で充電上限電圧を4.1Vまで充電し、次に電流密度2mA/cm2の定電流で放電下限電圧を3.0まで放電する充放電を1サイクルとし、この充放電サイクルを500サイクル行うものとした。充放電サイクル試験の1サイクル目の放電容量を初期放電容量CAP1(mAh/g)とし、500回目のサイクルでの放電容量をサイクル後放電容量CAP500(mAh/g)としたとき、容量維持率CAPma(%)=CAP500/CAP1×100の式を用いて算出した。
[High-temperature charge / discharge cycle measurement]
About Examples 1-15 and Comparative Examples 1-4, the charge / discharge cycle test at high temperature (60 degreeC) was done, and the capacity | capacitance maintenance factor showing the grade by which the discharge capacity in repeated charging / discharging was maintained was evaluated. In the charge / discharge cycle test, the upper limit charge voltage is charged to 4.1 V at a constant current of 2 mA / cm 2 under a temperature condition of 60 ° C., and then the lower limit discharge voltage is set at a constant current of 2 mA / cm 2. Charging / discharging to 3.0 is defined as one cycle, and this charging / discharging cycle is performed 500 times. When the discharge capacity in the first cycle of the charge / discharge cycle test is the initial discharge capacity CAP 1 (mAh / g) and the discharge capacity in the 500th cycle is the post-cycle discharge capacity CAP 500 (mAh / g), the capacity is maintained. It calculated using the formula of rate CAPma (%) = CAP 500 / CAP 1 × 100.

[測定結果]
コンディショニング前の実施例1〜15及び比較例1〜4について、正極のXPS測定を行ったところ、リンに帰属するスペクトルは得られなかった。実施例1〜15の各電池をコンディショニング後に解体してXPS測定したところ、リンの光電子スペクトルが133eV以上137eV以下の範囲にあることがわかった。図2は、実施例2及び比較例1のコンディショニング後のXPSスペクトル(P2pスペクトル)である。このように、実施例では、コンディショニング後にはリンの光電子スペクトルが133eV以上137eV以下の範囲にあることがわかった。一方、添加剤を入れない比較例1〜3では、コンディショニング後であっても、リンに帰属するスペクトルは得られなかった。したがって、正極表面に形成されたリンを含む化合物は、電解質(LiPF6)に起因するものではなく、式(2)〜(4)に示した添加剤に起因していることがわかった。この測定結果を用い、正極表面のXPSによるリンの原子数の割合をAp(at%)とし遷移金属元素の原子数の和の割合をAt(at%)としたときの、Ap/At値を計算した。XPS測定では、試料の表面近傍(例えば5nm程度の範囲)の情報であることから、このAp/At値は、試料表面に存在するリンの状態を反映していると推察される。比較例1〜3では、このAp/At値は略値0であり、正極表面にリンを含む化合物が存在していないことがわかった。また、添加剤を多く入れた比較例4では、Ap/At値が1.9と大きな値を示した。実施例1〜15では、Ap/At値が0.1以上1.0以下の範囲にあることがわかった。内部抵抗測定結果について、同じ電池構成であるものを比較すると、正極活物質上にリンが適度に存在する実施例では、比較例に比して総じて抵抗値が低く、且つ高い容量維持率を示すことがわかった。また、ICPによるリンの重量割合に対する内部抵抗の関係を図3に示す。この結果より、リンの重量が0.1重量%以上0.5重量%以下の範囲であるとき、一層好ましくは0.1重量%以上0.25重量%以下であるときに、内部抵抗が低い値を示す傾向があることがわかった。なお、実施例1〜15について、XPSによるAp/At値が0.1以上1.0以下の範囲にあり、ICPによるリンの重量割合が0.1重量%以上0.5重量%以下の範囲にあることから、リンは5nm未満の厚さで正極表面近傍に存在しているものと推察された。また、光電子スペクトルが133eV以上137eV以下の範囲にあるため、リンは例えばリンと酸素との化合物及びリンと酸素とフッ素との化合物(PO2、PO3、PO22、PO3F、LiPO3F)などの好適な状態で正極活物質上に存在しているものと推察された。
[Measurement result]
When Examples 1 to 15 and Comparative Examples 1 to 4 before conditioning were subjected to XPS measurement of the positive electrode, no spectrum attributable to phosphorus was obtained. When the batteries of Examples 1 to 15 were disassembled after conditioning and subjected to XPS measurement, it was found that the photoelectron spectrum of phosphorus was in the range of 133 eV to 137 eV. FIG. 2 is an XPS spectrum (P2p spectrum) after conditioning in Example 2 and Comparative Example 1. Thus, in the Example, it turned out that the photoelectron spectrum of phosphorus exists in the range of 133 eV or more and 137 eV or less after conditioning. On the other hand, in Comparative Examples 1 to 3 in which no additive was added, a spectrum attributable to phosphorus was not obtained even after conditioning. Therefore, it was found that the phosphorus-containing compound formed on the positive electrode surface was not caused by the electrolyte (LiPF 6 ) but by the additives shown in the formulas (2) to (4). Using this measurement result, Ap / At value when the ratio of the number of phosphorus atoms by XPS on the positive electrode surface is Ap (at%) and the ratio of the total number of atoms of the transition metal element is At (at%). Calculated. In XPS measurement, it is presumed that this Ap / At value reflects the state of phosphorus existing on the sample surface because it is information in the vicinity of the sample surface (for example, a range of about 5 nm). In Comparative Examples 1 to 3, this Ap / At value was approximately 0, indicating that no compound containing phosphorus was present on the positive electrode surface. Moreover, in the comparative example 4 which added many additives, Ap / At value showed a big value with 1.9. In Examples 1-15, it turned out that Ap / At value exists in the range of 0.1 or more and 1.0 or less. When comparing the results of the internal resistance measurement with the same battery configuration, in the example in which phosphorus is appropriately present on the positive electrode active material, the resistance value is generally lower than that of the comparative example and the capacity retention rate is high. I understood it. FIG. 3 shows the relationship of internal resistance with respect to the weight ratio of phosphorus by ICP. From this result, the internal resistance is low when the weight of phosphorus is in the range of 0.1 wt% or more and 0.5 wt% or less, more preferably 0.1 wt% or more and 0.25 wt% or less. It turns out that there is a tendency to show a value. In Examples 1 to 15, the Ap / At value by XPS is in the range of 0.1 to 1.0, and the weight ratio of phosphorus by ICP is in the range of 0.1 to 0.5% by weight. Therefore, it was assumed that phosphorus was present in the vicinity of the positive electrode surface with a thickness of less than 5 nm. Further, since the photoelectron spectrum is in the range of 133 eV to 137 eV, phosphorus is, for example, a compound of phosphorus and oxygen and a compound of phosphorus, oxygen and fluorine (PO 2 , PO 3 , PO 2 F 2 , PO 3 F, LiPO It was inferred that it was present on the positive electrode active material in a suitable state such as 3 F).

本発明のリチウムイオン二次電池10の一例を示す模式図。The schematic diagram which shows an example of the lithium ion secondary battery 10 of this invention. 実施例2及び比較例1のコンディショニング後のXPSスペクトル。The XPS spectrum after the conditioning of Example 2 and Comparative Example 1. ICPによるリンの重量割合に対する内部抵抗の関係を表す図。The figure showing the relationship of the internal resistance with respect to the weight ratio of the phosphorus by ICP.

符号の説明Explanation of symbols

10 リチウムイオン二次電池、11 集電体、12 正極活物質、13 正極シート、14 集電体、17 負極活物質、18 負極シート、19 セパレータ、20 非水電解液、22 円筒ケース、24 正極端子、26 負極端子   DESCRIPTION OF SYMBOLS 10 Lithium ion secondary battery, 11 Current collector, 12 Positive electrode active material, 13 Positive electrode sheet, 14 Current collector, 17 Negative electrode active material, 18 Negative electrode sheet, 19 Separator, 20 Nonaqueous electrolyte, 22 Cylindrical case, 24 Positive electrode Terminal, 26 Negative terminal

Claims (6)

リチウムイオンを吸蔵・放出可能な負極活物質を有する負極と、
リチウムイオンを吸蔵・放出可能であり遷移金属を含む正極活物質を有し、該正極表面のX線光電子分光法によるリンの光電子スペクトルが133eV以上137eV以下の範囲にあり、該正極表面のX線光電子分光法によるリンの原子数の割合をAp(at%)とし遷移金属元素の原子数の和の割合をAt(at%)としたときにAp/Atが0.1以上1.0以下の範囲にある正極と、
前記正極と前記負極との間に介在しリチウムイオンを伝導するイオン伝導媒体と、
を備えたリチウムイオン二次電池。
A negative electrode having a negative electrode active material capable of inserting and extracting lithium ions;
It has a positive electrode active material capable of occluding and releasing lithium ions and containing a transition metal, the photoelectron spectrum of phosphorus by X-ray photoelectron spectroscopy on the positive electrode surface is in the range of 133 eV to 137 eV, and the X-ray on the positive electrode surface When the ratio of the number of phosphorus atoms by photoelectron spectroscopy is Ap (at%) and the ratio of the total number of atoms of the transition metal element is At (at%), Ap / At is 0.1 or more and 1.0 or less. A positive electrode in range;
An ion conductive medium that is interposed between the positive electrode and the negative electrode and conducts lithium ions;
Lithium ion secondary battery equipped with.
前記正極は、基本組成式がLiaNixCoyMezb(MeはMn,Al,Mg,Ti,V,Cu,Zn,Cr,Zr,Sr,Siからなる群より選ばれる1種以上を表す:a,b,x,y,zは、0.9≦a≦1.1、1.9≦b≦2.2、0.3≦x≦0.8、0.1≦y≦0.5、0.01≦z≦0.5、x+y+z=1を満たす)で表される化合物を正極活物質とする、請求項1に記載のリチウムイオン二次電池。 The positive electrode, one basic formula is Li a Ni x Co y Me z O b (Me is that Mn, Al, Mg, Ti, V, Cu, Zn, Cr, Zr, Sr, selected from the group consisting of Si A, b, x, y, z represent 0.9 ≦ a ≦ 1.1, 1.9 ≦ b ≦ 2.2, 0.3 ≦ x ≦ 0.8, 0.1 ≦ y The lithium ion secondary battery according to claim 1, wherein a compound represented by: ≦ 0.5, 0.01 ≦ z ≦ 0.5, satisfying x + y + z = 1) is used as the positive electrode active material. 前記正極は、高周波プラズマ発光分光分析により正極中に存在する元素の存在量を測定すると前記正極活物質中の遷移金属の重量の和に対するリンの重量が0.1重量%以上0.5重量%以下である、請求項1又は2に記載のリチウムイオン二次電池。   When the abundance of the elements present in the positive electrode is measured by high-frequency plasma emission spectrometry, the weight of phosphorus with respect to the sum of the weights of transition metals in the positive electrode active material is 0.1 wt% or more and 0.5 wt% The lithium ion secondary battery according to claim 1 or 2, wherein: 前記正極は、前記正極活物質の表面に厚さが10nm未満の膜状態又は吸着した状態でリンを含む化合物の層が形成されている、請求項1〜3のいずれか1項に記載のリチウムイオン二次電池。   4. The lithium according to claim 1, wherein a layer of a compound containing phosphorus is formed on the surface of the positive electrode active material in a film state having a thickness of less than 10 nm or adsorbed on the surface of the positive electrode active material. Ion secondary battery. 前記正極は、前記正極表面でのリンのX線光電子分光法による光電子スペクトルが初回充電前にはなく初回充電後に現れる、請求項1〜4のいずれか1項に記載のリチウムイオン二次電池。   5. The lithium ion secondary battery according to claim 1, wherein the positive electrode has a photoelectron spectrum obtained by X-ray photoelectron spectroscopy of phosphorus on the surface of the positive electrode before and after the first charge. 前記イオン伝導媒体は、電解質としてLiPF6又はLiBF4のうち少なくとも一方を含んでいる、請求項1〜5のいずれか1項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1, wherein the ion conductive medium includes at least one of LiPF 6 and LiBF 4 as an electrolyte.
JP2008288910A 2008-11-11 2008-11-11 Lithium ion secondary battery Expired - Fee Related JP5357517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008288910A JP5357517B2 (en) 2008-11-11 2008-11-11 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008288910A JP5357517B2 (en) 2008-11-11 2008-11-11 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2010118179A true JP2010118179A (en) 2010-05-27
JP5357517B2 JP5357517B2 (en) 2013-12-04

Family

ID=42305740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008288910A Expired - Fee Related JP5357517B2 (en) 2008-11-11 2008-11-11 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5357517B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231708A (en) * 2012-04-30 2013-11-14 Samsung Sdi Co Ltd Device for analyzing film on surface of electrode for lithium secondary battery and method of analyzing film on surface of electrode for lithium secondary battery
WO2014060077A2 (en) * 2012-10-11 2014-04-24 Rockwood Lithium GmbH Additives for galvanic cells
JP2014183031A (en) * 2013-03-21 2014-09-29 Toyota Motor Corp Lithium ion secondary battery, and method for manufacturing the same
JP2016136507A (en) * 2015-01-14 2016-07-28 トヨタ自動車株式会社 Lithium ion secondary battery and method of manufacturing lithium ion secondary battery
US10355269B2 (en) 2015-01-14 2019-07-16 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery having positive electrode active material particle with fluorine and phosphorous containing film, and method of manufacturing the same
CN111213265A (en) * 2017-10-20 2020-05-29 株式会社Lg化学 Positive electrode active material for lithium secondary battery, method for producing same, and positive electrode for lithium secondary battery and lithium secondary battery comprising same
US11108041B2 (en) 2016-12-08 2021-08-31 Gs Yuasa International Ltd. Nonaqueous electrolyte energy storage device and method for producing the same
US11411223B2 (en) 2018-03-22 2022-08-09 Tdk Corporation Negative electrode and lithium ion secondary battery
US11522191B2 (en) 2016-03-16 2022-12-06 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018945A (en) * 2005-07-11 2007-01-25 Toyota Central Res & Dev Lab Inc Non-aqueous electrolytic solution and lithium secondary battery
JP2007035356A (en) * 2005-07-25 2007-02-08 Toyota Central Res & Dev Lab Inc Lithium ion secondary battery
JP2007048464A (en) * 2005-08-05 2007-02-22 Toyota Central Res & Dev Lab Inc Lithium ion secondary battery
JP2009158330A (en) * 2007-12-27 2009-07-16 Toyota Central R&D Labs Inc Lithium-ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018945A (en) * 2005-07-11 2007-01-25 Toyota Central Res & Dev Lab Inc Non-aqueous electrolytic solution and lithium secondary battery
JP2007035356A (en) * 2005-07-25 2007-02-08 Toyota Central Res & Dev Lab Inc Lithium ion secondary battery
JP2007048464A (en) * 2005-08-05 2007-02-22 Toyota Central Res & Dev Lab Inc Lithium ion secondary battery
JP2009158330A (en) * 2007-12-27 2009-07-16 Toyota Central R&D Labs Inc Lithium-ion secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231708A (en) * 2012-04-30 2013-11-14 Samsung Sdi Co Ltd Device for analyzing film on surface of electrode for lithium secondary battery and method of analyzing film on surface of electrode for lithium secondary battery
RU2665552C2 (en) * 2012-10-11 2018-08-31 Роквуд Литиум Гмбх Additives for galvanic cells
WO2014060077A2 (en) * 2012-10-11 2014-04-24 Rockwood Lithium GmbH Additives for galvanic cells
WO2014060077A3 (en) * 2012-10-11 2014-09-04 Rockwood Lithium GmbH Additives for galvanic cells
JP2015534711A (en) * 2012-10-11 2015-12-03 ロックウッド リチウム ゲゼルシャフト ミット ベシュレンクテル ハフツングRockwood Lithium GmbH Additives for galvanic batteries
CN105144459A (en) * 2012-10-11 2015-12-09 罗克伍德锂有限责任公司 Additives for galvanic cells
JP2014183031A (en) * 2013-03-21 2014-09-29 Toyota Motor Corp Lithium ion secondary battery, and method for manufacturing the same
JP2016136507A (en) * 2015-01-14 2016-07-28 トヨタ自動車株式会社 Lithium ion secondary battery and method of manufacturing lithium ion secondary battery
US10355269B2 (en) 2015-01-14 2019-07-16 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery having positive electrode active material particle with fluorine and phosphorous containing film, and method of manufacturing the same
US11522191B2 (en) 2016-03-16 2022-12-06 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
US11108041B2 (en) 2016-12-08 2021-08-31 Gs Yuasa International Ltd. Nonaqueous electrolyte energy storage device and method for producing the same
CN111213265A (en) * 2017-10-20 2020-05-29 株式会社Lg化学 Positive electrode active material for lithium secondary battery, method for producing same, and positive electrode for lithium secondary battery and lithium secondary battery comprising same
CN111213265B (en) * 2017-10-20 2022-05-27 株式会社Lg化学 Positive electrode active material for lithium secondary battery, method for producing same, and positive electrode for lithium secondary battery and lithium secondary battery comprising same
US11411223B2 (en) 2018-03-22 2022-08-09 Tdk Corporation Negative electrode and lithium ion secondary battery

Also Published As

Publication number Publication date
JP5357517B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5582587B2 (en) Lithium ion secondary battery
CN108886166B (en) Nonaqueous electrolyte additive, and nonaqueous electrolyte for lithium secondary battery and lithium secondary battery containing same
JP5357517B2 (en) Lithium ion secondary battery
US10062925B2 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery
WO2017183696A1 (en) Lithium secondary cell and method for manufacturing lithium secondary cell
JP6304746B2 (en) Lithium ion secondary battery
CN111640975A (en) Electrolyte composition for lithium-ion electrochemical cells
JP2015018713A (en) Nonaqueous electrolytic solution and lithium-ion secondary battery using the same
WO2015079893A1 (en) Lithium secondary battery
JP6036697B2 (en) Non-aqueous secondary battery
JPWO2019235469A1 (en) Reduced graphene material
CN111052486B (en) Nonaqueous electrolyte secondary battery
JP5271751B2 (en) Lithium ion secondary battery
US20190260080A1 (en) Non-aqueous Electrolyte and Lithium Secondary Battery Including the Same
JP2008288049A (en) Lithium ion secondary battery
JP5350849B2 (en) Lithium secondary battery
JP7458033B2 (en) Nonaqueous electrolyte secondary battery and electrolyte used therein
JP2019061826A (en) Lithium ion secondary battery
JP7182198B2 (en) Nonaqueous electrolyte secondary battery, electrolyte solution, and method for manufacturing nonaqueous electrolyte secondary battery
JP6258180B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY, ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY USING THE SAME, LITHIUM SECONDARY BATTERY
JP2018085213A (en) Lithium secondary battery
JP5666225B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6676280B2 (en) Lithium ion secondary battery and method of using the same
JPWO2019065288A1 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery using the same
JP2018120761A (en) Additive agent for electrochemical device, method for manufacturing the same, and electrolyte solution for electrochemical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130830

R150 Certificate of patent or registration of utility model

Ref document number: 5357517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees