WO2010053162A1 - Non-aqueous electrolysis solution containing pyridyl 5-membered heterocyclic derivative, and lithium secondary battery - Google Patents

Non-aqueous electrolysis solution containing pyridyl 5-membered heterocyclic derivative, and lithium secondary battery Download PDF

Info

Publication number
WO2010053162A1
WO2010053162A1 PCT/JP2009/069007 JP2009069007W WO2010053162A1 WO 2010053162 A1 WO2010053162 A1 WO 2010053162A1 JP 2009069007 W JP2009069007 W JP 2009069007W WO 2010053162 A1 WO2010053162 A1 WO 2010053162A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
alkyl
pyridin
atom
Prior art date
Application number
PCT/JP2009/069007
Other languages
French (fr)
Japanese (ja)
Inventor
茂 三尾
光雄 中村
栄信 野木
剛史 林
秀俊 角田
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2010536804A priority Critical patent/JP5285082B2/en
Publication of WO2010053162A1 publication Critical patent/WO2010053162A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte and a lithium secondary battery.
  • positive electrode active materials for lithium secondary batteries.
  • the main component of the transition metal used as the positive electrode active material is cobalt or nickel. The reason why cobalt or nickel is frequently used is that it is easy to realize a long battery life as compared with other transition metals.
  • manganese which is cheaper and richer in resources than cobalt or nickel, is one of the potential next-generation cathode active material candidates.
  • a battery using a manganese positive electrode has a shorter life than a battery using a cobalt or nickel positive electrode.
  • the required performance in the large battery market, where a dramatic increase in demand is expected in the near future, is to extend the battery life.
  • a lithium secondary battery in a high temperature environment is caused by various factors. Examples of such factors include alteration of the lithium transition metal oxide, decomposition of the electrolytic solution, and destruction of the film formed on the negative electrode surface.
  • attempts have been made to extend the life by adding a pyridine derivative to the electrolytic solution.
  • Japanese Patent Application Laid-Open No. 2002-83631 discloses an example of adding pyridine
  • Japanese Patent Application Laid-Open No. 2002-93462 is an alkylpyridine derivative
  • Japanese Patent Application Laid-Open No. 2004-14352 is an example of adding a bipyridine derivative.
  • improvement of capacity degradation under high temperature conditions is a situation where further improvement is required.
  • An object of the present invention is to use a non-aqueous electrolyte and an additive for a lithium secondary battery that can improve the storage characteristics in a high-temperature environment and realize a long life in a lithium secondary battery, and the non-aqueous electrolyte. It is to provide a lithium secondary battery.
  • the present inventor can improve the storage characteristics in a high temperature environment and achieve a long life by adding a specific additive to the non-aqueous electrolyte of the lithium secondary battery.
  • the present invention has been completed.
  • the present invention is as follows.
  • Py represents a pyridyl group which may be substituted with 1 to 3 substituents selected from group A below.
  • Group A includes a halogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, and an alkyl group having 1 to 8 carbon atoms.
  • Alkoxy group alkenyloxy group having 2 to 6 carbon atoms, alkynyloxy group having 2 to 6 carbon atoms, alkylthio group having 1 to 8 carbon atoms, alkylsulfinyl group having 1 to 8 carbon atoms, alkylsulfonyl having 1 to 8 carbon atoms Group, an alkylamino group having 1 to 8 carbon atoms, and a dialkylamino group (the carbon numbers of the two alkyl groups are each independently 1 to 8.
  • the two alkyl groups are directly, oxygen atom, sulfur atom Or bonded to each other through a nitrogen atom substituted with an alkyl group having 1 to 6 carbon atoms to form a 3- to 7-membered ring, a phenyloxy group (halogen atom or alkyl having 1 to 6 carbon atoms)
  • the two alkyl groups are directly or oxygen atoms
  • a sulfur atom or a nitrogen atom substituted with an alkyl group having 1 to 6 carbon atoms may be bonded to each other to form a 3- to 7-membered ring
  • a phenyl group (halogen atom or having 1 to 6 carbon atoms) May be substituted with an alkyl group)
  • an aromatic 5-membered heterocyclic group (which may be substituted with a halogen atom or an alkyl group having 1 to 6 carbon atoms), and an aromatic 6-membered heterocyclic group (a halogen atom or carbon). It is substituted with 1-6 alkyl groups a group consisting also be).
  • N 1 or 2.
  • Q represents an aromatic or non-aromatic 5-membered heterocyclic group which may contain 1 to 4 atoms selected from an oxygen atom, a sulfur atom and a nitrogen atom, and the heterocyclic ring is selected from the following group B May be substituted by 1 to 2 substituents.
  • Group B includes a halogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, and an alkyl group having 1 to 8 carbon atoms.
  • Alkoxy group alkenyloxy group having 2 to 6 carbon atoms, alkynyloxy group having 2 to 6 carbon atoms, alkylthio group having 1 to 8 carbon atoms, alkylsulfinyl group having 1 to 8 carbon atoms, alkylsulfonyl having 1 to 8 carbon atoms Group, an alkylamino group having 1 to 8 carbon atoms, and a dialkylamino group (the carbon numbers of the two alkyl groups are each independently 1 to 8.
  • the two alkyl groups are directly, oxygen atom, sulfur atom Or bonded to each other through a nitrogen atom substituted with an alkyl group having 1 to 6 carbon atoms to form a 3- to 7-membered ring, a phenyloxy group (halogen atom or alkyl having 1 to 6 carbon atoms)
  • the two alkyl groups are directly or oxygen atoms
  • a sulfur atom or a nitrogen atom substituted with an alkyl group having 1 to 6 carbon atoms may be bonded to each other to form a 3- to 7-membered ring
  • a phenyl group (halogen atom or having 1 to 6 carbon atoms) May be substituted with an alkyl group)
  • an aromatic 5-membered heterocyclic group (which may be substituted with a halogen atom or an alkyl group having 1 to 6 carbon atoms), and an aromatic 6-membered heterocyclic group (a halogen atom or carbon). It is substituted with 1-6 alkyl groups a group consisting also be).
  • Q in the general formula (I) is a furyl group, a thienyl group, a pyrrolyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group, an isothiazolyl group, an imidazolyl group, a pyrazolyl group, a 1,2,4-oxadiazolyl group, 1
  • the nonaqueous electrolytic solution according to ⁇ 1> which is a 1,3,4-oxadiazolyl group, an oxazolinyl group, an isoxazolinyl group, an imidazolinyl group, or a pyrazolinyl group.
  • Q in the general formula (I) is an isoxazol-3-yl group, an isoxazolin-3-yl group, an isoxazolin-5-yl group, or a 1,2,4-oxadiazole-5-
  • the compound represented by the general formula (I) is 3- (pyridin-2-yl) -4,5-dihydroisoxazole-5-carboxylic acid, 3- (pyridin-3-yl) -4 , 5-Dihydroisoxazole-5-carboxylic acid, 3- (pyridin-4-yl) -4,5-dihydroisoxazole-5-carboxylic acid, 3- (pyridin-2-yl) -4,5-dihydro Isoxazole-5-carboxylate methyl, 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylate, 3- (pyridin-4-yl) -4,5-dihydroisoxazole -5-carboxylate, 3- (pyridin-2-yl) -4,5-dihydroisoxazole-5-carbonitrile, 3- (pyridin-3-yl) -4,5-dihydroisoxazo 5-
  • R 1 , R 2 , R 3 , and R 4 are each independently an alkyl group having 1 to 12 carbon atoms, a hydrogen atom, or a fluorine atom that may be substituted with a fluorine atom.
  • M represents an integer of 0 to 3.
  • m is 2 or 3
  • a plurality of R 3 and R 4 may be the same or different from each other.
  • R 5 and R 6 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a propyl group.
  • X 1 , X 2 , X 3 and X 4 are each independently an alkyl group having 1 to 3 carbon atoms which may be substituted with a fluorine atom, a hydrogen atom, a fluorine atom, or chlorine. Indicates an atom. However, the case where X 1 , X 2 , X 3 and X 4 are hydrogen atoms at the same time is excluded. ]
  • ⁇ 12> a positive electrode; Metallic lithium, lithium-containing alloys, metals that can be alloyed with lithium, alloys that can be alloyed with lithium, oxides that can be doped / undoped with lithium ions, and metals that can be doped / undoped with lithium ions
  • Py represents a pyridyl group which may be substituted with 1 to 3 substituents selected from group A below.
  • Group A includes a halogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, and an alkyl group having 1 to 8 carbon atoms.
  • Alkoxy group alkenyloxy group having 2 to 6 carbon atoms, alkynyloxy group having 2 to 6 carbon atoms, alkylthio group having 1 to 8 carbon atoms, alkylsulfinyl group having 1 to 8 carbon atoms, alkylsulfonyl having 1 to 8 carbon atoms Group, an alkylamino group having 1 to 8 carbon atoms, and a dialkylamino group (the carbon numbers of the two alkyl groups are each independently 1 to 8.
  • the two alkyl groups are directly, oxygen atom, sulfur atom Or bonded to each other through a nitrogen atom substituted with an alkyl group having 1 to 6 carbon atoms to form a 3- to 7-membered ring, a phenyloxy group (halogen atom or alkyl having 1 to 6 carbon atoms)
  • the two alkyl groups are directly or oxygen atoms
  • a sulfur atom or a nitrogen atom substituted with an alkyl group having 1 to 6 carbon atoms may be bonded to each other to form a 3- to 7-membered ring
  • a phenyl group (halogen atom or having 1 to 6 carbon atoms) May be substituted with an alkyl group)
  • an aromatic 5-membered heterocyclic group (which may be substituted with a halogen atom or an alkyl group having 1 to 6 carbon atoms), and an aromatic 6-membered heterocyclic group (a halogen atom or carbon). It is substituted with 1-6 alkyl groups a group consisting also be).
  • N 1 or 2.
  • Q represents an aromatic or non-aromatic 5-membered heterocyclic group which may contain 1 to 4 atoms selected from an oxygen atom, a sulfur atom and a nitrogen atom, and the heterocyclic ring is selected from the following group B May be substituted by 1 to 2 substituents.
  • Group B includes a halogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, and an alkyl group having 1 to 8 carbon atoms.
  • Alkoxy group alkenyloxy group having 2 to 6 carbon atoms, alkynyloxy group having 2 to 6 carbon atoms, alkylthio group having 1 to 8 carbon atoms, alkylsulfinyl group having 1 to 8 carbon atoms, alkylsulfonyl having 1 to 8 carbon atoms Group, an alkylamino group having 1 to 8 carbon atoms, and a dialkylamino group (the carbon numbers of the two alkyl groups are each independently 1 to 8.
  • the two alkyl groups are directly, oxygen atom, sulfur atom Or bonded to each other through a nitrogen atom substituted with an alkyl group having 1 to 6 carbon atoms to form a 3- to 7-membered ring, a phenyloxy group (halogen atom or alkyl having 1 to 6 carbon atoms) Set by group Nitro group, formyl group, cyano group, carboxyl group, alkoxycarbonyl group (the alkyl group has 1 to 8 carbon atoms), carbamoyl group, N-alkylaminocarbonyl group (the carbon number of the alkyl group) Are 1 to 8), N, N-dialkylaminocarbonyl group (the number of carbon atoms of the two alkyl groups is each independently 1 to 8.
  • the two alkyl groups are directly or oxygen atom, sulfur Via a nitrogen atom substituted with an atom or an alkyl group having 1 to 6 carbon atoms, which may be bonded to each other to form a 3- to 7-membered ring, a phenyl group (halogen atom or alkyl having 1 to 6 carbon atoms)
  • An aromatic 5-membered heterocyclic group (which may be substituted with a halogen atom or an alkyl group having 1 to 6 carbon atoms), and an aromatic 6-membered heterocyclic group (a halogen atom or carbon number). It is substituted with an alkyl group having 1-6 a group consisting also be).
  • a non-aqueous electrolyte and an additive for a lithium secondary battery capable of improving storage characteristics in a high temperature environment and realizing a long life, and the non-aqueous electrolyte are used.
  • a lithium secondary battery can be provided.
  • the non-aqueous electrolyte of the present invention the lithium secondary battery using this non-aqueous electrolyte, and the additive for lithium secondary battery will be specifically described.
  • the non-aqueous electrolyte of the present invention includes, as an additive, a pyridyl 5-membered heterocyclic compound (hereinafter referred to as “pyridyl represented by the general formula (I)”, which is a compound represented by the general formula (I) described herein. And a non-aqueous electrolyte solution for use in lithium secondary batteries.
  • the non-aqueous electrolytic solution of the present invention further includes, as an additive, an unsaturated sultone that is a compound represented by the general formula (II) (hereinafter also referred to as “unsaturated sultone represented by the general formula (II)”).
  • a vinylene carbonate derivative which is a compound represented by the general formula (III) (hereinafter, also referred to as “a vinylene carbonate derivative represented by the general formula (III)”), and a compound represented by the general formula (IV) It may contain at least one selected from the group consisting of halogenated cyclic carbonate derivatives (hereinafter also referred to as “halogenated cyclic carbonate derivatives represented by the general formula (IV)”).
  • the non-aqueous electrolyte of the lithium secondary battery of the present invention contains a compound represented by the following general formula (I) (hereinafter also referred to as “pyridyl 5-membered heterocyclic compound represented by the general formula (I)”). To do.
  • Py represents a pyridyl group which may be substituted with 1 to 3 substituents selected from Group A.
  • the group A includes a halogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, and 1 to 8 carbon atoms.
  • the two alkyl groups are directly or oxygen atom, sulfur Via a nitrogen atom substituted with an atom or an alkyl group having 1 to 6 carbon atoms, which may be bonded to each other to form a 3- to 7-membered ring), a phenyloxy group (halogen atom or having 1 to 6 carbon atoms) Alkyl Nitro group, formyl group, cyano group, carboxyl group, alkoxycarbonyl group (the alkyl group has 1 to 8 carbon atoms), carbamoyl group, N-alkylaminocarbonyl group (of the alkyl group) Carbon number is 1 to 8), N, N-dialkylaminocarbonyl group (the carbon numbers of the two alkyl groups are each independently 1 to 8.
  • the two alkyl groups are directly or oxygen atoms) , A sulfur atom, or a nitrogen atom substituted with an alkyl group having 1 to 6 carbon atoms, which may combine with each other to form a 3- to 7-membered ring, a phenyl group (halogen atom or 1 to 6 carbon atoms)
  • An aromatic 5-membered heterocyclic group (which may be substituted with a halogen atom or an alkyl group having 1 to 6 carbon atoms), and an aromatic 6-membered heterocyclic group (a halogen atom or Is substituted with an alkyl group of prime 1-6 is a group consisting also be).
  • N 1 or 2.
  • Q represents an aromatic or non-aromatic 5-membered heterocyclic group which may contain 1 to 4 atoms selected from oxygen atom, sulfur atom and nitrogen atom, and the heterocyclic ring is selected from group B It may be substituted with 1 to 2 substituents.
  • the group B includes a halogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, and 1 to 8 carbon atoms.
  • the two alkyl groups are directly or oxygen atom, sulfur Via a nitrogen atom substituted with an atom or an alkyl group having 1 to 6 carbon atoms, which may be bonded to each other to form a 3- to 7-membered ring), a phenyloxy group (halogen atom or having 1 to 6 carbon atoms) Alkyl Nitro group, formyl group, cyano group, carboxyl group, alkoxycarbonyl group (the alkyl group has 1 to 8 carbon atoms), carbamoyl group, N-alkylaminocarbonyl group (of the alkyl group) Carbon number is 1 to 8), N, N-dialkylaminocarbonyl group (the carbon numbers of the two alkyl groups are each independently 1 to 8.
  • the two alkyl groups are directly or oxygen atoms) , A sulfur atom, or a nitrogen atom substituted with an alkyl group having 1 to 6 carbon atoms, which may combine with each other to form a 3- to 7-membered ring, a phenyl group (halogen atom or 1 to 6 carbon atoms)
  • An aromatic 5-membered heterocyclic group (which may be substituted with a halogen atom or an alkyl group having 1 to 6 carbon atoms), and an aromatic 6-membered heterocyclic group (a halogen atom or Is substituted with an alkyl group of prime 1-6 is a group consisting also be).
  • halogen atom in the general formula (I) examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among them, preferred are a fluorine atom and a chlorine atom, and more preferred is a fluorine atom.
  • alkyl group having 1 to 8 carbon atoms in the general formula (I) examples include methyl group, ethyl group, propyl group, 2-propyl group, butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group.
  • Examples of the cycloalkyl group having 3 to 6 carbon atoms in the general formula (I) include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group. Among these, a cyclopropyl group, a cyclopentyl group, and a cyclohexyl group are preferable, and a cyclohexyl group is more preferable.
  • Examples of the alkenyl group having 2 to 6 carbon atoms in the general formula (I) include a vinyl group, 2-propenyl group, 2-methyl-2-propenyl group, 3-methyl-2-butenyl group, 3-butenyl group, 4- Examples include a pentenyl group and a 5-hexenyl group. Of these, 2-propenyl group, 2-methyl-2-propenyl group, 3-methyl-2-butenyl group, 3-butenyl group, 4-pentenyl group, and 5-hexenyl group are more preferable, and 2 -Propenyl group, 2-methyl-2-propenyl group.
  • alkynyl group having 2 to 6 carbon atoms in the general formula (I) examples include ethynyl group, prop-2-ynyl group, but-3-ynyl group, pent-4-ynyl group, hexa-5-ynyl group, prop- Examples include a 1-ynyl group, a but-1-ynyl group, and a 2-but-2-ynyl group. Among them, preferred is an ethynyl group, prop-2-ynyl group, but-3-ynyl group, pent-4-ynyl group, or hexa-5-ynyl group, and more preferred is an ethynyl group or prop-2-ynyl group. It is a group.
  • alkoxy group having 1 to 8 carbon atoms in the general formula (I) methoxy group, ethoxy group, propoxy group, iso-propoxy group, butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy Group, 2,2-dimethyl-1-propoxy group, heptyloxy group, octyloxy group.
  • a methoxy group, an ethoxy group, a propoxy group, an iso-propoxy group, a butoxy group, an iso-butoxy group, a tert-butoxy group, a pentyloxy group, and a hexyloxy group preferably a methoxy group, an iso -Propoxy group, tert-butoxy group.
  • alkenyloxy group having 2 to 6 carbon atoms in the general formula (I) examples include vinyloxy group, allyloxy group, 2-methylallyloxy group, but-2-enyloxy group, 3-methyl-but-2-enyloxy group, buto Examples include a -3-enyloxy group, a pent-4-enyloxy group, and a hexa-5-enyloxy group. Among them, preferred are allyloxy group, 2-methylallyloxy group, but-2-enyloxy group, 3-methyl-but-2-enyloxy group, but-3-enyloxy group, and more preferred are allyloxy group, -A methylallyloxy group.
  • the alkynyloxy group having 2 to 6 carbon atoms in the general formula (I) includes an ethynyloxy group, a prop-2-ynyloxy group, a but-3-ynyloxy group, a pent-4-ynyloxy group, and a hexa-5-ynyloxy group. Illustrated. Among them, preferred is a prop-2-ynyloxy group, a but-3-ynyloxy group, and a pent-4-ynyloxy group, and more preferred is a prop-2-ynyloxy group.
  • alkylthio group having 1 to 8 carbon atoms in the general formula (I) examples include methylthio group, ethylthio group, propylthio group, iso-propylthio group, butylthio group, iso-butylthio group, tert-butylthio group, pentylthio group, and hexylthio group. 2,2-dimethyl-1-propylthio group, heptylthio group, octylthio group.
  • a methylthio group, an ethylthio group, a propylthio group, an iso-propylthio group, a butylthio group, an iso-butylthio group, a tert-butylthio group, a pentylthio group, and a hexylthio group and more preferably a methylthio group, an iso- A propylthio group and a tert-butylthio group;
  • alkylsulfinyl group having 1 to 8 carbon atoms in the general formula (I) examples include methylsulfinyl group, ethylsulfinyl group, propylsulfinyl group, iso-propylsulfinyl group, butylsulfinyl group, iso-butylsulfinyl group, tert-butylsulfinyl group Group, pentylsulfinyl group, hexylsulfinyl group, 2,2-dimethyl-1-propylsulfinyl group, heptylsulfinyl group, octylsulfinyl group.
  • a methylsulfinyl group preferred are a methylsulfinyl group, an ethylsulfinyl group, a propylsulfinyl group, an iso-propylsulfinyl group, a butylsulfinyl group, an iso-butylsulfinyl group, a tert-butylsulfinyl group, a pentylsulfinyl group, and a hexylsulfinyl group. And more preferably a methylsulfinyl group, an iso-propylsulfinyl group, or a tert-butylsulfinyl group.
  • alkylsulfonyl group having 1 to 8 carbon atoms in the general formula (I) examples include methylsulfonyl group, ethylsulfonyl group, propylsulfonyl group, iso-propylsulfonyl group, butylsulfonyl group, iso-butylsulfonyl group, tert-butylsulfonyl Group, pentylsulfonyl group, hexylsulfonyl group, 2,2-dimethyl-1-propylsulfonyl group, heptylsulfonyl group and octylsulfonyl group.
  • a methylsulfonyl group preferred are a methylsulfonyl group, an ethylsulfonyl group, a propylsulfonyl group, an iso-propylsulfonyl group, a butylsulfonyl group, an iso-butylsulfonyl group, a tert-butylsulfonyl group, a pentylsulfonyl group, and a hexylsulfonyl group. And more preferably a methylsulfonyl group, an iso-propylsulfonyl group, or a tert-butylsulfonyl group.
  • Examples of the alkylamino group having 1 to 8 carbon atoms in the general formula (I) include a methylamino group, an ethylamino group, a propylamino group, an iso-propylamino group, a butylamino group, an iso-butylamino group, and a tert-butylamino group.
  • a methylamino group, an iso-propylamino group, and a tert-butylamino group are preferable.
  • the dialkylamino group (the number of carbon atoms of the two alkyl groups is each independently 1 to 8.
  • the two alkyl groups are directly, oxygen atom, sulfur atom, or carbon number)
  • a 3- to 7-membered ring may be bonded to each other via a nitrogen atom substituted with 1 to 6 alkyl groups), such as dimethylamino group, diethylamino group, dipropylamino group, di-iso- Propylamino group, dibutylamino group, di-iso-butylamino group, dipentylamino group, dihexylamino group, diheptylamino group, dioctylamino group, aziridin-1-yl group, azetidin-1-yl group, pyrrolidine-1 -Yl group, piperidin-1-yl group, 4-morpholino group, 4-thiomorpholino group, 4-methylpiperazin-1-yl group, 4-ethylpipe
  • the alkoxycarbonyl group (the alkyl group has 1 to 8 carbon atoms) means a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, an iso-propoxycarbonyl group, a butoxycarbonyl group, sec- Butoxycarbonyl group, iso-butoxycarbonyl group, tert-butoxycarbonyl group, pentyloxycarbonyl group, hexyloxycarbonyl group, 2,2-dimethyl-1-propoxycarbonyl group, heptyloxycarbonyl group, octyloxycarbonyl group Illustrated.
  • the N-alkylaminocarbonyl group (wherein the alkyl group has 1 to 8 carbon atoms) includes a methylaminocarbonyl group, an ethylaminocarbonyl group, a propylaminocarbonyl group, and an iso-propylaminocarbonyl group.
  • butylaminocarbonyl group iso-butylaminocarbonyl group, tert-butylaminocarbonyl group, pentylaminocarbonyl group, hexylaminocarbonyl group, 2,2-dimethyl-1-propylaminocarbonyl group, heptylaminocarbonyl group And octylaminocarbonyl group.
  • the N, N-dialkylaminocarbonyl group (the number of carbon atoms of the two alkyl groups is each independently 1 to 8.
  • the two alkyl groups are either directly or an oxygen atom, sulfur
  • a 3- to 7-membered ring may be bonded to each other via an atom or a nitrogen atom substituted with an alkyl group having 1 to 6 carbon atoms), such as dimethylaminocarbonyl group, diethylaminocarbonyl group, dipropyl Aminocarbonyl group, di-iso-propylaminocarbonyl group, dibutylaminocarbonyl group, di-iso-butylaminocarbonyl group, dipentylaminocarbonyl group, dihexylaminocarbonyl group, diheptylaminocarbonyl group, dioctylaminocarbonyl group, aziridine- 1-carbonyl group, azetidine-1-carbonyl group, pyrrolidine-1- Carbon
  • the phenyl group (which may be substituted with a halogen atom or an alkyl group having 1 to 6 carbon atoms) includes a phenyl group, a methylphenyl group, an ethylphenyl group, a propylphenyl group, and a butylphenyl group.
  • Pentylphenyl group Pentylphenyl group, hexylphenyl group, chlorophenyl group, fluorophenyl group and bromophenyl group.
  • a phenyl group, a methylphenyl group, a fluorophenyl group, and a chlorophenyl group are preferable, and a phenyl group, a methylphenyl group, and a fluorophenyl group are more preferable.
  • Examples of the aromatic 5-membered heterocyclic group (which may be substituted with a halogen atom or an alkyl group having 1 to 6 carbon atoms) in the general formula (I) include a furyl group, a thienyl group, a pyrrolyl group, an oxazolyl group, and an isoxazolyl group. , Thiazolyl group, isothiazolyl group, imidazolyl group, pyrazolyl group, triazolyl group or tetrazolyl group.
  • a pyrrolyl group preferred is a pyrrolyl group, an imidazolyl group, a pyrazolyl group, a triazolyl group or a tetrazolyl group, and more preferred are a pyrrolyl group, an imidazolyl group, a pyrazolyl group or a triazolyl group.
  • a pyridyl group, a pyrimidinyl group, and a pyrazinyl group are preferable, and a pyridyl group is more preferable.
  • Aromatic or non-aromatic 5-membered heterocyclic group (containing the heterocyclic group) which may contain 1 to 4 atoms selected from oxygen, sulfur and nitrogen, which is Q in general formula (I)
  • the ring may be substituted with one or two substituents selected from the above-mentioned group B) as furyl group, thienyl group, pyrrolyl group, pyrrolinyl group, pyrrolidinyl group, oxazolyl group, isoxazolyl group, thiazolyl group, Isothiazolyl group, imidazolyl group, pyrazolyl group, pyrazolinyl group, pyrazolidinyl group, 1,2,4-oxadiazolyl group, 1,3,4-oxadiazolyl group, oxazolinyl group, oxazolidinyl group, isoxazolinyl group, isoxazolidinyl group Group, an imidazolinyl group, and
  • Examples of Q include furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, 1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, Oxazolyl group, isoxazolinyl group, imidazolinyl group and pyrazolyl group are preferable, pyrrolyl group, oxazolyl group, isoxazolyl group, imidazolyl group, pyrazolyl group, 1,2,4-oxadiazolyl group, 1,3,4-oxadiazolyl group, An oxazolinyl group, an isoxazolidinyl group, an imidazolinyl group, and a pyrazolinyl group are more preferable.
  • an isoxazolyl group, an isoxazolinyl group, or a 1,2,4-oxadiazolyl group is preferable, and an isoxazol-3-yl group, an isoxazolin-3-yl group, or a 1,2,4-oxadiazole A -5-yl group is more preferable, and an isoxazol-3-yl group or an isoxazolin-3-yl group is particularly preferable.
  • the substituent for substituting the pyridyl group represented by Py is a fluorine atom or a chlorine atom among the substituents exemplified as the group A from the viewpoint of further improving the storage characteristics in a high temperature environment.
  • the two alkyl groups may be directly or oxygen, sulfur, Are bonded to each other through a nitrogen atom substituted with an alkyl group having 1 to 4 carbon atoms to form a 3- to 7-membered ring), a phenyloxy group (halogen atom or an alkyl group having 1 to 4 carbon atoms) Nitro group, formyl group, cyano group, carboxyl group, alkoxycarbonyl group (the alkyl group has 1 to 6 carbon atoms), carbamoyl group, N-alkylaminocarbonyl group (of the alkyl group) Carbon number is 1-6), N, N-dialkylaminocarbonyl group (the carbon number of the two alkyl groups is each independently 1-8.
  • the two alkyl groups are directly or oxygen atoms) ,
  • an aromatic 5-membered heterocyclic group (which may be substituted with a halogen atom or an alkyl group having 1 to 6 carbon atoms)
  • an aromatic 6-membered heterocyclic group (a halogen atom or carbon).
  • fluorine atom chlorine atom, methyl group, tert-butyl group, vinyl group, propen-2-yl group, propen-1-yl group, ethynyl group, prop-2-ynyl group, methoxy group, tert- Butoxy, allyloxy, 2-methylallyloxy, ethynyl, methylthio, tert-butylthio, methylsulfinyl, methylsulfonyl, tert-butylsulfonyl, methylamino, tert-butylamino, dimethylamino Group, piperidin-1-yl group, 4-morpholino group, 4-methylpiperazin-1-yl group, cyano group, carboxyl group, methoxycarbonyl group, ethoxycarbonyl group, tert-butoxycarbonyl group, N-methylaminocarbonyl group N-tert-butylaminocarbonyl group, piperidin-1-
  • the number of substituents selected from the group A that substitutes the pyridyl group represented by Py is preferably 0 to 2, and the pyridyl group represented by Py is more preferably monosubstituted or unsubstituted. preferable.
  • the substituent for substituting the 5-membered heterocyclic group represented by Q is a fluorine atom among the substituents exemplified as the group B from the viewpoint of further improving the storage characteristics in a high temperature environment.
  • the two alkyl groups may be directly or oxygen, sulfur, Are bonded to each other through a nitrogen atom substituted with an alkyl group having 1 to 4 carbon atoms to form a 3- to 7-membered ring), a phenyloxy group (halogen atom or an alkyl group having 1 to 4 carbon atoms) Nitro group, formyl group, cyano group, carboxyl group, alkoxycarbonyl group (the alkyl group has 1 to 6 carbon atoms), carbamoyl group, N-alkylaminocarbonyl group (of the alkyl group) Carbon number is 1-6), N, N-dialkylaminocarbonyl group (the carbon number of the two alkyl groups is each independently 1-8.
  • the two alkyl groups are directly or oxygen atoms) ,
  • an aromatic 5-membered heterocyclic group (which may be substituted with a halogen atom or an alkyl group having 1 to 6 carbon atoms)
  • an aromatic 6-membered heterocyclic group (a halogen atom or carbon).
  • fluorine atom chlorine atom, methyl group, tert-butyl group, vinyl group, propen-2-yl group, propen-1-yl group, ethynyl group, prop-2-ynyl group, methoxy group, tert- Butoxy, allyloxy, 2-methylallyloxy, ethynyl, methylthio, tert-butylthio, methylsulfinyl, methylsulfonyl, tert-butylsulfonyl, methylamino, tert-butylamino, dimethylamino Group, piperidin-1-yl group, 4-morpholino group, 4-methylpiperazin-1-yl group, cyano group, carboxyl group, methoxycarbonyl group, ethoxycarbonyl group, tert-butoxycarbonyl group, N-methylaminocarbonyl group N-tert-butylaminocarbonyl group, piperidin-1-
  • the number of substituents substituting the 5-membered heterocyclic group represented by Q is preferably 1 to 2, and particularly preferably 1.
  • the Py and the Q are preferably bonded at the 2-position, 3-position, or 4-position of the Py.
  • the Py and Q are the 2-position, 3-position, or 4-position of the Py, and the 3-position or 5-position of the Q, respectively. It is preferable to combine with.
  • the most preferable form of the compound represented by the general formula (I) is that the Py is an unsubstituted pyridyl group from the viewpoint of further improving the storage characteristics in a high temperature environment, and the Q Is an isoxazolyl group or isoxazolinyl group having a substituent at the 5-position, wherein n is 1, and the Py and the Q are the 2-position, 3-position, or 4-position of the Py;
  • bonded with 3rd-position or 5th-position of Q is mentioned.
  • the compound represented by the general formula (I) in the present invention is preferably 3- (pyridin-2-yl) -4,5-dihydroisoxazole-5-carboxylic acid, 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylic acid, 3- (pyridin-4-yl) -4,5-dihydroisoxazole-5-carboxylic acid, 3- (pyridin-2-yl) -4,5 -Methyl dihydroisoxazole-5-carboxylate, 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylate, 3- (pyridin-4-yl) -4,5-dihydro Isoxazole-5-carboxylate methyl, 3- (pyridin-2-yl) -4,5-dihydroisoxazole-5-carbonitrile, 3- (pyridin-3-yl) -4,5- Dihydrois
  • the content of the compound represented by the general formula (I) in the nonaqueous electrolytic solution of the present invention is preferably 0.0001% by mass to 30% by mass, more preferably 0.001% by mass to 10% by mass. 0.1% by mass to 7% by mass is more preferable, and 0.2% by mass to 5% by mass is more preferable.
  • the content of the pyridyl 5-membered heterocyclic compound in the non-aqueous electrolyte is within the above range, it is possible to provide an electrolyte that can further improve the storage characteristics in a high-temperature environment and realize a longer life.
  • the pyridylimidazole compound is produced by, for example, the method described in DE1985819 or the method described in Org. Biomol. Chem., 5 (16), 2567-2571, (2007).
  • Pyridylimidazoline compounds include, for example, methods described in J. Comb. Chem., 2 (6), 675-680, (2000) ⁇ , Synlett, (18), 2747-2750, (2005) ⁇ , Tetrahedron Lett. 39 (5-6), 459-462, ⁇ (1998), or Synthetic Commun., 26 (7), 1335-1340, (1996).
  • Pyridylisoxazole compounds are described in, for example, Org. Lett., 3 (26), 4185-4187, (2001), J. Chem. Soc. Perkin Trans., I, (1), 67-72, ( 1986) or the method described in Synthesis-Stuttgart, (1), 20-24, (1989).
  • the pyridylisoxazoline compound is, for example, a method described in Synthesis-Stuttgart, (11), 1158-1162, (1994), a method described in Febs. Letters, (1994), 35 (2), 168-170, or Tetrahedron Lett., 36 (2), 327-330, (1995).
  • the pyridylimidazole compound is, for example, a method described in Tetrahedron Lett., 29 (39), 5013-5016, (1988), Tetrahedron Lett., 45 (47), 8687-8690, (2004) or Heterocycles, 32 (11) , 2111-2118, (1991).
  • the pyridylimidazoline compound is, for example, a method described in Tetrahedron Lett., 47 (13), 2129-2132, (2006), or a method described in Chem-Eur. J., 13 (6), 1863-1871, (186) Manufactured by.
  • Pyridylpyrazole compounds are described in, for example, TetrahedronedLett., 44 (33), 6305-6307, (2003), method described in DE 19642320, or Synthesis-Stuttgart, (1), 55-62, (2001) It is manufactured by the method.
  • the pyridylpyrazoline compound is produced, for example, by the method described in Collect Czech. Chem. C.
  • the pyridyl-1,2,4-oxadiazole compound is produced, for example, by the method described in Tetrahedron Lett., 42 (8), 1495-1498, (2001).
  • the pyridyl-1,3,4-oxadiazole compound is produced, for example, by the method described in J. Org. Chem., 65 (7), 2246-2248, (2000).
  • the pyridyl 5-membered heterocyclic compound represented by the general formula (I) is considered to have a function of trapping moisture and acid content in the electrolytic solution. It can be inferred that this trap effect mainly suppresses elution of transition metal and gas generation of the positive electrode. Therefore, as a result of containing the compound represented by the general formula (I) in the nonaqueous electrolytic solution, metal deposition on the negative electrode, decomposition of the nonaqueous solvent on the negative electrode, and the like are suppressed. It is presumed that the storage characteristics under high temperature environment are improved. However, the present invention is not limited by the above estimation.
  • the compound represented by the general formula (I) has a high effect of suppressing the reductive decomposition of the nonaqueous electrolytic solution on the negative electrode, and suppresses a decrease in battery capacity due to a high temperature storage test. Moreover, the rise of the interface impedance of the positive electrode during a high-temperature storage test or a cycle test is suppressed, and deterioration of load characteristics is suppressed.
  • the pyridyl 5-membered heterocyclic compound represented by the general formula (I) may be used alone, but a sultone compound represented by the following general formula (II), or a vinylene represented by the following general formula (III)
  • the sultone compound represented by the general formula (II) shown below is effective as an additive for an electrolytic solution, and it is considered that reductive decomposition occurs at the negative electrode in the electrolytic solution, and the sulfur compound forms a film on the positive electrode side.
  • the unsaturated bond in the unsaturated sultone compound represented by the general formula (II) reacts on the negative electrode and bonds on the negative electrode to form a stable film.
  • the unsaturated sultone that did not form a film on the negative electrode decomposes the unsaturated sultone compound itself by the reductive decomposition of the sultone group on the negative electrode, and the sulfur compound produced by this decomposition is oxidized on the positive electrode.
  • unsaturated sultone is a compound that can form a film on both the positive electrode and the negative electrode. That is, it is considered that the unsaturated sultone represented by the following general formula (II) can suppress a decrease in cycle characteristics due to elution of manganese or the like constituting the positive electrode.
  • vinylene carbonate represented by the general formula (III) shown below or a derivative thereof creates a surface film on the negative electrode side and contributes to stabilization of the negative electrode.
  • the halogenated cyclic carbonate derivative represented by the general formula (IV) shown below also forms a surface film on the negative electrode side and contributes to stabilization of the negative electrode.
  • the non-aqueous electrolyte comprises a compound represented by the general formula (I), a compound represented by the following general formula (II), a compound represented by the following general formula (III), and the following general formula ( And at least one selected from the group consisting of the compounds represented by IV), the reductive decomposition of the non-aqueous electrolyte on the negative electrode is suppressed, and the capacity reduction of the battery in the high temperature storage test is suppressed. The generation of gas accompanying the decomposition of the non-aqueous electrolyte is suppressed. Further, an increase in the interface impedance of the positive electrode during a high-temperature storage test or a cycle test is suppressed, and deterioration of load characteristics is suppressed.
  • a compound represented by the general formula (II), a compound represented by the general formula (III), and a compound represented by the general formula (III) are trapped due to the presence of the compound represented by the general formula (I) on the electrode.
  • the formation of a film with at least one selected from the group consisting of the compounds represented by the general formula (IV) becomes more appropriate, effectively suppressing the elution of transition metal and gas generation of the positive electrode. It is presumed that side reactions at the negative electrode and the negative electrode are synergistically suppressed.
  • the present invention is not limited by the above estimation.
  • the non-aqueous electrolyte of the lithium secondary battery of the present invention preferably contains a compound represented by the following general formula (II).
  • R 1 , R 2 , R 3 , and R 4 are each independently a hydrocarbon group having 1 to 12 carbon atoms, a hydrogen atom, or fluorine that may be substituted with a fluorine atom An atom, and m represents an integer of 0 to 3. When m is 2 or 3, a plurality of R 3 and R 4 may be the same or different from each other.
  • the compound represented by the general formula (II) is a sultone compound which is a cyclic sulfonic acid ester and has a carbon-carbon unsaturated bond in the ring.
  • R 1 , R 2 , R 3 , and R 4 are each independently a hydrocarbon group having 1 to 12 carbon atoms, a hydrogen atom, or a fluorine atom that may be substituted with a fluorine atom
  • R 1 , R 2 , R 3 and R 4 may be the same as or different from each other.
  • m represents an integer of 0 to 3.
  • the hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a fluorine atom represented by R 1 , R 2 , R 3 and R 4 is specifically a methyl group.
  • the hydrocarbon group represented by R 1 , R 2 , R 3 , and R 4 preferably has 4 or less carbon atoms, more preferably 2 or less.
  • R 1 , R 2 , R 3 , and R 4 are hydrogen atoms.
  • the most desirable compound is 1,3-prop-1-ene sultone represented by the following formula.
  • This compound (1,3-prop-1-ene sultone) can be synthesized by a method described in the following literature.
  • the content of the compound represented by the general formula (II) in the non-aqueous electrolyte of the present invention is 0. It is preferably 0001% by mass to 30% by mass, more preferably 0.001% by mass to 10% by mass, further preferably 0.1% by mass to 7% by mass, and further preferably 0.2% by mass to 5% by mass.
  • the amount of unsaturated sultone added to the non-aqueous electrolyte is within the above range, the effect of the present invention is exhibited, and an increase in the interface impedance of the negative electrode is suppressed.
  • the non-aqueous electrolyte of the lithium secondary battery of the present invention preferably contains a compound represented by the following general formula (III).
  • R 5 and R 6 each independently represents a hydrogen atom, a methyl group, an ethyl group, or a propyl group.
  • R 5 and R 6 may be the same as or different from each other. That is, the compound represented by the general formula (III) is vinylene carbonate or a vinylene carbonate derivative.
  • Examples of the vinylene carbonate or vinylene carbonate derivative represented by the general formula (III) include vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, propyl vinylene carbonate, dimethyl vinylene carbonate, diethyl vinylene carbonate, and dipropyl vinylene carbonate.
  • R 5 and R 6 are hydrogen atoms, that is, vinylene carbonate is most preferable.
  • the content of the compound represented by the general formula (III) in the non-aqueous electrolyte of the present invention is although it can be appropriately selected depending on the condition, it is preferably 0.001% by mass to 10% by mass, and more preferably 0.1% by mass to 3% by mass.
  • the non-aqueous electrolyte of the present invention preferably contains a compound represented by the following general formula (IV), which is a halogenated cyclic carbonate derivative, from the viewpoint of more effectively achieving the effects of the present invention.
  • X 1 , X 2 , X 3 and X 4 are each independently an alkyl group having 1 to 3 carbon atoms, a hydrogen atom, a fluorine atom or a chlorine atom which may be substituted with a fluorine atom Indicates.
  • X 1 , X 2 , X 3 and X 4 are hydrogen atoms at the same time. That is, the compound represented by the general formula (IV) is a halogenated cyclic carbonate derivative.
  • Examples of the halogenated cyclic carbonate derivative represented by the general formula (IV) include 4-fluoro-1,3-dioxolan-2-one, 4-chloro-1,3-dioxolan-2-one, and 4,5-difluoro.
  • the compound represented by the general formula (IV) is most preferably 4-fluoro-1,3-dioxolan-2-one or 4,5-difluoro-1,3-dioxolan-2-one.
  • the content of the compound represented by the general formula (IV) in the non-aqueous electrolyte of the present invention is although it can be appropriately selected depending on the condition, it is preferably 0.001 to 10% by mass, more preferably 0.1 to 3% by mass.
  • the nonaqueous electrolytic solution of the present invention contains a nonaqueous solvent.
  • a nonaqueous solvent Various known solvents can be appropriately selected as the non-aqueous solvent, and it is particularly preferable that the non-aqueous solvent comprises a cyclic aprotic solvent and / or a chain aprotic solvent.
  • the cyclic aprotic solvent is preferably used as a non-aqueous solvent in order to improve the flash point of the solvent in order to improve the safety of the battery.
  • the cyclic aprotic solvent may be used alone or in combination of two or more.
  • a cyclic aprotic solvent and a chain aprotic solvent may be used as a mixture, but when a chain aprotic solvent is used as a mixture, a chain aprotic solvent is used.
  • the mixing ratio of the solvent is desirably limited to less than 20% by mass ratio with respect to the whole non-aqueous solvent.
  • cyclic aprotic solvent examples include cyclic carbonates such as ethylene carbonate, cyclic carboxylic acid esters such as ⁇ -butyrolactone, cyclic sulfones such as sulfolane, and cyclic ethers such as dioxolane.
  • cyclic carbonates include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, and the like.
  • ethylene carbonate and propylene carbonate having a high dielectric constant are preferably used.
  • ethylene carbonate is particularly preferable.
  • cyclic carboxylic acid ester examples include ⁇ -butyrolactone, ⁇ -valerolactone, alkyl substitution products such as methyl ⁇ -butyrolactone, ethyl ⁇ -butyrolactone, and ethyl ⁇ -valerolactone.
  • the cyclic carboxylic acid ester has a low vapor pressure, a low viscosity, and a high dielectric constant. For this reason, the viscosity of the electrolytic solution can be lowered without lowering the flash point of the electrolytic solution and the degree of dissociation of the electrolyte. For this reason, since it has the feature that the conductivity of the electrolytic solution, which is an index related to the discharge characteristics of the battery, can be increased without increasing the flammability of the electrolytic solution, when aiming to improve the flash point of the solvent, It is preferable to use a cyclic carboxylic acid ester as the cyclic aprotic solvent. In particular, ⁇ -butyrolactone is most desirable.
  • the cyclic carboxylic acid ester is preferably a mixture with another cyclic aprotic solvent.
  • a mixture of a cyclic carboxylic acid ester and a cyclic carbonate and / or a chain carbonate can be considered.
  • cyclic carboxylic acid esters and cyclic carbonates and / or chain carbonates include ⁇ -butyrolactone and ethylene carbonate, ⁇ -butyrolactone and ethylene carbonate and dimethyl carbonate, and ⁇ -butyrolactone and ethylene carbonate and methylethyl.
  • the mixing ratio of the cyclic carboxylic acid ester in the nonaqueous solvent is 10% by mass to 100% by mass, more preferably 20% by mass to 90% by mass, and particularly preferably 30% by mass to 80% by mass. By setting it as such a ratio, the electroconductivity of the electrolyte solution relating to the charge / discharge characteristics of the battery can be increased.
  • cyclic sulfone examples include sulfolane, 2-methyl sulfolane, 3-methyl sulfolane, dimethyl sulfone, diethyl sulfone, dipropyl sulfone, methyl ethyl sulfone, methylpropyl sulfone and the like.
  • chain aprotic solvent examples include chain carbonates such as dimethyl carbonate, chain carboxylic acid esters such as methyl pivalate, chain ethers such as dimethoxyethane, and chain chains such as trimethyl phosphate. Examples include phosphate esters.
  • chain carbonate examples include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl propyl carbonate, dipropyl carbonate, methyl butyl carbonate, ethyl butyl carbonate, dibutyl carbonate, methyl pentyl carbonate, Examples include ethyl pentyl carbonate, dipentyl carbonate, methyl heptyl carbonate, ethyl heptyl carbonate, diheptyl carbonate, methyl hexyl carbonate, ethyl hexyl carbonate, dihexyl carbonate, methyl octyl carbonate, ethyl octyl carbonate, dioctyl carbonate, and methyltrifluoroethyl carbonate. These chain carbonates may be used in combination of two or more.
  • chain carboxylic acid ester examples include methyl pivalate.
  • chain ether examples include dimethoxyethane.
  • chain phosphate ester examples include trimethyl phosphate.
  • the chain aprotic solvent can be mixed in order to improve the flash point of the solvent in order to improve the safety of the battery.
  • Examples include chain carbonates, chain carboxylates, and chain phosphates. Particularly, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, dibutyl carbonate, diheptyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl butyl. Chain carbonates such as carbonate and methyl heptyl carbonate are preferred.
  • the non-aqueous solvent in the present invention may be used alone or in combination. Further, only one or more types of cyclic aprotic solvents may be used, or only one or more types of chain aprotic solvents may be used, or cyclic aprotic solvents and chain proticity may be used. You may mix and use a solvent. Among these, when it is particularly intended to improve the load characteristics and low temperature characteristics of the battery, it is desirable that the non-aqueous solvent is a combination of a cyclic aprotic solvent and a chain aprotic solvent.
  • the conductivity of the electrolytic solution related to the charge / discharge characteristics of the battery can be increased by a combination of the cyclic carboxylic acid ester and the cyclic carbonate and / or the chain carbonate.
  • cyclic carbonate and chain carbonate specifically, ethylene carbonate and dimethyl carbonate, ethylene carbonate and methyl ethyl carbonate, ethylene carbonate and diethyl carbonate, propylene carbonate and dimethyl carbonate, propylene carbonate and methyl ethyl carbonate, propylene carbonate and Diethyl carbonate, ethylene carbonate and propylene carbonate and methyl ethyl carbonate, ethylene carbonate and propylene carbonate and diethyl carbonate, ethylene carbonate and dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate and dimethyl carbonate and diethyl carbonate, ethylene carbonate and methyl ethyl carbonate And diethyl carbonate, ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate
  • the mixing ratio of the cyclic carbonate and the chain carbonate is expressed as a mass ratio, and cyclic carbonate: chain carbonate is 5:95 to 80 to 20, more preferably 10:90 to 70:30, and particularly preferably 15:85. ⁇ 55: 45.
  • cyclic carbonate: chain carbonate is 5:95 to 80 to 20, more preferably 10:90 to 70:30, and particularly preferably 15:85. ⁇ 55: 45.
  • the nonaqueous electrolytic solution according to the present invention may contain a solvent other than the above as a nonaqueous solvent.
  • solvents include amides such as dimethylformamide, chain carbamates such as methyl-N, N-dimethylcarbamate, cyclic amides such as N-methylpyrrolidone, N, N-dimethylimidazolidinone, and the like.
  • boron compounds such as cyclic urea, trimethyl borate, triethyl borate, tributyl borate, trioctyl borate, trimethylsilyl borate, and polyethylene glycol derivatives represented by the following general formula.
  • a to f are integers of 5 to 250
  • g to j are integers of 2 to 249
  • 5 ⁇ g + h ⁇ 250 are integers of 2 to 249
  • 5 ⁇ i + j are integers of 2 to 249.
  • the nonaqueous electrolytic solution of the present invention contains an electrolyte.
  • electrolyte Various known electrolytes can be used as the electrolyte, and any electrolyte can be used as long as it is normally used as an electrolyte for a non-aqueous electrolyte.
  • the electrolyte may be used alone or in combination of two or more.
  • lithium salts are particularly desirable.
  • the electrolyte in the present invention is usually preferably contained in the nonaqueous electrolyte at a concentration of 0.1 mol / liter to 3 mol / liter, preferably 0.5 mol / liter to 2 mol / liter.
  • the nonaqueous electrolytic solution of the present invention when a cyclic carboxylic acid ester such as ⁇ -butyrolactone is used in combination as the nonaqueous solvent, it is particularly desirable to contain LiPF 6 . Since LiPF 6 has a high degree of dissociation, the conductivity of the electrolytic solution can be increased, and the reductive decomposition reaction of the electrolytic solution on the negative electrode can be suppressed. LiPF 6 may be used alone, or LiPF 6 and other electrolytes may be used. Any other electrolyte can be used as long as it is normally used as an electrolyte for a non-aqueous electrolyte, but lithium salts other than LiPF 6 are preferred among the specific examples of the lithium salts described above. .
  • the ratio of LiPF 6 in the lithium salt is 1% by mass to 100% by mass, preferably 10% by mass to 100% by mass, and more preferably 50% by mass to 100% by mass.
  • Such an electrolyte is preferably contained in the non-aqueous electrolyte at a concentration of 0.1 mol / liter to 3 mol / liter, preferably 0.5 mol / liter to 2 mol / liter.
  • the non-aqueous electrolyte of the present invention is not only suitable as a non-aqueous electrolyte for a lithium secondary battery, but also a non-aqueous electrolyte for a primary battery, a non-aqueous electrolyte for an electrochemical capacitor, and an electric double layer capacitor. It can also be used as an electrolytic solution for aluminum electrolytic capacitors.
  • the additive for lithium secondary batteries of this invention contains the compound represented by the said general formula (I).
  • the additive for a lithium secondary battery of the present invention suppresses an increase in battery resistance when used as an additive to be added to a non-aqueous electrolyte of a lithium secondary battery, and improves the storage characteristics of the battery in a high temperature environment. To do. Therefore, the lifetime of the lithium secondary battery can be extended by using the nonaqueous electrolytic solution containing the additive for lithium secondary battery of the present invention.
  • the additive for a lithium secondary battery of the present invention may be a single compound represented by the above general formula (I) or, if necessary, other components other than the compound represented by the general formula (I) May be included.
  • the compound represented by the general formula (II), the compound represented by the general formula (III), and the general formula (IV) At least one selected from the group consisting of compounds represented by
  • the lithium secondary battery of the present invention basically includes a negative electrode, a positive electrode, and the non-aqueous electrolyte, and a separator is usually provided between the negative electrode and the positive electrode.
  • Examples of the negative electrode active material constituting the negative electrode include metallic lithium, lithium-containing alloys, metals that can be alloyed with lithium, alloys that can be alloyed with lithium, and oxides that can be doped / undoped with lithium ions. Further, at least one selected from transition metal nitrides capable of being doped / undoped with lithium ions and carbon materials capable of being doped / undoped with lithium ions can be used. Examples of metals or alloys that can be alloyed with lithium ions include silicon, silicon alloys, tin, and tin alloys. Among these, a carbon material that can be doped / undoped with lithium ions is preferable as the negative electrode active material.
  • carbon materials examples include carbon black, activated carbon, graphite materials (for example, artificial graphite, natural graphite, etc.), amorphous carbon materials, and the like.
  • the form of the carbon material may be any of a fibrous form, a spherical form, a potato form, and a flake form.
  • the amorphous carbon material examples include hard carbon, coke, mesocarbon microbeads (MCMB) fired at 1500 ° C. or less, and mesopause bitch carbon fiber (MCF).
  • the graphite material examples include natural graphite and artificial graphite.
  • As the artificial graphite graphitized MCMB, graphitized MCF, or the like is used.
  • As the graphite material a graphite material containing boron can be used.
  • the carbon material a graphite material coated with a metal such as gold, platinum, silver, copper, or tin, or a graphite material coated with amorphous carbon can be used.
  • a mixture of an amorphous carbon material and a graphite material can also be used.
  • the carbon material may be used alone or in combination of two or more.
  • the carbon material is particularly preferably a carbon material having a (002) plane spacing d (002) of 0.340 nm or less as measured by X-ray analysis, and a true density of 1.70 g / cm 3 or more or close to it.
  • a highly crystalline carbon material having properties is preferred. When such a carbon material is used, the energy density of the battery can be increased.
  • the positive electrode active material constituting the positive electrode in the present invention is a substance containing a transition metal that can be electrochemically doped / undoped with lithium ions, and a substance containing manganese as at least a part of the transition metal is used. It is done. Manganese is preferable as a positive electrode active material because it is inexpensive, easily available, and highly safe.
  • the positive electrode active material in the present invention is preferably a composite oxide in which 35 mol% or more of the contained transition metal is manganese. The content of manganese in the transition metal is more preferably 50 mol% or more, and most preferably 80 mol or more.
  • the composite oxide preferably contains lithium. Furthermore, the composite oxide is more preferably a composite oxide containing lithium and manganese.
  • compositional formula (V) Li x Mn (1-y) M 1 y O 2 composition formula (V)
  • x is a number satisfying 0 ⁇ x ⁇ 1.2
  • y is a number satisfying 0 ⁇ y ⁇ 0.65
  • M 1 is Ni, Co, Al, Fe, Ti, Mg, Cr
  • At least one element selected from the group consisting of Ga, Cu, Zn, and Nb is shown.
  • M 1 is particularly preferably Ni, Co, or Fe
  • x is particularly preferably 0.2 ⁇ x ⁇ 1.15
  • y is 0 ⁇ y ⁇ 0. 5 is particularly preferable
  • y is most preferably 0 ⁇ y ⁇ 0.2.
  • compositional formula (VI) Li x Mn (2-y) M 2 y O 4 composition formula (VI)
  • x is a number satisfying 0 ⁇ x ⁇ 1.2
  • y is a number satisfying 0 ⁇ y ⁇ 1.3
  • M 2 is Ni, Co, Al, Fe, Ti, Mg, Cr
  • At least one element selected from the group consisting of Ga, Cu, Zn, and Nb is shown.
  • M 2 is particularly preferably Ni, Co, Al, Mg
  • x is particularly preferably 0.05 ⁇ x ⁇ 1.15
  • y is 0 ⁇ y ⁇ . 1 is particularly preferable
  • y is most preferably 0 ⁇ y ⁇ 0.4.
  • composition formula (VI) Specific examples of the composite oxide represented by the composition formula (VI) include LiMn 1.8 Al 0.2 O 4 and LiMn 1.5 Ni 0.5 O 4 .
  • Said positive electrode active material may be used by 1 type, and may mix and use 2 or more types.
  • the positive electrode active material has insufficient conductivity, it can be used together with a conductive auxiliary agent to constitute a positive electrode.
  • the conductive assistant include carbon materials such as carbon black, amorphous whiskers, and graphite.
  • the separator in the present invention is a film that electrically insulates the positive electrode and the negative electrode and transmits lithium ions, and examples thereof include a porous film and a polymer electrolyte.
  • a microporous polymer film is preferably used as the porous film, and examples of the material include polyolefin, polyimide, polyvinylidene fluoride, and polyester.
  • porous polyolefin is particularly preferable, and specific examples include a porous polyethylene film, a porous polypropylene film, or a multilayer film of a porous polyethylene film and a polypropylene film.
  • other resin excellent in thermal stability may be coated.
  • Examples of the polymer electrolyte include a polymer in which a lithium salt is dissolved, a polymer swollen with an electrolytic solution, and the like.
  • the nonaqueous electrolytic solution of the present invention may be used for the purpose of obtaining a polymer electrolyte by swelling a polymer.
  • the lithium secondary battery of this invention contains the said negative electrode active material, a positive electrode active material, and a separator.
  • the lithium secondary battery of the present invention can take various known shapes, and can be formed into a cylindrical shape, a coin shape, a square shape, a film shape, or any other shape.
  • the basic structure of the battery is the same regardless of the shape, and the design can be changed according to the purpose.
  • An example of the lithium secondary battery of the present invention is a coin-type battery shown in FIG.
  • a disc-shaped negative electrode 2 a separator 5 into which a non-aqueous electrolyte is injected, a disc-shaped positive electrode 1, and spacer plates 7 and 8 such as stainless steel or aluminum, if necessary, It is accommodated between the positive electrode can 3 and the sealing plate 4 in a state of being laminated in order.
  • the positive electrode can 3 and the sealing plate 4 are caulked and sealed via a gasket 6.
  • the uses of the non-aqueous electrolyte, lithium secondary battery, and lithium secondary battery additive of the present invention are not particularly limited, and can be used for various known uses.
  • reaction liquid rose, it was heated to maintain 60 ° C. and stirred for 30 minutes. Thereafter, the temperature was kept at 45 ° C., methyl acrylate (12.91 g, 0.150 mol) was added dropwise, followed by triethylamine (12.74 g, 0.126 mol), and the mixture was stirred at 45 ° C. for 20 minutes.
  • the reaction mixture was diluted with chloroform (72 ml), washed twice with water (180 ml), dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
  • Exemplified Compound 14 (5.70 g, yield 72%) as pale yellow crystals.
  • the results of NMR measurement of Exemplified Compound 14 are shown below.
  • the battery was charged with a constant voltage of 4.0 V, and the battery was cooled to ⁇ 10 ° C. in a thermostat using a Solartron, and impedance measurement was performed.
  • the initial charge / discharge efficiency and impedance measurement were used as initial characteristic evaluation.
  • the evaluation results were omitted because the evaluation results had no practical problems with respect to the initial characteristic evaluation.
  • the test battery was charged at a constant current of 1 mA and a constant voltage of 4.2 V in a constant temperature bath at 25 ° C., and discharged to 2.85 V at a constant current of 1 mA in the constant temperature bath at 25 ° C.
  • the discharge capacity [mAh] before storage was measured.
  • the test battery was charged with a constant current of 1 mA and a constant voltage of 4.2 V in a thermostatic bath at 25 ° C., and then the temperature of the thermostatic bath was raised to 80 ° C.
  • the test battery was stored for 2 days (high temperature storage).
  • the temperature of the thermostat is returned to 25 ° C., and the test battery is discharged to 2.85 V at a constant current of 1 mA in the thermostatic bath at 25 ° C., and the remaining discharge capacity [mAh] ( That is, the discharge capacity [mAh] after storage at high temperature was measured.
  • capacitance maintenance factor before and behind high temperature storage was computed with the following formula.
  • Capacity maintenance rate before and after high temperature storage [%] (Discharge capacity after storage at high temperature [mAh] / Discharge capacity before storage at high temperature [mAh]) ⁇ 100 [%]
  • Example 1 ⁇ Production of negative electrode> 20 parts by mass of artificial graphite, 80 parts by mass of natural graphite, 1 part by mass of carboxymethyl cellulose and 2 parts by mass of SBR latex were kneaded with an aqueous solvent to prepare a paste-like negative electrode mixture slurry. Next, this negative electrode mixture slurry was applied to a negative electrode current collector made of a strip-shaped copper foil having a thickness of 18 ⁇ m, dried, and then compressed by a roll press to form a sheet-like material comprising a negative electrode current collector and a negative electrode active material layer. A negative electrode was obtained. The coating density of the negative electrode active material layer at this time was 10 mg / cm 2 , and the packing density was 1.5 g / ml.
  • the coating density of the positive electrode active material layer at this time was 30 mg / cm 2 , and the packing density was 2.5 g / ml.
  • ethylene carbonate (EC), dimethyl carbonate (DMC), and methyl ethyl carbonate (EMC) were mixed at a ratio of 34:33:33 (mass ratio), respectively.
  • LiPF 6 as an electrolyte was dissolved so that the electrolyte concentration in the total amount of the non-aqueous electrolyte finally prepared was 1 mol / liter.
  • 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylic acid (addition) which is a compound represented by the general formula (I) is used as an additive.
  • Agent A (Exemplary Compound 14) was added so that the content in the total amount of the nonaqueous electrolyte finally prepared was 0.5% by mass to obtain a nonaqueous electrolyte.
  • the 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylic acid is a compound in which Q in the general formula (I) corresponds to an isoxazolinyl group.
  • the above-mentioned negative electrode was 14 mm in diameter and the above-mentioned positive electrode was 13 mm in diameter, and each was punched into a disk shape to obtain coin-shaped electrodes (negative electrode and positive electrode). Further, a microporous polyethylene film having a thickness of 20 ⁇ m was punched into a disk shape having a diameter of 17 mm to obtain a separator.
  • the obtained coin-shaped negative electrode, separator, and coin-shaped positive electrode were laminated in this order in a stainless steel battery can (2032 size), and 20 ⁇ l of the non-aqueous electrolyte obtained above was injected to separate the separator and the positive electrode. And the negative electrode.
  • a 3.2 mm coin-type battery (test battery) was produced.
  • the obtained coin-type battery (test battery) was subjected to initial characteristic evaluation and a high-temperature storage test.
  • Example 2 Instead of 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylic acid (additive A), 3- (pyridin-2-yl) -isoxazole-5-carbonitrile ( Coin type in the same manner as in Example 1 except that Additive B (Exemplary Compound 3)) was added so that the content in the total amount of the non-aqueous electrolyte finally prepared was 0.5% by mass. A battery was obtained. About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented. The above 3- (pyridin-2-yl) -isoxazole-5-carbonitrile has the same meaning as 3- (pyridin-2-yl) -5-cyano-isoxazole.
  • Example 5 instead of the 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylic acid (additive A), 3- (pyridin-4-yl) -isoxazole (additive E (example) A coin-type battery was obtained in the same manner as in Example 1 except that the compound 42)) was added so that the content in the total amount of the non-aqueous electrolyte finally prepared was 0.5% by mass. About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
  • Example 6 As additives, 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylic acid (additive A) and 1,3-prop-1-ene sultone (PRS) are finally added.
  • a coin-type battery was obtained in the same manner as in Example 1, except that each content was 0.5% by mass in the total amount of the prepared non-aqueous electrolyte. About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
  • Example 7 As additives, 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylic acid (additive A), 1,3-prop-1-ene sultone (PRS), and vinylene carbonate (VC ) was added in the same manner as in Example 1 except that each content was 0.5% by mass in the total amount of the non-aqueous electrolyte finally prepared. About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
  • Example 1 A coin-type battery was obtained in the same manner as in Example 1 except that no additive was added as the non-aqueous electrolyte. About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
  • Table 1 shows the evaluation results of the high temperature storage tests of Examples 1 to 7 and Comparative Examples 1 to 5.
  • the high temperature storage characteristics of the lithium secondary battery can be improved by adding the compound represented by the general formula (I) as an additive to the non-aqueous electrolyte.
  • the addition of the compound represented by the general formula (I) as an additive is compared with the case of adding another additive having a pyridine skeleton. It can be seen that the high-temperature storage characteristics can be improved.
  • Example 8 a coin-type battery was produced in the same manner as in Example 1 except that the type of additive was changed as shown in Table 2 or Table 3 described later, and the same evaluation as in Example 1 was performed (implementation).
  • Examples 8 to 25, comparative examples 6 to 7 Details of Examples 8 to 25 and Comparative Examples 6 to 7 will be described below.
  • Example 8 Except that Exemplified Compound 14 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5% by mass.
  • VC vinylene carbonate
  • Example 9 Except that Exemplified Compound 15 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5% by mass.
  • VC vinylene carbonate
  • Example 10 Example Except that Exemplified Compound 21 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5 mass%.
  • VC vinylene carbonate
  • Example 11 Except that Exemplified Compound 41 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5% by mass.
  • VC vinylene carbonate
  • Example 12 Example Except that Exemplified Compound 37 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5 mass%.
  • VC vinylene carbonate
  • Example 13 Except that Exemplified Compound 1 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5 mass%, Examples In the same manner as in Example 1, a coin-type battery was obtained. About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
  • VC vinylene carbonate
  • Example 14 Except that Exemplified Compound 38 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5 mass%, Examples In the same manner as in Example 1, a coin-type battery was obtained. About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
  • VC vinylene carbonate
  • Example 15 Except that Exemplified Compound 23 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5% by mass.
  • VC vinylene carbonate
  • Example 16 Example Except that Exemplified Compound 16 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5 mass%.
  • VC vinylene carbonate
  • Example 17 Example Except that Exemplified Compound 6 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5 mass%.
  • VC vinylene carbonate
  • Example 18 Except that Exemplified Compound 8 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5% by mass.
  • VC vinylene carbonate
  • Example 19 Except that Exemplified Compound 11 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5% by mass.
  • VC vinylene carbonate
  • Example 20 Example Except that Exemplified Compound 28 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5 mass%.
  • VC vinylene carbonate
  • Example 21 Except that Exemplified Compound 31 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5% by mass.
  • VC vinylene carbonate
  • Example 22 As an additive, except that Exemplified Compound 14 and 4-fluoroethylene carbonate (FEC) were added so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5% by mass. Obtained a coin-type battery in the same manner as in Example 1. About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
  • FEC 4-fluoroethylene carbonate
  • Example 23 As an additive, Example Compound 14 and 4,5-difluoroethylene carbonate (DFEC) were added so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5% by mass.
  • a coin-type battery was obtained in the same manner as in Example 1 except that. About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
  • Example 24 Except that Exemplified Compound 15 and 4-fluoroethylene carbonate (FEC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5% by mass. Obtained a coin-type battery in the same manner as in Example 1. About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
  • FEC 4-fluoroethylene carbonate
  • Example 25 As an additive, Exemplified Compound 15 and 4,5-difluoroethylene carbonate (DFEC) were added so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5% by mass.
  • a coin-type battery was obtained in the same manner as in Example 1 except that. About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
  • Example 6 As an additive, vinylene carbonate (VC) was coin-shaped in the same manner as in Example 1 except that vinylene carbonate (VC) was added so that the content in the final amount of the non-aqueous electrolyte was 0.5% by mass. A battery was obtained. About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
  • Example 7 A coin was formed in the same manner as in Example 1 except that bipyridine and vinylene carbonate (VC) were added so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5% by mass. A type battery was obtained. About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
  • VC vinylene carbonate
  • Tables 2 and 3 show the evaluation results of the high temperature storage tests of Examples 8 to 25 and Comparative Examples 6 to 7. Further, for comparison, the evaluation results of Comparative Example 1 shown in Table 1 are shown in Table 3 again.

Abstract

Disclosed is a non-aqueous electrolysis solution containing a compound represented by general formula (I).  In general formula (I), Py represents a pyridyl group which may be substituted by 1 to 3 substituents; Q represents an aromatic or non-aromatic 5-membered hetero ring which may contain 1 to 4 atoms independently selected from an oxygen atom, a sulfur atom and a nitrogen atom and may be substituted by 1 to 2 substituents; and n represents 1 or 2.       Py-(Q)n     (I)

Description

ピリジル5員複素環誘導体を含有する非水電解液及びリチウム二次電池Non-aqueous electrolyte and lithium secondary battery containing pyridyl 5-membered heterocyclic derivative
 本発明は、非水電解液及びリチウム二次電池に関するものである。 The present invention relates to a non-aqueous electrolyte and a lithium secondary battery.
 リチウム二次電池用正極活物質としては、リチウムと遷移金属とを含む活物質が各種知られている。従来実用化されたリチウム二次電池の多くでは、正極活物質として用いられる遷移金属の主成分は、コバルトあるいはニッケルであった。コバルトあるいはニッケルが多用された背景としては、他の遷移金属に比較して電池長寿命を実現しやすい為である。 Various active materials containing lithium and a transition metal are known as positive electrode active materials for lithium secondary batteries. In many conventional lithium secondary batteries, the main component of the transition metal used as the positive electrode active material is cobalt or nickel. The reason why cobalt or nickel is frequently used is that it is easy to realize a long battery life as compared with other transition metals.
 しかし、従来多用されてきたコバルトまたはニッケルは、高価な上に資源量も限られている。近年のリチウム二次電池の大きな需要増加から、さらには近い将来、自動車用途や新エネルギー関連の蓄電用途などの大型電池用途での劇的な需要増加が予想されることから、コバルトまたはニッケルに代わる、安価でかつ資源量の豊富な遷移金属正極活物質への転換が強く求められている。 However, cobalt or nickel, which has been widely used heretofore, is expensive and has a limited amount of resources. Instead of cobalt or nickel due to the large increase in demand for lithium secondary batteries in recent years and the dramatic increase in demand for large battery applications such as automotive and new energy storage applications in the near future. Therefore, there is a strong demand for conversion to a transition metal positive electrode active material that is inexpensive and has abundant resources.
 その中でも、コバルトまたはニッケルに比較して安価で資源量が豊富なマンガンは、有力な次世代正極活物質候補の一つである。しかし、一般にマンガン正極を用いた電池は、コバルトまたはニッケル正極を用いた電池に比べ、短寿命である。一方、近い将来において劇的な需要増加が予想される大型電池市場における要求性能は、電池の長寿命化である。 Among them, manganese, which is cheaper and richer in resources than cobalt or nickel, is one of the potential next-generation cathode active material candidates. However, in general, a battery using a manganese positive electrode has a shorter life than a battery using a cobalt or nickel positive electrode. On the other hand, the required performance in the large battery market, where a dramatic increase in demand is expected in the near future, is to extend the battery life.
 とりわけ解決すべき問題は、高温環境下での電池性能の劣化である。リチウム二次電池の高温環境下での劣化は、様々な要因により引き起こされる。そのような要因としては、例えば、リチウム遷移金属酸化物の変質や、電解液の分解、負極表面に形成された皮膜の破壊等を挙げることができる。このような電池性能の劣化を防止する方法の一つとして、電解液にピリジン誘導体を添加することにより長寿命化を図る試みがなされてきた。例えば、特開2002-83631号公報ではピリジンを、また特開2002-93462号公報ではアルキルピリジン誘導体を、さらに特開2004-14352号公報ではビピリジン誘導体を添加する例が開示されているが、いずれも高温条件での容量劣化の改善は更なる改善が求められる状況である。 Especially the problem to be solved is the deterioration of the battery performance under high temperature environment. Deterioration of a lithium secondary battery in a high temperature environment is caused by various factors. Examples of such factors include alteration of the lithium transition metal oxide, decomposition of the electrolytic solution, and destruction of the film formed on the negative electrode surface. As one method for preventing such deterioration of battery performance, attempts have been made to extend the life by adding a pyridine derivative to the electrolytic solution. For example, Japanese Patent Application Laid-Open No. 2002-83631 discloses an example of adding pyridine, Japanese Patent Application Laid-Open No. 2002-93462 is an alkylpyridine derivative, and Japanese Patent Application Laid-Open No. 2004-14352 is an example of adding a bipyridine derivative. However, improvement of capacity degradation under high temperature conditions is a situation where further improvement is required.
 本発明の課題は、リチウム二次電池において、高温環境下における保存特性を改善し、長寿命化を実現できる非水電解液及びリチウム二次電池用添加剤、並びに前記非水電解液を用いたリチウム二次電池を提供することである。 An object of the present invention is to use a non-aqueous electrolyte and an additive for a lithium secondary battery that can improve the storage characteristics in a high-temperature environment and realize a long life in a lithium secondary battery, and the non-aqueous electrolyte. It is to provide a lithium secondary battery.
 本発明者は上記課題に対し鋭意検討した結果、リチウム二次電池の非水電解液に対し、特定の添加剤を加えることにより、高温環境下における保存特性を改善し、長寿命化を実現できることを見出し、本発明を完成した。 As a result of intensive studies on the above problems, the present inventor can improve the storage characteristics in a high temperature environment and achieve a long life by adding a specific additive to the non-aqueous electrolyte of the lithium secondary battery. The present invention has been completed.
 すなわち本発明は、以下のとおりである。 That is, the present invention is as follows.
<1> 下記一般式(I)で表される化合物を含有するリチウム二次電池用の非水電解液。 <1> A nonaqueous electrolytic solution for a lithium secondary battery containing a compound represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(I)中、Pyは、下記A群から選ばれる1個~3個の置換基により置換されてもよいピリジル基を表す。 In general formula (I), Py represents a pyridyl group which may be substituted with 1 to 3 substituents selected from group A below.
 A群は、ハロゲン原子、炭素数1~8のアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数1~8のアルコキシ基、炭素数2~6のアルケニルオキシ基、炭素数2~6のアルキニルオキシ基、炭素数1~8のアルキルチオ基、炭素数1~8のアルキルスルフィニル基、炭素数1~8のアルキルスルホニル基、炭素数1~8のアルキルアミノ基、ジアルキルアミノ基(2つのアルキル基の炭素数は、それぞれ独立に1~8である。当該2つのアルキル基は、直接、又は、酸素原子、硫黄原子、若しくは炭素数1~6のアルキル基で置換された窒素原子を介し、互いに結合して3~7員環を形成してもよい)、フェニルオキシ基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、ニトロ基、ホルミル基、シアノ基、カルボキシル基、アルコキシカルボニル基(アルキル基の炭素数は1~8である)、カルバモイル基、N-アルキルアミノカルボニル基(アルキル基の炭素数は1~8である)、N,N-ジアルキルアミノカルボニル基(2つのアルキル基の炭素数は、それぞれ独立に1~8である。当該2つのアルキル基は、直接、又は、酸素原子、硫黄原子、若しくは炭素数1~6のアルキル基で置換された窒素原子を介し、互いに結合して3~7員環を形成してもよい)、フェニル基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、芳香族5員複素環基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、及び芳香族6員複素環基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)からなる群である。 Group A includes a halogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, and an alkyl group having 1 to 8 carbon atoms. Alkoxy group, alkenyloxy group having 2 to 6 carbon atoms, alkynyloxy group having 2 to 6 carbon atoms, alkylthio group having 1 to 8 carbon atoms, alkylsulfinyl group having 1 to 8 carbon atoms, alkylsulfonyl having 1 to 8 carbon atoms Group, an alkylamino group having 1 to 8 carbon atoms, and a dialkylamino group (the carbon numbers of the two alkyl groups are each independently 1 to 8. The two alkyl groups are directly, oxygen atom, sulfur atom Or bonded to each other through a nitrogen atom substituted with an alkyl group having 1 to 6 carbon atoms to form a 3- to 7-membered ring, a phenyloxy group (halogen atom or alkyl having 1 to 6 carbon atoms) On the basis Nitro group, formyl group, cyano group, carboxyl group, alkoxycarbonyl group (the alkyl group has 1 to 8 carbon atoms), carbamoyl group, N-alkylaminocarbonyl group (carbon of the alkyl group) N, N-dialkylaminocarbonyl group (the number of carbon atoms of the two alkyl groups is each independently 1 to 8. The two alkyl groups are directly or oxygen atoms, A sulfur atom or a nitrogen atom substituted with an alkyl group having 1 to 6 carbon atoms may be bonded to each other to form a 3- to 7-membered ring), a phenyl group (halogen atom or having 1 to 6 carbon atoms) May be substituted with an alkyl group), an aromatic 5-membered heterocyclic group (which may be substituted with a halogen atom or an alkyl group having 1 to 6 carbon atoms), and an aromatic 6-membered heterocyclic group (a halogen atom or carbon). It is substituted with 1-6 alkyl groups a group consisting also be).
 nは、1または2を表す。 N represents 1 or 2.
 Qは、酸素原子、硫黄原子及び窒素原子から選ばれる原子を1個~4個含有してもよい、芳香族又は非芳香族5員複素環基を表し、当該複素環は下記B群から選ばれる1個~2個の置換基により置換されてもよい。 Q represents an aromatic or non-aromatic 5-membered heterocyclic group which may contain 1 to 4 atoms selected from an oxygen atom, a sulfur atom and a nitrogen atom, and the heterocyclic ring is selected from the following group B May be substituted by 1 to 2 substituents.
 B群は、ハロゲン原子、炭素数1~8のアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数1~8のアルコキシ基、炭素数2~6のアルケニルオキシ基、炭素数2~6のアルキニルオキシ基、炭素数1~8のアルキルチオ基、炭素数1~8のアルキルスルフィニル基、炭素数1~8のアルキルスルホニル基、炭素数1~8のアルキルアミノ基、ジアルキルアミノ基(2つのアルキル基の炭素数は、それぞれ独立に1~8である。当該2つのアルキル基は、直接、又は、酸素原子、硫黄原子、若しくは炭素数1~6のアルキル基で置換された窒素原子を介し、互いに結合して3~7員環を形成してもよい)、フェニルオキシ基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、ニトロ基、ホルミル基、シアノ基、カルボキシル基、アルコキシカルボニル基(アルキル基の炭素数は1~8である)、カルバモイル基、N-アルキルアミノカルボニル基(アルキル基の炭素数は1~8である)、N,N-ジアルキルアミノカルボニル基(2つのアルキル基の炭素数は、それぞれ独立に1~8である。当該2つのアルキル基は、直接、又は、酸素原子、硫黄原子、若しくは炭素数1~6のアルキル基で置換された窒素原子を介し、互いに結合して3~7員環を形成してもよい)、フェニル基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、芳香族5員複素環基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、及び芳香族6員複素環基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)からなる群である。 Group B includes a halogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, and an alkyl group having 1 to 8 carbon atoms. Alkoxy group, alkenyloxy group having 2 to 6 carbon atoms, alkynyloxy group having 2 to 6 carbon atoms, alkylthio group having 1 to 8 carbon atoms, alkylsulfinyl group having 1 to 8 carbon atoms, alkylsulfonyl having 1 to 8 carbon atoms Group, an alkylamino group having 1 to 8 carbon atoms, and a dialkylamino group (the carbon numbers of the two alkyl groups are each independently 1 to 8. The two alkyl groups are directly, oxygen atom, sulfur atom Or bonded to each other through a nitrogen atom substituted with an alkyl group having 1 to 6 carbon atoms to form a 3- to 7-membered ring, a phenyloxy group (halogen atom or alkyl having 1 to 6 carbon atoms) On the basis Nitro group, formyl group, cyano group, carboxyl group, alkoxycarbonyl group (the alkyl group has 1 to 8 carbon atoms), carbamoyl group, N-alkylaminocarbonyl group (carbon of the alkyl group) N, N-dialkylaminocarbonyl group (the number of carbon atoms of the two alkyl groups is each independently 1 to 8. The two alkyl groups are directly or oxygen atoms, A sulfur atom or a nitrogen atom substituted with an alkyl group having 1 to 6 carbon atoms may be bonded to each other to form a 3- to 7-membered ring), a phenyl group (halogen atom or having 1 to 6 carbon atoms) May be substituted with an alkyl group), an aromatic 5-membered heterocyclic group (which may be substituted with a halogen atom or an alkyl group having 1 to 6 carbon atoms), and an aromatic 6-membered heterocyclic group (a halogen atom or carbon). It is substituted with 1-6 alkyl groups a group consisting also be).
<2> 前記一般式(I)におけるQが、フリル基、チエニル基、ピロリル基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、イソチアゾリル基、イミダゾリル基、ピラゾリル基、1,2,4-オキサジアゾリル基、1,3,4-オキサジアゾリル基、オキサゾリニル基、イソオキサゾリニル基、イミダゾリニル基、又はピラゾリニル基である<1>に記載の非水電解液。 <2> Q in the general formula (I) is a furyl group, a thienyl group, a pyrrolyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group, an isothiazolyl group, an imidazolyl group, a pyrazolyl group, a 1,2,4-oxadiazolyl group, 1 The nonaqueous electrolytic solution according to <1>, which is a 1,3,4-oxadiazolyl group, an oxazolinyl group, an isoxazolinyl group, an imidazolinyl group, or a pyrazolinyl group.
<3> 前記一般式(I)におけるQが、イソオキサゾール-3-イル基、イソオキサゾリン-3-イル基、イソオキサゾリン-5-イル基、又は1,2,4-オキサジアゾール-5-イル基である<1>に記載の非水電解液。 <3> Q in the general formula (I) is an isoxazol-3-yl group, an isoxazolin-3-yl group, an isoxazolin-5-yl group, or a 1,2,4-oxadiazole-5- The nonaqueous electrolytic solution according to <1>, which is an yl group.
<4> 前記一般式(I)で表される化合物が、3-(ピリジン-2-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸、3-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸、3-(ピリジン-4-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸、3-(ピリジン-2-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸メチル、3-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸メチル、3-(ピリジン-4-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸メチル、3-(ピリジン-2-イル)-4,5-ジヒドロイソオキサゾール-5-カルボニトリル、3-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-5-カルボニトリル、3-(ピリジン-4-イル)-4,5-ジヒドロイソオキサゾール-5-カルボニトリル、3-(ピリジン-2-イル)-イソオキサゾール-5-カルボニトリル、3-(ピリジン-3-イル)-イソオキサゾール-5-カルボニトリル、3-(ピリジン-4-イル)-イソオキサゾール-5-カルボニトリル、3-(ピリジン-2-イル)-イソオキサゾール-5-カルボン酸、3-(ピリジン-3-イル)-イソオキサゾール-5-カルボン酸、3-(ピリジン-4-イル)-イソオキサゾール-5-カルボン酸、3-(ピリジン-2-イル)-イソオキサゾール-5-カルボン酸メチル、3-(ピリジン-3-イル)-イソオキサゾール-5-カルボン酸メチル、3-(ピリジン-4-イル)-イソオキサゾール-5-カルボン酸メチル、3-(ピリジン-2-イル)-イソオキサゾール、3-(ピリジン-3-イル)-イソオキサゾール、3-(ピリジン-4-イル)-イソオキサゾール、3-(ピリジン-2-イル)-1,2,4-オキサジアゾール、3-(ピリジン-3-イル)-1,2,4-オキサジアゾール、3-(ピリジン-4-イル)-1,2,4-オキサジアゾール、3-メチル-5-(ピリジン-2-イル)-4,5-ジヒドロイソオキサゾール、5-(ピリジン-2-イル)-4,5-ジヒドロイソオキサゾール-3-カルボン酸エチル、5-(ピリジン-2-イル)-4,5-ジヒドロイソオキサゾール-3-カルボニトリル、3-メチル-5-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール、5-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-3-カルボン酸エチル、又は5-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-3-カルボニトリルである<1>に記載の非水電解液。 <4> The compound represented by the general formula (I) is 3- (pyridin-2-yl) -4,5-dihydroisoxazole-5-carboxylic acid, 3- (pyridin-3-yl) -4 , 5-Dihydroisoxazole-5-carboxylic acid, 3- (pyridin-4-yl) -4,5-dihydroisoxazole-5-carboxylic acid, 3- (pyridin-2-yl) -4,5-dihydro Isoxazole-5-carboxylate methyl, 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylate, 3- (pyridin-4-yl) -4,5-dihydroisoxazole -5-carboxylate, 3- (pyridin-2-yl) -4,5-dihydroisoxazole-5-carbonitrile, 3- (pyridin-3-yl) -4,5-dihydroisoxazo 5-carbonitrile, 3- (pyridin-4-yl) -4,5-dihydroisoxazole-5-carbonitrile, 3- (pyridin-2-yl) -isoxazole-5-carbonitrile, 3 -(Pyridin-3-yl) -isoxazole-5-carbonitrile, 3- (pyridin-4-yl) -isoxazole-5-carbonitrile, 3- (pyridin-2-yl) -isoxazole-5- Carboxylic acid, 3- (pyridin-3-yl) -isoxazole-5-carboxylic acid, 3- (pyridin-4-yl) -isoxazole-5-carboxylic acid, 3- (pyridin-2-yl) -iso Methyl oxazol-5-carboxylate, 3- (pyridin-3-yl) -isoxazole-5-carboxylate, 3- (pyridin-4-yl) -isoxa Methyl 5-carboxylate, 3- (pyridin-2-yl) -isoxazole, 3- (pyridin-3-yl) -isoxazole, 3- (pyridin-4-yl) -isoxazole, 3- (Pyridin-2-yl) -1,2,4-oxadiazole, 3- (Pyridin-3-yl) -1,2,4-oxadiazole, 3- (Pyridin-4-yl) -1, 2,4-oxadiazole, 3-methyl-5- (pyridin-2-yl) -4,5-dihydroisoxazole, 5- (pyridin-2-yl) -4,5-dihydroisoxazole-3- Ethyl carboxylate, 5- (pyridin-2-yl) -4,5-dihydroisoxazole-3-carbonitrile, 3-methyl-5- (pyridin-3-yl) -4,5-dihydroisoxazole, 5 -(Piri N-yl) -4,5-dihydroisoxazole-3-carboxylate or 5- (pyridin-3-yl) -4,5-dihydroisoxazole-3-carbonitrile in <1> The non-aqueous electrolyte described.
<5> 更に、下記一般式(II)で表される化合物を含有する<1>~<4>のいずれか1項に記載の非水電解液。 <5> The nonaqueous electrolytic solution according to any one of <1> to <4>, further containing a compound represented by the following general formula (II).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(II)中、R、R、R、及びRは、各々独立に、フッ素原子により置換されていてもよい炭素数1~12のアルキル基、水素原子、又はフッ素原子であり、mは0~3の整数を表す。mが2または3であるときは、複数存在するR及びRは、それぞれ、同一でも互いに異なっていてもよい。 In general formula (II), R 1 , R 2 , R 3 , and R 4 are each independently an alkyl group having 1 to 12 carbon atoms, a hydrogen atom, or a fluorine atom that may be substituted with a fluorine atom. M represents an integer of 0 to 3. When m is 2 or 3, a plurality of R 3 and R 4 may be the same or different from each other.
<6> 前記一般式(II)で表される化合物の含有量が、0.001質量%~10質量%である<5>に記載の非水電解液。 <6> The nonaqueous electrolytic solution according to <5>, wherein the content of the compound represented by the general formula (II) is 0.001% by mass to 10% by mass.
<7> 更に、下記一般式(III)で表される化合物を含有する<1>~<6>のいずれか1項に記載の非水電解液。 <7> The nonaqueous electrolytic solution according to any one of <1> to <6>, further comprising a compound represented by the following general formula (III).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(III)中、R及びRは、各々独立に、水素原子、メチル基、エチル基、又はプロピル基を示す。 In general formula (III), R 5 and R 6 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a propyl group.
<8> 前記一般式(III)で表される化合物の含有量が、0.001質量%~10質量%である<7>に記載の非水電解液。 <8> The nonaqueous electrolytic solution according to <7>, wherein the content of the compound represented by the general formula (III) is 0.001% by mass to 10% by mass.
<9> 更に、下記一般式(IV)で表される化合物を含有する<1>~<8>のいずれか1項に記載の非水電解液。
Figure JPOXMLDOC01-appb-C000009

〔一般式(IV)中、X、X、X及びXは、各々独立に、フッ素原子により置換されてもよい炭素数1~3のアルキル基、水素原子、フッ素原子、又は塩素原子を示す。ただし、X、X、X及びXが同時に水素原子である場合は除く。〕
<9> The nonaqueous electrolytic solution according to any one of <1> to <8>, further comprising a compound represented by the following general formula (IV).
Figure JPOXMLDOC01-appb-C000009

[In the general formula (IV), X 1 , X 2 , X 3 and X 4 are each independently an alkyl group having 1 to 3 carbon atoms which may be substituted with a fluorine atom, a hydrogen atom, a fluorine atom, or chlorine. Indicates an atom. However, the case where X 1 , X 2 , X 3 and X 4 are hydrogen atoms at the same time is excluded. ]
<10> 前記一般式(IV)で表される化合物の含有量が、0.001質量%~10質量%である<9>に記載の非水電解液。 <10> The nonaqueous electrolytic solution according to <9>, wherein the content of the compound represented by the general formula (IV) is 0.001% by mass to 10% by mass.
<11> 前記一般式(I)で表される化合物の含有量が、0.001質量%~10質量%である<1>~<10>のいずれか1項に記載の非水電解液。 <11> The nonaqueous electrolytic solution according to any one of <1> to <10>, wherein the content of the compound represented by the general formula (I) is 0.001% by mass to 10% by mass.
<12> 正極と、
 金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属、リチウムとの合金化が可能な合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料から選ばれた少なくとも1種を負極活物質として含む負極と、
 <1>~<11>のいずれか1項に記載の非水電解液と、
 を有するリチウム二次電池。
<12> a positive electrode;
Metallic lithium, lithium-containing alloys, metals that can be alloyed with lithium, alloys that can be alloyed with lithium, oxides that can be doped / undoped with lithium ions, and metals that can be doped / undoped with lithium ions A negative electrode containing, as a negative electrode active material, at least one selected from transition metal nitrides and carbon materials capable of doping and dedoping lithium ions;
<1> to the nonaqueous electrolyte solution according to any one of <11>,
A lithium secondary battery.
<13> 下記一般式(I)で表される化合物を含有するリチウム二次電池用添加剤。 <13> An additive for a lithium secondary battery containing a compound represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 一般式(I)中、Pyは、下記A群から選ばれる1個~3個の置換基により置換されてもよいピリジル基を表す。 In general formula (I), Py represents a pyridyl group which may be substituted with 1 to 3 substituents selected from group A below.
 A群は、ハロゲン原子、炭素数1~8のアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数1~8のアルコキシ基、炭素数2~6のアルケニルオキシ基、炭素数2~6のアルキニルオキシ基、炭素数1~8のアルキルチオ基、炭素数1~8のアルキルスルフィニル基、炭素数1~8のアルキルスルホニル基、炭素数1~8のアルキルアミノ基、ジアルキルアミノ基(2つのアルキル基の炭素数は、それぞれ独立に1~8である。当該2つのアルキル基は、直接、又は、酸素原子、硫黄原子、若しくは炭素数1~6のアルキル基で置換された窒素原子を介し、互いに結合して3~7員環を形成してもよい)、フェニルオキシ基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、ニトロ基、ホルミル基、シアノ基、カルボキシル基、アルコキシカルボニル基(アルキル基の炭素数は1~8である)、カルバモイル基、N-アルキルアミノカルボニル基(アルキル基の炭素数は1~8である)、N,N-ジアルキルアミノカルボニル基(2つのアルキル基の炭素数は、それぞれ独立に1~8である。当該2つのアルキル基は、直接、又は、酸素原子、硫黄原子、若しくは炭素数1~6のアルキル基で置換された窒素原子を介し、互いに結合して3~7員環を形成してもよい)、フェニル基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、芳香族5員複素環基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、及び芳香族6員複素環基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)からなる群である。 Group A includes a halogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, and an alkyl group having 1 to 8 carbon atoms. Alkoxy group, alkenyloxy group having 2 to 6 carbon atoms, alkynyloxy group having 2 to 6 carbon atoms, alkylthio group having 1 to 8 carbon atoms, alkylsulfinyl group having 1 to 8 carbon atoms, alkylsulfonyl having 1 to 8 carbon atoms Group, an alkylamino group having 1 to 8 carbon atoms, and a dialkylamino group (the carbon numbers of the two alkyl groups are each independently 1 to 8. The two alkyl groups are directly, oxygen atom, sulfur atom Or bonded to each other through a nitrogen atom substituted with an alkyl group having 1 to 6 carbon atoms to form a 3- to 7-membered ring, a phenyloxy group (halogen atom or alkyl having 1 to 6 carbon atoms) On the basis Nitro group, formyl group, cyano group, carboxyl group, alkoxycarbonyl group (the alkyl group has 1 to 8 carbon atoms), carbamoyl group, N-alkylaminocarbonyl group (carbon of the alkyl group) N, N-dialkylaminocarbonyl group (the number of carbon atoms of the two alkyl groups is each independently 1 to 8. The two alkyl groups are directly or oxygen atoms, A sulfur atom or a nitrogen atom substituted with an alkyl group having 1 to 6 carbon atoms may be bonded to each other to form a 3- to 7-membered ring), a phenyl group (halogen atom or having 1 to 6 carbon atoms) May be substituted with an alkyl group), an aromatic 5-membered heterocyclic group (which may be substituted with a halogen atom or an alkyl group having 1 to 6 carbon atoms), and an aromatic 6-membered heterocyclic group (a halogen atom or carbon). It is substituted with 1-6 alkyl groups a group consisting also be).
 nは、1または2を表す。 N represents 1 or 2.
 Qは、酸素原子、硫黄原子及び窒素原子から選ばれる原子を1個~4個含有してもよい、芳香族又は非芳香族5員複素環基を表し、当該複素環は下記B群から選ばれる1個~2個の置換基により置換されてもよい。
 B群は、ハロゲン原子、炭素数1~8のアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数1~8のアルコキシ基、炭素数2~6のアルケニルオキシ基、炭素数2~6のアルキニルオキシ基、炭素数1~8のアルキルチオ基、炭素数1~8のアルキルスルフィニル基、炭素数1~8のアルキルスルホニル基、炭素数1~8のアルキルアミノ基、ジアルキルアミノ基(2つのアルキル基の炭素数は、それぞれ独立に1~8である。当該2つのアルキル基は、直接、又は、酸素原子、硫黄原子、若しくは炭素数1~6のアルキル基で置換された窒素原子を介し、互いに結合して3~7員環を形成してもよい)、フェニルオキシ基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、ニトロ基、ホルミル基、シアノ基、カルボキシル基、アルコキシカルボニル基(アルキル基の炭素数は1~8である)、カルバモイル基、N-アルキルアミノカルボニル基(アルキル基の炭素数は1~8である)、N,N-ジアルキルアミノカルボニル基(2つのアルキル基の炭素数は、それぞれ独立に1~8である。当該2つのアルキル基は、直接、又は、酸素原子、硫黄原子、若しくは炭素数1~6のアルキル基で置換された窒素原子を介し、互いに結合して3~7員環を形成してもよい)、フェニル基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、芳香族5員複素環基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、及び芳香族6員複素環基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)からなる群である。
Q represents an aromatic or non-aromatic 5-membered heterocyclic group which may contain 1 to 4 atoms selected from an oxygen atom, a sulfur atom and a nitrogen atom, and the heterocyclic ring is selected from the following group B May be substituted by 1 to 2 substituents.
Group B includes a halogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, and an alkyl group having 1 to 8 carbon atoms. Alkoxy group, alkenyloxy group having 2 to 6 carbon atoms, alkynyloxy group having 2 to 6 carbon atoms, alkylthio group having 1 to 8 carbon atoms, alkylsulfinyl group having 1 to 8 carbon atoms, alkylsulfonyl having 1 to 8 carbon atoms Group, an alkylamino group having 1 to 8 carbon atoms, and a dialkylamino group (the carbon numbers of the two alkyl groups are each independently 1 to 8. The two alkyl groups are directly, oxygen atom, sulfur atom Or bonded to each other through a nitrogen atom substituted with an alkyl group having 1 to 6 carbon atoms to form a 3- to 7-membered ring, a phenyloxy group (halogen atom or alkyl having 1 to 6 carbon atoms) Set by group Nitro group, formyl group, cyano group, carboxyl group, alkoxycarbonyl group (the alkyl group has 1 to 8 carbon atoms), carbamoyl group, N-alkylaminocarbonyl group (the carbon number of the alkyl group) Are 1 to 8), N, N-dialkylaminocarbonyl group (the number of carbon atoms of the two alkyl groups is each independently 1 to 8. The two alkyl groups are directly or oxygen atom, sulfur Via a nitrogen atom substituted with an atom or an alkyl group having 1 to 6 carbon atoms, which may be bonded to each other to form a 3- to 7-membered ring, a phenyl group (halogen atom or alkyl having 1 to 6 carbon atoms) An aromatic 5-membered heterocyclic group (which may be substituted with a halogen atom or an alkyl group having 1 to 6 carbon atoms), and an aromatic 6-membered heterocyclic group (a halogen atom or carbon number). It is substituted with an alkyl group having 1-6 a group consisting also be).
 本発明によれば、リチウム二次電池において、高温環境下における保存特性を改善し、長寿命化を実現できる非水電解液及びリチウム二次電池用添加剤、並びに前記非水電解液を用いたリチウム二次電池を提供することができる。 According to the present invention, in a lithium secondary battery, a non-aqueous electrolyte and an additive for a lithium secondary battery capable of improving storage characteristics in a high temperature environment and realizing a long life, and the non-aqueous electrolyte are used. A lithium secondary battery can be provided.
本発明のリチウム二次電池の一例を示すコイン型電池の模式的断面図である。It is typical sectional drawing of the coin-type battery which shows an example of the lithium secondary battery of this invention.
 本発明の非水電解液、及びこの非水電解液を用いたリチウム二次電池、並びにリチウム二次電池用添加剤について具体的に説明する。 The non-aqueous electrolyte of the present invention, the lithium secondary battery using this non-aqueous electrolyte, and the additive for lithium secondary battery will be specifically described.
<非水電解液>
 本発明の非水電解液は、添加剤として、本明細書記載の一般式(I)で表される化合物であるピリジル5員複素環化合物(以下、「一般式(I)で表されるピリジル5員複素環化合物」ともいう)を含有する、リチウム二次電池用途の非水電解液である。
 本発明の非水電解液は、添加剤として、更に、一般式(II)で表される化合物である不飽和スルトン(以下、「一般式(II)で表される不飽和スルトン」ともいう)、一般式(III)で表される化合物であるビニレンカーボネート誘導体(以下、「一般式(III)で表されるビニレンカーボネート誘導体」ともいう)、及び一般式(IV)で表される化合物であるハロゲン化環状カーボネート誘導体(以下、「一般式(IV)で表されるハロゲン化環状カーボネート誘導体」ともいう)からなる群から選択される少なくとも1種を含有していてもよい。
<Non-aqueous electrolyte>
The non-aqueous electrolyte of the present invention includes, as an additive, a pyridyl 5-membered heterocyclic compound (hereinafter referred to as “pyridyl represented by the general formula (I)”, which is a compound represented by the general formula (I) described herein. And a non-aqueous electrolyte solution for use in lithium secondary batteries.
The non-aqueous electrolytic solution of the present invention further includes, as an additive, an unsaturated sultone that is a compound represented by the general formula (II) (hereinafter also referred to as “unsaturated sultone represented by the general formula (II)”). A vinylene carbonate derivative which is a compound represented by the general formula (III) (hereinafter, also referred to as “a vinylene carbonate derivative represented by the general formula (III)”), and a compound represented by the general formula (IV) It may contain at least one selected from the group consisting of halogenated cyclic carbonate derivatives (hereinafter also referred to as “halogenated cyclic carbonate derivatives represented by the general formula (IV)”).
(ピリジル5員複素環化合物)
 本発明のリチウム二次電池の非水電解液は、下記一般式(I)で表される化合物(以下、「一般式(I)で表されるピリジル5員複素環化合物」ともいう)を含有する。
(Pyridyl 5-membered heterocyclic compound)
The non-aqueous electrolyte of the lithium secondary battery of the present invention contains a compound represented by the following general formula (I) (hereinafter also referred to as “pyridyl 5-membered heterocyclic compound represented by the general formula (I)”). To do.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(I)中、Pyは、A群から選ばれる1個~3個の置換基により置換されてもよいピリジル基を表す。 In general formula (I), Py represents a pyridyl group which may be substituted with 1 to 3 substituents selected from Group A.
 前記A群は、ハロゲン原子、炭素数1~8のアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数1~8のアルコキシ基、炭素数2~6のアルケニルオキシ基、炭素数2~6のアルキニルオキシ基、炭素数1~8のアルキルチオ基、炭素数1~8のアルキルスルフィニル基、炭素数1~8のアルキルスルホニル基、炭素数1~8のアルキルアミノ基、ジアルキルアミノ基(2つのアルキル基の炭素数は、それぞれ独立に1~8である。当該2つのアルキル基は、直接、又は、酸素原子、硫黄原子、若しくは炭素数1~6のアルキル基で置換された窒素原子を介し、互いに結合して3~7員環を形成してもよい)、フェニルオキシ基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、ニトロ基、ホルミル基、シアノ基、カルボキシル基、アルコキシカルボニル基(アルキル基の炭素数は1~8である)、カルバモイル基、N-アルキルアミノカルボニル基(アルキル基の炭素数は1~8である)、N,N-ジアルキルアミノカルボニル基(2つのアルキル基の炭素数は、それぞれ独立に1~8である。当該2つのアルキル基は、直接、又は、酸素原子、硫黄原子、若しくは炭素数1~6のアルキル基で置換された窒素原子を介し、互いに結合して3~7員環を形成してもよい)、フェニル基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、芳香族5員複素環基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、及び芳香族6員複素環基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)からなる群である。 The group A includes a halogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, and 1 to 8 carbon atoms. Alkoxy group having 2 to 6 carbon atoms, alkynyloxy group having 2 to 6 carbon atoms, alkylthio group having 1 to 8 carbon atoms, alkylsulfinyl group having 1 to 8 carbon atoms, alkyl having 1 to 8 carbon atoms A sulfonyl group, an alkylamino group having 1 to 8 carbon atoms, and a dialkylamino group (the carbon numbers of the two alkyl groups are each independently 1 to 8. The two alkyl groups are directly or oxygen atom, sulfur Via a nitrogen atom substituted with an atom or an alkyl group having 1 to 6 carbon atoms, which may be bonded to each other to form a 3- to 7-membered ring), a phenyloxy group (halogen atom or having 1 to 6 carbon atoms) Alkyl Nitro group, formyl group, cyano group, carboxyl group, alkoxycarbonyl group (the alkyl group has 1 to 8 carbon atoms), carbamoyl group, N-alkylaminocarbonyl group (of the alkyl group) Carbon number is 1 to 8), N, N-dialkylaminocarbonyl group (the carbon numbers of the two alkyl groups are each independently 1 to 8. The two alkyl groups are directly or oxygen atoms) , A sulfur atom, or a nitrogen atom substituted with an alkyl group having 1 to 6 carbon atoms, which may combine with each other to form a 3- to 7-membered ring, a phenyl group (halogen atom or 1 to 6 carbon atoms) An aromatic 5-membered heterocyclic group (which may be substituted with a halogen atom or an alkyl group having 1 to 6 carbon atoms), and an aromatic 6-membered heterocyclic group (a halogen atom or Is substituted with an alkyl group of prime 1-6 is a group consisting also be).
 nは、1または2を表す。 N represents 1 or 2.
 Qは、酸素原子、硫黄原子及び窒素原子から選ばれる原子を1個~4個含有してもよい、芳香族又は非芳香族5員複素環基を表し、当該複素環はB群から選ばれる1個~2個の置換基により置換されてもよい。 Q represents an aromatic or non-aromatic 5-membered heterocyclic group which may contain 1 to 4 atoms selected from oxygen atom, sulfur atom and nitrogen atom, and the heterocyclic ring is selected from group B It may be substituted with 1 to 2 substituents.
 前記B群は、ハロゲン原子、炭素数1~8のアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数1~8のアルコキシ基、炭素数2~6のアルケニルオキシ基、炭素数2~6のアルキニルオキシ基、炭素数1~8のアルキルチオ基、炭素数1~8のアルキルスルフィニル基、炭素数1~8のアルキルスルホニル基、炭素数1~8のアルキルアミノ基、ジアルキルアミノ基(2つのアルキル基の炭素数は、それぞれ独立に1~8である。当該2つのアルキル基は、直接、又は、酸素原子、硫黄原子、若しくは炭素数1~6のアルキル基で置換された窒素原子を介し、互いに結合して3~7員環を形成してもよい)、フェニルオキシ基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、ニトロ基、ホルミル基、シアノ基、カルボキシル基、アルコキシカルボニル基(アルキル基の炭素数は1~8である)、カルバモイル基、N-アルキルアミノカルボニル基(アルキル基の炭素数は1~8である)、N,N-ジアルキルアミノカルボニル基(2つのアルキル基の炭素数は、それぞれ独立に1~8である。当該2つのアルキル基は、直接、又は、酸素原子、硫黄原子、若しくは炭素数1~6のアルキル基で置換された窒素原子を介し、互いに結合して3~7員環を形成してもよい)、フェニル基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、芳香族5員複素環基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、及び芳香族6員複素環基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)からなる群である。 The group B includes a halogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, and 1 to 8 carbon atoms. Alkoxy group having 2 to 6 carbon atoms, alkynyloxy group having 2 to 6 carbon atoms, alkylthio group having 1 to 8 carbon atoms, alkylsulfinyl group having 1 to 8 carbon atoms, alkyl having 1 to 8 carbon atoms A sulfonyl group, an alkylamino group having 1 to 8 carbon atoms, and a dialkylamino group (the carbon numbers of the two alkyl groups are each independently 1 to 8. The two alkyl groups are directly or oxygen atom, sulfur Via a nitrogen atom substituted with an atom or an alkyl group having 1 to 6 carbon atoms, which may be bonded to each other to form a 3- to 7-membered ring), a phenyloxy group (halogen atom or having 1 to 6 carbon atoms) Alkyl Nitro group, formyl group, cyano group, carboxyl group, alkoxycarbonyl group (the alkyl group has 1 to 8 carbon atoms), carbamoyl group, N-alkylaminocarbonyl group (of the alkyl group) Carbon number is 1 to 8), N, N-dialkylaminocarbonyl group (the carbon numbers of the two alkyl groups are each independently 1 to 8. The two alkyl groups are directly or oxygen atoms) , A sulfur atom, or a nitrogen atom substituted with an alkyl group having 1 to 6 carbon atoms, which may combine with each other to form a 3- to 7-membered ring, a phenyl group (halogen atom or 1 to 6 carbon atoms) An aromatic 5-membered heterocyclic group (which may be substituted with a halogen atom or an alkyl group having 1 to 6 carbon atoms), and an aromatic 6-membered heterocyclic group (a halogen atom or Is substituted with an alkyl group of prime 1-6 is a group consisting also be).
 前記一般式(I)におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示される。
 中でも、好ましくはフッ素原子及び塩素原子であり、より好ましくはフッ素原子である。
Examples of the halogen atom in the general formula (I) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
Among them, preferred are a fluorine atom and a chlorine atom, and more preferred is a fluorine atom.
 前記一般式(I)における炭素数1~8のアルキル基としては、メチル基、エチル基、プロピル基、2-プロピル基、ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、1-メチルエチル基、1-メチルブチル基、1-メチルペンチル基、1-メチルヘキシル基、2,2-ジメチルエチル基、2,2-ジメチルプロピル基が例示される。
 中でも、好ましくは、メチル基、エチル基、プロピル基、2-プロピル基、ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、2,2-ジメチルエチル基であり、より好ましくは、メチル基、tert-ブチル基である。
Examples of the alkyl group having 1 to 8 carbon atoms in the general formula (I) include methyl group, ethyl group, propyl group, 2-propyl group, butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group. Group, 1-methylethyl group, 1-methylbutyl group, 1-methylpentyl group, 1-methylhexyl group, 2,2-dimethylethyl group, 2,2-dimethylpropyl group.
Among them, preferred is a methyl group, an ethyl group, a propyl group, a 2-propyl group, a butyl group, a tert-butyl group, a pentyl group, a hexyl group, or a 2,2-dimethylethyl group, more preferably a methyl group, tert-Butyl group.
 一般式(I)における炭素数3~6のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基が例示される。
 中でも、好ましくはシクロプロピル基、シクロペンチル基、シクロヘキシル基であり、より好ましくは、シクロヘキシル基である。
Examples of the cycloalkyl group having 3 to 6 carbon atoms in the general formula (I) include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
Among these, a cyclopropyl group, a cyclopentyl group, and a cyclohexyl group are preferable, and a cyclohexyl group is more preferable.
 一般式(I)における炭素数2~6のアルケニル基としては、ビニル基、2-プロペニル基、2-メチル-2-プロペニル基、3-メチル-2-ブテニル基、3-ブテニル基、4-ペンテニル基、5-ヘキセニル基が例示される。
 中でも、好ましくは、2-プロペニル基、2-メチル-2-プロペニル基、3-メチル-2-ブテニル基、3-ブテニル基、4-ペンテニル基、5-ヘキセニル基であり、より好ましくは、2-プロペニル基、2-メチル-2-プロペニル基である。
Examples of the alkenyl group having 2 to 6 carbon atoms in the general formula (I) include a vinyl group, 2-propenyl group, 2-methyl-2-propenyl group, 3-methyl-2-butenyl group, 3-butenyl group, 4- Examples include a pentenyl group and a 5-hexenyl group.
Of these, 2-propenyl group, 2-methyl-2-propenyl group, 3-methyl-2-butenyl group, 3-butenyl group, 4-pentenyl group, and 5-hexenyl group are more preferable, and 2 -Propenyl group, 2-methyl-2-propenyl group.
 一般式(I)における炭素数2~6のアルキニル基としては、エチニル基、プロプ-2-イニル基、ブト-3-イニル基、ペント-4-イニル基、ヘキサ-5-イニル基、プロプ-1-イニル基、ブト-1-イニル基、2-ブト-2-イニル基が例示される。
 中でも、好ましくは、エチニル基、プロプ-2-イニル基、ブト-3-イニル基、ペント-4-イニル基、ヘキサ-5-イニル基であり、より好ましくは、エチニル基又はプロプ-2-イニル基である。
Examples of the alkynyl group having 2 to 6 carbon atoms in the general formula (I) include ethynyl group, prop-2-ynyl group, but-3-ynyl group, pent-4-ynyl group, hexa-5-ynyl group, prop- Examples include a 1-ynyl group, a but-1-ynyl group, and a 2-but-2-ynyl group.
Among them, preferred is an ethynyl group, prop-2-ynyl group, but-3-ynyl group, pent-4-ynyl group, or hexa-5-ynyl group, and more preferred is an ethynyl group or prop-2-ynyl group. It is a group.
 一般式(I)における炭素数1~8のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、iso-プロポキシ基、ブトキシ基、iso-ブトキシ基、tert-ブトキシ基、ぺンチルオキシ基、ヘキシルオキシ基、2,2-ジメチル-1-プロポキシ基、ヘプチルオキシ基、オクチルオキシ基が例示される。
 中でも、好ましくは、メトキシ基、エトキシ基、プロポキシ基、iso-プロポキシ基、ブトキシ基、iso-ブトキシ基、tert-ブトキシ基、ぺンチルオキシ基、ヘキシルオキシ基であり、より好ましくは、メトキシ基、iso-プロポキシ基、tert-ブトキシ基である。
As the alkoxy group having 1 to 8 carbon atoms in the general formula (I), methoxy group, ethoxy group, propoxy group, iso-propoxy group, butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy Group, 2,2-dimethyl-1-propoxy group, heptyloxy group, octyloxy group.
Among them, preferably a methoxy group, an ethoxy group, a propoxy group, an iso-propoxy group, a butoxy group, an iso-butoxy group, a tert-butoxy group, a pentyloxy group, and a hexyloxy group, and more preferably a methoxy group, an iso -Propoxy group, tert-butoxy group.
 一般式(I)における炭素数2~6のアルケニルオキシ基としては、ビニルオキシ基、アリルオキシ基、2-メチルアリルオキシ基、ブト-2-エニルオキシ基、3-メチル-ブト-2-エニルオキシ基、ブト-3-エニルオキシ基、ペント-4-エニルオキシ基、ヘキサ-5-エニルオキシ基が例示される。
 中でも、好ましくは、アリルオキシ基、2-メチルアリルオキシ基、ブト-2-エニルオキシ基、3-メチル-ブト-2-エニルオキシ基、ブト-3-エニルオキシ基であり、より好ましくは、アリルオキシ基、2-メチルアリルオキシ基である。
Examples of the alkenyloxy group having 2 to 6 carbon atoms in the general formula (I) include vinyloxy group, allyloxy group, 2-methylallyloxy group, but-2-enyloxy group, 3-methyl-but-2-enyloxy group, buto Examples include a -3-enyloxy group, a pent-4-enyloxy group, and a hexa-5-enyloxy group.
Among them, preferred are allyloxy group, 2-methylallyloxy group, but-2-enyloxy group, 3-methyl-but-2-enyloxy group, but-3-enyloxy group, and more preferred are allyloxy group, -A methylallyloxy group.
 一般式(I)における炭素数2~6のアルキニルオキシ基としては、エチニルオキシ基、プロプ-2-イニルオキシ基、ブト-3-イニルオキシ基、ペント-4-イニルオキシ基、ヘキサ-5-イニルオキシ基が例示される。
 中でも、好ましくは、プロプ-2-イニルオキシ基、ブト-3-イニルオキシ基、ペント-4-イニルオキシ基であり、より好ましくは、プロプ-2-イニルオキシ基である。
The alkynyloxy group having 2 to 6 carbon atoms in the general formula (I) includes an ethynyloxy group, a prop-2-ynyloxy group, a but-3-ynyloxy group, a pent-4-ynyloxy group, and a hexa-5-ynyloxy group. Illustrated.
Among them, preferred is a prop-2-ynyloxy group, a but-3-ynyloxy group, and a pent-4-ynyloxy group, and more preferred is a prop-2-ynyloxy group.
 一般式(I)における炭素数1~8のアルキルチオ基としては、メチルチオ基、エチルチオ基、プロピルチオ基、iso-プロピルチオ基、ブチルチオ基、iso-ブチルチオ基、tert-ブチルチオ基、ぺンチルチオ基、ヘキシルチオ基、2,2-ジメチル-1-プロピルチオ基、ヘプチルチオ基、オクチルチオ基が例示される。
 中でも、好ましくは、メチルチオ基、エチルチオ基、プロピルチオ基、iso-プロピルチオ基、ブチルチオ基、iso-ブチルチオ基、tert-ブチルチオ基、ぺンチルチオ基、ヘキシルチオ基であり、より好ましくは、メチルチオ基、iso-プロピルチオ基、tert-ブチルチオ基である。
Examples of the alkylthio group having 1 to 8 carbon atoms in the general formula (I) include methylthio group, ethylthio group, propylthio group, iso-propylthio group, butylthio group, iso-butylthio group, tert-butylthio group, pentylthio group, and hexylthio group. 2,2-dimethyl-1-propylthio group, heptylthio group, octylthio group.
Among them, preferably a methylthio group, an ethylthio group, a propylthio group, an iso-propylthio group, a butylthio group, an iso-butylthio group, a tert-butylthio group, a pentylthio group, and a hexylthio group, and more preferably a methylthio group, an iso- A propylthio group and a tert-butylthio group;
 一般式(I)における炭素数1~8のアルキルスルフィニル基としては、メチルスルフィニル基、エチルスルフィニル基、プロピルスルフィニル基、iso-プロピルスルフィニル基、ブチルスルフィニル基、iso-ブチルスルフィニル基、tert-ブチルスルフィニル基、ぺンチルスルフィニル基、ヘキシルスルフィニル基、2,2-ジメチル-1-プロピルスルフィニル基、ヘプチルスルフィニル基、オクチルスルフィニル基が例示される。
 中でも、好ましくは、メチルスルフィニル基、エチルスルフィニル基、プロピルスルフィニル基、iso-プロピルスルフィニル基、ブチルスルフィニル基、iso-ブチルスルフィニル基、tert-ブチルスルフィニル基、ぺンチルスルフィニル基、ヘキシルスルフィニル基であり、より好ましくは、メチルスルフィニル基、iso-プロピルスルフィニル基、tert-ブチルスルフィニル基である。
Examples of the alkylsulfinyl group having 1 to 8 carbon atoms in the general formula (I) include methylsulfinyl group, ethylsulfinyl group, propylsulfinyl group, iso-propylsulfinyl group, butylsulfinyl group, iso-butylsulfinyl group, tert-butylsulfinyl group Group, pentylsulfinyl group, hexylsulfinyl group, 2,2-dimethyl-1-propylsulfinyl group, heptylsulfinyl group, octylsulfinyl group.
Among them, preferred are a methylsulfinyl group, an ethylsulfinyl group, a propylsulfinyl group, an iso-propylsulfinyl group, a butylsulfinyl group, an iso-butylsulfinyl group, a tert-butylsulfinyl group, a pentylsulfinyl group, and a hexylsulfinyl group. And more preferably a methylsulfinyl group, an iso-propylsulfinyl group, or a tert-butylsulfinyl group.
 一般式(I)における炭素数1~8のアルキルスルホニル基としては、メチルスルホニル基、エチルスルホニル基、プロピルスルホニル基、iso-プロピルスルホニル基、ブチルスルホニル基、iso-ブチルスルホニル基、tert-ブチルスルホニル基、ぺンチルスルホニル基、ヘキシルスルホニル基、2,2-ジメチル-1-プロピルスルホニル基、ヘプチルスルホニル基、オクチルスルホニル基が例示される。
 中でも、好ましくは、メチルスルホニル基、エチルスルホニル基、プロピルスルホニル基、iso-プロピルスルホニル基、ブチルスルホニル基、iso-ブチルスルホニル基、tert-ブチルスルホニル基、ぺンチルスルホニル基、ヘキシルスルホニル基であり、より好ましくは、メチルスルホニル基、iso-プロピルスルホニル基、tert-ブチルスルホニル基である。
Examples of the alkylsulfonyl group having 1 to 8 carbon atoms in the general formula (I) include methylsulfonyl group, ethylsulfonyl group, propylsulfonyl group, iso-propylsulfonyl group, butylsulfonyl group, iso-butylsulfonyl group, tert-butylsulfonyl Group, pentylsulfonyl group, hexylsulfonyl group, 2,2-dimethyl-1-propylsulfonyl group, heptylsulfonyl group and octylsulfonyl group.
Among them, preferred are a methylsulfonyl group, an ethylsulfonyl group, a propylsulfonyl group, an iso-propylsulfonyl group, a butylsulfonyl group, an iso-butylsulfonyl group, a tert-butylsulfonyl group, a pentylsulfonyl group, and a hexylsulfonyl group. And more preferably a methylsulfonyl group, an iso-propylsulfonyl group, or a tert-butylsulfonyl group.
 一般式(I)における炭素数1~8のアルキルアミノ基としては、メチルアミノ基、エチルアミノ基、プロピルアミノ基、iso-プロピルアミノ基、ブチルアミノ基、iso-ブチルアミノ基、tert-ブチルアミノ基、ぺンチルアミノ基、ヘキシルアミノ基、2,2-ジメチル-1-プロピルアミノ基、ヘプチルアミノ基、オクチルアミノ基が例示される。
 中でも、好ましくは、メチルアミノ基、エチルアミノ基、プロピルアミノ基、iso-プロピルアミノ基、ブチルアミノ基、iso-ブチルアミノ基、tert-ブチルアミノ基、ぺンチルアミノ基、ヘキシルアミノ基であり、より好ましくは、メチルアミノ基、iso-プロピルアミノ基、tert-ブチルアミノ基である。
Examples of the alkylamino group having 1 to 8 carbon atoms in the general formula (I) include a methylamino group, an ethylamino group, a propylamino group, an iso-propylamino group, a butylamino group, an iso-butylamino group, and a tert-butylamino group. Group, pentylamino group, hexylamino group, 2,2-dimethyl-1-propylamino group, heptylamino group and octylamino group.
Among them, a methylamino group, an ethylamino group, a propylamino group, an iso-propylamino group, a butylamino group, an iso-butylamino group, a tert-butylamino group, a pentylamino group, a hexylamino group, and more A methylamino group, an iso-propylamino group, and a tert-butylamino group are preferable.
 前記一般式(I)における、ジアルキルアミノ基(2つのアルキル基の炭素数は、それぞれ独立に1~8である。当該2つのアルキル基は、直接、又は、酸素原子、硫黄原子、若しくは炭素数1~6のアルキル基で置換された窒素原子を介し、互いに結合して3~7員環を形成してもよい)としては、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジ-iso-プロピルアミノ基、ジブチルアミノ基、ジ-iso-ブチルアミノ基、ジペンチルアミノ基、ジヘキシルアミノ基、ジヘプチルアミノ基、ジオクチルアミノ基、アジリジン-1-イル基、アゼチジン-1-イル基、ピロリジン-1-イル基、ピペリジン-1-イル基、4-モルホリノ基、4-チオモルホリノ基、4-メチルピペラジン-1-イル基、4-エチルピペラジン-1-イル基、4-プロピルピペラジン-1-イル基であり、好ましくは、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジ-iso-プロピルアミノ基、ピロリジン-1-イル基、ピペリジン-1-イル基、4-モルホリノ基、4-チオモルホリノ基、4-メチルピペラジン-1-イル基が例示される。
 中でも、より好ましくは、ジメチルアミノ基、ジエチルアミノ基、ピペリジン-1-イル基である。
In the general formula (I), the dialkylamino group (the number of carbon atoms of the two alkyl groups is each independently 1 to 8. The two alkyl groups are directly, oxygen atom, sulfur atom, or carbon number) A 3- to 7-membered ring may be bonded to each other via a nitrogen atom substituted with 1 to 6 alkyl groups), such as dimethylamino group, diethylamino group, dipropylamino group, di-iso- Propylamino group, dibutylamino group, di-iso-butylamino group, dipentylamino group, dihexylamino group, diheptylamino group, dioctylamino group, aziridin-1-yl group, azetidin-1-yl group, pyrrolidine-1 -Yl group, piperidin-1-yl group, 4-morpholino group, 4-thiomorpholino group, 4-methylpiperazin-1-yl group, 4-ethylpiperazine-1 -Yl group, 4-propylpiperazin-1-yl group, preferably dimethylamino group, diethylamino group, dipropylamino group, di-iso-propylamino group, pyrrolidin-1-yl group, piperidin-1- Ilyl group, 4-morpholino group, 4-thiomorpholino group and 4-methylpiperazin-1-yl group are exemplified.
Of these, a dimethylamino group, a diethylamino group, and a piperidin-1-yl group are more preferable.
 前記一般式(I)におけるアルコキシカルボニル基(アルキル基の炭素数は1~8である)とは、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、iso-プロポキシカルボニル基、ブトキシカルボニル基、sec-ブトキシカルボニル基、iso-ブトキシカルボニル基、tert-ブトキシカルボニル基、ぺンチルオキシカルボニル基、ヘキシルオキシカルボニル基、2,2-ジメチル-1-プロポキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基が例示される。
 中でも、好ましくは、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、iso-プロポキシカルボニル基、ブトキシカルボニル基、iso-ブトキシカルボニル基、tert-ブトキシカルボニル基、ぺンチルオキシカルボニル基、ヘキシルオキシカルボニル基であり、より好ましくは、メトキシカルボニル基、iso-プロポキシカルボニル基、tert-ブトキシカルボニル基である。
In the general formula (I), the alkoxycarbonyl group (the alkyl group has 1 to 8 carbon atoms) means a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, an iso-propoxycarbonyl group, a butoxycarbonyl group, sec- Butoxycarbonyl group, iso-butoxycarbonyl group, tert-butoxycarbonyl group, pentyloxycarbonyl group, hexyloxycarbonyl group, 2,2-dimethyl-1-propoxycarbonyl group, heptyloxycarbonyl group, octyloxycarbonyl group Illustrated.
Among them, preferably, methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, iso-propoxycarbonyl group, butoxycarbonyl group, iso-butoxycarbonyl group, tert-butoxycarbonyl group, pentyloxycarbonyl group, hexyloxycarbonyl group And more preferably a methoxycarbonyl group, an iso-propoxycarbonyl group, or a tert-butoxycarbonyl group.
 前記一般式(I)における、N-アルキルアミノカルボニル基(アルキル基の炭素数は1~8である)としては、メチルアミノカルボニル基、エチルアミノカルボニル基、プロピルアミノカルボニル基、iso-プロピルアミノカルボニル基、ブチルアミノカルボニル基、iso-ブチルアミノカルボニル基、tert-ブチルアミノカルボニル基、ぺンチルアミノカルボニル基、ヘキシルアミノカルボニル基、2,2-ジメチル-1-プロピルアミノカルボニル基、ヘプチルアミノカルボニル基、オクチルアミノカルボニル基が例示される。
 中でも、好ましくは、メチルアミノカルボニル基、エチルアミノカルボニル基、プロピルアミノカルボニル基、iso-プロピルアミノカルボニル基、ブチルアミノカルボニル基、iso-ブチルアミノカルボニル基、tert-ブチルアミノカルボニル基、ぺンチルアミノカルボニル基、ヘキシルアミノカルボニル基であり、より好ましくは、メチルアミノカルボニル基、iso-プロピルアミノカルボニル基、tert-ブチルアミノカルボニル基である。
In the general formula (I), the N-alkylaminocarbonyl group (wherein the alkyl group has 1 to 8 carbon atoms) includes a methylaminocarbonyl group, an ethylaminocarbonyl group, a propylaminocarbonyl group, and an iso-propylaminocarbonyl group. Group, butylaminocarbonyl group, iso-butylaminocarbonyl group, tert-butylaminocarbonyl group, pentylaminocarbonyl group, hexylaminocarbonyl group, 2,2-dimethyl-1-propylaminocarbonyl group, heptylaminocarbonyl group And octylaminocarbonyl group.
Among them, preferably, methylaminocarbonyl group, ethylaminocarbonyl group, propylaminocarbonyl group, iso-propylaminocarbonyl group, butylaminocarbonyl group, iso-butylaminocarbonyl group, tert-butylaminocarbonyl group, pentylamino A carbonyl group and a hexylaminocarbonyl group, more preferably a methylaminocarbonyl group, an iso-propylaminocarbonyl group, and a tert-butylaminocarbonyl group.
 前記一般式(I)における、N,N-ジアルキルアミノカルボニル基(2つのアルキル基の炭素数は、それぞれ独立に1~8である。当該2つのアルキル基は、直接、又は、酸素原子、硫黄原子、若しくは炭素数1~6のアルキル基で置換された窒素原子を介し、互いに結合して3~7員環を形成してもよい)としては、ジメチルアミノカルボニル基、ジエチルアミノカルボニル基、ジプロピルアミノカルボニル基、ジ-iso-プロピルアミノカルボニル基、ジブチルアミノカルボニル基、ジ-iso-ブチルアミノカルボニル基、ジペンチルアミノカルボニル基、ジヘキシルアミノカルボニル基、ジヘプチルアミノカルボニル基、ジオクチルアミノカルボニル基、アジリジン-1-カルボニル基、アゼチジン-1-カルボニル基、ピロリジン-1-カルボニル基、ピペリジン-1-カルボニル基、モルホリン-4-カルボニル基、チオモルホリン-4-カルボニル基、4-メチルピペラジン-1-カルボニル基、4-エチルピペラジン-1-カルボニル基、4-プロピルピペラジン-1-カルボニル基が例示される。
 中でも、好ましくは、ジメチルアミノカルボニル基、ジエチルアミノカルボニル基、ジプロピルアミノカルボニル基、ジ-iso-プロピルアミノカルボニル基、ピロリジン-1-カルボニル基、ピペリジン-1-カルボニル基、モルホリン-4-カルボニル基、4-メチルピペラジン-1-カルボニル基であり、より好ましくは、ジメチルアミノカルボニル基、ジエチルアミノカルボニル基、ピペリジン-1-カルボニル基である。
In the general formula (I), the N, N-dialkylaminocarbonyl group (the number of carbon atoms of the two alkyl groups is each independently 1 to 8. The two alkyl groups are either directly or an oxygen atom, sulfur A 3- to 7-membered ring may be bonded to each other via an atom or a nitrogen atom substituted with an alkyl group having 1 to 6 carbon atoms), such as dimethylaminocarbonyl group, diethylaminocarbonyl group, dipropyl Aminocarbonyl group, di-iso-propylaminocarbonyl group, dibutylaminocarbonyl group, di-iso-butylaminocarbonyl group, dipentylaminocarbonyl group, dihexylaminocarbonyl group, diheptylaminocarbonyl group, dioctylaminocarbonyl group, aziridine- 1-carbonyl group, azetidine-1-carbonyl group, pyrrolidine-1- Carbonyl group, piperidine-1-carbonyl group, morpholine-4-carbonyl group, thiomorpholine-4-carbonyl group, 4-methylpiperazine-1-carbonyl group, 4-ethylpiperazine-1-carbonyl group, 4-propylpiperazine- A 1-carbonyl group is exemplified.
Among them, preferably, a dimethylaminocarbonyl group, a diethylaminocarbonyl group, a dipropylaminocarbonyl group, a di-iso-propylaminocarbonyl group, a pyrrolidine-1-carbonyl group, a piperidine-1-carbonyl group, a morpholine-4-carbonyl group, A 4-methylpiperazine-1-carbonyl group, more preferably a dimethylaminocarbonyl group, a diethylaminocarbonyl group, or a piperidine-1-carbonyl group.
 前記一般式(I)における、フェニル基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)としては、フェニル基、メチルフェニル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、ペンチルフェニル基、ヘキシルフェニル基、クロロフェニル基、フルオロフェニル基、ブロモフェニル基が例示される。
 中でも、好ましくは、フェニル基、メチルフェニル基、フルオロフェニル基、クロロフェニル基であり、より好ましくは、フェニル基、メチルフェニル基、フルオロフェニル基である。
In the general formula (I), the phenyl group (which may be substituted with a halogen atom or an alkyl group having 1 to 6 carbon atoms) includes a phenyl group, a methylphenyl group, an ethylphenyl group, a propylphenyl group, and a butylphenyl group. , Pentylphenyl group, hexylphenyl group, chlorophenyl group, fluorophenyl group and bromophenyl group.
Among these, a phenyl group, a methylphenyl group, a fluorophenyl group, and a chlorophenyl group are preferable, and a phenyl group, a methylphenyl group, and a fluorophenyl group are more preferable.
 前記一般式(I)における芳香族5員複素環基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)としては、フリル基、チエニル基、ピロリル基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、イソチアゾリル基、イミダゾリル基、ピラゾリル基、トリアゾリル基またはテトラゾリル基が例示される。
 中でも、好ましくは、ピロリル基、イミダゾリル基、ピラゾリル基、トリアゾリル基またはテトラゾリル基であり、より好ましくは、ピロリル基、イミダゾリル基、ピラゾリル基、トリアゾリル基である。
Examples of the aromatic 5-membered heterocyclic group (which may be substituted with a halogen atom or an alkyl group having 1 to 6 carbon atoms) in the general formula (I) include a furyl group, a thienyl group, a pyrrolyl group, an oxazolyl group, and an isoxazolyl group. , Thiazolyl group, isothiazolyl group, imidazolyl group, pyrazolyl group, triazolyl group or tetrazolyl group.
Among them, preferred is a pyrrolyl group, an imidazolyl group, a pyrazolyl group, a triazolyl group or a tetrazolyl group, and more preferred are a pyrrolyl group, an imidazolyl group, a pyrazolyl group or a triazolyl group.
 前記一般式(I)における芳香族6員複素環基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)としては、ピリジル基、ピリミジニル基、ピラジニル基、ピリダジニル基、トリアジニル基が例示される。
 中でも、好ましくは、ピリジル基、ピリミジニル基、ピラジニル基であり、より好ましくはピリジル基である。
As the aromatic 6-membered heterocyclic group (which may be substituted with a halogen atom or an alkyl group having 1 to 6 carbon atoms) in the general formula (I), a pyridyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group Is exemplified.
Among these, a pyridyl group, a pyrimidinyl group, and a pyrazinyl group are preferable, and a pyridyl group is more preferable.
 前記一般式(I)中のQである、酸素原子、硫黄原子及び窒素原子から選ばれる原子を1個~4個含有してもよい、芳香族又は非芳香族5員複素環基(当該複素環は前記B群から選ばれる1個~2個の置換基により置換されてもよい)としては、フリル基、チエニル基、ピロリル基、ピロリニル基、ピロリジニル基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、イソチアゾリル基、イミダゾリル基、ピラゾリル基、ピラゾリニル基、ピラゾリジニル基、1,2,4-オキサジアゾリル基、1,3,4-オキサジアゾリル基、オキサゾリニル基、オキサゾリジニル基、イソオキサゾリニル基、イソオキサゾリジニル基、イミダゾリニル基、イミダゾリジニル基、が挙げられる。
 上記Qとしては、フリル基、チエニル基、ピロリル基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、イソチアゾリル基、イミダゾリル基、ピラゾリル基、1,2,4-オキサジアゾリル基、1,3,4-オキサジアゾリル基、オキサゾリル基、イソオキサゾリニル基、イミダゾリニル基、ピラゾリル基が好ましく、ピロリル基、オキサゾリル基、イソオキサゾリル基、イミダゾリル基、ピラゾリル基、1,2,4-オキサジアゾリル基、1,3,4-オキサジアゾリル基、オキサゾリニル基、イソオキサゾリジニル基、イミダゾリニル基、ピラゾリニル基がより好ましい。
 更には、イソオキサゾリル基、イソオキサゾリニル基、又は1,2,4-オキサジアゾリル基が好ましく、イソオキサゾール-3-イル基、イソオキサゾリン-3-イル基、又は1,2,4-オキサジアゾール-5-イル基が更に好ましく、イソオキサゾール-3-イル基又はイソオキサゾリン-3-イル基が特に好ましい。
Aromatic or non-aromatic 5-membered heterocyclic group (containing the heterocyclic group) which may contain 1 to 4 atoms selected from oxygen, sulfur and nitrogen, which is Q in general formula (I) The ring may be substituted with one or two substituents selected from the above-mentioned group B) as furyl group, thienyl group, pyrrolyl group, pyrrolinyl group, pyrrolidinyl group, oxazolyl group, isoxazolyl group, thiazolyl group, Isothiazolyl group, imidazolyl group, pyrazolyl group, pyrazolinyl group, pyrazolidinyl group, 1,2,4-oxadiazolyl group, 1,3,4-oxadiazolyl group, oxazolinyl group, oxazolidinyl group, isoxazolinyl group, isoxazolidinyl group Group, an imidazolinyl group, and an imidazolidinyl group.
Examples of Q include furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, 1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, Oxazolyl group, isoxazolinyl group, imidazolinyl group and pyrazolyl group are preferable, pyrrolyl group, oxazolyl group, isoxazolyl group, imidazolyl group, pyrazolyl group, 1,2,4-oxadiazolyl group, 1,3,4-oxadiazolyl group, An oxazolinyl group, an isoxazolidinyl group, an imidazolinyl group, and a pyrazolinyl group are more preferable.
Furthermore, an isoxazolyl group, an isoxazolinyl group, or a 1,2,4-oxadiazolyl group is preferable, and an isoxazol-3-yl group, an isoxazolin-3-yl group, or a 1,2,4-oxadiazole A -5-yl group is more preferable, and an isoxazol-3-yl group or an isoxazolin-3-yl group is particularly preferable.
 本発明において、前記Pyで表されるピリジル基を置換する置換基としては、高温環境下における保存特性をより向上させる観点からは、前記A群として例示した置換基のうち、フッ素原子、塩素原子、炭素数1~6のアルキル基、炭素数5~6のシクロアルキル基、炭素数2~4のアルケニル基、炭素数2~4のアルキニル基、炭素数1~6のアルコキシ基、炭素数2~4のアルケニルオキシ基、炭素数2~4のアルキニルオキシ基、炭素数1~6のアルキルチオ基、炭素数1~6のアルキルスルフィニル基、炭素数1~6のアルキルスルホニル基、炭素数1~6のアルキルアミノ基、ジアルキルアミノ基(2つのアルキル基の炭素数は、それぞれ独立に1~6である。当該2つのアルキル基は、直接、又は、酸素原子、硫黄原子、若しくは炭素数1~4のアルキル基で置換された窒素原子を介し、互いに結合して3~7員環を形成してもよい)、フェニルオキシ基(ハロゲン原子又は炭素数1~4のアルキル基で置換されてもよい)、ニトロ基、ホルミル基、シアノ基、カルボキシル基、アルコキシカルボニル基(アルキル基の炭素数は1~6である)、カルバモイル基、N-アルキルアミノカルボニル基(アルキル基の炭素数は1~6である)、N,N-ジアルキルアミノカルボニル基(2つのアルキル基の炭素数は、それぞれ独立に1~8である。当該2つのアルキル基は、直接、又は、酸素原子、硫黄原子、若しくは炭素数1~4のアルキル基で置換された窒素原子を介し、互いに結合して3~7員環を形成してもよい)、フェニル基(ハロゲン原子又は炭素数1~4のアルキル基で置換されてもよい)、芳香族5員複素環基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、及び芳香族6員複素環基(ハロゲン原子又は炭素数1~4のアルキル基で置換されてもよい)からなる群が好ましく、 In the present invention, the substituent for substituting the pyridyl group represented by Py is a fluorine atom or a chlorine atom among the substituents exemplified as the group A from the viewpoint of further improving the storage characteristics in a high temperature environment. An alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 6 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, an alkynyl group having 2 to 4 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and 2 carbon atoms An alkenyloxy group having 4 to 4 carbon atoms, an alkynyloxy group having 2 to 4 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, an alkylsulfinyl group having 1 to 6 carbon atoms, an alkylsulfonyl group having 1 to 6 carbon atoms, and 1 to 6 alkylamino groups and dialkylamino groups (the number of carbons in each of the two alkyl groups is independently 1 to 6. The two alkyl groups may be directly or oxygen, sulfur, Are bonded to each other through a nitrogen atom substituted with an alkyl group having 1 to 4 carbon atoms to form a 3- to 7-membered ring), a phenyloxy group (halogen atom or an alkyl group having 1 to 4 carbon atoms) Nitro group, formyl group, cyano group, carboxyl group, alkoxycarbonyl group (the alkyl group has 1 to 6 carbon atoms), carbamoyl group, N-alkylaminocarbonyl group (of the alkyl group) Carbon number is 1-6), N, N-dialkylaminocarbonyl group (the carbon number of the two alkyl groups is each independently 1-8. The two alkyl groups are directly or oxygen atoms) , A sulfur atom or a nitrogen atom substituted with an alkyl group having 1 to 4 carbon atoms, which may be bonded to each other to form a 3- to 7-membered ring, a phenyl group (halogen atom or 1 to 4 carbon atoms). May be substituted with an alkyl group), an aromatic 5-membered heterocyclic group (which may be substituted with a halogen atom or an alkyl group having 1 to 6 carbon atoms), and an aromatic 6-membered heterocyclic group (a halogen atom or carbon). A group consisting of an optionally substituted alkyl group of 1 to 4) is preferred,
フッ素原子、塩素原子、メチル基、エチル基、プロピル基、ブチル基、tert-ブチル基、シクロヘキシル基、ビニル基、プロペン-2-イル基、プロペン-1-イル基、エチニル基、プロプ-2-イニル基、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基、tert-ブトキシ基、アリルオキシ基、2-メチルアリルオキシ基、エチニル基、プロプ-2-イニル基、メチルチオ基、エチルチオ基、tert-ブチルチオ基、メチルスルフィニル基、エチルスルフィニル基、tert-ブチルスルフィニル基、メチルスルホニル基、エチルスルホニル基、tert-ブチルスルホニル基、メチルアミノ基、エチルアミノ基、プロピルアミノ基、tert-ブチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジ-iso-プロピルアミノ基、ピロリジン-1-イル基、ピペリジン-1-イル基、4-モルホリノ基、4-メチルピペラジン-1-イル基、ニトロ基、ホルミル基、シアノ基、カルボキシル基、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、tert-ブトキシカルボニル基、カルバモイル基、N-メチルアミノカルボニル基、N-エチルアミノカルボニル基、N-tert-ブチルアミノカルボニル基、ピペリジン-1-カルボニル基、モルホリン-4-カルボニル基、4-メチルピペラジン-1-カルボニル基、メチルフェニル基、エチルフェニル基、クロロフェニル基、フルオロフェニル基、ピロール-1-イル基、ピラゾール-1-イル基、イミダゾール-1-イル基、トリアゾール-1-イル基、イソオキサゾール-3-イル基、イソオキサゾール-5-イル基、ピリジン-2-イル基、ピリジン-3-イル基、ピリジン-4-イル基、ピリミジン-2イル基、ピラジン-2-イル基、ピリダジン-3-イル基、トリアジン-2-イル基、からなる群がより好ましい。 Fluorine atom, chlorine atom, methyl group, ethyl group, propyl group, butyl group, tert-butyl group, cyclohexyl group, vinyl group, propen-2-yl group, propen-1-yl group, ethynyl group, prop-2- Inyl, methoxy, ethoxy, propyloxy, butoxy, tert-butoxy, allyloxy, 2-methylallyloxy, ethynyl, prop-2-ynyl, methylthio, ethylthio, tert-butylthio Group, methylsulfinyl group, ethylsulfinyl group, tert-butylsulfinyl group, methylsulfonyl group, ethylsulfonyl group, tert-butylsulfonyl group, methylamino group, ethylamino group, propylamino group, tert-butylamino group, dimethylamino Group, diethylamino group, dipropylamino group, di-iso-propylamino group, pyrrolidine -1-yl group, piperidin-1-yl group, 4-morpholino group, 4-methylpiperazin-1-yl group, nitro group, formyl group, cyano group, carboxyl group, methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl Group, tert-butoxycarbonyl group, carbamoyl group, N-methylaminocarbonyl group, N-ethylaminocarbonyl group, N-tert-butylaminocarbonyl group, piperidine-1-carbonyl group, morpholine-4-carbonyl group, 4- Methylpiperazine-1-carbonyl group, methylphenyl group, ethylphenyl group, chlorophenyl group, fluorophenyl group, pyrrol-1-yl group, pyrazol-1-yl group, imidazol-1-yl group, triazol-1-yl group , Isoxazol-3-yl group, isoxazole-5- Group, pyridin-2-yl group, pyridin-3-yl group, pyridin-4-yl group, pyrimidin-2-yl group, pyrazin-2-yl group, pyridazin-3-yl group, triazin-2-yl group The group consisting of is more preferable.
 さらに好ましくは、フッ素原子、塩素原子、メチル基、tert-ブチル基、ビニル基、プロペン-2-イル基、プロペン-1-イル基、エチニル基、プロプ-2-イニル基、メトキシ基、tert-ブトキシ基、アリルオキシ基、2-メチルアリルオキシ基、エチニル基、メチルチオ基、tert-ブチルチオ基、メチルスルフィニル基、メチルスルホニル基、tert-ブチルスルホニル基、メチルアミノ基、tert-ブチルアミノ基、ジメチルアミノ基、ピペリジン-1-イル基、4-モルホリノ基、4-メチルピペラジン-1-イル基、シアノ基、カルボキシル基、メトキシカルボニル基、エトキシカルボニル基、tert-ブトキシカルボニル基、N-メチルアミノカルボニル基、N-tert-ブチルアミノカルボニル基、ピペリジン-1-カルボニル基、モルホリン-4-カルボニル基、ピロール-1-イル基、ピラゾール-1-イル基、イミダゾール-1-イル基、トリアゾール-1-イル基、からなる群である。 More preferably, fluorine atom, chlorine atom, methyl group, tert-butyl group, vinyl group, propen-2-yl group, propen-1-yl group, ethynyl group, prop-2-ynyl group, methoxy group, tert- Butoxy, allyloxy, 2-methylallyloxy, ethynyl, methylthio, tert-butylthio, methylsulfinyl, methylsulfonyl, tert-butylsulfonyl, methylamino, tert-butylamino, dimethylamino Group, piperidin-1-yl group, 4-morpholino group, 4-methylpiperazin-1-yl group, cyano group, carboxyl group, methoxycarbonyl group, ethoxycarbonyl group, tert-butoxycarbonyl group, N-methylaminocarbonyl group N-tert-butylaminocarbonyl group, piperidine-1-carbonyl group, morpholine-4 Carbonyl group, pyrrol-1-yl group, pyrazol-1-yl group, imidazol-1-yl group, a triazol-1-yl group, the group consisting of.
 また、前記Pyで表されるピリジル基を置換するA群から選ばれる置換基の数は、0個~2個が好ましく、Pyで表されるピリジル基が1置換または無置換であることがより好ましい。 Further, the number of substituents selected from the group A that substitutes the pyridyl group represented by Py is preferably 0 to 2, and the pyridyl group represented by Py is more preferably monosubstituted or unsubstituted. preferable.
 本発明において、前記Qで表される5員複素環基を置換する置換基としては、高温環境下における保存特性をより向上させる観点からは、前記B群として例示した置換基のうち、フッ素原子、塩素原子、炭素数1~6のアルキル基、炭素数5~6のシクロアルキル基、炭素数2~4のアルケニル基、炭素数2~4のアルキニル基、炭素数1~6のアルコキシ基、炭素数2~4のアルケニルオキシ基、炭素数2~4のアルキニルオキシ基、炭素数1~6のアルキルチオ基、炭素数1~6のアルキルスルフィニル基、炭素数1~6のアルキルスルホニル基、炭素数1~6のアルキルアミノ基、ジアルキルアミノ基(2つのアルキル基の炭素数は、それぞれ独立に1~6である。当該2つのアルキル基は、直接、又は、酸素原子、硫黄原子、若しくは炭素数1~4のアルキル基で置換された窒素原子を介し、互いに結合して3~7員環を形成してもよい)、フェニルオキシ基(ハロゲン原子又は炭素数1~4のアルキル基で置換されてもよい)、ニトロ基、ホルミル基、シアノ基、カルボキシル基、アルコキシカルボニル基(アルキル基の炭素数は1~6である)、カルバモイル基、N-アルキルアミノカルボニル基(アルキル基の炭素数は1~6である)、N,N-ジアルキルアミノカルボニル基(2つのアルキル基の炭素数は、それぞれ独立に1~8である。当該2つのアルキル基は、直接、又は、酸素原子、硫黄原子、若しくは炭素数1~4のアルキル基で置換された窒素原子を介し、互いに結合して3~7員環を形成してもよい)、フェニル基(ハロゲン原子又は炭素数1~4のアルキル基で置換されてもよい)、芳香族5員複素環基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、及び芳香族6員複素環基(ハロゲン原子又は炭素数1~4のアルキル基で置換されてもよい)からなる群が好ましく、 In the present invention, the substituent for substituting the 5-membered heterocyclic group represented by Q is a fluorine atom among the substituents exemplified as the group B from the viewpoint of further improving the storage characteristics in a high temperature environment. A chlorine atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 6 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, an alkynyl group having 2 to 4 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, C2-C4 alkenyloxy group, C2-C4 alkynyloxy group, C1-C6 alkylthio group, C1-C6 alkylsulfinyl group, C1-C6 alkylsulfonyl group, carbon An alkylamino group and a dialkylamino group having a number of 1 to 6 (the number of carbon atoms of the two alkyl groups is each independently 1 to 6. The two alkyl groups may be directly or oxygen, sulfur, Are bonded to each other through a nitrogen atom substituted with an alkyl group having 1 to 4 carbon atoms to form a 3- to 7-membered ring), a phenyloxy group (halogen atom or an alkyl group having 1 to 4 carbon atoms) Nitro group, formyl group, cyano group, carboxyl group, alkoxycarbonyl group (the alkyl group has 1 to 6 carbon atoms), carbamoyl group, N-alkylaminocarbonyl group (of the alkyl group) Carbon number is 1-6), N, N-dialkylaminocarbonyl group (the carbon number of the two alkyl groups is each independently 1-8. The two alkyl groups are directly or oxygen atoms) , A sulfur atom or a nitrogen atom substituted with an alkyl group having 1 to 4 carbon atoms, which may be bonded to each other to form a 3- to 7-membered ring, a phenyl group (halogen atom or 1 to 4 carbon atoms). May be substituted with an alkyl group), an aromatic 5-membered heterocyclic group (which may be substituted with a halogen atom or an alkyl group having 1 to 6 carbon atoms), and an aromatic 6-membered heterocyclic group (a halogen atom or carbon). A group consisting of an optionally substituted alkyl group of 1 to 4) is preferred,
フッ素原子、塩素原子、メチル基、エチル基、プロピル基、ブチル基、tert-ブチル基、シクロヘキシル基、ビニル基、プロペン-2-イル基、プロペン-1-イル基、エチニル基、プロプ-2-イニル基、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基、tert-ブトキシ基、アリルオキシ基、2-メチルアリルオキシ基、エチニル基、プロプ-2-イニル基、メチルチオ基、エチルチオ基、tert-ブチルチオ基、メチルスルフィニル基、エチルスルフィニル基、tert-ブチルスルフィニル基、メチルスルホニル基、エチルスルホニル基、tert-ブチルスルホニル基、メチルアミノ基、エチルアミノ基、プロピルアミノ基、tert-ブチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジ-iso-プロピルアミノ基、ピロリジン-1-イル基、ピペリジン-1-イル基、4-モルホリノ基、4-メチルピペラジン-1-イル基、ニトロ基、ホルミル基、シアノ基、カルボキシル基、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、tert-ブトキシカルボニル基、カルバモイル基、N-メチルアミノカルボニル基、N-エチルアミノカルボニル基、N-tert-ブチルアミノカルボニル基、ピペリジン-1-カルボニル基、モルホリン-4-カルボニル基、4-メチルピペラジン-1-カルボニル基、メチルフェニル基、エチルフェニル基、クロロフェニル基、フルオロフェニル基、ピロール-1-イル基、ピラゾール-1-イル基、イミダゾール-1-イル基、トリアゾール-1-イル基、イソオキサゾール-3-イル基、イソオキサゾール-5-イル基、ピリジン-2-イル基、ピリジン-3-イル基、ピリジン-4-イル基、ピリミジン-2イル基、ピラジン-2-イル基、ピリダジン-3-イル基、トリアジン-2-イル基、からなる群がより好ましい。 Fluorine atom, chlorine atom, methyl group, ethyl group, propyl group, butyl group, tert-butyl group, cyclohexyl group, vinyl group, propen-2-yl group, propen-1-yl group, ethynyl group, prop-2- Inyl, methoxy, ethoxy, propyloxy, butoxy, tert-butoxy, allyloxy, 2-methylallyloxy, ethynyl, prop-2-ynyl, methylthio, ethylthio, tert-butylthio Group, methylsulfinyl group, ethylsulfinyl group, tert-butylsulfinyl group, methylsulfonyl group, ethylsulfonyl group, tert-butylsulfonyl group, methylamino group, ethylamino group, propylamino group, tert-butylamino group, dimethylamino Group, diethylamino group, dipropylamino group, di-iso-propylamino group, pyrrolidine -1-yl group, piperidin-1-yl group, 4-morpholino group, 4-methylpiperazin-1-yl group, nitro group, formyl group, cyano group, carboxyl group, methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl Group, tert-butoxycarbonyl group, carbamoyl group, N-methylaminocarbonyl group, N-ethylaminocarbonyl group, N-tert-butylaminocarbonyl group, piperidine-1-carbonyl group, morpholine-4-carbonyl group, 4- Methylpiperazine-1-carbonyl group, methylphenyl group, ethylphenyl group, chlorophenyl group, fluorophenyl group, pyrrol-1-yl group, pyrazol-1-yl group, imidazol-1-yl group, triazol-1-yl group , Isoxazol-3-yl group, isoxazole-5- Group, pyridin-2-yl group, pyridin-3-yl group, pyridin-4-yl group, pyrimidin-2-yl group, pyrazin-2-yl group, pyridazin-3-yl group, triazin-2-yl group The group consisting of is more preferable.
 さらに好ましくは、フッ素原子、塩素原子、メチル基、tert-ブチル基、ビニル基、プロペン-2-イル基、プロペン-1-イル基、エチニル基、プロプ-2-イニル基、メトキシ基、tert-ブトキシ基、アリルオキシ基、2-メチルアリルオキシ基、エチニル基、メチルチオ基、tert-ブチルチオ基、メチルスルフィニル基、メチルスルホニル基、tert-ブチルスルホニル基、メチルアミノ基、tert-ブチルアミノ基、ジメチルアミノ基、ピペリジン-1-イル基、4-モルホリノ基、4-メチルピペラジン-1-イル基、シアノ基、カルボキシル基、メトキシカルボニル基、エトキシカルボニル基、tert-ブトキシカルボニル基、N-メチルアミノカルボニル基、N-tert-ブチルアミノカルボニル基、ピペリジン-1-カルボニル基、モルホリン-4-カルボニル基からなる群である。 More preferably, fluorine atom, chlorine atom, methyl group, tert-butyl group, vinyl group, propen-2-yl group, propen-1-yl group, ethynyl group, prop-2-ynyl group, methoxy group, tert- Butoxy, allyloxy, 2-methylallyloxy, ethynyl, methylthio, tert-butylthio, methylsulfinyl, methylsulfonyl, tert-butylsulfonyl, methylamino, tert-butylamino, dimethylamino Group, piperidin-1-yl group, 4-morpholino group, 4-methylpiperazin-1-yl group, cyano group, carboxyl group, methoxycarbonyl group, ethoxycarbonyl group, tert-butoxycarbonyl group, N-methylaminocarbonyl group N-tert-butylaminocarbonyl group, piperidine-1-carbonyl group, morpholine-4 It is a group consisting of a carbonyl group.
 また、前記Qで表される5員複素環基を置換する置換基の数は、1個~2個が好ましく、1個が特に好ましい。 In addition, the number of substituents substituting the 5-membered heterocyclic group represented by Q is preferably 1 to 2, and particularly preferably 1.
 また、本発明において、前記Pyと前記Qとは、前記Pyの2位、3位、又は4位で結合することが好ましい。
 特に、前記Qがイソオキサゾリル基又はイソオキサゾリニル基である場合には、前記Pyと前記Qとは、前記Pyの2位、3位、又は4位と、前記Qの3位又は5位と、で結合することが好ましい。
In the present invention, the Py and the Q are preferably bonded at the 2-position, 3-position, or 4-position of the Py.
In particular, when Q is an isoxazolyl group or an isoxazolinyl group, the Py and Q are the 2-position, 3-position, or 4-position of the Py, and the 3-position or 5-position of the Q, respectively. It is preferable to combine with.
 また、本発明において、一般式(I)で表される化合物の最も好ましい形態としては、高温環境下における保存特性をより向上させる観点より、前記Pyが無置換のピリジル基であって、前記Qが5位に置換基を有するイソオキサゾリル基又はイソオキサゾリニル基であって、nが1であって、前記Pyと前記Qとが、前記Pyの2位、3位、又は4位と、前記Qの3位又は5位と、で結合する形態が挙げられる。 In the present invention, the most preferable form of the compound represented by the general formula (I) is that the Py is an unsubstituted pyridyl group from the viewpoint of further improving the storage characteristics in a high temperature environment, and the Q Is an isoxazolyl group or isoxazolinyl group having a substituent at the 5-position, wherein n is 1, and the Py and the Q are the 2-position, 3-position, or 4-position of the Py; The form couple | bonded with 3rd-position or 5th-position of Q is mentioned.
 以下、前記一般式(I)で表される化合物の具体例(具体例(1)~(51))を例示するが本発明はこれらの具体例に限定されるものではない。
 以下、具体例(1)~(51)を、例示化合物1~51ともいう。
Hereinafter, specific examples (specific examples (1) to (51)) of the compound represented by the general formula (I) will be exemplified, but the present invention is not limited to these specific examples.
Hereinafter, specific examples (1) to (51) are also referred to as exemplary compounds 1 to 51.
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000014
 
 本発明における一般式(I)で表される化合物として、好ましくは、3-(ピリジン-2-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸、3-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸、3-(ピリジン-4-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸、3-(ピリジン-2-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸メチル、3-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸メチル、3-(ピリジン-4-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸メチル、3-(ピリジン-2-イル)-4,5-ジヒドロイソオキサゾール-5-カルボニトリル、3-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-5-カルボニトリル、3-(ピリジン-4-イル)-4,5-ジヒドロイソオキサゾール-5-カルボニトリル、3-(ピリジン-2-イル)-イソオキサゾール-5-カルボニトリル、3-(ピリジン-3-イル)-イソオキサゾール-5-カルボニトリル、3-(ピリジン-4-イル)-イソオキサゾール-5-カルボニトリル、3-(ピリジン-2-イル)-イソオキサゾール-5-カルボン酸、3-(ピリジン-3-イル)-イソオキサゾール-5-カルボン酸、3-(ピリジン-4-イル)-イソオキサゾール-5-カルボン酸、3-(ピリジン-2-イル)-イソオキサゾール-5-カルボン酸メチル、3-(ピリジン-3-イル)-イソオキサゾール-5-カルボン酸メチル、3-(ピリジン-4-イル)-イソオキサゾール-5-カルボン酸メチル、3-(ピリジン-2-イル)-イソオキサゾール、3-(ピリジン-3-イル)-イソオキサゾール、3-(ピリジン-4-イル)-イソオキサゾール、3-(ピリジン-2-イル)-1,2,4-オキサジアゾール、3-(ピリジン-3-イル)-1,2,4-オキサジアゾール、3-(ピリジン-4-イル)-1,2,4-オキサジアゾール、3-メチル-5-(ピリジン-2-イル)-4,5-ジヒドロイソオキサゾール、5-(ピリジン-2-イル)-4,5-ジヒドロイソオキサゾール-3-カルボン酸エチル、5-(ピリジン-2-イル)-4,5-ジヒドロイソオキサゾール-3-カルボニトリル、3-メチル-5-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール、5-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-3-カルボン酸エチル、又は5-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-3-カルボニトリルである。 The compound represented by the general formula (I) in the present invention is preferably 3- (pyridin-2-yl) -4,5-dihydroisoxazole-5-carboxylic acid, 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylic acid, 3- (pyridin-4-yl) -4,5-dihydroisoxazole-5-carboxylic acid, 3- (pyridin-2-yl) -4,5 -Methyl dihydroisoxazole-5-carboxylate, 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylate, 3- (pyridin-4-yl) -4,5-dihydro Isoxazole-5-carboxylate methyl, 3- (pyridin-2-yl) -4,5-dihydroisoxazole-5-carbonitrile, 3- (pyridin-3-yl) -4,5- Dihydroisoxazole-5-carbonitrile, 3- (pyridin-4-yl) -4,5-dihydroisoxazole-5-carbonitrile, 3- (pyridin-2-yl) -isoxazole-5-carbonitrile, 3- (pyridin-3-yl) -isoxazole-5-carbonitrile, 3- (pyridin-4-yl) -isoxazole-5-carbonitrile, 3- (pyridin-2-yl) -isoxazole-5 -Carboxylic acid, 3- (pyridin-3-yl) -isoxazole-5-carboxylic acid, 3- (pyridin-4-yl) -isoxazole-5-carboxylic acid, 3- (pyridin-2-yl)- Methyl isoxazole-5-carboxylate, methyl 3- (pyridin-3-yl) -isoxazole-5-carboxylate, 3- (pyridine-4 Yl) -isoxazole-5-carboxylate, 3- (pyridin-2-yl) -isoxazole, 3- (pyridin-3-yl) -isoxazole, 3- (pyridin-4-yl) -isoxazole 3- (pyridin-2-yl) -1,2,4-oxadiazole, 3- (pyridin-3-yl) -1,2,4-oxadiazole, 3- (pyridin-4-yl) -1,2,4-oxadiazole, 3-methyl-5- (pyridin-2-yl) -4,5-dihydroisoxazole, 5- (pyridin-2-yl) -4,5-dihydroisoxazole -3-ethyl carboxylate, 5- (pyridin-2-yl) -4,5-dihydroisoxazole-3-carbonitrile, 3-methyl-5- (pyridin-3-yl) -4,5-dihydroiso Oki Sol, ethyl 5- (pyridin-3-yl) -4,5-dihydroisoxazole-3-carboxylate, or 5- (pyridin-3-yl) -4,5-dihydroisoxazole-3-carbonitrile is there.
 本発明の非水電解液中における、前記一般式(I)で表される化合物の含有量は、0.0001質量%~30質量%が好ましく、0.001質量%~10質量%がより好ましく、0.1質量%~7質量%が更に好ましく、0.2質量%~5質量%が更に好ましい。
 ピリジル5員複素環化合物の非水電解液への含有量が上記範囲内にあると、高温環境下における保存特性をより改善し、より長寿命化を実現できる電解液を提供することができる。
The content of the compound represented by the general formula (I) in the nonaqueous electrolytic solution of the present invention is preferably 0.0001% by mass to 30% by mass, more preferably 0.001% by mass to 10% by mass. 0.1% by mass to 7% by mass is more preferable, and 0.2% by mass to 5% by mass is more preferable.
When the content of the pyridyl 5-membered heterocyclic compound in the non-aqueous electrolyte is within the above range, it is possible to provide an electrolyte that can further improve the storage characteristics in a high-temperature environment and realize a longer life.
 前記一般式(I)で表される化合物において、ピリジルイミダゾール化合物は、例えばDE1985819 記載の方法、又はOrg. Biomol. Chem., 5 (16), 2567-2571, (2007) 記載の方法により製造される。 In the compound represented by the general formula (I), the pyridylimidazole compound is produced by, for example, the method described in DE1985819 or the method described in Org. Biomol. Chem., 5 (16), 2567-2571, (2007). The
 ピリジルイミダゾリン化合物は、例えば、J. Comb. Chem., 2 (6), 675-680, (2000) 記載の方法、Synlett, (18), 2747-2750, (2005) 記載の方法、Tetrahedron Lett., 39 (5-6), 459-462, (1998) 記載の方法、又は Synthetic Commun., 26 (7), 1335-1340, (1996) 記載の方法により合成される。 Pyridylimidazoline compounds include, for example, methods described in J. Comb. Chem., 2 (6), 675-680, (2000) 、, Synlett, (18), 2747-2750, (2005) 、, Tetrahedron Lett. 39 (5-6), 459-462, 、 (1998), or Synthetic Commun., 26 (7), 1335-1340, (1996).
 ピリジルイソオキサゾール化合物は、例えば、Org. Lett., 3 (26), 4185-4187, (2001) 記載の方法、J. Chem. Soc. Perkin Trans., I, (1), 67-72, (1986) 記載の方法、又は Synthesis-Stuttgart, (1), 20-24, (1989) 記載の方法により製造される。 Pyridylisoxazole compounds are described in, for example, Org. Lett., 3 (26), 4185-4187, (2001), J. Chem. Soc. Perkin Trans., I, (1), 67-72, ( 1986) or the method described in Synthesis-Stuttgart, (1), 20-24, (1989).
 ピリジルイソオキサゾリン化合物は、例えば、Synthesis-Stuttgart, (11), 1158-1162, (1994) 記載の方法、Febs. Letters, (1994), 35 (2), 168-170 記載の方法、又は、Tetrahedron Lett., 36 (2), 327-330, (1995) 記載の方法により製造される。 The pyridylisoxazoline compound is, for example, a method described in Synthesis-Stuttgart, (11), 1158-1162, (1994), a method described in Febs. Letters, (1994), 35 (2), 168-170, or Tetrahedron Lett., 36 (2), 327-330, (1995).
 ピリジルイミダゾール化合物は、例えば、Tetrahedron Lett., 29 (39), 5013-5016, (1988)記載の方法、Tetrahedron Lett., 45 (47), 8687-8690, (2004) 又は Heterocycles, 32 (11), 2111-2118, (1991) 記載の方法により製造される。 The pyridylimidazole compound is, for example, a method described in Tetrahedron Lett., 29 (39), 5013-5016, (1988), Tetrahedron Lett., 45 (47), 8687-8690, (2004) or Heterocycles, 32 (11) , 2111-2118, (1991).
 ピリジルイミダゾリン化合物は、例えば、Tetrahedron Lett., 47 (13), 2129-2132, (2006)記載の方法、又は Chem-Eur. J ., 13 (6), 1863-1871, (2007) 記載の方法により製造される。 The pyridylimidazoline compound is, for example, a method described in Tetrahedron Lett., 47 (13), 2129-2132, (2006), or a method described in Chem-Eur. J., 13 (6), 1863-1871, (186) Manufactured by.
 ピリジルピラゾール化合物は、例えば、Tetrahedron Lett., 44 (33), 6305-6307, (2003) 記載の方法、DE 19642320 記載の方法、又は Synthesis-Stuttgart, (1), 55-62, (2001) 記載の方法により製造される。 Pyridylpyrazole compounds are described in, for example, TetrahedronedLett., 44 (33), 6305-6307, (2003), method described in DE 19642320, or Synthesis-Stuttgart, (1), 55-62, (2001) It is manufactured by the method.
 ピリジルピラゾリン化合物は、例えば、Collect Czech. Chem. C., 54 (6), 1716-1720, (1989) 記載の方法により製造される。 The pyridylpyrazoline compound is produced, for example, by the method described in Collect Czech. Chem. C.
 ピリジル-1,2,4-オキサジアゾール化合物は、例えば、Tetrahedron Lett.,  42 (8), 1495-1498, (2001) 記載の方法により製造される。 The pyridyl-1,2,4-oxadiazole compound is produced, for example, by the method described in Tetrahedron Lett., 42 (8), 1495-1498, (2001).
 ピリジル-1,3,4-オキサジアゾール化合物は、例えば、J. Org. Chem., 65 (7), 2246-2248, (2000) 記載の方法により製造される。 The pyridyl-1,3,4-oxadiazole compound is produced, for example, by the method described in J. Org. Chem., 65 (7), 2246-2248, (2000).
 前記一般式(I)で表されるピリジル5員複素環化合物は、電解液中で、水分及び酸分をトラップする働きをもっているものと考えられる。このトラップ効果は主に、正極の遷移金属の溶出やガス発生を抑制しているものと推察できる。
 従って、非水電解液が前記一般式(I)で表される化合物を含有することで、負極上での金属析出や、負極上での非水溶媒の分解等が抑制される結果、電池抵抗の増大が抑制され、高温環境下における保存特性が改善されるものと推測される。
 但し、本発明は上記の推測によって限定されることはない。
 以上のように、一般式(I)で表される化合物は、負極上の非水電解液の還元分解を抑制する効果が高く、高温保存試験による電池の容量低下を抑制する。また、高温保存試験やサイクル試験時の正極の界面インピーダンスの上昇を抑制して、負荷特性の劣化を抑制する。
The pyridyl 5-membered heterocyclic compound represented by the general formula (I) is considered to have a function of trapping moisture and acid content in the electrolytic solution. It can be inferred that this trap effect mainly suppresses elution of transition metal and gas generation of the positive electrode.
Therefore, as a result of containing the compound represented by the general formula (I) in the nonaqueous electrolytic solution, metal deposition on the negative electrode, decomposition of the nonaqueous solvent on the negative electrode, and the like are suppressed. It is presumed that the storage characteristics under high temperature environment are improved.
However, the present invention is not limited by the above estimation.
As described above, the compound represented by the general formula (I) has a high effect of suppressing the reductive decomposition of the nonaqueous electrolytic solution on the negative electrode, and suppresses a decrease in battery capacity due to a high temperature storage test. Moreover, the rise of the interface impedance of the positive electrode during a high-temperature storage test or a cycle test is suppressed, and deterioration of load characteristics is suppressed.
 前記一般式(I)で表されるピリジル5員複素環化合物は、単独で用いてもよいが、下記一般式(II)で表されるスルトン化合物、下記一般式(III)で表されるビニレンカーボネート又はその誘導体、及び、下記一般式(IV)で表されるハロゲン化カーボネート誘導体からなる群から選択される少なくとも1種と組み合わせて用いてもよい。このように組み合わせて用いることで、更に、電池の高温サイクル特性を向上させることができると考えられる。 The pyridyl 5-membered heterocyclic compound represented by the general formula (I) may be used alone, but a sultone compound represented by the following general formula (II), or a vinylene represented by the following general formula (III) You may use in combination with at least 1 sort (s) selected from the group which consists of a carbonate or its derivative (s), and the halogenated carbonate derivative represented by the following general formula (IV). By using in combination in this way, it is considered that the high-temperature cycle characteristics of the battery can be further improved.
 下記に示す一般式(II)で表されるスルトン化合物は、電解液用添加剤として有効であり、電解液中において負極で還元分解し、硫黄化合物が正極側で皮膜をつくることが考えられる。
 詳細には、一般式(II)で表される不飽和スルトン化合物中の不飽和結合が負極上で反応し、負極上に結合して安定的な皮膜を形成する。その一方で、負極上で皮膜を形成しなかった不飽和スルトンは、スルトン基が負極上で還元分解することで不飽和スルトン化合物自体が分解し、この分解で生成した硫黄化合物が正極上で酸化反応を行い、正極上にも皮膜を生成することが考えられる。すなわち、不飽和スルトンは、正極、負極共に、皮膜を作ることが可能な化合物であると考えられる。
 すなわち、下記一般式(II)で表される不飽和スルトンは、正極を構成するマンガンなどの溶出によるサイクル特性の低下を抑制することができると考えられる。
The sultone compound represented by the general formula (II) shown below is effective as an additive for an electrolytic solution, and it is considered that reductive decomposition occurs at the negative electrode in the electrolytic solution, and the sulfur compound forms a film on the positive electrode side.
Specifically, the unsaturated bond in the unsaturated sultone compound represented by the general formula (II) reacts on the negative electrode and bonds on the negative electrode to form a stable film. On the other hand, the unsaturated sultone that did not form a film on the negative electrode decomposes the unsaturated sultone compound itself by the reductive decomposition of the sultone group on the negative electrode, and the sulfur compound produced by this decomposition is oxidized on the positive electrode. It is conceivable that a film is formed on the positive electrode by reacting. That is, it is considered that unsaturated sultone is a compound that can form a film on both the positive electrode and the negative electrode.
That is, it is considered that the unsaturated sultone represented by the following general formula (II) can suppress a decrease in cycle characteristics due to elution of manganese or the like constituting the positive electrode.
 また、下記に示す一般式(III)で表されるビニレンカーボネート又はその誘導体は、負極側にて表面皮膜を作り、負極の安定化に寄与する。
 また、下記に示す一般式(IV)で表されるハロゲン化環状カーボネート誘導体も同様に、負極側にて表面皮膜を作り、負極の安定化に寄与する。
In addition, vinylene carbonate represented by the general formula (III) shown below or a derivative thereof creates a surface film on the negative electrode side and contributes to stabilization of the negative electrode.
Similarly, the halogenated cyclic carbonate derivative represented by the general formula (IV) shown below also forms a surface film on the negative electrode side and contributes to stabilization of the negative electrode.
 したがって、非水電解液が、前記一般式(I)で表される化合物と、下記一般式(II)で表される化合物、下記一般式(III)で表される化合物、及び下記一般式(IV)で表される化合物からなる群から選択される少なくとも1種と、を含有することにより、負極上の非水電解液の還元分解が抑制され、高温保存試験の電池の容量低下が抑制され、非水電解液の分解に伴うガスの発生が抑制される。また、高温保存試験やサイクル試験時の正極の界面インピーダンスの上昇が抑制され、負荷特性の劣化が抑制される。 Therefore, the non-aqueous electrolyte comprises a compound represented by the general formula (I), a compound represented by the following general formula (II), a compound represented by the following general formula (III), and the following general formula ( And at least one selected from the group consisting of the compounds represented by IV), the reductive decomposition of the non-aqueous electrolyte on the negative electrode is suppressed, and the capacity reduction of the battery in the high temperature storage test is suppressed. The generation of gas accompanying the decomposition of the non-aqueous electrolyte is suppressed. Further, an increase in the interface impedance of the positive electrode during a high-temperature storage test or a cycle test is suppressed, and deterioration of load characteristics is suppressed.
 特に、電極上で、一般式(I)で表される化合物が存在することにより酸分及び水分がトラップされ、一般式(II)で表される化合物、一般式(III)で表される化合物、及び一般式(IV)で表される化合物からなる群から選択される少なくとも1種による皮膜の形成が、より適切なものとなり、正極の遷移金属の溶出やガス発生を効果的に抑え、正極及び負極での副反応が相乗的に抑制されるものと推測される。なお、本発明は上記推測によって制限されない。 In particular, a compound represented by the general formula (II), a compound represented by the general formula (III), and a compound represented by the general formula (III) are trapped due to the presence of the compound represented by the general formula (I) on the electrode. And the formation of a film with at least one selected from the group consisting of the compounds represented by the general formula (IV) becomes more appropriate, effectively suppressing the elution of transition metal and gas generation of the positive electrode. It is presumed that side reactions at the negative electrode and the negative electrode are synergistically suppressed. The present invention is not limited by the above estimation.
(不飽和スルトン)
 本発明のリチウム二次電池の非水電解液は、下記一般式(II)で表される化合物を含有することが好適である。
(Unsaturated sultone)
The non-aqueous electrolyte of the lithium secondary battery of the present invention preferably contains a compound represented by the following general formula (II).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 前記一般式(II)中、R、R、R、及びRは、各々独立に、フッ素原子により置換されていてもよい炭素数1~12の炭化水素基、水素原子、又はフッ素原子であり、mは0~3の整数を示す。mが2または3であるときは、複数存在するR及びRは、それぞれ、同一でも互いに異なっていてもよい。 In the general formula (II), R 1 , R 2 , R 3 , and R 4 are each independently a hydrocarbon group having 1 to 12 carbon atoms, a hydrogen atom, or fluorine that may be substituted with a fluorine atom An atom, and m represents an integer of 0 to 3. When m is 2 or 3, a plurality of R 3 and R 4 may be the same or different from each other.
 つまり、上記一般式(II)で表される化合物は、環状スルホン酸エステルであって環内に炭素-炭素不飽和結合を有するスルトン化合物である。 That is, the compound represented by the general formula (II) is a sultone compound which is a cyclic sulfonic acid ester and has a carbon-carbon unsaturated bond in the ring.
 一般式(II)中、R、R、R、及びRは、各々独立に、フッ素原子により置換されていてもよい炭素数1~12の炭化水素基、水素原子、又はフッ素原子であり、R、R、R 及R は、互いに同一でも異なってもよい。mは0~3の整数を示す。 In general formula (II), R 1 , R 2 , R 3 , and R 4 are each independently a hydrocarbon group having 1 to 12 carbon atoms, a hydrogen atom, or a fluorine atom that may be substituted with a fluorine atom R 1 , R 2 , R 3 and R 4 may be the same as or different from each other. m represents an integer of 0 to 3.
 一般式(II)中、R、R、R、及びRで表されるフッ素原子により置換されていてもよい炭素数1~12の炭化水素基は、具体的には、メチル基、エチル基、ビニル基、エチニル基、プロピル基、イソプロピル基、1-プロペニル基、2-プロペニル基、1-プロピニル基、2-プロピニル基、ブチル基、sec-ブチル基、tert-ブチル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、2-メチル-2-プロペニル基、1-メチレンプロピル基、1-メチル-2-プロペニル基、1,2-ジメチルビニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-メチル-2-メチルプロピル基、2,2-ジメチルプロピル基、フェニル基、メチルフェニル基、エチルフェニル基、ビニルフェニル基、エチニルフェニル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、ジフルオロメチル基、モノフルオロメチル基、トリフルオロメチル基、トリフルオロエチル基、ジフルオロエチル基、ペンタフルオロエチル基、ペンタフルオロプロピル基、テトラフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、パーフルオロシクロヘキシル基、パーフルオロヘプチル基、パーフルオロオクチル基、パーフルオロノニル基、パーフルオロデシル基、パーフルオロウンデシル基、パーフルオロドデシル基、フルオロフェニル基、ジフルオロフェニル基、トリフルオロフェニル基、パーフルオロフェニル基、トリフルオロメチルフェニル基、ナフチル基、ビフェニル基などが例示される。 In the general formula (II), the hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a fluorine atom represented by R 1 , R 2 , R 3 and R 4 is specifically a methyl group. , Ethyl group, vinyl group, ethynyl group, propyl group, isopropyl group, 1-propenyl group, 2-propenyl group, 1-propynyl group, 2-propynyl group, butyl group, sec-butyl group, tert-butyl group, 1 -Butenyl, 2-butenyl, 3-butenyl, 2-methyl-2-propenyl, 1-methylenepropyl, 1-methyl-2-propenyl, 1,2-dimethylvinyl, 1-butynyl 2-butynyl group, 3-butynyl group, pentyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1-methyl-2-methylpropyl group, 2,2-dimethylpropyl group, phenyl group, Me Ruphenyl, ethylphenyl, vinylphenyl, ethynylphenyl, hexyl, cyclohexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, difluoromethyl, monofluoromethyl, trifluoro Methyl group, trifluoroethyl group, difluoroethyl group, pentafluoroethyl group, pentafluoropropyl group, tetrafluoropropyl group, perfluorobutyl group, perfluoropentyl group, perfluorohexyl group, perfluorocyclohexyl group, perfluoroheptyl Group, perfluorooctyl group, perfluorononyl group, perfluorodecyl group, perfluoroundecyl group, perfluorododecyl group, fluorophenyl group, difluorophenyl group, trifluorophenyl group, perfluoro group Ruorofeniru group, trifluoromethylphenyl group, a naphthyl group, and biphenyl groups.
 以上例示した中でも、R、R、R、及びRで表される炭化水素基は、炭素数が4以下であることが望ましく、より望ましくは2以下である。 Among those exemplified above, the hydrocarbon group represented by R 1 , R 2 , R 3 , and R 4 preferably has 4 or less carbon atoms, more preferably 2 or less.
 前記一般式(II)において、特に望ましくはR、R、R、及びRの全てが水素原子の場合である。 In the general formula (II), it is particularly desirable that all of R 1 , R 2 , R 3 , and R 4 are hydrogen atoms.
 前記一般式(II)中、mは0~3の整数を表す。m=1又は2であることが好ましく、更にはm=1であることが好ましい。 In the general formula (II), m represents an integer of 0 to 3. It is preferable that m = 1 or 2, and it is more preferable that m = 1.
 前記一般式(II)で表される化合物のうち最も望ましい化合物は、下記式で表される1,3-プロパ-1-エンスルトンである。 Of the compounds represented by the general formula (II), the most desirable compound is 1,3-prop-1-ene sultone represented by the following formula.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 この化合物(1,3-プロパ-1-エンスルトン)は、以下の文献に記載される方法などで合成することができる。
Angew. Chem. /70. Jahrg. 1958 / Nr.16、 Ger. Pat. 1146870 (1963) (Ca 59, 11259(1963))、Can. J. Chem., 48, 3704 (1970)、 Synlett, 1411, (1988)、 Chem. Commun., 611 (1997)、Tetrahedron, 55, 2245 (1999)。
This compound (1,3-prop-1-ene sultone) can be synthesized by a method described in the following literature.
Angew. Chem. / 70. Jahrg. 1958 / Nr.16, Ger. Pat. 1146870 (1963) (Ca 59, 11259 (1963)), Can. J. Chem., 48, 3704 (1970), Synlett, 1411 , (1988), Chem. Commun., 611 (1997), Tetrahedron, 55, 2245 (1999).
 本発明の非水電解液が前記一般式(II)で表される化合物を含む場合、本発明の非水電解液中における前記一般式(II)で表される化合物の含有量は、0.0001質量%~30質量%が好ましく、0.001質量%~10質量%がより好ましく、0.1質量%~7質量%が更に好ましく、0.2質量%~5質量%が更に好ましい。
 不飽和スルトンの非水電解液への添加量が上記範囲内にあると、本発明の効果が奏され、且つ負極の界面インピーダンスの上昇が抑えられる。
When the non-aqueous electrolyte of the present invention contains the compound represented by the general formula (II), the content of the compound represented by the general formula (II) in the non-aqueous electrolyte of the present invention is 0. It is preferably 0001% by mass to 30% by mass, more preferably 0.001% by mass to 10% by mass, further preferably 0.1% by mass to 7% by mass, and further preferably 0.2% by mass to 5% by mass.
When the amount of unsaturated sultone added to the non-aqueous electrolyte is within the above range, the effect of the present invention is exhibited, and an increase in the interface impedance of the negative electrode is suppressed.
(ビニレンカーボネート又はビニレンカーボネート誘導体)
 本発明のリチウム二次電池の非水電解液は、下記一般式(III)で表される化合物を含有することが好適である。
(Vinylene carbonate or vinylene carbonate derivative)
The non-aqueous electrolyte of the lithium secondary battery of the present invention preferably contains a compound represented by the following general formula (III).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 一般式(III)中、R及びRは、各々独立に、水素原子、メチル基、エチル基、又はプロピル基を表す。R及びRは、互いに同一でも異なってもよい。つまり、上記一般式(III)で表される化合物は、ビニレンカーボネート又はビニレンカーボネート誘導体である。 In general formula (III), R 5 and R 6 each independently represents a hydrogen atom, a methyl group, an ethyl group, or a propyl group. R 5 and R 6 may be the same as or different from each other. That is, the compound represented by the general formula (III) is vinylene carbonate or a vinylene carbonate derivative.
 一般式(III)で表されるビニレンカーボネート又はビニレンカーボネート誘導体の添加は、電池の保存特性及びサイクル特性を改善する点で好ましい。 Addition of vinylene carbonate or a vinylene carbonate derivative represented by the general formula (III) is preferable in terms of improving the storage characteristics and cycle characteristics of the battery.
 一般式(III)で表されるビニレンカーボネート又はビニレンカーボネート誘導体としては、ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、ブロピルビニレンカーボネート、ジメチルビニレンカーボネート、ジエチルビニレンカーボネート、ジプロピルビニレンカーボネートなどが例示される。
 これらのうち一般式(III)で表される化合物としては、R及びRが水素原子の場合、すなわちビニレンカーボネートが最も好ましい。
Examples of the vinylene carbonate or vinylene carbonate derivative represented by the general formula (III) include vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, propyl vinylene carbonate, dimethyl vinylene carbonate, diethyl vinylene carbonate, and dipropyl vinylene carbonate. The
Among these, as the compound represented by the general formula (III), when R 5 and R 6 are hydrogen atoms, that is, vinylene carbonate is most preferable.
 本発明の非水電解液が前記一般式(III)で表される化合物を含む場合、本発明の非水電解液中における前記一般式(III)で表される化合物の含有量は、目的に応じて適宜選択できるが、0.001質量%~10質量%が好ましく、0.1質量%~3質量%であることが更に好ましい。 When the non-aqueous electrolyte of the present invention contains the compound represented by the general formula (III), the content of the compound represented by the general formula (III) in the non-aqueous electrolyte of the present invention is Although it can be appropriately selected depending on the condition, it is preferably 0.001% by mass to 10% by mass, and more preferably 0.1% by mass to 3% by mass.
(ハロゲン化環状カーボネート誘導体)
 本発明の非水電解液は、本発明の効果をより効果的に奏する観点より、ハロゲン化環状カーボネート誘導体である、下記一般式(IV)で表される化合物を含有することが好適である。
(Halogenated cyclic carbonate derivative)
The non-aqueous electrolyte of the present invention preferably contains a compound represented by the following general formula (IV), which is a halogenated cyclic carbonate derivative, from the viewpoint of more effectively achieving the effects of the present invention.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 一般式(IV)中、X、X、X及びXは、各々独立に、フッ素原子により置換されてもよい炭素数1~3のアルキル基、水素原子、フッ素原子、又は塩素原子を示す。ただし、X、X、X及びXが同時に水素原子である場合は除く。
 つまり、上記一般式(IV)で表される化合物は、ハロゲン化環状カーボネート誘導体である。
In the general formula (IV), X 1 , X 2 , X 3 and X 4 are each independently an alkyl group having 1 to 3 carbon atoms, a hydrogen atom, a fluorine atom or a chlorine atom which may be substituted with a fluorine atom Indicates. However, the case where X 1 , X 2 , X 3 and X 4 are hydrogen atoms at the same time is excluded.
That is, the compound represented by the general formula (IV) is a halogenated cyclic carbonate derivative.
 一般式(IV)で表されるハロゲン化環状カーボネート誘導体としては、4-フルオロ-1,3-ジオキソラン-2-オン、4-クロロ-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-1,3-ジオキソラン-2-オン、テトラフルオロ-1,3-ジオキソラン-2-オン、4-フルオロ-5-クロロ-1,3-ジオキソラン-2-オン、4,5-ジクロロ-1,3-ジオキソラン-2-オン、テトラクロロ-1,3-ジオキソラン-2-オン、4,5-ビストリフルオロメチル-1,3-ジオキソラン-2-オン、4-トリフルオロメチル-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-4,5-ジメチル-1,3-ジオキソラン-2-オン、4-メチル-5,5-ジフルオロ-1,3-ジオキソラン-2-オン、4-エチル-5,5-ジフルオロ-1,3-ジオキソラン-2-オンなどが例示される。 Examples of the halogenated cyclic carbonate derivative represented by the general formula (IV) include 4-fluoro-1,3-dioxolan-2-one, 4-chloro-1,3-dioxolan-2-one, and 4,5-difluoro. -1,3-dioxolan-2-one, tetrafluoro-1,3-dioxolan-2-one, 4-fluoro-5-chloro-1,3-dioxolan-2-one, 4,5-dichloro-1, 3-dioxolan-2-one, tetrachloro-1,3-dioxolan-2-one, 4,5-bistrifluoromethyl-1,3-dioxolan-2-one, 4-trifluoromethyl-1,3-dioxolane -2-one, 4,5-difluoro-4,5-dimethyl-1,3-dioxolan-2-one, 4-methyl-5,5-difluoro-1,3-dioxolan-2-one, 4, Such as 5,5-difluoro-1,3-dioxolan-2-one are exemplified.
 これらのうち一般式(IV)で表される化合物としては、4-フルオロ-1,3-ジオキソラン-2-オン、或いは、4,5-ジフルオロ-1,3-ジオキソラン-2-オンが最も好ましい。 Of these, the compound represented by the general formula (IV) is most preferably 4-fluoro-1,3-dioxolan-2-one or 4,5-difluoro-1,3-dioxolan-2-one. .
 本発明の非水電解液が前記一般式(IV)で表される化合物を含む場合、本発明の非水電解液中における前記一般式(IV)で表される化合物の含有量は、目的に応じて適宜選択できるが、0.001質量%~10質量%が好ましく、0.1質量%~3質量%であることが更に好ましい。 When the non-aqueous electrolyte of the present invention contains the compound represented by the general formula (IV), the content of the compound represented by the general formula (IV) in the non-aqueous electrolyte of the present invention is Although it can be appropriately selected depending on the condition, it is preferably 0.001 to 10% by mass, more preferably 0.1 to 3% by mass.
(非水溶媒)
 本発明の非水電解液は、非水溶媒を含有する。
 前記非水溶媒としては、種々公知のものを適宜選択することができるが、特には、環状の非プロトン性溶媒及び/又は鎖状の非プロトン性溶媒とからなることが好ましい。
 環状の非プロトン性溶媒は、電池の安全性の向上のために、溶媒の引火点の向上を志向する場合は、非水溶媒として、使用することが好ましい。環状の非プロトン性溶媒は単独で使用してもよいし、複数種混合して使用してもよい。また、環状の非プロトン性溶媒と鎖状の非プロトン性溶媒を混合して使用してもよいが、鎖状の非プロトン性溶媒を混合して使用する場合には、鎖状の非プロトン性溶媒の混合比は、非水溶媒全体に対して質量比で20%未満に制限することが望ましい。
(Non-aqueous solvent)
The nonaqueous electrolytic solution of the present invention contains a nonaqueous solvent.
Various known solvents can be appropriately selected as the non-aqueous solvent, and it is particularly preferable that the non-aqueous solvent comprises a cyclic aprotic solvent and / or a chain aprotic solvent.
The cyclic aprotic solvent is preferably used as a non-aqueous solvent in order to improve the flash point of the solvent in order to improve the safety of the battery. The cyclic aprotic solvent may be used alone or in combination of two or more. In addition, a cyclic aprotic solvent and a chain aprotic solvent may be used as a mixture, but when a chain aprotic solvent is used as a mixture, a chain aprotic solvent is used. The mixing ratio of the solvent is desirably limited to less than 20% by mass ratio with respect to the whole non-aqueous solvent.
-環状の非プロトン性溶媒-
 前記環状の非プロトン性溶媒としては、エチレンカーボネートのような環状カーボネート、γ-ブチロラクトンのような環状カルボン酸エステル、スルホランのような環状スルホン、ジオキソランのような環状エーテルが例示される。
-Cyclic aprotic solvent-
Examples of the cyclic aprotic solvent include cyclic carbonates such as ethylene carbonate, cyclic carboxylic acid esters such as γ-butyrolactone, cyclic sulfones such as sulfolane, and cyclic ethers such as dioxolane.
 環状カーボネートの例として具体的には、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、1,2-ペンチレンカーボネート、2,3-ペンチレンカーボネートなどが挙げられる。特に、誘電率が高いエチレンカーボネートとプロピレンカーボネートが好適に使用される。負極活物質に黒鉛を使用した電池の場合は、特にエチレンカーボネートが好ましい。また、これら環状カーボネートは2種類以上混合して使用してもよい。 Specific examples of cyclic carbonates include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, and the like. In particular, ethylene carbonate and propylene carbonate having a high dielectric constant are preferably used. In the case of a battery using graphite as the negative electrode active material, ethylene carbonate is particularly preferable. Moreover, you may use these cyclic carbonates in mixture of 2 or more types.
 環状カルボン酸エステルとして、具体的にはγ-ブチロラクトン、δ-バレロラクトン、あるいはメチルγ-ブチロラクトン、エチルγ-ブチロラクトン、エチルδ-バレロラクトンなどのアルキル置換体などを例示することができる。 Specific examples of the cyclic carboxylic acid ester include γ-butyrolactone, δ-valerolactone, alkyl substitution products such as methyl γ-butyrolactone, ethyl γ-butyrolactone, and ethyl δ-valerolactone.
 環状カルボン酸エステルは、蒸気圧が低く、粘度が低く、かつ誘電率が高い。このため、電解液の引火点と電解質の解離度を下げることなく電解液の粘度を下げることができる。このため、電解液の引火性を高くすることなく電池の放電特性に関わる指標である電解液の伝導度を高めることができるという特徴を有するので、溶媒の引火点の向上を指向する場合は、前記環状の非プロトン性溶媒として環状カルボン酸エステルを使用することが好ましい。特にγ-ブチロラクトンが最も望ましい。 The cyclic carboxylic acid ester has a low vapor pressure, a low viscosity, and a high dielectric constant. For this reason, the viscosity of the electrolytic solution can be lowered without lowering the flash point of the electrolytic solution and the degree of dissociation of the electrolyte. For this reason, since it has the feature that the conductivity of the electrolytic solution, which is an index related to the discharge characteristics of the battery, can be increased without increasing the flammability of the electrolytic solution, when aiming to improve the flash point of the solvent, It is preferable to use a cyclic carboxylic acid ester as the cyclic aprotic solvent. In particular, γ-butyrolactone is most desirable.
 また、環状カルボン酸エステルは他の環状の非プロトン性溶媒との混合物にするのが好ましい。例えば、環状カルボン酸エステルと、環状カーボネート及び/又は鎖状カーボネートとの混合物にすることが考えられる。 In addition, the cyclic carboxylic acid ester is preferably a mixture with another cyclic aprotic solvent. For example, a mixture of a cyclic carboxylic acid ester and a cyclic carbonate and / or a chain carbonate can be considered.
 環状カルボン酸エステルと環状カーボネート及び/又は鎖状カーボネートの組み合わせの例として、具体的には、γ-ブチロラクトンとエチレンカーボネート、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとジエチルカーボネート、γ-ブチロラクトンとプロピレンカーボネート、γ-ブチロラクトンとプロピレンカーボネートとジメチルカーボネート、γ-ブチロラクトンとプロピレンカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとプロピレンカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとスルホラン、γ-ブチロラクトンとエチレンカーボネートとスルホラン、γ-ブチロラクトンとプロピレンカーボネートとスルホラン、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとスルホラン、γ-ブチロラクトンとスルホランとジメチルカーボネートなどが挙げられる。 Specific examples of combinations of cyclic carboxylic acid esters and cyclic carbonates and / or chain carbonates include γ-butyrolactone and ethylene carbonate, γ-butyrolactone and ethylene carbonate and dimethyl carbonate, and γ-butyrolactone and ethylene carbonate and methylethyl. Carbonate, γ-butyrolactone and ethylene carbonate and diethyl carbonate, γ-butyrolactone and propylene carbonate, γ-butyrolactone and propylene carbonate and dimethyl carbonate, γ-butyrolactone and propylene carbonate and methyl ethyl carbonate, γ-butyrolactone and propylene carbonate and diethyl carbonate, γ-butyrolactone, ethylene carbonate and propylene carbonate, γ-butyrolactone Ethylene carbonate and propylene carbonate and dimethyl carbonate, γ-butyrolactone and ethylene carbonate and propylene carbonate and methyl ethyl carbonate, γ-butyrolactone and ethylene carbonate, propylene carbonate and diethyl carbonate, γ-butyrolactone, ethylene carbonate, dimethyl carbonate and methyl ethyl carbonate, γ-butyrolactone, ethylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, ethylene carbonate, methyl ethyl carbonate, diethyl carbonate, γ-butyrolactone, ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, γ-butyrolactone, ethylene carbonate And Pyrene carbonate, dimethyl carbonate and methyl ethyl carbonate, γ-butyrolactone, ethylene carbonate, propylene carbonate, dimethyl carbonate and diethyl carbonate, γ-butyrolactone, ethylene carbonate, propylene carbonate, methyl ethyl carbonate and diethyl carbonate, γ-butyrolactone and ethylene carbonate Propylene carbonate, dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, γ-butyrolactone and sulfolane, γ-butyrolactone and ethylene carbonate and sulfolane, γ-butyrolactone and propylene carbonate and sulfolane, γ-butyrolactone, ethylene carbonate, propylene carbonate and sulfolane, γ -Butyrolactone and Su Such Horan and dimethyl carbonate.
 環状カルボン酸エステルの非水溶媒中の混合割合は、10質量%~100質量%、さらに好ましくは20質量%~90質量%、特に好ましくは30質量%~80質量%である。このような比率にすることによって、電池の充放電特性に関わる電解液の伝導度を高めることができる。 The mixing ratio of the cyclic carboxylic acid ester in the nonaqueous solvent is 10% by mass to 100% by mass, more preferably 20% by mass to 90% by mass, and particularly preferably 30% by mass to 80% by mass. By setting it as such a ratio, the electroconductivity of the electrolyte solution relating to the charge / discharge characteristics of the battery can be increased.
 環状スルホンの例としては、スルホラン、2-メチルスルホラン、3―メチルスルホラン、ジメチルスルホン、ジエチルスルホン、ジプロピルスルホン、メチルエチルスルホン、メチルプロピルスルホンなどが挙げられる。 Examples of cyclic sulfone include sulfolane, 2-methyl sulfolane, 3-methyl sulfolane, dimethyl sulfone, diethyl sulfone, dipropyl sulfone, methyl ethyl sulfone, methylpropyl sulfone and the like.
-鎖状の非プロトン性溶媒-
 前記鎖状の非プロトン性溶媒としては、ジメチルカーボネートのような鎖状カーボネート、ピバリン酸メチルのような鎖状カルボン酸エステル、ジメトキシエタンのような鎖状エーテル、リン酸トリメチルのような鎖状のリン酸エステルが例示される。
-Chain aprotic solvent-
Examples of the chain aprotic solvent include chain carbonates such as dimethyl carbonate, chain carboxylic acid esters such as methyl pivalate, chain ethers such as dimethoxyethane, and chain chains such as trimethyl phosphate. Examples include phosphate esters.
 鎖状カーボネートとして具体的には、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、エチルブチルカーボネート、ジブチルカーボネート、メチルペンチルカーボネート、エチルペンチルカーボネート、ジペンチルカーボネート、メチルヘプチルカーボネート、エチルヘプチルカーボネート、ジヘプチルカーボネート、メチルヘキシルカーボネート、エチルヘキシルカーボネート、ジヘキシルカーボネート、メチルオクチルカーボネート、エチルオクチルカーボネート、ジオクチルカーボネート、メチルトリフルオロエチルカーボネートなどが挙げられる。これら鎖状カーボネートは2種類以上混合して使用してもよい。 Specific examples of the chain carbonate include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl propyl carbonate, dipropyl carbonate, methyl butyl carbonate, ethyl butyl carbonate, dibutyl carbonate, methyl pentyl carbonate, Examples include ethyl pentyl carbonate, dipentyl carbonate, methyl heptyl carbonate, ethyl heptyl carbonate, diheptyl carbonate, methyl hexyl carbonate, ethyl hexyl carbonate, dihexyl carbonate, methyl octyl carbonate, ethyl octyl carbonate, dioctyl carbonate, and methyltrifluoroethyl carbonate. These chain carbonates may be used in combination of two or more.
 鎖状カルボン酸エステルとして具体的には、ピバリン酸メチルなどが挙げられる。
 鎖状エーテルとして具体的には、ジメトキシエタンなどが挙げられる。
 鎖状のリン酸エステルとして具体的には、リン酸トリメチルなどが挙げられる。
Specific examples of the chain carboxylic acid ester include methyl pivalate.
Specific examples of the chain ether include dimethoxyethane.
Specific examples of the chain phosphate ester include trimethyl phosphate.
 前記鎖状の非プロトン性溶媒は、電池の安全性向上のために溶媒の引火点の向上を志向するために、混合することができる。例えば、鎖状カーボネート、鎖状カルボン酸エステル、鎖状リン酸エステルが例示され、特に、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、ジブチルカーボネート、ジヘプチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート、メチルブチルカーボネート、メチルヘプチルカーボネートなどの鎖状カーボネートが好ましい。 The chain aprotic solvent can be mixed in order to improve the flash point of the solvent in order to improve the safety of the battery. Examples include chain carbonates, chain carboxylates, and chain phosphates. Particularly, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, dibutyl carbonate, diheptyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl butyl. Chain carbonates such as carbonate and methyl heptyl carbonate are preferred.
-溶媒の組み合わせ-
 本発明における非水溶媒は、1種類でも複数種類を混合して用いてもよい。また、環状の非プロトン性溶媒のみを1種類又は複数種類用いても、鎖状の非プロトン性溶媒のみを1種類又は複数種類用いても、又は環状の非プロトン性溶媒及び鎖状のプロトン性溶媒を混合して用いてもよい。
 これらの中でも、電池の負荷特性、低温特性の向上を特に意図した場合は、非水溶媒を環状の非プロトン性溶媒と鎖状の非プロトン性溶媒の組み合わせにすることが望ましい。さらに、電解液の電気化学的安定性から、環状の非プロトン性溶媒には環状カーボネートを、鎖状の非プロトン性溶媒には鎖状カーボネートを適用することが最も好ましい。また、環状カルボン酸エステルと環状カーボネート及び/又は鎖状カーボネートの組み合わせによっても電池の充放電特性に関わる電解液の伝導度を高めることができる。
-Combination of solvents-
The non-aqueous solvent in the present invention may be used alone or in combination. Further, only one or more types of cyclic aprotic solvents may be used, or only one or more types of chain aprotic solvents may be used, or cyclic aprotic solvents and chain proticity may be used. You may mix and use a solvent.
Among these, when it is particularly intended to improve the load characteristics and low temperature characteristics of the battery, it is desirable that the non-aqueous solvent is a combination of a cyclic aprotic solvent and a chain aprotic solvent. Furthermore, in view of the electrochemical stability of the electrolytic solution, it is most preferable to apply a cyclic carbonate to the cyclic aprotic solvent and a chain carbonate to the chain aprotic solvent. Further, the conductivity of the electrolytic solution related to the charge / discharge characteristics of the battery can be increased by a combination of the cyclic carboxylic acid ester and the cyclic carbonate and / or the chain carbonate.
 環状カーボネートと鎖状カーボネートの組み合わせとして、具体的には、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとジエチルカーボネート、プロピレンカーボネートとジメチルカーボネート、プロピレンカーボネートとメチルエチルカーボネート、プロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネートなどが挙げられる。 As a combination of cyclic carbonate and chain carbonate, specifically, ethylene carbonate and dimethyl carbonate, ethylene carbonate and methyl ethyl carbonate, ethylene carbonate and diethyl carbonate, propylene carbonate and dimethyl carbonate, propylene carbonate and methyl ethyl carbonate, propylene carbonate and Diethyl carbonate, ethylene carbonate and propylene carbonate and methyl ethyl carbonate, ethylene carbonate and propylene carbonate and diethyl carbonate, ethylene carbonate and dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate and dimethyl carbonate and diethyl carbonate, ethylene carbonate and methyl ethyl carbonate And diethyl carbonate, ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate and diethyl carbonate, ethylene carbonate, propylene carbonate and methyl ethyl Examples include carbonate and diethyl carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate.
 環状カーボネートと鎖状カーボネートの混合割合は、質量比で表して、環状カーボネート:鎖状カーボネートが、5:95~80~20、さらに好ましくは10:90~70:30、特に好ましくは15:85~55:45である。このような比率にすることによって、電解液の粘度上昇を抑制し、電解質の解離度を高めることができるため、電池の充放電特性に関わる電解液の伝導度を高めることができる。また、電解質の溶解度をさらに高めることができる。よって、常温又は低温での電気伝導性に優れた電解液とすることができるため、常温から低温での電池の負荷特性を改善することができる。 The mixing ratio of the cyclic carbonate and the chain carbonate is expressed as a mass ratio, and cyclic carbonate: chain carbonate is 5:95 to 80 to 20, more preferably 10:90 to 70:30, and particularly preferably 15:85. ~ 55: 45. By setting it as such a ratio, since the raise of the viscosity of electrolyte solution can be suppressed and the dissociation degree of electrolyte can be raised, the conductivity of the electrolyte solution in connection with the charge / discharge characteristic of a battery can be raised. In addition, the solubility of the electrolyte can be further increased. Therefore, since it can be set as the electrolyte solution excellent in the electrical conductivity in normal temperature or low temperature, the load characteristic of the battery from normal temperature to low temperature can be improved.
-その他の溶媒-
 本発明に係る非水電解液は、非水溶媒として、上記以外の他の溶媒を含んでいてもよい。他の溶媒としては、具体的には、ジメチルホルムアミドなどのアミド、メチル-N,N-ジメチルカーバメートなどの鎖状カーバメート、N-メチルピロリドンなどの環状アミド、N,N-ジメチルイミダゾリジノンなどの環状ウレア、ほう酸トリメチル、ほう酸トリエチル、ほう酸トリブチル、ほう酸トリオクチル、ほう酸トリメチルシリル等のホウ素化合物、及び下記の一般式で表されるポリエチレングリコール誘導体などを挙げることができる。
 HO(CHCHO)
 HO[CHCH(CH)O]
 CHO(CHCHO)
 CHO[CHCH(CH)O]
 CHO(CHCHO)CH
 CHO[CHCH(CH)O]CH
 C19PhO(CHCHO)[CH(CH)O]CH
 (Phはフェニル基)
 CHO[CHCH(CH)O]CO[OCH(CH)CHOCH
-Other solvents-
The nonaqueous electrolytic solution according to the present invention may contain a solvent other than the above as a nonaqueous solvent. Specific examples of other solvents include amides such as dimethylformamide, chain carbamates such as methyl-N, N-dimethylcarbamate, cyclic amides such as N-methylpyrrolidone, N, N-dimethylimidazolidinone, and the like. Examples thereof include boron compounds such as cyclic urea, trimethyl borate, triethyl borate, tributyl borate, trioctyl borate, trimethylsilyl borate, and polyethylene glycol derivatives represented by the following general formula.
HO (CH 2 CH 2 O) a H
HO [CH 2 CH (CH 3 ) O] b H
CH 3 O (CH 2 CH 2 O) c H
CH 3 O [CH 2 CH (CH 3 ) O] d H
CH 3 O (CH 2 CH 2 O) e CH 3
CH 3 O [CH 2 CH (CH 3 ) O] f CH 3
C 9 H 19 PhO (CH 2 CH 2 O) g [CH (CH 3) O] h CH 3
(Ph is a phenyl group)
CH 3 O [CH 2 CH (CH 3 ) O] i CO [OCH (CH 3 ) CH 2 ] j OCH 3
 前記式中、a~fは、5~250の整数、g~jは2~249の整数、5≦g+h≦250、5≦i+j≦250である。 In the above formula, a to f are integers of 5 to 250, g to j are integers of 2 to 249, 5 ≦ g + h ≦ 250, and 5 ≦ i + j ≦ 250.
(電解質)
 本発明の非水電解液は、電解質を含有する。
 前記電解質としては、種々公知の電解質を使用することができ、通常、非水電解液用電解質として使用されているものであれば、いずれをも使用することができる。電解質は、1種単独で用いてもよいし、2種以上を併用してもよい。
 電解質の具体例としては、(CNPF、(CNBF、(CNClO、(CNAsF、(CSiF、(CNOSO(2k+1)(k=1~8の整数)、(CNPF[C(2k+1)(6-n)(n=1~5、k=1~8の整数)などのテトラアルキルアンモニウム塩、LiPF、LiBF、LiClO、LiAsF、LiSiF、LiOSO(2k+1)(k=1~8の整数)、LiPF[C(2k+1)(6-n) (n=1~5、k=1~8の整数)などのリチウム塩が挙げられる。また、次の一般式で表されるリチウム塩も使用することができる。
(Electrolytes)
The nonaqueous electrolytic solution of the present invention contains an electrolyte.
Various known electrolytes can be used as the electrolyte, and any electrolyte can be used as long as it is normally used as an electrolyte for a non-aqueous electrolyte. The electrolyte may be used alone or in combination of two or more.
Specific examples of the electrolyte include (C 2 H 5 ) 4 NPF 6 , (C 2 H 5 ) 4 NBF 4 , (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NAsF 6 , (C 2 H 5 ) 4 N 2 SiF 6 , (C 2 H 5 ) 4 NOSO 2 C k F (2k + 1) (k = 1 to 8), (C 2 H 5 ) 4 NPF n [C k F (2k + 1) ] (6-n) Tetraalkylammonium salts such as (n = 1 to 5, k = 1 to 8), LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , Li 2 SiF 6 , LiOSO 2 C k F And lithium salts such as (2k + 1) (k = 1 to 8), LiPF n [C k F (2k + 1) ] (6-n) (n = 1 to 5, k = 1 to 8) . Moreover, the lithium salt represented by the following general formula can also be used.
 LiC(SO)(SO)(SO)、LiN(SOOR10)(SOOR11)、LiN(SO12)(SO13)(ここでR~R13は互いに同一でも異なっていてもよく、炭素数1~8のパーフルオロアルキル基である)。これらの電解質は単独で使用してもよく、また2種類以上を混合してもよい。 LiC (SO 2 R 7 ) (SO 2 R 8 ) (SO 2 R 9 ), LiN (SO 2 OR 10 ) (SO 2 OR 11 ), LiN (SO 2 R 12 ) (SO 2 R 13 ) (where R 7 to R 13 may be the same as or different from each other, and are perfluoroalkyl groups having 1 to 8 carbon atoms). These electrolytes may be used alone or in combination of two or more.
 これらのうち、特にリチウム塩が望ましく、さらには、LiPF、LiBF、LiOSO(2k+1)(k=1~8の整数)、LiClO、LiAsF、LiNSO[C(2k+1)(k=1~8の整数)、LiPF[C(2k+1)(6-n)(n=1~5、k=1~8の整数)が好ましい。 Of these, lithium salts are particularly desirable. Furthermore, LiPF 6 , LiBF 4 , LiOSO 2 C k F (2k + 1) (k = 1 to 8), LiClO 4 , LiAsF 6 , LiNSO 2 [C k F ( 2k + 1) ] 2 (k = 1 to 8), LiPF n [C k F (2k + 1) ] (6-n) (n = 1 to 5, k = 1 to 8).
 本発明における電解質は、通常は、非水電解質中に0.1モル/リットル~3モル/リットル、好ましくは0.5モル/リットル~2モル/リットルの濃度で含むことが好ましい。 The electrolyte in the present invention is usually preferably contained in the nonaqueous electrolyte at a concentration of 0.1 mol / liter to 3 mol / liter, preferably 0.5 mol / liter to 2 mol / liter.
 本発明の非水電解液において、非水溶媒として、γ-ブチロラクトンなどの環状カルボン酸エステルを併用する場合には、特にLiPFを含有することが望ましい。LiPFは、解離度が高いため、電解液の伝導度を高めることができ、さらに負極上での電解液の還元分解反応を抑制する作用がある。LiPFは単独で使用してもよいし、LiPFとそれ以外の電解質を使用してもよい。それ以外の電解質としては、通常、非水電解液用電解質として使用されるものであれば、いずれも使用することができるが、前述のリチウム塩の具体例のうちLiPF以外のリチウム塩が好ましい。
 具体例としては、LiPFとLiBF、LiPFとLiN[SO(2k+1)(k=1~8の整数)、LiPFとLiBFとLiN[SO(2k+1)](k=1~8の整数)などが例示される。
In the nonaqueous electrolytic solution of the present invention, when a cyclic carboxylic acid ester such as γ-butyrolactone is used in combination as the nonaqueous solvent, it is particularly desirable to contain LiPF 6 . Since LiPF 6 has a high degree of dissociation, the conductivity of the electrolytic solution can be increased, and the reductive decomposition reaction of the electrolytic solution on the negative electrode can be suppressed. LiPF 6 may be used alone, or LiPF 6 and other electrolytes may be used. Any other electrolyte can be used as long as it is normally used as an electrolyte for a non-aqueous electrolyte, but lithium salts other than LiPF 6 are preferred among the specific examples of the lithium salts described above. .
Specific examples include LiPF 6 and LiBF 4 , LiPF 6 and LiN [SO 2 C k F (2k + 1) ] 2 (k = 1 to 8), LiPF 6 and LiBF 4 and LiN [SO 2 C k F ( 2k + 1) ] (k = 1 to 8).
 リチウム塩中に占めるLiPFの比率は、1質量%~100質量%、好ましくは10質量%~100質量%、さらに好ましくは50質量%~100質量%が望ましい。このような電解質は、0.1モル/リットル~3モル/リットル、好ましくは0.5モル/リットル~2モル/リットルの濃度で非水電解液中に含まれることが好ましい。 The ratio of LiPF 6 in the lithium salt is 1% by mass to 100% by mass, preferably 10% by mass to 100% by mass, and more preferably 50% by mass to 100% by mass. Such an electrolyte is preferably contained in the non-aqueous electrolyte at a concentration of 0.1 mol / liter to 3 mol / liter, preferably 0.5 mol / liter to 2 mol / liter.
 本発明の非水電解液は、リチウム二次電池用の非水電解液として好適であるばかりでなく、一次電池用の非水電解液、電気化学キャパシタ用の非水電解液、電気二重層キャパシタ、アルミ電解コンデンサー用の電解液としても用いることができる。 The non-aqueous electrolyte of the present invention is not only suitable as a non-aqueous electrolyte for a lithium secondary battery, but also a non-aqueous electrolyte for a primary battery, a non-aqueous electrolyte for an electrochemical capacitor, and an electric double layer capacitor. It can also be used as an electrolytic solution for aluminum electrolytic capacitors.
<リチウム二次電池用添加剤>
 本発明のリチウム二次電池用添加剤は、前記一般式(I)で表される化合物を含む。
 本発明のリチウム二次電池用添加剤は、リチウム二次電池の非水電解液に添加する添加剤として用いたときに、電池抵抗の増大を抑制し、電池の高温環境下における保存特性を改善する。従って、本発明のリチウム二次電池用添加剤を含む非水電解液を用いることで、リチウム二次電池の長寿命化が実現される。
<Additive for lithium secondary battery>
The additive for lithium secondary batteries of this invention contains the compound represented by the said general formula (I).
The additive for a lithium secondary battery of the present invention suppresses an increase in battery resistance when used as an additive to be added to a non-aqueous electrolyte of a lithium secondary battery, and improves the storage characteristics of the battery in a high temperature environment. To do. Therefore, the lifetime of the lithium secondary battery can be extended by using the nonaqueous electrolytic solution containing the additive for lithium secondary battery of the present invention.
 本発明のリチウム二次電池用添加剤は、前記一般式(I)で表される化合物単体であってもよいし、必要に応じ、一般式(I)で表される化合物以外のその他の成分を含んでいてもよい。
 その他の成分としては、例えば、上記効果をより効果的に得る観点より、前記一般式(II)で表される化合物、前記一般式(III)で表される化合物、及び前記一般式(IV)で表される化合物からなる群から選ばれる少なくとも1種を用いることができる。
The additive for a lithium secondary battery of the present invention may be a single compound represented by the above general formula (I) or, if necessary, other components other than the compound represented by the general formula (I) May be included.
As other components, for example, from the viewpoint of obtaining the above effect more effectively, the compound represented by the general formula (II), the compound represented by the general formula (III), and the general formula (IV) At least one selected from the group consisting of compounds represented by
<リチウム二次電池>
 本発明のリチウム二次電池は、負極と、正極と、前記の非水電解液とを基本的に含んで構成されており、通常、負極と正極との間にセパレータが設けられている。
<Lithium secondary battery>
The lithium secondary battery of the present invention basically includes a negative electrode, a positive electrode, and the non-aqueous electrolyte, and a separator is usually provided between the negative electrode and the positive electrode.
(負極)
 前記負極を構成する負極活物質としては、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属、リチウムとの合金化が可能な合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープ可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料から選ばれる少なくとも1種を用いることができる。リチウムイオンとの合金化が可能な金属もしくは合金としては、シリコン、シリコン合金、スズ、スズ合金などを挙げることができる。
 負極活物質としては、これらの中でもリチウムイオンをドープ・脱ドープすることが可能な炭素材料が好ましい。
 このような炭素材料は、カーボンブラック、活性炭、黒鉛材料(例えば、人造黒鉛、天然黒鉛等)、非晶質炭素材料、等が挙げられる。
 また、前記炭素材料の形態は、繊維状、球状、ポテト状、フレーク状いずれの形態であってもよい。
(Negative electrode)
Examples of the negative electrode active material constituting the negative electrode include metallic lithium, lithium-containing alloys, metals that can be alloyed with lithium, alloys that can be alloyed with lithium, and oxides that can be doped / undoped with lithium ions. Further, at least one selected from transition metal nitrides capable of being doped / undoped with lithium ions and carbon materials capable of being doped / undoped with lithium ions can be used. Examples of metals or alloys that can be alloyed with lithium ions include silicon, silicon alloys, tin, and tin alloys.
Among these, a carbon material that can be doped / undoped with lithium ions is preferable as the negative electrode active material.
Examples of such carbon materials include carbon black, activated carbon, graphite materials (for example, artificial graphite, natural graphite, etc.), amorphous carbon materials, and the like.
Moreover, the form of the carbon material may be any of a fibrous form, a spherical form, a potato form, and a flake form.
 前記非晶質炭素材料として具体的には、ハードカーボン、コークス、1500℃以下に焼成したメソカーボンマイクロビーズ(MCMB)、メソペーズビッチカーボンファイバー(MCF)などが例示される。
 また、前記黒鉛材料としては、天然黒鉛、人造黒鉛などが例示される。
 前記人造黒鉛としては、黒鉛化MCMB、黒鉛化MCFなどが用いられる。また、黒鉛材料としては、ホウ素を含有する黒鉛材料なども用いることができる。
 また、前記炭素材料としては、金、白金、銀、銅、スズなどの金属で被覆した黒鉛材料や、非晶質炭素で被覆した黒鉛材料、を用いることもできる。
 また、前記炭素材料としては、非晶質炭素材料と黒鉛材料との混合物も使用することができる。
Specific examples of the amorphous carbon material include hard carbon, coke, mesocarbon microbeads (MCMB) fired at 1500 ° C. or less, and mesopause bitch carbon fiber (MCF).
Examples of the graphite material include natural graphite and artificial graphite.
As the artificial graphite, graphitized MCMB, graphitized MCF, or the like is used. Further, as the graphite material, a graphite material containing boron can be used.
In addition, as the carbon material, a graphite material coated with a metal such as gold, platinum, silver, copper, or tin, or a graphite material coated with amorphous carbon can be used.
As the carbon material, a mixture of an amorphous carbon material and a graphite material can also be used.
 これらの炭素材料は、1種類で使用してもよく、2種類以上混合して使用してもよい。炭素材料としては、特にX線解析で測定した(002)面の面間隔d(002)が0.340nm以下の炭素材料が好ましく、真密度が1.70g/cm以上である黒鉛又はそれに近い性質を有する高結晶性炭素材料が好ましい。このような炭素材料を使用すると、電池のエネルギー密度を高くすることができる。 These carbon materials may be used alone or in combination of two or more. The carbon material is particularly preferably a carbon material having a (002) plane spacing d (002) of 0.340 nm or less as measured by X-ray analysis, and a true density of 1.70 g / cm 3 or more or close to it. A highly crystalline carbon material having properties is preferred. When such a carbon material is used, the energy density of the battery can be increased.
(正極)
 本発明における正極を構成する正極活物質としては、電気化学的にリチウムイオンをドープ・脱ドープ可能な遷移金属を含有する物質であり、当該遷移金属の少なくとも一部としてマンガンを含有する物質が用いられる。マンガンは安価で入手が容易であり、かつ安全性が高いことから、正極活物質として好ましい。
 本発明における正極活物質は、含有される遷移金属のうち35モル%以上がマンガンである複合酸化物であることが好ましい。
 前記遷移金属中におけるマンガンの含有率は、さらに好ましくは50モル%以上、最も好ましくは80モル以上である。このように正極活物質中の遷移金属に占めるマンガンの割合が多い場合には、経済的に低コストである点で好ましい。
 さらに前記複合酸化物はリチウムを含有することが好ましい。さらに、前記複合酸化物としては、リチウムとマンガンを含有する複合酸化物がより好ましい。
(Positive electrode)
The positive electrode active material constituting the positive electrode in the present invention is a substance containing a transition metal that can be electrochemically doped / undoped with lithium ions, and a substance containing manganese as at least a part of the transition metal is used. It is done. Manganese is preferable as a positive electrode active material because it is inexpensive, easily available, and highly safe.
The positive electrode active material in the present invention is preferably a composite oxide in which 35 mol% or more of the contained transition metal is manganese.
The content of manganese in the transition metal is more preferably 50 mol% or more, and most preferably 80 mol or more. Thus, when there are many ratios of manganese to the transition metal in a positive electrode active material, it is preferable at the point which is economically low-cost.
Further, the composite oxide preferably contains lithium. Furthermore, the composite oxide is more preferably a composite oxide containing lithium and manganese.
 上記のマンガンを含有する正極活物質に特に制限はないが、例えば、下記の組成式(V)で表される複合酸化物が好ましい。
        LiMn(1-y)     組成式(V)
Although there is no restriction | limiting in particular in the positive electrode active material containing said manganese, For example, the complex oxide represented by the following compositional formula (V) is preferable.
Li x Mn (1-y) M 1 y O 2 composition formula (V)
 組成式(V)中、xは0<x≦1.2を満たす数、yは0≦y≦0.65を満たす数、MはNi、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn、及びNbからなる群より選ばれる少なくとも1種の元素を示す。
 組成式(V)において、MはNi、Co、Feであることが特に好ましく、また、xは0.2≦x≦1.15であることが特に好ましく、yは0≦y≦0.5であることが特に好ましく、yは0≦y≦0.2であることが最も好ましい。
In the composition formula (V), x is a number satisfying 0 <x ≦ 1.2, y is a number satisfying 0 ≦ y ≦ 0.65, M 1 is Ni, Co, Al, Fe, Ti, Mg, Cr, At least one element selected from the group consisting of Ga, Cu, Zn, and Nb is shown.
In the composition formula (V), M 1 is particularly preferably Ni, Co, or Fe, x is particularly preferably 0.2 ≦ x ≦ 1.15, and y is 0 ≦ y ≦ 0. 5 is particularly preferable, and y is most preferably 0 ≦ y ≦ 0.2.
 また、上記のマンガンを含有する正極活物質としては、下記の組成式(VI)で表される複合酸化物も好ましい。
        LiMn(2-y)     組成式(VI)
Moreover, as said positive electrode active material containing manganese, the complex oxide represented by the following compositional formula (VI) is also preferable.
Li x Mn (2-y) M 2 y O 4 composition formula (VI)
 組成式(VI)中、xは0<x≦1.2を満たす数、yは0≦y≦1.3を満たす数、MはNi、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn、及びNbからなる群より選ばれる少なくとも1種の元素を示す。
 組成式(VI)において、MはNi、Co、Al、Mgであることが特に好ましく、また、xは0.05≦x≦1.15であることが特に好ましく、yは0≦y≦1であることが特に好ましく、yは0≦y≦0.4であることが最も好ましい。
In the composition formula (VI), x is a number satisfying 0 <x ≦ 1.2, y is a number satisfying 0 ≦ y ≦ 1.3, M 2 is Ni, Co, Al, Fe, Ti, Mg, Cr, At least one element selected from the group consisting of Ga, Cu, Zn, and Nb is shown.
In the composition formula (VI), M 2 is particularly preferably Ni, Co, Al, Mg, x is particularly preferably 0.05 ≦ x ≦ 1.15, and y is 0 ≦ y ≦. 1 is particularly preferable, and y is most preferably 0 ≦ y ≦ 0.4.
 組成式(VI)で表される複合酸化物の具体例としては、例えばLiMn1.8Al0.2、LiMn1.5Ni0.5等を挙げることができる。 Specific examples of the composite oxide represented by the composition formula (VI) include LiMn 1.8 Al 0.2 O 4 and LiMn 1.5 Ni 0.5 O 4 .
 上記の正極活物質は、1種類で使用してもよく、2種類以上を混合して使用してもよい。正極活物質は導電性が不充分である場合には、導電性助剤とともに使用して正極を構成することができる。
 前記導電性助剤としては、カーボンブラック、アモルファスウィスカー、グラファイトなどの炭素材料を例示することができる。
Said positive electrode active material may be used by 1 type, and may mix and use 2 or more types. When the positive electrode active material has insufficient conductivity, it can be used together with a conductive auxiliary agent to constitute a positive electrode.
Examples of the conductive assistant include carbon materials such as carbon black, amorphous whiskers, and graphite.
(セパレータの説明)
 本発明におけるセパレータは、正極と負極を電気的に絶縁し且つリチウムイオンを透過する膜であって、多孔性膜や高分子電解質が例示される。多孔性膜としては微多孔性高分子フィルムが好適に使用され、材質としてポリオレフィン、ポリイミド、ポリフッ化ビニリデン、ポリエステル等が例示される。
 前記多孔性膜としては、特に、多孔性ポリオレフィンが好ましく、具体的には多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィルム、又は多孔性のポリエチレンフィルムとポリプロピレンフィルムとの多層フィルムを例示することができる。多孔性ポリオレフィンフィルム上には、熱安定性に優れる他の樹脂がコーティングされてもよい。
 前記高分子電解質としては、リチウム塩を溶解した高分子や、電解液で膨潤させた高分子等が挙げられる。
 本発明の非水電解液は、高分子を膨潤させて高分子電解質を得る目的で使用してもよい。
(Description of separator)
The separator in the present invention is a film that electrically insulates the positive electrode and the negative electrode and transmits lithium ions, and examples thereof include a porous film and a polymer electrolyte. A microporous polymer film is preferably used as the porous film, and examples of the material include polyolefin, polyimide, polyvinylidene fluoride, and polyester.
As the porous film, porous polyolefin is particularly preferable, and specific examples include a porous polyethylene film, a porous polypropylene film, or a multilayer film of a porous polyethylene film and a polypropylene film. On the porous polyolefin film, other resin excellent in thermal stability may be coated.
Examples of the polymer electrolyte include a polymer in which a lithium salt is dissolved, a polymer swollen with an electrolytic solution, and the like.
The nonaqueous electrolytic solution of the present invention may be used for the purpose of obtaining a polymer electrolyte by swelling a polymer.
(電池の構成)
 本発明のリチウム二次電池は、前記の負極活物質、正極活物質及びセパレータを含む。本発明のリチウム二次電池は、種々公知の形状をとることができ、円筒型、コイン型、角型、フィルム型その他任意の形状に形成することができる。しかし、電池の基本構造は、形状によらず同じであり、目的に応じて設計変更を施すことができる。
(Battery configuration)
The lithium secondary battery of this invention contains the said negative electrode active material, a positive electrode active material, and a separator. The lithium secondary battery of the present invention can take various known shapes, and can be formed into a cylindrical shape, a coin shape, a square shape, a film shape, or any other shape. However, the basic structure of the battery is the same regardless of the shape, and the design can be changed according to the purpose.
 本発明のリチウム二次電池の一例として、図1に示すコイン型電池が挙げられる。
 例えば、図1に示すコイン型電池では、円盤状負極2、非水電解液を注入したセパレータ5、円盤状正極1、必要に応じて、ステンレス、又はアルミニウムなどのスペーサー板7,8が、この順序に積層された状態で、正極缶3と封口板4との間に収容される。正極缶3と封口板4とはガスケット6を介してかしめ密封する。
An example of the lithium secondary battery of the present invention is a coin-type battery shown in FIG.
For example, in the coin-type battery shown in FIG. 1, a disc-shaped negative electrode 2, a separator 5 into which a non-aqueous electrolyte is injected, a disc-shaped positive electrode 1, and spacer plates 7 and 8 such as stainless steel or aluminum, if necessary, It is accommodated between the positive electrode can 3 and the sealing plate 4 in a state of being laminated in order. The positive electrode can 3 and the sealing plate 4 are caulked and sealed via a gasket 6.
 本発明の非水電解液、リチウム二次電池、及びリチウム二次電池用添加剤の用途は特に限定されず、種々公知の用途に用いることができる。例えば、ノートパソコン、モバイルパソコン、携帯電話、ヘッドホンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、電子手帳、電卓、ラジオ、バックアップ電源用途、モーター、自動車、電気自動車、バイク、電動バイク、自転車、電動自転車、照明器具、ゲーム機、時計、電動工具、カメラ等に広く利用可能なものである。 The uses of the non-aqueous electrolyte, lithium secondary battery, and lithium secondary battery additive of the present invention are not particularly limited, and can be used for various known uses. For example, notebook computers, mobile computers, mobile phones, headphone stereos, video movies, LCD TVs, handy cleaners, electronic notebooks, calculators, radios, backup power applications, motors, automobiles, electric cars, motorcycles, electric bikes, bicycles, electric bicycles It can be widely used for lighting equipment, game machines, watches, electric tools, cameras, and the like.
 以下に実施例によって本発明をより具体的に説明するが、本発明はこれら実施例によって制限されるものではない。 Hereinafter, the present invention will be described more specifically by way of examples. However, the present invention is not limited to these examples.
<一般式(I)で表される化合物の合成>
 以下、一般式(I)で表される化合物の合成例を示す。
〔合成例1〕
<3-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸メチル(例示化合物15)の合成>
 N-クロロスクシンイミド(16.02g、0.120mol)およびピリジン(0.6ml, 7.6mmol)をクロロホルム(108ml)に溶かし、室温で、3-ピリジンアルドキシム(14.65g,81.2mmol)を加えた。反応液の温度は上昇するが60℃に保つように加熱し、30分撹拌した。その後、温度を45℃に保ち、アクリル酸メチル(12.91g,0.150mol)、続いてトリエチルアミン(12.74g,0.126mol)を滴下し、45℃で20分撹拌した。反応液をクロロホルム(72ml)で薄め、水(180ml)で2回洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=4/1)にて精製し、例示化合物15(13.50g,収率55%)を得た。例示化合物15のNMR測定の結果を以下に示す。
<Synthesis of Compound Represented by General Formula (I)>
Hereinafter, synthesis examples of the compound represented by the general formula (I) will be shown.
[Synthesis Example 1]
<Synthesis of methyl 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylate (Exemplary Compound 15)>
N-chlorosuccinimide (16.02 g, 0.120 mol) and pyridine (0.6 ml, 7.6 mmol) were dissolved in chloroform (108 ml), and 3-pyridinealdoxime (14.65 g, 81.2 mmol) was dissolved at room temperature. added. Although the temperature of the reaction liquid rose, it was heated to maintain 60 ° C. and stirred for 30 minutes. Thereafter, the temperature was kept at 45 ° C., methyl acrylate (12.91 g, 0.150 mol) was added dropwise, followed by triethylamine (12.74 g, 0.126 mol), and the mixture was stirred at 45 ° C. for 20 minutes. The reaction mixture was diluted with chloroform (72 ml), washed twice with water (180 ml), dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel chromatography (eluent: hexane / ethyl acetate = 4/1) to give Exemplary Compound 15 (13.50 g, yield 55%). The results of NMR measurement of Exemplary Compound 15 are shown below.
H-NMR(270MHz,CDCl)δ(ppm): 8.84 (1H, d, J=2.3), 8.68 (1H, dd, J=2.0, 4.6), 8.07 (1H, dt, J=2.0, 7.9), 7.35 (1H, dd, J=7.9, 4.6), 5.25 (1H, dd, J=7.9, 10.6), 3.84 (3H,s), 3.74-3.60 (2H, m) 1 H-NMR (270 MHz, CDCl 3 ) δ (ppm): 8.84 (1H, d, J = 2.3), 8.68 (1H, dd, J = 2.0, 4.6), 8 .07 (1H, dt, J = 2.0, 7.9), 7.35 (1H, dd, J = 7.9, 4.6), 5.25 (1H, dd, J = 7.9) , 10.6), 3.84 (3H, s), 3.74-3.60 (2H, m)
〔合成例2〕
<3-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸(例示化合物14)の合成>
 上記で得た、3-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸メチル(8.45g,41mmol)をメタノール(45ml)に溶かし、30℃で、1規定NaOH水溶液(45ml,45mmol)を加え30分撹拌した。室温で1規定塩酸水溶液(45ml,45mmol)を加え中和した後、反応液を減圧下濃縮した。残渣に水を加え52.5gとし、80℃に加熱後、15℃まで徐々に冷却した。スラリー状の生成物をろ別し、固体を水(8ml)で2回洗浄後、減圧下乾燥し、淡黄色結晶として例示化合物14(5.70g、収率72%)を得た。例示化合物14のNMR測定の結果を以下に示す。
[Synthesis Example 2]
<Synthesis of 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylic acid (Exemplary Compound 14)>
The methyl 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylate (8.45 g, 41 mmol) obtained above was dissolved in methanol (45 ml), and 1N NaOH was added at 30 ° C. Aqueous solution (45 ml, 45 mmol) was added and stirred for 30 minutes. After neutralizing with 1N aqueous hydrochloric acid (45 ml, 45 mmol) at room temperature, the reaction mixture was concentrated under reduced pressure. Water was added to the residue to make 52.5 g, heated to 80 ° C., and then gradually cooled to 15 ° C. The slurry-like product was filtered off, and the solid was washed twice with water (8 ml) and then dried under reduced pressure to give Exemplified Compound 14 (5.70 g, yield 72%) as pale yellow crystals. The results of NMR measurement of Exemplified Compound 14 are shown below.
H-NMR(270MHz,CDCl)δ(ppm): 13.20 (1H, brd.s), 8.88 (1H, d, J=2.0), 8.66 (1H, dd, J=1.6, 4.9), 8.10 (1H, dt, J=7.9, 2.0), 7.50 (1H, dd, J=7.9, 4.6), 5.23 (1H,dd, J=11.5, 7.2), 3.78 (1H,dd, J=17.5, 11.5), 3.67 (1H, dd,J=17.5, 6.9) 1 H-NMR (270 MHz, CDCl 3 ) δ (ppm): 13.20 (1H, brd.s), 8.88 (1H, d, J = 2.0), 8.66 (1H, dd, J = 1.6, 4.9), 8.10 (1H, dt, J = 7.9, 2.0), 7.50 (1H, dd, J = 7.9, 4.6), 5. 23 (1H, dd, J = 11.5, 7.2), 3.78 (1H, dd, J = 17.5, 11.5), 3.67 (1H, dd, J = 17.5, 6.9)
〔合成例3〕
<3-(ピリジン-2-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸メチル(例示化合物2)の合成>
 合成例1において、3-ピリジンアルドキシムを2-ピリジンアルドキシムに変更したこと以外は合成例1と同様の方法により、例示化合物2(6.24g、76%)を得た。例示化合物2のNMR測定の結果を以下に示す。
[Synthesis Example 3]
<Synthesis of methyl 3- (pyridin-2-yl) -4,5-dihydroisoxazole-5-carboxylate (Exemplary Compound 2)>
Exemplified compound 2 (6.24 g, 76%) was obtained in the same manner as in Synthesis Example 1, except that 3-pyridinealdoxime was changed to 2-pyridinealdoxime in Synthesis Example 1. The results of NMR measurement of Example Compound 2 are shown below.
H-NMR(270MHz,CDCl)δ(ppm): 8.62-8.60 (1H, m), 8.03 (1H, dt, J=2.3, 1.4), 7.74 (1H, td, J=7.9, 1.6), 7.35-7.28 (1H, m), 5.23 (1H, dd, J=10.2, 8.9), 3.82 (3H, s), 3.84-3.78 (2H, m) 1 H-NMR (270 MHz, CDCl 3 ) δ (ppm): 8.62-8.60 (1H, m), 8.03 (1H, dt, J = 2.3, 1.4), 7.74 (1H, td, J = 7.9, 1.6), 7.35-7.28 (1H, m), 5.23 (1H, dd, J = 10.2, 8.9), 82 (3H, s), 3.84-3.78 (2H, m)
〔合成例4〕
<3-(ピリジン-2-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸(例示化合物1)の合成>
 合成例2において、3-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸メチルを3-(ピリジン-2-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸メチルに変更したこと以外は合成例2と同様の方法により、例示化合物1(4.47g、78%)を得た。例示化合物1のNMR測定の結果を以下に示す。
[Synthesis Example 4]
<Synthesis of 3- (pyridin-2-yl) -4,5-dihydroisoxazole-5-carboxylic acid (Exemplary Compound 1)>
In Synthesis Example 2, methyl 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylate was converted to 3- (pyridin-2-yl) -4,5-dihydroisoxazole-5-carboxylate. Exemplified Compound 1 (4.47 g, 78%) was obtained in the same manner as in Synthesis Example 2 except that the acid was changed to methyl acid. The results of NMR measurement of Exemplary Compound 1 are shown below.
H-NMR(270MHz,CDCl)δ(ppm): 13.26 (1H, brd.s), 8.66 (1H, dt,J=4.9, 1.3), 7.96-7.86 (2H, m), 7.51-7.46 (1H, m), 5.23 (1H, dd, J=11.9, 6.9), 3.77 (1H, dd, 17.8, 11.9), 3.61 (1H, dd, J=17.8, 6.9) 1 H-NMR (270 MHz, CDCl 3 ) δ (ppm): 13.26 (1H, brd.s), 8.66 (1H, dt, J = 4.9, 1.3), 7.96-7 .86 (2H, m), 7.51-7.46 (1H, m), 5.23 (1H, dd, J = 11.9, 6.9), 3.77 (1H, dd, 17. 8, 11.9), 3.61 (1H, dd, J = 17.8, 6.9)
〔合成例5〕
<3-(ピリジン-2-イル)-4,5-ジヒドロイソオキサゾール-5-カルボニトリル(例示化合物3)の合成>
 合成例1において、3-ピリジンアルドキシムを2-ピリジンアルドキシムに、アクリル酸メチルをアクリロニトリルに変更したこと以外は合成例1と同様の方法により、例示化合物3(5.15g、74%)を得た。例示化合物3のNMR測定の結果を以下に示す。
[Synthesis Example 5]
<Synthesis of 3- (pyridin-2-yl) -4,5-dihydroisoxazole-5-carbonitrile (Exemplary Compound 3)>
Exemplified Compound 3 (5.15 g, 74%) was synthesized in the same manner as in Synthesis Example 1 except that 3-pyridinealdoxime was changed to 2-pyridinealdoxime and methyl acrylate was changed to acrylonitrile in Synthesis Example 1. Obtained. The results of NMR measurement of Exemplary Compound 3 are shown below.
H-NMR(270MHz,CDCl)δ(ppm): 8.63 (1H, dd, J=4.9, 1.0), 8.04-8.01 (1H, m), 7.78 (1H, dt, J=1.6, 7.9), 7.39-7.35 (1H, m), 5.40 (1H, dd, J=9.9, 7.2), 4.02-3.85 (2H, m)  1 H-NMR (270 MHz, CDCl 3 ) δ (ppm): 8.63 (1H, dd, J = 4.9, 1.0), 8.04-8.01 (1H, m), 7.78 (1H, dt, J = 1.6, 7.9), 7.39-7.35 (1H, m), 5.40 (1H, dd, J = 9.9, 7.2), 4. 02-3.85 (2H, m)
〔合成例6〕
<3-メチル-5-(ピリジン-2-イル)-4,5-ジヒドロイソオキサゾール(例示化合物28)の合成>
 合成例1において、3-ピリジンアルドキシムをアセトアルドキシムに、アクリル酸メチルを2-ビニルピリジンに変更したこと以外は合成例1と同様の方法により、例示化合物28(4.48g、55%)を得た。例示化合物28のNMR測定の結果を以下に示す。
[Synthesis Example 6]
<Synthesis of 3-methyl-5- (pyridin-2-yl) -4,5-dihydroisoxazole (Exemplary Compound 28)>
Exemplified compound 28 (4.48 g, 55%) was synthesized in the same manner as in Synthesis Example 1 except that 3-pyridinealdoxime was changed to acetoaldoxime and methyl acrylate was changed to 2-vinylpyridine in Synthesis Example 1. Got. The results of NMR measurement of Exemplary Compound 28 are shown below.
H-NMR(270MHz,CDCl)δ(ppm): 8.57 (1H, ddd, J=4.9, 1.6, 1.0), 7.71 (1H, dt, J=1.6, 7.6), 7.52 (1H, d, J=7.9), 7.24-7.19 (1H, m), 5.65 (1H, dd, J=10.9, 6.6), 3.49-3.38 (1H, m), 3.25 (1H, ddd, J=17.1, 6.9, 1.0), 2.02 (3H, d, 1.0) 1 H-NMR (270 MHz, CDCl 3 ) δ (ppm): 8.57 (1H, ddd, J = 4.9, 1.6, 1.0), 7.71 (1H, dt, J = 1. 6, 7.6), 7.52 (1H, d, J = 7.9), 7.24-7.19 (1H, m), 5.65 (1H, dd, J = 10.9, 6 .6), 3.49-3.38 (1H, m), 3.25 (1H, ddd, J = 17.1, 6.9, 1.0), 2.02 (3H, d, 1. 0)
〔合成例7〕
<3-メチル-5-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール(例示化合物31)の合成>
 合成例1において、3-ピリジンアルドキシムをアセトアルドキシムに、アクリル酸メチルを3-ビニルピリジンに変更したこと以外は合成例1と同様の方法により、例示化合物31(4.14g、64%)を得た。例示化合物31のNMR測定の結果を以下に示す。
[Synthesis Example 7]
<Synthesis of 3-methyl-5- (pyridin-3-yl) -4,5-dihydroisoxazole (Exemplary Compound 31)>
Exemplified compound 31 (4.14 g, 64%) was prepared in the same manner as in Synthesis Example 1 except that 3-pyridinealdoxime was changed to acetoaldoxime and methyl acrylate was changed to 3-vinylpyridine in Synthesis Example 1. Got. The results of NMR measurement of Exemplary Compound 31 are shown below.
H-NMR(270MHz,CDCl)δ(ppm): 8.58-8.55 (2H, m), 7.69 (1H, dt, J=7.9, 2.0), 7.30 (1H, ddd, 7.9, 4.9, 0.7), 5.59 (1H, dd, J=10.6, 7.9), 3.49-3.38 (1H, m), 2.96-2.86 (1H, m), 2.04 (3H, d, J=1.0) 1 H-NMR (270 MHz, CDCl 3 ) δ (ppm): 8.58-8.55 (2H, m), 7.69 (1H, dt, J = 7.9, 2.0), 7.30 (1H, ddd, 7.9, 4.9, 0.7), 5.59 (1H, dd, J = 10.6, 7.9), 3.49-3.38 (1H, m), 2.96-2.86 (1H, m), 2.04 (3H, d, J = 1.0)
〔合成例8〕
<5-メチル-3-(ピリジン-2-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸メチル(例示化合物8)の合成>
 合成例1において、3-ピリジンアルドキシムを2-ピリジンアルドキシムに、アクリル酸メチルをメタクリル酸メチルに変更したこと以外は合成例1と同様の方法により、例示化合物8(7.39g、84%)を得た。例示化合物8のNMR測定の結果を以下に示す。
[Synthesis Example 8]
<Synthesis of methyl 5-methyl-3- (pyridin-2-yl) -4,5-dihydroisoxazole-5-carboxylate (Exemplary Compound 8)>
In the same manner as in Synthesis Example 1 except that 3-pyridinealdoxime was changed to 2-pyridinealdoxime and methyl acrylate was changed to methyl methacrylate in Synthesis Example 1, Exemplified Compound 8 (7.39 g, 84% ) The results of NMR measurement of Exemplified Compound 8 are shown below.
H-NMR(270MHz,CDCl)δ(ppm): 8.60 (1H, ddd, J=4.9, 1.6, 1.0), 8.01 (1H, d, J=7.9), 7.73 (1H, dt, J=1.6, 7.6), 7.32-7.28 (1H, m), 4.00 (1H, d, J=17.8), 3.81 (3H, s), 3.40 (1H, d, J=17.8), 1.73 (3H, s) 1 H-NMR (270 MHz, CDCl 3 ) δ (ppm): 8.60 (1H, ddd, J = 4.9, 1.6, 1.0), 8.01 (1H, d, J = 7. 9), 7.73 (1H, dt, J = 1.6, 7.6), 7.32-7.28 (1H, m), 4.00 (1H, d, J = 17.8), 3.81 (3H, s), 3.40 (1H, d, J = 17.8), 1.73 (3H, s)
〔合成例9〕
<5-フェニル-3-(ピリジン-2-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸メチル(例示化合物11)の合成>
 合成例1において、3-ピリジンアルドキシムを2-ピリジンアルドキシムに、アクリル酸メチルをスチレンに変更したこと以外は合成例1と同様の方法により、例示化合物11(2.34g、52%)を得た。例示化合物11のNMR測定の結果を以下に示す。
[Synthesis Example 9]
<Synthesis of methyl 5-phenyl-3- (pyridin-2-yl) -4,5-dihydroisoxazole-5-carboxylate (Exemplary Compound 11)>
Exemplified compound 11 (2.34 g, 52%) was synthesized in the same manner as in Synthesis Example 1 except that 3-pyridinealdoxime was changed to 2-pyridinealdoxime and methyl acrylate was changed to styrene in Synthesis Example 1. Obtained. The result of NMR measurement of Exemplified Compound 11 is shown below.
H-NMR(270MHz,CDCl)δ(ppm): 8.59 (1H, ddd, J=4.9, 2.0, 1.0), 8.07 (1H, dt, J=7.9, 1.0), 7.73 (1H, dt, J=1.6, 7.6), 7.43-7.26 (6H, m), 5.79 (1H, dd, J=11.2, 8.2), 3.93 (1H, dd, J=17.5, 10.9), 3.53 (1H, dd, J=17.5, 8.6) 1 H-NMR (270 MHz, CDCl 3 ) δ (ppm): 8.59 (1H, ddd, J = 4.9, 2.0, 1.0), 8.07 (1H, dt, J = 7. 9, 1.0), 7.73 (1H, dt, J = 1.6, 7.6), 7.43-7.26 (6H, m), 5.79 (1H, dd, J = 11 .2, 8.2), 3.93 (1H, dd, J = 17.5, 10.9), 3.53 (1H, dd, J = 17.5, 8.6)
〔合成例10〕
<5-ブトキシ-3-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール(例示化合物16)の合成>
 合成例1において、アクリル酸メチルをブチルビニルエーテルに変更したこと以外は合成例1と同様の方法により、例示化合物16(14.76g、67%)を得た。例示化合物16のNMR測定の結果を以下に示す。
[Synthesis Example 10]
<Synthesis of 5-butoxy-3- (pyridin-3-yl) -4,5-dihydroisoxazole (Exemplary Compound 16)>
Exemplified compound 16 (14.76 g, 67%) was obtained in the same manner as in Synthesis Example 1 except that methyl acrylate was changed to butyl vinyl ether in Synthesis Example 1. The results of NMR measurement of Exemplified Compound 16 are shown below.
H-NMR(270MHz,CDCl)δ(ppm): 8.84 (1H, d, J=2.0), 8.65 (1H, dd, J=4.6, 1.6), 8.08 (1H, dt, J=7.9, 2.0), 7.35 (1H, dd, J=8.2, 4.9), 5.72 (1H, dd, J=6.6, 1.6), 3.92-3.84 (1H, m), 3.60-3.52 (1H, m), 3.40 (1H, dd, J=17.1, 6.1), 3.23 (1H, dd, J=17.1, 2.0), 1.63-1.53 (2H, m), 1.44-1.30 (2H, m), 0.92 (3H, t, J=7.2) 1 H-NMR (270 MHz, CDCl 3 ) δ (ppm): 8.84 (1H, d, J = 2.0), 8.65 (1H, dd, J = 4.6, 1.6), 8 .08 (1H, dt, J = 7.9, 2.0), 7.35 (1H, dd, J = 8.2, 4.9), 5.72 (1H, dd, J = 6.6) 1.6, 3.92-3.84 (1H, m), 3.60-3.52 (1H, m), 3.40 (1H, dd, J = 17.1, 6.1) , 3.23 (1H, dd, J = 17.1, 2.0), 1.63-1.53 (2H, m), 1.44-1.30 (2H, m), 0.92 ( 3H, t, J = 7.2)
〔合成例11〕
<3-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-5-カルボニトリル(例示化合物21)の合成>
 合成例1において、アクリル酸メチルをアクリロニトリルに変更したこと以外は合成例1と同様の方法により、例示化合物21(4.78g、46%)を得た。例示化合物21のNMR測定の結果を以下に示す。
[Synthesis Example 11]
<Synthesis of 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carbonitrile (Exemplary Compound 21)>
Exemplified compound 21 (4.78 g, 46%) was obtained in the same manner as in Synthetic Example 1, except that methyl acrylate was changed to acrylonitrile in Synthetic Example 1. The results of NMR measurement of Exemplary Compound 21 are shown below.
H-NMR(270MHz,CDCl)δ(ppm): 8.83 (1H, d, J=2.0), 8.72 (1H, dd, J=4.9, 1.6), 8.06 (1H, dt, J=7.9, 1.6), 7.41 (1H, dd, J=8.2, 4.9), 5.44 (1H, dd, J=10.2, 6.9), 3.88-3.73 (2H, m) 1 H-NMR (270 MHz, CDCl 3 ) δ (ppm): 8.83 (1H, d, J = 2.0), 8.72 (1H, dd, J = 4.9, 1.6), 8 .06 (1H, dt, J = 7.9, 1.6), 7.41 (1H, dd, J = 8.2, 4.9), 5.44 (1H, dd, J = 10.2) 6.9), 3.88-3.73 (2H, m)
〔合成例12〕
<3-(ピリジン-4-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸メチル(例示化合物23)の合成>
 合成例1において、3-ピリジンアルドキシムを4-ピリジンアルドキシムに変更したこと以外は合成例1と同様の方法により、例示化合物23(1.20g、29%)を得た。例示化合物23のNMR測定の結果を以下に示す。
[Synthesis Example 12]
<Synthesis of methyl 3- (pyridin-4-yl) -4,5-dihydroisoxazole-5-carboxylate (Exemplary Compound 23)>
Exemplified compound 23 (1.20 g, 29%) was obtained in the same manner as in Synthesis Example 1 except that 3-pyridinealdoxime was changed to 4-pyridinealdoxime in Synthesis Example 1. The results of NMR measurement of Exemplary Compound 23 are shown below.
H-NMR(270MHz,CDCl)δ(ppm): 8.70 (1H, dd, J=4.6, 1.6), 7.54 (1H, dd, J=4.6, 1.6), 5.27 (1H, dd, J=10.6, 7.9), 3.84 (3H, s), 3.89-3.60 (2H, m) 1 H-NMR (270 MHz, CDCl 3 ) δ (ppm): 8.70 (1H, dd, J = 4.6, 1.6), 7.54 (1H, dd, J = 4.6) 6), 5.27 (1H, dd, J = 10.6, 7.9), 3.84 (3H, s), 3.89-3.60 (2H, m)
 以上、一般式(I)で表される化合物の合成例として、例示化合物15、例示化合物14、例示化合物2、例示化合物1、例示化合物3、例示化合物28、例示化合物31、例示化合物8、例示化合物11、例示化合物16、例示化合物21、及び例示化合物23の合成例を説明したが、上記以外の一般式(I)で表される化合物についても上記合成例と同様の方法により合成できる。 As described above, as examples of synthesis of the compound represented by the general formula (I), Exemplified Compound 15, Exemplified Compound 14, Exemplified Compound 2, Exemplified Compound 1, Exemplified Compound 3, Exemplified Compound 28, Exemplified Compound 31, Exemplified Compound 8, Exemplified Although the synthesis example of the compound 11, the example compound 16, the example compound 21, and the example compound 23 was demonstrated, it can synthesize | combine by the method similar to the said synthesis example also about the compound represented with general formula (I) other than the above.
[評価方法]
<初期特性評価>
 作製された試験用電池を、1mA定電流かつ4.2V定電圧で充電し、1mA定電流で2.85Vまで放電を10サイクル行った。
 その際、1サイクル目の充電容量[mAH]及び放電容量[mAH]から、初回の充放電効率を下記式にて計算を行った。
[Evaluation methods]
<Initial characteristic evaluation>
The produced test battery was charged at a constant current of 1 mA and a constant voltage of 4.2 V, and discharged to 2.85 V at a constant current of 1 mA for 10 cycles.
At that time, the first charge / discharge efficiency was calculated by the following equation from the charge capacity [mAH] and discharge capacity [mAH] of the first cycle.
 初回の充放電効率[%]
=1サイクル目の放電容量[mAH]/1サイクル目の充電容量[mAH]×100[%]
Initial charge / discharge efficiency [%]
= 1st cycle discharge capacity [mAH] / 1st cycle charge capacity [mAH] x 100 [%]
 更に、定電圧4.0V充電し、Solartronを用いて、恒温槽内で電池を-10℃に冷却し、インピーダンス測定を行った。
 上記初回の充放電効率及びインピーダンス測定を、初期特性評価とした。
 なお、下記実施例1~25及び比較例1~7では初期特性評価に関し、いずれも実用上問題のない程度の評価結果であったため、評価結果の記載は省略した。
Further, the battery was charged with a constant voltage of 4.0 V, and the battery was cooled to −10 ° C. in a thermostat using a Solartron, and impedance measurement was performed.
The initial charge / discharge efficiency and impedance measurement were used as initial characteristic evaluation.
In Examples 1 to 25 and Comparative Examples 1 to 7 described below, the evaluation results were omitted because the evaluation results had no practical problems with respect to the initial characteristic evaluation.
<高温保存試験>
 インピーダンス測定を終えた試験用電池を、25℃の恒温槽中で1mA定電流かつ4.2V定電圧で充電し、この25℃の恒温槽中で1mA定電流で2.85Vまで放電し、高温保存前の放電容量[mAh]を測定した。
 次に、上記試験用電池に対し、25℃の恒温槽中で1mA定電流かつ4.2V定電圧充電を行った後、恒温槽の温度を80℃に上昇させ、80℃の恒温槽中に上記試験用電池を2日間保存した(高温保存)。
 上記高温保存後、恒温槽の温度を25℃に戻し、25℃の恒温槽中で上記試験用電池を1mA定電流で2.85Vまで放電し、電池に残っている残存放電容量[mAh](即ち、高温保存後の放電容量[mAh])を測定した。
 そして、下記式にて、高温保存前後の容量維持率を算出した。
<High temperature storage test>
After the impedance measurement, the test battery was charged at a constant current of 1 mA and a constant voltage of 4.2 V in a constant temperature bath at 25 ° C., and discharged to 2.85 V at a constant current of 1 mA in the constant temperature bath at 25 ° C. The discharge capacity [mAh] before storage was measured.
Next, the test battery was charged with a constant current of 1 mA and a constant voltage of 4.2 V in a thermostatic bath at 25 ° C., and then the temperature of the thermostatic bath was raised to 80 ° C. The test battery was stored for 2 days (high temperature storage).
After the high-temperature storage, the temperature of the thermostat is returned to 25 ° C., and the test battery is discharged to 2.85 V at a constant current of 1 mA in the thermostatic bath at 25 ° C., and the remaining discharge capacity [mAh] ( That is, the discharge capacity [mAh] after storage at high temperature was measured.
And the capacity | capacitance maintenance factor before and behind high temperature storage was computed with the following formula.
 高温保存前後の容量維持率[%]
=(高温保存後の放電容量[mAh]/高温保存前の放電容量[mAh])×100[%]
Capacity maintenance rate before and after high temperature storage [%]
= (Discharge capacity after storage at high temperature [mAh] / Discharge capacity before storage at high temperature [mAh]) × 100 [%]
[実施例1]
<負極の作製>
 人造黒鉛20質量部、天然黒鉛系黒鉛80質量部、カルボキシメチルセルロース1質量部及びSBRラテックス2質量部を水溶媒で混錬してペースト状の負極合剤スラリーを調製した。
 次に、この負極合剤スラリーを厚さ18μmの帯状銅箔製の負極集電体に塗布し乾燥した後に、ロールプレスで圧縮して負極集電体と負極活物質層とからなるシート状の負極を得た。このときの負極活物質層の塗布密度は10mg/cmであり、充填密度は1.5g/mlであった。
[Example 1]
<Production of negative electrode>
20 parts by mass of artificial graphite, 80 parts by mass of natural graphite, 1 part by mass of carboxymethyl cellulose and 2 parts by mass of SBR latex were kneaded with an aqueous solvent to prepare a paste-like negative electrode mixture slurry.
Next, this negative electrode mixture slurry was applied to a negative electrode current collector made of a strip-shaped copper foil having a thickness of 18 μm, dried, and then compressed by a roll press to form a sheet-like material comprising a negative electrode current collector and a negative electrode active material layer. A negative electrode was obtained. The coating density of the negative electrode active material layer at this time was 10 mg / cm 2 , and the packing density was 1.5 g / ml.
<正極の作製>
 LiMnを90質量部、アセチレンブラック5質量部及びポリフッ化ビニリデン5質量部をN-メチルピロリジノンを溶媒として混錬してペースト状の正極合剤スラリーを調製した。
 次に、この正極合剤スラリーを厚さ20μmの帯状アルミ箔の正極集電体に塗布し乾燥した後に、ロールプレスで圧縮して正極集電体と正極活物質とからなるシート状の正極を得た。このときの正極活物質層の塗布密度は30mg/cmであり、充填密度は2.5g/mlであった。
<Preparation of positive electrode>
90 parts by mass of LiMn 2 O 4 , 5 parts by mass of acetylene black and 5 parts by mass of polyvinylidene fluoride were kneaded using N-methylpyrrolidinone as a solvent to prepare a paste-like positive electrode mixture slurry.
Next, this positive electrode mixture slurry is applied to a positive electrode current collector made of a strip-shaped aluminum foil having a thickness of 20 μm, dried, and then compressed by a roll press to form a sheet-like positive electrode comprising a positive electrode current collector and a positive electrode active material. Obtained. The coating density of the positive electrode active material layer at this time was 30 mg / cm 2 , and the packing density was 2.5 g / ml.
<非水電解液の調製>
 非水溶媒としてエチレンカーボネート(EC)とジメチルカーボネート(DMC)とメチルエチルカーボネート(EMC)とをそれぞれ34:33:33(質量比)の割合で混合した。
 得られた混合溶媒中に、電解質であるLiPFを、最終的に調製される非水電解液全量中における電解質濃度が1モル/リットルとなるように溶解させた。
 前記で得られた溶液に対して、添加剤として、一般式(I)で表される化合物である3-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸(添加剤A(例示化合物14))を、最終的に調製される非水電解液全量中における含有量が0.5質量%となるように添加し、非水電解液を得た。
 なお、上記3-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸は、一般式(I)におけるQがイソオキサゾリニル基に相当する化合物である。
<Preparation of non-aqueous electrolyte>
As a non-aqueous solvent, ethylene carbonate (EC), dimethyl carbonate (DMC), and methyl ethyl carbonate (EMC) were mixed at a ratio of 34:33:33 (mass ratio), respectively.
In the obtained mixed solvent, LiPF 6 as an electrolyte was dissolved so that the electrolyte concentration in the total amount of the non-aqueous electrolyte finally prepared was 1 mol / liter.
With respect to the solution obtained above, 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylic acid (addition) which is a compound represented by the general formula (I) is used as an additive. Agent A (Exemplary Compound 14)) was added so that the content in the total amount of the nonaqueous electrolyte finally prepared was 0.5% by mass to obtain a nonaqueous electrolyte.
The 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylic acid is a compound in which Q in the general formula (I) corresponds to an isoxazolinyl group.
<コイン型電池の作製>
 上述の負極を直径14mmで、上述の正極を直径13mmで、それぞれ円盤状に打ち抜いて、コイン状の電極(負極及び正極)を得た。また厚さ20μmの微多孔性ポリエチレンフィルムを直径17mmの円盤状に打ち抜きセパレータを得た。
 得られたコイン状の負極、セパレータ及びコイン状の正極を、この順序でステンレス製の電池缶(2032サイズ)内に積層し、上記で得られた非水電解液20μlを注入してセパレータと正極と負極とに含漬させた。
 更に、正極上にアルミニウム製の板(厚さ1.2mm、直径16mm)及びバネを乗せ、ポリプロピレン製のガスケットを介して、電池缶蓋をかしめることにより電池を密封し、直径20mm、高さ3.2mmのコイン型電池(試験用電池)を作製した。
 得られたコイン型電池(試験用電池)について、初期特性評価、及び高温保存試験を実施した。
<Production of coin-type battery>
The above-mentioned negative electrode was 14 mm in diameter and the above-mentioned positive electrode was 13 mm in diameter, and each was punched into a disk shape to obtain coin-shaped electrodes (negative electrode and positive electrode). Further, a microporous polyethylene film having a thickness of 20 μm was punched into a disk shape having a diameter of 17 mm to obtain a separator.
The obtained coin-shaped negative electrode, separator, and coin-shaped positive electrode were laminated in this order in a stainless steel battery can (2032 size), and 20 μl of the non-aqueous electrolyte obtained above was injected to separate the separator and the positive electrode. And the negative electrode.
Further, an aluminum plate (thickness 1.2 mm, diameter 16 mm) and a spring are placed on the positive electrode, and the battery is sealed by caulking the battery can lid through a polypropylene gasket, and the diameter is 20 mm, height. A 3.2 mm coin-type battery (test battery) was produced.
The obtained coin-type battery (test battery) was subjected to initial characteristic evaluation and a high-temperature storage test.
[実施例2]
 前記3-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸(添加剤A)に代えて、3-(ピリジン-2-イル)-イソオキサゾール-5-カルボニトリル(添加剤B(例示化合物3))を、最終的に調製される非水電解液全量中における含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び高温保存試験を実施した。
 なお、上記3-(ピリジン-2-イル)-イソオキサゾール-5-カルボニトリルは、3-(ピリジン-2-イル)-5-シアノ-イソオキサゾールと同義である。
[Example 2]
Instead of 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylic acid (additive A), 3- (pyridin-2-yl) -isoxazole-5-carbonitrile ( Coin type in the same manner as in Example 1 except that Additive B (Exemplary Compound 3)) was added so that the content in the total amount of the non-aqueous electrolyte finally prepared was 0.5% by mass. A battery was obtained.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
The above 3- (pyridin-2-yl) -isoxazole-5-carbonitrile has the same meaning as 3- (pyridin-2-yl) -5-cyano-isoxazole.
[実施例3]
 前記3-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸(添加剤A)に代えて、3-(ピリジン-2-イル)-イソオキサゾール(添加剤C(例示化合物34))を、最終的に調製される非水電解液全量中における含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び高温保存試験を実施した。
[Example 3]
Instead of 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylic acid (additive A), 3- (pyridin-2-yl) -isoxazole (additive C (example) A coin-type battery was obtained in the same manner as in Example 1 except that the compound 34)) was added so that the content in the total amount of the non-aqueous electrolyte finally prepared was 0.5% by mass.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[実施例4]
 前記3-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸(添加剤A)に代えて、3-(ピリジン-3-イル)-イソオキサゾール(添加剤D(例示化合物37))を、最終的に調製される非水電解液全量中における含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び高温保存試験を実施した。
[Example 4]
Instead of 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylic acid (additive A), 3- (pyridin-3-yl) -isoxazole (additive D (example) A coin-type battery was obtained in the same manner as in Example 1 except that the compound 37)) was added so that the content in the total amount of the non-aqueous electrolyte finally prepared was 0.5% by mass.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[実施例5]
 前記3-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸(添加剤A)に代えて、3-(ピリジン-4-イル)-イソオキサゾール(添加剤E(例示化合物42))を、最終的に調製される非水電解液全量中における含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び高温保存試験を実施した。
[Example 5]
Instead of the 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylic acid (additive A), 3- (pyridin-4-yl) -isoxazole (additive E (example) A coin-type battery was obtained in the same manner as in Example 1 except that the compound 42)) was added so that the content in the total amount of the non-aqueous electrolyte finally prepared was 0.5% by mass.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[実施例6]
 添加剤として、3-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸(添加剤A)、及び1,3-プロパ-1-エンスルトン(PRS)を、最終的に調製される非水電解液全量中におけるそれぞれの含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び高温保存試験を実施した。
[Example 6]
As additives, 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylic acid (additive A) and 1,3-prop-1-ene sultone (PRS) are finally added. A coin-type battery was obtained in the same manner as in Example 1, except that each content was 0.5% by mass in the total amount of the prepared non-aqueous electrolyte.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[実施例7]
 添加剤として、3-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸(添加剤A)、1,3-プロパ-1-エンスルトン(PRS)、及びビニレンカーボネート(VC)を、最終的に調製される非水電解液全量中におけるそれぞれの含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び高温保存試験を実施した。
[Example 7]
As additives, 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylic acid (additive A), 1,3-prop-1-ene sultone (PRS), and vinylene carbonate (VC ) Was added in the same manner as in Example 1 except that each content was 0.5% by mass in the total amount of the non-aqueous electrolyte finally prepared.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[比較例1]
 非水電解液として、添加剤を無添加にしたこと以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価及び高温保存試験を実施した。
[Comparative Example 1]
A coin-type battery was obtained in the same manner as in Example 1 except that no additive was added as the non-aqueous electrolyte.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[比較例2]
 前記3-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸(添加剤A)に代えて、ピリジンを、最終的に調製される非水電解液全量中における含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価及び高温保存試験を実施した。
[Comparative Example 2]
In place of the 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylic acid (Additive A), the content of pyridine in the total amount of the non-aqueous electrolyte finally prepared A coin-type battery was obtained in the same manner as in Example 1 except that the amount was 0.5% by mass.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[比較例3]
 前記3-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸(添加剤A)に代えて、2-クロロ-ピリジンを、最終的に調製される非水電解液全量中における含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価及び高温保存試験を実施した。
[Comparative Example 3]
Instead of the 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylic acid (additive A), 2-chloro-pyridine was used as the total amount of the non-aqueous electrolyte finally prepared. A coin-type battery was obtained in the same manner as in Example 1 except that the content was 0.5% by mass.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[比較例4]
 前記3-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸(添加剤A)に代えて、ビピリジンを、最終的に調製される非水電解液全量中における含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価及び高温保存試験を実施した。
[Comparative Example 4]
Content of bipyridine instead of 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylic acid (additive A) in the total amount of the non-aqueous electrolyte finally prepared A coin-type battery was obtained in the same manner as in Example 1 except that the amount was 0.5% by mass.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[比較例5]
 前記3-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸(添加剤A)に代えて、2,6-ジ-tert-ブチル-4-メチルピリジンを、最終的に調製される非水電解液全量中における含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価及び高温保存試験を実施した。
[Comparative Example 5]
Instead of the 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-carboxylic acid (additive A), 2,6-di-tert-butyl-4-methylpyridine is used as a final product. A coin-type battery was obtained in the same manner as in Example 1 except that the content was 0.5% by mass in the total amount of the non-aqueous electrolyte prepared.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
 実施例1~7及び比較例1~5の高温保存試験の評価結果を表1に示す。 Table 1 shows the evaluation results of the high temperature storage tests of Examples 1 to 7 and Comparative Examples 1 to 5.
Figure JPOXMLDOC01-appb-T000019
 
Figure JPOXMLDOC01-appb-T000019
 
 実施例1~7と比較例1とを比較すると、非水電解液に添加剤として一般式(I)で表される化合物を添加することにより、リチウム二次電池の高温保存特性を向上させることができることがわかる。
 更に、実施例1~7と比較例2~5とを比較すると、添加剤として一般式(I)で表される化合物を添加することにより、ピリジン骨格持つ他の添加剤を添加した場合と比べて、高温保存特性を向上させることができることがわかる。
 更に、添加剤として、一般式(I)で表される化合物と一般式(II)で表される化合物とを併用した実施例6及び実施例7(特に、これらに加えて更に一般式(III)で表される化合物を用いた実施例7)において、高温保存特性を更に向上させることができることが明らかとなった。
When Examples 1 to 7 and Comparative Example 1 are compared, the high temperature storage characteristics of the lithium secondary battery can be improved by adding the compound represented by the general formula (I) as an additive to the non-aqueous electrolyte. You can see that
Further, when Examples 1 to 7 and Comparative Examples 2 to 5 are compared, the addition of the compound represented by the general formula (I) as an additive is compared with the case of adding another additive having a pyridine skeleton. It can be seen that the high-temperature storage characteristics can be improved.
Further, Examples 6 and 7 in which the compound represented by the general formula (I) and the compound represented by the general formula (II) were used in combination as an additive (particularly, in addition to these, the general formula (III) In Example 7) using the compound represented by), it was revealed that the high-temperature storage characteristics can be further improved.
 次に、添加剤の種類を、後述する表2又は表3に示すように変更した以外は実施例1と同様にしてコイン型電池を作製し、実施例1と同様の評価を行った(実施例8~25、比較例6~7)。
 実施例8~25及び比較例6~7の詳細を以下に説明する。
Next, a coin-type battery was produced in the same manner as in Example 1 except that the type of additive was changed as shown in Table 2 or Table 3 described later, and the same evaluation as in Example 1 was performed (implementation). Examples 8 to 25, comparative examples 6 to 7).
Details of Examples 8 to 25 and Comparative Examples 6 to 7 will be described below.
[実施例8]
 添加剤として、例示化合物14、及びビニレンカーボネート(VC)を、最終的に調製される非水電解液全量中におけるそれぞれの含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び高温保存試験を実施した。 
[Example 8]
Except that Exemplified Compound 14 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5% by mass. In the same manner as in Example 1, a coin-type battery was obtained.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[実施例9]
 添加剤として、例示化合物15、及びビニレンカーボネート(VC)を、最終的に調製される非水電解液全量中におけるそれぞれの含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び高温保存試験を実施した。 
[Example 9]
Except that Exemplified Compound 15 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5% by mass. In the same manner as in Example 1, a coin-type battery was obtained.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[実施例10]
 添加剤として、例示化合物21、及びビニレンカーボネート(VC)を、最終的に調製される非水電解液全量中におけるそれぞれの含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び高温保存試験を実施した。 
[Example 10]
Example Except that Exemplified Compound 21 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5 mass%. In the same manner as in Example 1, a coin-type battery was obtained.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[実施例11]
 添加剤として、例示化合物41、及びビニレンカーボネート(VC)を、最終的に調製される非水電解液全量中におけるそれぞれの含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び高温保存試験を実施した。
[Example 11]
Except that Exemplified Compound 41 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5% by mass. In the same manner as in Example 1, a coin-type battery was obtained.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[実施例12]
 添加剤として、例示化合物37、及びビニレンカーボネート(VC)を、最終的に調製される非水電解液全量中におけるそれぞれの含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び高温保存試験を実施した。
[Example 12]
Example Except that Exemplified Compound 37 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5 mass%. In the same manner as in Example 1, a coin-type battery was obtained.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[実施例13]
 添加剤として、例示化合物1、及びビニレンカーボネート(VC)を、最終的に調製される非水電解液全量中におけるそれぞれの含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び高温保存試験を実施した。
[Example 13]
Except that Exemplified Compound 1 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5 mass%, Examples In the same manner as in Example 1, a coin-type battery was obtained.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[実施例14]
 添加剤として、例示化合物38、及びビニレンカーボネート(VC)を、最終的に調製される非水電解液全量中におけるそれぞれの含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び高温保存試験を実施した。
[Example 14]
Except that Exemplified Compound 38 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5 mass%, Examples In the same manner as in Example 1, a coin-type battery was obtained.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[実施例15]
 添加剤として、例示化合物23、及びビニレンカーボネート(VC)を、最終的に調製される非水電解液全量中におけるそれぞれの含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び高温保存試験を実施した。
[Example 15]
Except that Exemplified Compound 23 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5% by mass. In the same manner as in Example 1, a coin-type battery was obtained.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[実施例16]
 添加剤として、例示化合物16、及びビニレンカーボネート(VC)を、最終的に調製される非水電解液全量中におけるそれぞれの含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び高温保存試験を実施した。
[Example 16]
Example Except that Exemplified Compound 16 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5 mass%. In the same manner as in Example 1, a coin-type battery was obtained.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[実施例17]
 添加剤として、例示化合物6、及びビニレンカーボネート(VC)を、最終的に調製される非水電解液全量中におけるそれぞれの含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び高温保存試験を実施した。
[Example 17]
Example Except that Exemplified Compound 6 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5 mass%. In the same manner as in Example 1, a coin-type battery was obtained.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[実施例18]
 添加剤として、例示化合物8、及びビニレンカーボネート(VC)を、最終的に調製される非水電解液全量中におけるそれぞれの含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び高温保存試験を実施した。
[Example 18]
Except that Exemplified Compound 8 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5% by mass. In the same manner as in Example 1, a coin-type battery was obtained.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[実施例19]
 添加剤として、例示化合物11、及びビニレンカーボネート(VC)を、最終的に調製される非水電解液全量中におけるそれぞれの含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び高温保存試験を実施した。
[Example 19]
Except that Exemplified Compound 11 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5% by mass. In the same manner as in Example 1, a coin-type battery was obtained.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[実施例20]
 添加剤として、例示化合物28、及びビニレンカーボネート(VC)を、最終的に調製される非水電解液全量中におけるそれぞれの含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び高温保存試験を実施した。
[Example 20]
Example Except that Exemplified Compound 28 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5 mass%. In the same manner as in Example 1, a coin-type battery was obtained.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[実施例21]
 添加剤として、例示化合物31、及びビニレンカーボネート(VC)を、最終的に調製される非水電解液全量中におけるそれぞれの含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び高温保存試験を実施した。
[Example 21]
Except that Exemplified Compound 31 and vinylene carbonate (VC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5% by mass. In the same manner as in Example 1, a coin-type battery was obtained.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[実施例22]
 添加剤として、例示化合物14、及び、4-フルオロエチレンカーボネート(FEC)を、最終的に調製される非水電解液全量中におけるそれぞれの含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び高温保存試験を実施した。
[Example 22]
As an additive, except that Exemplified Compound 14 and 4-fluoroethylene carbonate (FEC) were added so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5% by mass. Obtained a coin-type battery in the same manner as in Example 1.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[実施例23]
 添加剤として、例示化合物14、及び、4,5-ジフルオロエチレンカーボネート(DFEC)を、最終的に調製される非水電解液全量中におけるそれぞれの含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び高温保存試験を実施した。
[Example 23]
As an additive, Example Compound 14 and 4,5-difluoroethylene carbonate (DFEC) were added so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5% by mass. A coin-type battery was obtained in the same manner as in Example 1 except that.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[実施例24]
 添加剤として、例示化合物15、及び、4-フルオロエチレンカーボネート(FEC)を、最終的に調製される非水電解液全量中におけるそれぞれの含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び高温保存試験を実施した。
[Example 24]
Except that Exemplified Compound 15 and 4-fluoroethylene carbonate (FEC) were added as additives so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5% by mass. Obtained a coin-type battery in the same manner as in Example 1.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[実施例25]
 添加剤として、例示化合物15、及び、4,5-ジフルオロエチレンカーボネート(DFEC)を、最終的に調製される非水電解液全量中におけるそれぞれの含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び高温保存試験を実施した。
[Example 25]
As an additive, Exemplified Compound 15 and 4,5-difluoroethylene carbonate (DFEC) were added so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5% by mass. A coin-type battery was obtained in the same manner as in Example 1 except that.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[比較例6]
 添加剤として、ビニレンカーボネート(VC)を、最終的に調製される非水電解液全量中における含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び高温保存試験を実施した。
[Comparative Example 6]
As an additive, vinylene carbonate (VC) was coin-shaped in the same manner as in Example 1 except that vinylene carbonate (VC) was added so that the content in the final amount of the non-aqueous electrolyte was 0.5% by mass. A battery was obtained.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
[比較例7]
 ビピリジン、及びビニレンカーボネート(VC)を、最終的に調製される非水電解液全量中におけるそれぞれの含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、初期特性評価、及び高温保存試験を実施した。
[Comparative Example 7]
A coin was formed in the same manner as in Example 1 except that bipyridine and vinylene carbonate (VC) were added so that the respective contents in the total amount of the non-aqueous electrolyte finally prepared were 0.5% by mass. A type battery was obtained.
About the obtained coin-type battery, initial characteristic evaluation and a high temperature storage test were implemented.
 実施例8~25及び比較例6~7の高温保存試験の評価結果を表2及び表3に示す。
 更に、対比のため、表1に示した比較例1の評価結果を、再度表3に示す。
Tables 2 and 3 show the evaluation results of the high temperature storage tests of Examples 8 to 25 and Comparative Examples 6 to 7.
Further, for comparison, the evaluation results of Comparative Example 1 shown in Table 1 are shown in Table 3 again.
Figure JPOXMLDOC01-appb-T000020
 
Figure JPOXMLDOC01-appb-T000020
 
Figure JPOXMLDOC01-appb-T000021
 
Figure JPOXMLDOC01-appb-T000021
 
 表2及び表3に示すように、実施例8~25においても、各比較例に比べて高温保存前後の容量維持率が高く、高温環境下における電池の保存特性に優れていた。 As shown in Tables 2 and 3, also in Examples 8 to 25, the capacity retention rate before and after high temperature storage was higher than in each comparative example, and the storage characteristics of the battery in a high temperature environment were excellent.
 日本出願2008-287055の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese application 2008-287055 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.

Claims (13)

  1.  下記一般式(I)で表される化合物を含有するリチウム二次電池用の非水電解液。
    Figure JPOXMLDOC01-appb-C000001

    〔一般式(I)中、Pyは、下記A群から選ばれる1個~3個の置換基により置換されてもよいピリジル基を表す。
     A群は、ハロゲン原子、炭素数1~8のアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数1~8のアルコキシ基、炭素数2~6のアルケニルオキシ基、炭素数2~6のアルキニルオキシ基、炭素数1~8のアルキルチオ基、炭素数1~8のアルキルスルフィニル基、炭素数1~8のアルキルスルホニル基、炭素数1~8のアルキルアミノ基、ジアルキルアミノ基(2つのアルキル基の炭素数は、それぞれ独立に1~8である。当該2つのアルキル基は、直接、又は、酸素原子、硫黄原子、若しくは炭素数1~6のアルキル基で置換された窒素原子を介し、互いに結合して3~7員環を形成してもよい)、フェニルオキシ基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、ニトロ基、ホルミル基、シアノ基、カルボキシル基、アルコキシカルボニル基(アルキル基の炭素数は1~8である)、カルバモイル基、N-アルキルアミノカルボニル基(アルキル基の炭素数は1~8である)、N,N-ジアルキルアミノカルボニル基(2つのアルキル基の炭素数は、それぞれ独立に1~8である。当該2つのアルキル基は、直接、又は、酸素原子、硫黄原子、若しくは炭素数1~6のアルキル基で置換された窒素原子を介し、互いに結合して3~7員環を形成してもよい)、フェニル基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、芳香族5員複素環基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、及び芳香族6員複素環基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)からなる群である。
     nは、1または2を表す。
     Qは、酸素原子、硫黄原子及び窒素原子から選ばれる原子を1個~4個含有してもよい、芳香族又は非芳香族5員複素環基を表し、当該複素環は下記B群から選ばれる1個~2個の置換基により置換されてもよい。
     B群は、ハロゲン原子、炭素数1~8のアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数1~8のアルコキシ基、炭素数2~6のアルケニルオキシ基、炭素数2~6のアルキニルオキシ基、炭素数1~8のアルキルチオ基、炭素数1~8のアルキルスルフィニル基、炭素数1~8のアルキルスルホニル基、炭素数1~8のアルキルアミノ基、ジアルキルアミノ基(2つのアルキル基の炭素数は、それぞれ独立に1~8である。当該2つのアルキル基は、直接、又は、酸素原子、硫黄原子、若しくは炭素数1~6のアルキル基で置換された窒素原子を介し、互いに結合して3~7員環を形成してもよい)、フェニルオキシ基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、ニトロ基、ホルミル基、シアノ基、カルボキシル基、アルコキシカルボニル基(アルキル基の炭素数は1~8である)、カルバモイル基、N-アルキルアミノカルボニル基(アルキル基の炭素数は1~8である)、N,N-ジアルキルアミノカルボニル基(2つのアルキル基の炭素数は、それぞれ独立に1~8である。当該2つのアルキル基は、直接、又は、酸素原子、硫黄原子、若しくは炭素数1~6のアルキル基で置換された窒素原子を介し、互いに結合して3~7員環を形成してもよい)、フェニル基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、芳香族5員複素環基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、及び芳香族6員複素環基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)からなる群である。〕
    A nonaqueous electrolytic solution for a lithium secondary battery containing a compound represented by the following general formula (I).
    Figure JPOXMLDOC01-appb-C000001

    [In general formula (I), Py represents a pyridyl group which may be substituted with 1 to 3 substituents selected from Group A below.
    Group A includes a halogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, and an alkyl group having 1 to 8 carbon atoms. Alkoxy group, alkenyloxy group having 2 to 6 carbon atoms, alkynyloxy group having 2 to 6 carbon atoms, alkylthio group having 1 to 8 carbon atoms, alkylsulfinyl group having 1 to 8 carbon atoms, alkylsulfonyl having 1 to 8 carbon atoms Group, an alkylamino group having 1 to 8 carbon atoms, and a dialkylamino group (the carbon numbers of the two alkyl groups are each independently 1 to 8. The two alkyl groups are directly, oxygen atom, sulfur atom Or bonded to each other through a nitrogen atom substituted with an alkyl group having 1 to 6 carbon atoms to form a 3- to 7-membered ring, a phenyloxy group (halogen atom or alkyl having 1 to 6 carbon atoms) Set by group Nitro group, formyl group, cyano group, carboxyl group, alkoxycarbonyl group (the alkyl group has 1 to 8 carbon atoms), carbamoyl group, N-alkylaminocarbonyl group (the carbon number of the alkyl group) Are 1 to 8), N, N-dialkylaminocarbonyl group (the number of carbon atoms of the two alkyl groups is each independently 1 to 8. The two alkyl groups are directly or oxygen atom, sulfur Via a nitrogen atom substituted with an atom or an alkyl group having 1 to 6 carbon atoms, which may be bonded to each other to form a 3- to 7-membered ring, a phenyl group (halogen atom or alkyl having 1 to 6 carbon atoms) An aromatic 5-membered heterocyclic group (which may be substituted with a halogen atom or an alkyl group having 1 to 6 carbon atoms), and an aromatic 6-membered heterocyclic group (a halogen atom or carbon number). It is substituted with an alkyl group having 1-6 a group consisting also be).
    n represents 1 or 2.
    Q represents an aromatic or non-aromatic 5-membered heterocyclic group which may contain 1 to 4 atoms selected from an oxygen atom, a sulfur atom and a nitrogen atom, and the heterocyclic ring is selected from the following group B May be substituted by 1 to 2 substituents.
    Group B includes a halogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, and an alkyl group having 1 to 8 carbon atoms. Alkoxy group, alkenyloxy group having 2 to 6 carbon atoms, alkynyloxy group having 2 to 6 carbon atoms, alkylthio group having 1 to 8 carbon atoms, alkylsulfinyl group having 1 to 8 carbon atoms, alkylsulfonyl having 1 to 8 carbon atoms Group, an alkylamino group having 1 to 8 carbon atoms, and a dialkylamino group (the carbon numbers of the two alkyl groups are each independently 1 to 8. The two alkyl groups are directly, oxygen atom, sulfur atom Or bonded to each other through a nitrogen atom substituted with an alkyl group having 1 to 6 carbon atoms to form a 3- to 7-membered ring, a phenyloxy group (halogen atom or alkyl having 1 to 6 carbon atoms) Set by group Nitro group, formyl group, cyano group, carboxyl group, alkoxycarbonyl group (the alkyl group has 1 to 8 carbon atoms), carbamoyl group, N-alkylaminocarbonyl group (the carbon number of the alkyl group) Are 1 to 8), N, N-dialkylaminocarbonyl group (the number of carbon atoms of the two alkyl groups is each independently 1 to 8. The two alkyl groups are directly or oxygen atom, sulfur Via a nitrogen atom substituted with an atom or an alkyl group having 1 to 6 carbon atoms, which may be bonded to each other to form a 3- to 7-membered ring, a phenyl group (halogen atom or alkyl having 1 to 6 carbon atoms) An aromatic 5-membered heterocyclic group (which may be substituted with a halogen atom or an alkyl group having 1 to 6 carbon atoms), and an aromatic 6-membered heterocyclic group (a halogen atom or carbon number). It is substituted with an alkyl group having 1-6 a group consisting also be). ]
  2.  前記一般式(I)におけるQが、フリル基、チエニル基、ピロリル基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、イソチアゾリル基、イミダゾリル基、ピラゾリル基、1,2,4-オキサジアゾリル基、1,3,4-オキサジアゾリル基、オキサゾリニル基、イソオキサゾリニル基、イミダゾリニル基、又はピラゾリニル基である請求項1に記載の非水電解液。 Q in the general formula (I) is a furyl group, thienyl group, pyrrolyl group, oxazolyl group, isoxazolyl group, thiazolyl group, isothiazolyl group, imidazolyl group, pyrazolyl group, 1,2,4-oxadiazolyl group, 1,3, The nonaqueous electrolytic solution according to claim 1, which is a 4-oxadiazolyl group, an oxazolinyl group, an isoxazolinyl group, an imidazolinyl group, or a pyrazolinyl group.
  3.  前記一般式(I)におけるQが、イソオキサゾール-3-イル基、イソオキサゾリン-3-イル基、イソオキサゾリン-5-イル基、又は1,2,4-オキサジアゾール-5-イル基である請求項1に記載の非水電解液。 Q in the general formula (I) is an isoxazol-3-yl group, an isoxazolin-3-yl group, an isoxazolin-5-yl group, or a 1,2,4-oxadiazol-5-yl group. The nonaqueous electrolytic solution according to claim 1.
  4.  前記一般式(I)で表される化合物が、3-(ピリジン-2-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸、3-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸、3-(ピリジン-4-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸、3-(ピリジン-2-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸メチル、3-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸メチル、3-(ピリジン-4-イル)-4,5-ジヒドロイソオキサゾール-5-カルボン酸メチル、3-(ピリジン-2-イル)-4,5-ジヒドロイソオキサゾール-5-カルボニトリル、3-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-5-カルボニトリル、3-(ピリジン-4-イル)-4,5-ジヒドロイソオキサゾール-5-カルボニトリル、3-(ピリジン-2-イル)-イソオキサゾール-5-カルボニトリル、3-(ピリジン-3-イル)-イソオキサゾール-5-カルボニトリル、3-(ピリジン-4-イル)-イソオキサゾール-5-カルボニトリル、3-(ピリジン-2-イル)-イソオキサゾール-5-カルボン酸、3-(ピリジン-3-イル)-イソオキサゾール-5-カルボン酸、3-(ピリジン-4-イル)-イソオキサゾール-5-カルボン酸、3-(ピリジン-2-イル)-イソオキサゾール-5-カルボン酸メチル、3-(ピリジン-3-イル)-イソオキサゾール-5-カルボン酸メチル、3-(ピリジン-4-イル)-イソオキサゾール-5-カルボン酸メチル、3-(ピリジン-2-イル)-イソオキサゾール、3-(ピリジン-3-イル)-イソオキサゾール、3-(ピリジン-4-イル)-イソオキサゾール、3-(ピリジン-2-イル)-1,2,4-オキサジアゾール、3-(ピリジン-3-イル)-1,2,4-オキサジアゾール、3-(ピリジン-4-イル)-1,2,4-オキサジアゾール、3-メチル-5-(ピリジン-2-イル)-4,5-ジヒドロイソオキサゾール、5-(ピリジン-2-イル)-4,5-ジヒドロイソオキサゾール-3-カルボン酸エチル、5-(ピリジン-2-イル)-4,5-ジヒドロイソオキサゾール-3-カルボニトリル、3-メチル-5-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール、5-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-3-カルボン酸エチル、又は5-(ピリジン-3-イル)-4,5-ジヒドロイソオキサゾール-3-カルボニトリルである請求項1に記載の非水電解液。 The compound represented by the general formula (I) is 3- (pyridin-2-yl) -4,5-dihydroisoxazole-5-carboxylic acid, 3- (pyridin-3-yl) -4,5- Dihydroisoxazole-5-carboxylic acid, 3- (pyridin-4-yl) -4,5-dihydroisoxazole-5-carboxylic acid, 3- (pyridin-2-yl) -4,5-dihydroisoxazole- Methyl 5-carboxylate, 3- (pyridin-3-yl) -4,5-dihydroisoxazole-5-methyl carboxylate, 3- (pyridin-4-yl) -4,5-dihydroisoxazole-5- Methyl carboxylate, 3- (pyridin-2-yl) -4,5-dihydroisoxazole-5-carbonitrile, 3- (pyridin-3-yl) -4,5-dihydroisoxazole- 5-carbonitrile, 3- (pyridin-4-yl) -4,5-dihydroisoxazole-5-carbonitrile, 3- (pyridin-2-yl) -isoxazole-5-carbonitrile, 3- (pyridine -3-yl) -isoxazole-5-carbonitrile, 3- (pyridin-4-yl) -isoxazole-5-carbonitrile, 3- (pyridin-2-yl) -isoxazole-5-carboxylic acid, 3- (pyridin-3-yl) -isoxazole-5-carboxylic acid, 3- (pyridin-4-yl) -isoxazole-5-carboxylic acid, 3- (pyridin-2-yl) -isoxazole-5 -Methyl carboxylate, 3- (pyridin-3-yl) -isoxazole-5-carboxylate, 3- (pyridin-4-yl) -isoxazole Methyl 5-carboxylate, 3- (pyridin-2-yl) -isoxazole, 3- (pyridin-3-yl) -isoxazole, 3- (pyridin-4-yl) -isoxazole, 3- (pyridine- 2-yl) -1,2,4-oxadiazole, 3- (pyridin-3-yl) -1,2,4-oxadiazole, 3- (pyridin-4-yl) -1,2,4 -Oxadiazole, 3-methyl-5- (pyridin-2-yl) -4,5-dihydroisoxazole, ethyl 5- (pyridin-2-yl) -4,5-dihydroisoxazole-3-carboxylate 5- (pyridin-2-yl) -4,5-dihydroisoxazole-3-carbonitrile, 3-methyl-5- (pyridin-3-yl) -4,5-dihydroisoxazole, 5- (pyridine - The non-ethylated group according to claim 1, which is ethyl-yl) -4,5-dihydroisoxazole-3-carboxylate or 5- (pyridin-3-yl) -4,5-dihydroisoxazole-3-carbonitrile. Water electrolyte.
  5.  更に、下記一般式(II)で表される化合物を含有する請求項1に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000002

    〔一般式(II)中、R、R、R、及びRは、各々独立に、フッ素原子により置換されていてもよい炭素数1~12のアルキル基、水素原子、又はフッ素原子であり、mは0~3の整数を表す。mが2または3であるときは、複数存在するR及びRは、それぞれ、同一でも互いに異なっていてもよい。〕
    Furthermore, the non-aqueous electrolyte of Claim 1 containing the compound represented with the following general formula (II).
    Figure JPOXMLDOC01-appb-C000002

    [In General Formula (II), R 1 , R 2 , R 3 , and R 4 are each independently an alkyl group having 1 to 12 carbon atoms, a hydrogen atom, or a fluorine atom that may be substituted with a fluorine atom. And m represents an integer of 0 to 3. When m is 2 or 3, a plurality of R 3 and R 4 may be the same or different from each other. ]
  6.  前記一般式(II)で表される化合物の含有量が、0.001質量%~10質量%である請求項5に記載の非水電解液。 The nonaqueous electrolytic solution according to claim 5, wherein the content of the compound represented by the general formula (II) is 0.001 mass% to 10 mass%.
  7.  更に、下記一般式(III)で表される化合物を含有する請求項1に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000003

     
    〔一般式(III)中、R及びRは、各々独立に、水素原子、メチル基、エチル基、又はプロピル基を示す。〕
    Furthermore, the non-aqueous electrolyte of Claim 1 containing the compound represented by the following general formula (III).
    Figure JPOXMLDOC01-appb-C000003


    [In General Formula (III), R 5 and R 6 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a propyl group. ]
  8.  前記一般式(III)で表される化合物の含有量が、0.001質量%~10質量%である請求項7に記載の非水電解液。 The nonaqueous electrolytic solution according to claim 7, wherein the content of the compound represented by the general formula (III) is 0.001% by mass to 10% by mass.
  9.  更に、下記一般式(IV)で表される化合物を含有する請求項1に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000004

    〔一般式(IV)中、X、X、X及びXは、各々独立に、フッ素原子により置換されてもよい炭素数1~3のアルキル基、水素原子、フッ素原子、又は塩素原子を示す。ただし、X、X、X及びXが同時に水素原子である場合は除く。〕
    Furthermore, the non-aqueous electrolyte of Claim 1 containing the compound represented by the following general formula (IV).
    Figure JPOXMLDOC01-appb-C000004

    [In the general formula (IV), X 1 , X 2 , X 3 and X 4 are each independently an alkyl group having 1 to 3 carbon atoms which may be substituted with a fluorine atom, a hydrogen atom, a fluorine atom, or chlorine. Indicates an atom. However, the case where X 1 , X 2 , X 3 and X 4 are hydrogen atoms at the same time is excluded. ]
  10.  前記一般式(IV)で表される化合物の含有量が、0.001質量%~10質量%である請求項9に記載の非水電解液。 The nonaqueous electrolytic solution according to claim 9, wherein the content of the compound represented by the general formula (IV) is 0.001% by mass to 10% by mass.
  11.  前記一般式(I)で表される化合物の含有量が、0.001質量%~10質量%である請求項1に記載の非水電解液。 The nonaqueous electrolytic solution according to claim 1, wherein the content of the compound represented by the general formula (I) is 0.001 mass% to 10 mass%.
  12.  正極と、
     金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属、リチウムとの合金化が可能な合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料から選ばれる少なくとも1種を負極活物質として含む負極と、
     請求項1に記載の非水電解液と、
     を有するリチウム二次電池。
    A positive electrode;
    Metallic lithium, lithium-containing alloys, metals that can be alloyed with lithium, alloys that can be alloyed with lithium, oxides that can be doped / undoped with lithium ions, and metals that can be doped / undoped with lithium ions A negative electrode containing, as a negative electrode active material, at least one selected from transition metal nitrides and carbon materials capable of doping and dedoping lithium ions;
    A non-aqueous electrolyte according to claim 1;
    A lithium secondary battery.
  13.  下記一般式(I)で表される化合物を含有するリチウム二次電池用添加剤。
    Figure JPOXMLDOC01-appb-C000005

    〔一般式(I)中、Pyは、下記A群から選ばれる1個~3個の置換基により置換されてもよいピリジル基を表す。
     A群は、ハロゲン原子、炭素数1~8のアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数1~8のアルコキシ基、炭素数2~6のアルケニルオキシ基、炭素数2~6のアルキニルオキシ基、炭素数1~8のアルキルチオ基、炭素数1~8のアルキルスルフィニル基、炭素数1~8のアルキルスルホニル基、炭素数1~8のアルキルアミノ基、ジアルキルアミノ基(2つのアルキル基の炭素数は、それぞれ独立に1~8である。当該2つのアルキル基は、直接、又は、酸素原子、硫黄原子、若しくは炭素数1~6のアルキル基で置換された窒素原子を介し、互いに結合して3~7員環を形成してもよい)、フェニルオキシ基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、ニトロ基、ホルミル基、シアノ基、カルボキシル基、アルコキシカルボニル基(アルキル基の炭素数は1~8である)、カルバモイル基、N-アルキルアミノカルボニル基(アルキル基の炭素数は1~8である)、N,N-ジアルキルアミノカルボニル基(2つのアルキル基の炭素数は、それぞれ独立に1~8である。当該2つのアルキル基は、直接、又は、酸素原子、硫黄原子、若しくは炭素数1~6のアルキル基で置換された窒素原子を介し、互いに結合して3~7員環を形成してもよい)、フェニル基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、芳香族5員複素環基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、及び芳香族6員複素環基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)からなる群である。
     nは、1または2を表す。
     Qは、酸素原子、硫黄原子及び窒素原子から選ばれる原子を1個~4個含有してもよい、芳香族又は非芳香族5員複素環基を表し、当該複素環は下記B群から選ばれる1個~2個の置換基により置換されてもよい。
     B群は、ハロゲン原子、炭素数1~8のアルキル基、炭素数3~6のシクロアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数1~8のアルコキシ基、炭素数2~6のアルケニルオキシ基、炭素数2~6のアルキニルオキシ基、炭素数1~8のアルキルチオ基、炭素数1~8のアルキルスルフィニル基、炭素数1~8のアルキルスルホニル基、炭素数1~8のアルキルアミノ基、ジアルキルアミノ基(2つのアルキル基の炭素数は、それぞれ独立に1~8である。当該2つのアルキル基は、直接、又は、酸素原子、硫黄原子、若しくは炭素数1~6のアルキル基で置換された窒素原子を介し、互いに結合して3~7員環を形成してもよい)、フェニルオキシ基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、ニトロ基、ホルミル基、シアノ基、カルボキシル基、アルコキシカルボニル基(アルキル基の炭素数は1~8である)、カルバモイル基、N-アルキルアミノカルボニル基(アルキル基の炭素数は1~8である)、N,N-ジアルキルアミノカルボニル基(2つのアルキル基の炭素数は、それぞれ独立に1~8である。当該2つのアルキル基は、直接、又は、酸素原子、硫黄原子、若しくは炭素数1~6のアルキル基で置換された窒素原子を介し、互いに結合して3~7員環を形成してもよい)、フェニル基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、芳香族5員複素環基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)、及び芳香族6員複素環基(ハロゲン原子又は炭素数1~6のアルキル基で置換されてもよい)からなる群である。〕
    The additive for lithium secondary batteries containing the compound represented by the following general formula (I).
    Figure JPOXMLDOC01-appb-C000005

    [In general formula (I), Py represents a pyridyl group which may be substituted with 1 to 3 substituents selected from Group A below.
    Group A includes a halogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, and an alkyl group having 1 to 8 carbon atoms. Alkoxy group, alkenyloxy group having 2 to 6 carbon atoms, alkynyloxy group having 2 to 6 carbon atoms, alkylthio group having 1 to 8 carbon atoms, alkylsulfinyl group having 1 to 8 carbon atoms, alkylsulfonyl having 1 to 8 carbon atoms Group, an alkylamino group having 1 to 8 carbon atoms, and a dialkylamino group (the carbon numbers of the two alkyl groups are each independently 1 to 8. The two alkyl groups are directly, oxygen atom, sulfur atom Or bonded to each other through a nitrogen atom substituted with an alkyl group having 1 to 6 carbon atoms to form a 3- to 7-membered ring, a phenyloxy group (halogen atom or alkyl having 1 to 6 carbon atoms) Set by group Nitro group, formyl group, cyano group, carboxyl group, alkoxycarbonyl group (the alkyl group has 1 to 8 carbon atoms), carbamoyl group, N-alkylaminocarbonyl group (the carbon number of the alkyl group) Are 1 to 8), N, N-dialkylaminocarbonyl group (the number of carbon atoms of the two alkyl groups is each independently 1 to 8. The two alkyl groups are directly or oxygen atom, sulfur Via a nitrogen atom substituted with an atom or an alkyl group having 1 to 6 carbon atoms, which may be bonded to each other to form a 3- to 7-membered ring, a phenyl group (halogen atom or alkyl having 1 to 6 carbon atoms) An aromatic 5-membered heterocyclic group (which may be substituted with a halogen atom or an alkyl group having 1 to 6 carbon atoms), and an aromatic 6-membered heterocyclic group (a halogen atom or carbon number). It is substituted with an alkyl group having 1-6 a group consisting also be).
    n represents 1 or 2.
    Q represents an aromatic or non-aromatic 5-membered heterocyclic group which may contain 1 to 4 atoms selected from an oxygen atom, a sulfur atom and a nitrogen atom, and the heterocyclic ring is selected from the following group B May be substituted by 1 to 2 substituents.
    Group B includes a halogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, and an alkyl group having 1 to 8 carbon atoms. Alkoxy group, alkenyloxy group having 2 to 6 carbon atoms, alkynyloxy group having 2 to 6 carbon atoms, alkylthio group having 1 to 8 carbon atoms, alkylsulfinyl group having 1 to 8 carbon atoms, alkylsulfonyl having 1 to 8 carbon atoms Group, an alkylamino group having 1 to 8 carbon atoms, and a dialkylamino group (the carbon numbers of the two alkyl groups are each independently 1 to 8. The two alkyl groups are directly, oxygen atom, sulfur atom Or bonded to each other through a nitrogen atom substituted with an alkyl group having 1 to 6 carbon atoms to form a 3- to 7-membered ring, a phenyloxy group (halogen atom or alkyl having 1 to 6 carbon atoms) Set by group Nitro group, formyl group, cyano group, carboxyl group, alkoxycarbonyl group (the alkyl group has 1 to 8 carbon atoms), carbamoyl group, N-alkylaminocarbonyl group (the carbon number of the alkyl group) Are 1 to 8), N, N-dialkylaminocarbonyl group (the number of carbon atoms of the two alkyl groups is each independently 1 to 8. The two alkyl groups are directly or oxygen atom, sulfur Via a nitrogen atom substituted with an atom or an alkyl group having 1 to 6 carbon atoms, which may be bonded to each other to form a 3- to 7-membered ring, a phenyl group (halogen atom or alkyl having 1 to 6 carbon atoms) An aromatic 5-membered heterocyclic group (which may be substituted with a halogen atom or an alkyl group having 1 to 6 carbon atoms), and an aromatic 6-membered heterocyclic group (a halogen atom or carbon number). It is substituted with an alkyl group having 1-6 a group consisting also be). ]
PCT/JP2009/069007 2008-11-07 2009-11-06 Non-aqueous electrolysis solution containing pyridyl 5-membered heterocyclic derivative, and lithium secondary battery WO2010053162A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010536804A JP5285082B2 (en) 2008-11-07 2009-11-06 Non-aqueous electrolyte and lithium secondary battery containing pyridyl 5-membered heterocyclic derivative

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-287055 2008-11-07
JP2008287055 2008-11-07

Publications (1)

Publication Number Publication Date
WO2010053162A1 true WO2010053162A1 (en) 2010-05-14

Family

ID=42152969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069007 WO2010053162A1 (en) 2008-11-07 2009-11-06 Non-aqueous electrolysis solution containing pyridyl 5-membered heterocyclic derivative, and lithium secondary battery

Country Status (2)

Country Link
JP (1) JP5285082B2 (en)
WO (1) WO2010053162A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109240A (en) * 2010-10-29 2012-06-07 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
CN104091967A (en) * 2014-05-22 2014-10-08 厦门首能科技有限公司 High-voltage lithium ion lithium ion secondary battery electrolyte
WO2016166030A1 (en) * 2015-04-17 2016-10-20 Basf Se Substituted isoxazoles for lithium batteries
JP2020198276A (en) * 2019-06-05 2020-12-10 時空化学株式会社 Additive for electrolyte, electrolyte for lithium-ion secondary battery and lithium-ion secondary battery
KR102488633B1 (en) * 2022-08-17 2023-01-13 주식회사 덕산일렉테라 Electrolyte Additives for Secondary Batteries, Non-Aqueous Electrolytes for Lithium Secondary Batteries Containing the Same, and Lithium Secondary Batteries Including the Same
WO2023145896A1 (en) * 2022-01-31 2023-08-03 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte for nonaqueous-electrolyte cell, and nonaqueous-electrolyte cell
CN116848691A (en) * 2022-08-17 2023-10-03 德山伊莱特拉有限公司 Electrolyte additive for secondary battery, nonaqueous electrolyte for lithium secondary battery containing same, and lithium secondary battery containing same
CN116888801A (en) * 2022-09-22 2023-10-13 德山伊莱特拉有限公司 Electrolyte additive for secondary battery, nonaqueous electrolyte for lithium secondary battery containing same, and lithium secondary battery containing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154132A (en) * 1997-08-04 1999-02-26 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2002083631A (en) * 2000-09-07 2002-03-22 Japan Storage Battery Co Ltd Organic electrolytic solution secondary battery
JP2002093462A (en) * 2000-07-14 2002-03-29 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP2003059533A (en) * 2001-08-21 2003-02-28 Mitsubishi Chemicals Corp Nonaqueous system electrolyte solution and nonaqueous system electrolyte solution secondary battery using same
JP2003092137A (en) * 2001-07-10 2003-03-28 Mitsubishi Chemicals Corp Nonaqueous electrolyte and secondary battery using same
JP2003203673A (en) * 2001-12-28 2003-07-18 Mitsui Chemicals Inc Nonaqueous electrolyte liquid and lithium secondary cell containing the same
JP2004014352A (en) * 2002-06-07 2004-01-15 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2008130623A (en) * 2006-11-17 2008-06-05 Japan Carlit Co Ltd:The Electrolyte for electrochemical device using room temperature molten salt, and electrochemical device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154132A (en) * 1997-08-04 1999-02-26 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2002093462A (en) * 2000-07-14 2002-03-29 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP2002083631A (en) * 2000-09-07 2002-03-22 Japan Storage Battery Co Ltd Organic electrolytic solution secondary battery
JP2003092137A (en) * 2001-07-10 2003-03-28 Mitsubishi Chemicals Corp Nonaqueous electrolyte and secondary battery using same
JP2003059533A (en) * 2001-08-21 2003-02-28 Mitsubishi Chemicals Corp Nonaqueous system electrolyte solution and nonaqueous system electrolyte solution secondary battery using same
JP2003203673A (en) * 2001-12-28 2003-07-18 Mitsui Chemicals Inc Nonaqueous electrolyte liquid and lithium secondary cell containing the same
JP2004014352A (en) * 2002-06-07 2004-01-15 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2008130623A (en) * 2006-11-17 2008-06-05 Japan Carlit Co Ltd:The Electrolyte for electrochemical device using room temperature molten salt, and electrochemical device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109240A (en) * 2010-10-29 2012-06-07 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
CN104091967A (en) * 2014-05-22 2014-10-08 厦门首能科技有限公司 High-voltage lithium ion lithium ion secondary battery electrolyte
KR102540018B1 (en) * 2015-04-17 2023-06-02 고션 인코포레이티드 Substituted isoxazoles for lithium batteries
WO2016166030A1 (en) * 2015-04-17 2016-10-20 Basf Se Substituted isoxazoles for lithium batteries
KR20170137897A (en) * 2015-04-17 2017-12-13 고션 인코포레이티드 Substituted isoxazole for lithium batteries
CN107636871A (en) * 2015-04-17 2018-01-26 国轩高科美国研究院 Substitution isoxazole for lithium battery
US20180138550A1 (en) * 2015-04-17 2018-05-17 Gotion Inc. Substituted Isoxazoles For Lithium Batteries
CN107636871B (en) * 2015-04-17 2021-02-09 国轩高科美国研究院 Substituted isoxazoles for lithium batteries
US11165098B2 (en) 2015-04-17 2021-11-02 Gotion, Inc. Substituted isoxazoles for lithium batteries
JP2020198276A (en) * 2019-06-05 2020-12-10 時空化学株式会社 Additive for electrolyte, electrolyte for lithium-ion secondary battery and lithium-ion secondary battery
WO2023145896A1 (en) * 2022-01-31 2023-08-03 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte for nonaqueous-electrolyte cell, and nonaqueous-electrolyte cell
KR102488633B1 (en) * 2022-08-17 2023-01-13 주식회사 덕산일렉테라 Electrolyte Additives for Secondary Batteries, Non-Aqueous Electrolytes for Lithium Secondary Batteries Containing the Same, and Lithium Secondary Batteries Including the Same
CN116848691A (en) * 2022-08-17 2023-10-03 德山伊莱特拉有限公司 Electrolyte additive for secondary battery, nonaqueous electrolyte for lithium secondary battery containing same, and lithium secondary battery containing same
WO2024038942A1 (en) * 2022-08-17 2024-02-22 주식회사 덕산일렉테라 Electrolyte additive for secondary battery, non-aqueous electrolyte for lithium secondary battery including same, and lithium secondary battery including same
CN116888801A (en) * 2022-09-22 2023-10-13 德山伊莱特拉有限公司 Electrolyte additive for secondary battery, nonaqueous electrolyte for lithium secondary battery containing same, and lithium secondary battery containing same

Also Published As

Publication number Publication date
JP5285082B2 (en) 2013-09-11
JPWO2010053162A1 (en) 2012-04-05

Similar Documents

Publication Publication Date Title
JP5285082B2 (en) Non-aqueous electrolyte and lithium secondary battery containing pyridyl 5-membered heterocyclic derivative
KR101562754B1 (en) Nonaqueous electrolyte solution containing phosphonosulfonic acid compound, and lithium secondary battery
JP5524347B2 (en) Cyclic sulfate ester compound, non-aqueous electrolyte containing the same, and lithium secondary battery
JP2010044883A (en) Nonaqueous electrolyte and lithium secondary battery
KR101899303B1 (en) Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same
KR100867535B1 (en) Additive for non-aqueous electrolyte and secondary battery using the same
JP5274562B2 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery
TWI449231B (en) Nonaqueous electrolyte
JP6101575B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and lithium secondary battery
CN102893443A (en) Nonaqueous electrolyte solution containing silyl ester group-containing phosphonic acid derivative, and lithium secondary battery
JP2002110235A (en) Electrolyte for electrochemical device and battery using the same
JP6839702B2 (en) Fluorinated acrylate as an additive for Li-ion battery electrolytes
EP3513448A1 (en) Electrolytes containing six membered ring cyclic sulfates
KR20180088908A (en) Cyanoalkylsulfonyl fluoride for electrolyte compositions for high energy lithium ion batteries
KR20180090372A (en) Non-aqueous electrolyte for lithium-ion batteries containing asymmetric borate
JP5542827B2 (en) Non-aqueous electrolyte for lithium secondary battery containing unsaturated sultone compound, additive for lithium secondary battery, and lithium secondary battery
WO2011034162A1 (en) Solvent for nonaqueous electrolyte solution of lithium secondary battery
JP5552088B2 (en) Non-aqueous electrolyte and lithium secondary battery containing benzodioxadithiepine derivative
KR101069471B1 (en) Non-aqueous electrolyte and secondary battery using the same
JP5367836B2 (en) Nonaqueous electrolytic solution containing heterocycle-containing alcohol derivative, additive for nonaqueous electrolytic solution of lithium secondary battery, and lithium secondary battery
WO2020025499A1 (en) New components for electrolyte compositions
EP3605698A1 (en) New components for electrolyte compositions
JP5785064B2 (en) Nonaqueous electrolyte containing phosphonoacetic acid compound and lithium secondary battery
WO2020025501A1 (en) New components for electrolyte compositions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824861

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010536804

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09824861

Country of ref document: EP

Kind code of ref document: A1