JPH0974191A - Manufacture of silicon carbide semiconductor device - Google Patents

Manufacture of silicon carbide semiconductor device

Info

Publication number
JPH0974191A
JPH0974191A JP7229485A JP22948595A JPH0974191A JP H0974191 A JPH0974191 A JP H0974191A JP 7229485 A JP7229485 A JP 7229485A JP 22948595 A JP22948595 A JP 22948595A JP H0974191 A JPH0974191 A JP H0974191A
Authority
JP
Japan
Prior art keywords
groove
semiconductor layer
silicon carbide
semiconductor
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7229485A
Other languages
Japanese (ja)
Other versions
JP3419163B2 (en
Inventor
Kazuto Hara
一都 原
Takeshi Miyajima
健 宮嶋
Norihito Tokura
規仁 戸倉
Hiroo Fuma
弘雄 夫馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP22948595A priority Critical patent/JP3419163B2/en
Priority to KR1019960038644A priority patent/KR100199997B1/en
Priority to DE19636302A priority patent/DE19636302C2/en
Priority to FR9610880A priority patent/FR2738394B1/en
Publication of JPH0974191A publication Critical patent/JPH0974191A/en
Priority to US08/893,221 priority patent/US5976936A/en
Priority to US08/938,805 priority patent/US6020600A/en
Application granted granted Critical
Publication of JP3419163B2 publication Critical patent/JP3419163B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • H01L29/7828Vertical transistors without inversion channel, e.g. vertical ACCUFETs, normally-on vertical MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a silicon carbide semiconductor device wherein withstand voltage is increased, on-resistance is decreased, thresh old voltage is lowered, MOS interface characteristics are improved by reducing ion damage and unevenness on a channel forming surface, and switching characteristics are excellent. SOLUTION: A semiconductor substrate 4 is formed by laminating, in order, an n<+> type single crystal SiC substrate 1, an n-type epitaxial layer 2, and a p-type epitaxial layer 3. An n<+> source region 6 is formed in a specified region in the surface layer part of the p-type epitaxial layer 3. A trench which penetrates the n<+> source region 6 and the p-type epitaxial layer 3 and reaches the n-type epitaxial layer 2 is formed, and an epitaxial layer is formed on the inner wall of the trench. A gate thermal oxide film 12 is formed on the surface of the epitaxial layer. A gate thermal oxide film 12 is formed on the surface of the epitaxial layer. Polysilicon layers 13a, 13b are formed on the surface of the gate thermal oxide film 12. A source electrode film 15 is formed on the surfaces of the regions 3, 6. A drain electrode film 16 is formed on the surface of the n<+> type single crystal SiC substrate 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、炭化珪素半導体
装置の製造方法に関するものであり、その用途としては
例えば、絶縁ゲート型電界効果トランジスタ、とりわけ
大電力用の縦型MOSFET等の製造方法に用いて好適
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a silicon carbide semiconductor device, which is used, for example, in a method for manufacturing an insulated gate field effect transistor, especially a vertical MOSFET for high power. Is suitable.

【0002】[0002]

【従来の技術】近年、電力用トランジスタとして炭化珪
素単結晶材料を使用した縦型パワーMOSFETが提案
されている。電力用トランジスタの損失を低減するため
にはオン抵抗の低減が必要であり、効果的にオン抵抗低
減が可能な素子構造として図11に示す溝ゲート型パワ
ーMOSFET(例えば、特開平4−239778号公
報)が提案されている。図11における溝ゲート型パワ
ーMOSFETは炭化珪素の基板30上に第1半導体領
域31が形成され、第1半導体領域31上に第2半導体
領域32が形成され、さらに、第2半導体領域32の所
定領域に第3半導体領域33が形成されている。又、第
3半導体領域33と第2半導体領域32を貫通して第1
半導体領域31に達する溝34が形成され、溝34内に
はゲート絶縁膜35を介してゲート電極36が充填され
ている。ゲート電極36の上面には絶縁膜37が形成さ
れ、絶縁膜37上を含む第3半導体領域33上にはソー
ス電極膜38が形成されている。又、基板30の表面に
はドレイン電極膜39が形成されている。
2. Description of the Related Art In recent years, a vertical power MOSFET using a silicon carbide single crystal material has been proposed as a power transistor. In order to reduce the loss of the power transistor, it is necessary to reduce the on-resistance, and as a device structure capable of effectively reducing the on-resistance, the trench gate type power MOSFET shown in FIG. 11 (for example, Japanese Patent Laid-Open No. 4-239778) is used. Gazette) has been proposed. In the trench gate type power MOSFET in FIG. 11, the first semiconductor region 31 is formed on the substrate 30 made of silicon carbide, the second semiconductor region 32 is formed on the first semiconductor region 31, and the predetermined second semiconductor region 32 is formed. The third semiconductor region 33 is formed in the region. In addition, the first semiconductor region 33 and the second semiconductor region 32 are penetrated and
A trench 34 reaching the semiconductor region 31 is formed, and the trench 34 is filled with a gate electrode 36 via a gate insulating film 35. An insulating film 37 is formed on the upper surface of the gate electrode 36, and a source electrode film 38 is formed on the third semiconductor region 33 including the insulating film 37. A drain electrode film 39 is formed on the surface of the substrate 30.

【0003】製造の際には、前述の第1および第2半導
体領域31,32を炭化珪素のエピタキシャル層で形成
してそのエピタキシャル成長時に不純物を途中から導入
して、第2半導体領域32の表層部に第3半導体領域3
3を形成するとともに、ソース電極膜38とコンタクト
をとるための領域に不純物を導入して所定領域にのみ第
3半導体領域33を配置する。そして、第2半導体領域
32を貫いて第1半導体領域31に達するように溝34
を堀り込み、溝34内にゲート電極36を嵌め込む。炭
化珪素は不純物の熱拡散が困難であるが、このようにす
ることにより、第1および第2半導体領域31,32に
対して後から不純物を拡散させずに第2半導体領域32
を形成できる。
In manufacturing, the first and second semiconductor regions 31 and 32 described above are formed of an epitaxial layer of silicon carbide, and impurities are introduced from the middle during the epitaxial growth to form a surface layer portion of the second semiconductor region 32. In the third semiconductor region 3
3 is formed, impurities are introduced into a region for making contact with the source electrode film 38, and the third semiconductor region 33 is arranged only in a predetermined region. Then, the groove 34 is formed so as to penetrate the second semiconductor region 32 and reach the first semiconductor region 31.
Is dug, and the gate electrode 36 is fitted into the groove 34. Although it is difficult for silicon carbide to diffuse impurities thermally, by doing so, the second semiconductor region 32 can be formed without diffusing impurities into the first and second semiconductor regions 31 and 32 later.
Can be formed.

【0004】又、ゲート電極36を溝34内に埋め込ん
だ構造とし、溝34の側面のゲート絶縁膜34に接する
第2半導体領域32の部分をチャネル形成面としてい
る。さらに、炭化珪素の許容最大電界強度が高い特長を
利用してその第1半導体領域31内の電界強度を高く設
定することにより電界効果トランジスタの耐圧を向上す
るとともに、この電界強度の設定値に合わせて第1半導
体領域31の厚さを最適化することにより電界効果トラ
ンジスタの順方向電圧の低減を可能にできるとしてい
る。
Further, the gate electrode 36 is buried in the groove 34, and the portion of the second semiconductor region 32 in contact with the gate insulating film 34 on the side surface of the groove 34 is used as the channel formation surface. Further, the breakdown voltage of the field effect transistor is improved by setting the electric field strength in the first semiconductor region 31 to be high by utilizing the feature that silicon carbide has a high allowable maximum electric field strength, and the electric field strength is adjusted to the set value. By optimizing the thickness of the first semiconductor region 31, it is possible to reduce the forward voltage of the field effect transistor.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、図11
に示すような溝ゲート型パワーMOSFETを製造する
場合、チャネル形成面の不純物濃度は第2半導体領域3
2の不純物濃度と同じ濃度となっていた。パワーMOS
FETを設計する上で第2半導体領域32の不純物濃度
と膜厚はソース・ドレイン間の耐圧を決定する上での主
要な設計パラメータであり、一方チャネル形成面の不純
物濃度はゲートの閾値電圧とチャネルでのドロップ電圧
を決定する上での主要な設計パラメータである。パワー
MOSFETを高耐圧、低オン抵抗でかつ閾値電圧を小
さく設計するためには第2半導体領域32とチャネル形
成面の不純物濃度を独立で制御できることがデバイス設
計上重要であるが、チャネル形成面と第2半導体領域3
2のキャリア濃度を従来の方法では独立に制御できない
という問題があった。
However, as shown in FIG.
When manufacturing the trench gate type power MOSFET as shown in FIG. 3, the impurity concentration of the channel formation surface is set to the second semiconductor region 3
The concentration was the same as the impurity concentration of 2. Power MOS
In designing the FET, the impurity concentration and the film thickness of the second semiconductor region 32 are the main design parameters in determining the breakdown voltage between the source and the drain, while the impurity concentration on the channel formation surface is the threshold voltage of the gate. It is a major design parameter in determining the drop voltage in the channel. In order to design the power MOSFET with high withstand voltage, low on-resistance and small threshold voltage, it is important in device design to control the impurity concentration of the second semiconductor region 32 and the channel formation surface independently. Second semiconductor region 3
There is a problem that the carrier concentration of No. 2 cannot be controlled independently by the conventional method.

【0006】又、前述の溝34はドライエッチングによ
り形成される場合は、チャネル形成面にイオンエッチン
グによるダメージが生じMOS界面特性が劣化し、MO
Sスイッチング特性が劣化するという問題があった。
When the groove 34 is formed by dry etching, the channel forming surface is damaged by ion etching and the MOS interface characteristics are deteriorated, resulting in MO
There is a problem that the S switching characteristic is deteriorated.

【0007】そこで、この発明の目的は、高耐圧、低オ
ン抵抗でかつ閾値電圧を小さくでき、さらに、チャネル
形成面にイオンダメージや凹凸を低減することでMOS
界面特性を改善しスイッチング特性に優れた炭化珪素半
導体装置の製造方法を提供することにある。
Therefore, an object of the present invention is to have a high withstand voltage, a low on-resistance, a small threshold voltage, and further reduce ion damage and irregularities on the channel formation surface to form a MOS.
An object of the present invention is to provide a method for manufacturing a silicon carbide semiconductor device having improved interface characteristics and excellent switching characteristics.

【0008】[0008]

【課題を解決するための手段】請求項1に記載の発明
は、第1導電型の低抵抗半導体層と第1導電型の高抵抗
半導体層と第2導電型の第1の半導体層とを順に積層し
て単結晶炭化珪素よりなる半導体基板を形成するととも
に、前記第1の半導体層内の表層部の所定領域に第1導
電型の半導体領域を形成する第1工程と、前記半導体領
域と前記第1の半導体層を貫通し前記高抵抗半導体層に
達する溝を形成する第2工程と、前記溝の内壁における
少なくとも側面に、単結晶炭化珪素よりなる第2の半導
体層を形成する第3工程と、前記溝内における前記第2
の半導体層の表面にゲート酸化膜を形成する第4工程
と、前記溝内における前記ゲート酸化膜の表面にゲート
電極膜を形成する第5工程と、前記第1の半導体層の表
面と前記半導体領域の表面のうちの少なくとも前記半導
体領域の表面に第1の電極を形成するとともに、前記低
抵抗半導体層の表面に第2の電極を形成する第6工程と
を備えた炭化珪素半導体装置の製造方法をその要旨とす
る。
According to a first aspect of the present invention, there is provided a first conductivity type low resistance semiconductor layer, a first conductivity type high resistance semiconductor layer, and a second conductivity type first semiconductor layer. A first step of forming a semiconductor substrate made of single-crystal silicon carbide by laminating in order, and forming a first conductivity type semiconductor region in a predetermined region of a surface layer portion in the first semiconductor layer; A second step of forming a groove penetrating the first semiconductor layer and reaching the high resistance semiconductor layer, and a third step of forming a second semiconductor layer made of single crystal silicon carbide on at least a side surface of the inner wall of the groove. Process and the second in the groove
A fourth step of forming a gate oxide film on the surface of the semiconductor layer, a fifth step of forming a gate electrode film on the surface of the gate oxide film in the trench, a surface of the first semiconductor layer and the semiconductor A sixth step of forming a first electrode on at least the surface of the semiconductor region among the surface of the region and forming a second electrode on the surface of the low resistance semiconductor layer. The method is the gist.

【0009】請求項2に記載の発明は、請求項1に記載
の発明における前記半導体基板を構成する炭化珪素が六
方晶系であり、かつ表面の面方位が略(0001)カー
ボン面である請求項1に記載の炭化珪素半導体装置の製
造方法をその要旨とする。
According to a second aspect of the present invention, in the first aspect of the present invention, the silicon carbide forming the semiconductor substrate is a hexagonal crystal system, and the plane orientation of the surface is a (0001) carbon plane. The gist of the method is the method for manufacturing a silicon carbide semiconductor device according to Item 1.

【0010】請求項3に記載の発明は、請求項1又は2
に記載の発明における前記第3工程は、前記第1の半導
体層および半導体領域の表面と前記溝の側面および底面
に第2の半導体層を形成するものであり、その後に、前
記溝の側面における前記第2の半導体層に比べ前記第1
の半導体層および半導体領域の表面と前記溝の底面にお
ける前記第2の半導体層を厚く熱酸化して前記溝の側面
にのみ前記第2の半導体層を残す工程を含む炭化珪素半
導体装置の製造方法をその要旨とする。
[0010] The invention described in claim 3 is the invention according to claim 1 or 2.
In the third step of the invention described in (1) above, the second semiconductor layer is formed on the surface of the first semiconductor layer and the semiconductor region and the side surface and the bottom surface of the groove, and then on the side surface of the groove. Compared to the second semiconductor layer, the first semiconductor layer
Of the semiconductor layer and the semiconductor region and the bottom surface of the groove, the second semiconductor layer being thickly thermally oxidized to leave the second semiconductor layer only on the side surface of the groove. Is the gist.

【0011】請求項4に記載の発明は、請求項1〜3の
いずれか1項に記載の発明における前記第3工程は、前
記第2の半導体層をエピタキシャル成長法により形成す
る炭化珪素半導体装置の製造方法をその要旨とする。
According to a fourth aspect of the present invention, in the third step of the invention according to any one of the first to third aspects, the silicon carbide semiconductor device in which the second semiconductor layer is formed by an epitaxial growth method is used. The manufacturing method is the gist.

【0012】請求項5に記載の発明は、請求項1〜4の
いずれか1項に記載の発明における前記第1工程は、前
記半導体領域をエピタキシャル成長法にて形成する炭化
珪素半導体装置の製造方法をその要旨とする。
According to a fifth aspect of the invention, in the first step of the invention according to any one of the first to fourth aspects, the method for manufacturing a silicon carbide semiconductor device comprises forming the semiconductor region by an epitaxial growth method. Is the gist.

【0013】請求項6に記載の発明は、請求項1〜4の
いずれか1項に記載の発明における前記第2工程は、前
記溝の内壁における底面に比べ側面が薄い酸化膜を形成
および除去する工程を含む炭化珪素半導体装置の製造方
法をその要旨とする。
According to a sixth aspect of the present invention, in the second step of the invention according to any one of the first to fourth aspects, an oxide film whose side surface is thinner than a bottom surface of the inner wall of the groove is formed and removed. The gist is a method of manufacturing a silicon carbide semiconductor device including the steps of:

【0014】請求項7に記載の発明は、請求項1〜4の
いずれか1項に記載の発明における前記第2工程は、ド
ライエッチングにより前記溝を形成するとともに、溝の
内壁における底面に比べ側面が薄い酸化膜を形成および
除去する工程を含む炭化珪素半導体装置の製造方法をそ
の要旨とする。
According to a seventh aspect of the present invention, in the second step of the invention according to any one of the first to fourth aspects, the groove is formed by dry etching, and the second step is different from the bottom surface of the inner wall of the groove. The gist is a method of manufacturing a silicon carbide semiconductor device including a step of forming and removing an oxide film having a thin side surface.

【0015】請求項8に記載の発明は、請求項1〜4の
いずれか1項に記載の発明における前記第3工程は、異
方性エピタキシャル成長法により前記溝の内壁において
底面に比べ側面が厚い前記第2の半導体層を形成する炭
化珪素半導体装置の製造方法をその要旨とする。
According to an eighth aspect of the present invention, in the third step in the invention according to any one of the first to fourth aspects, the side surface of the inner wall of the groove is thicker than the bottom surface by an anisotropic epitaxial growth method. The gist is a method of manufacturing a silicon carbide semiconductor device for forming the second semiconductor layer.

【0016】請求項9に記載の発明は、請求項1〜4の
いずれか1項に記載の発明における前記第4工程は、異
方性熱酸化法により前記溝の内壁における底面に比べ側
面が薄い前記ゲート酸化膜を形成する炭化珪素半導体装
置の製造方法をその要旨とする。 (作用)請求項1に記載の発明によれば、第1工程によ
り、第1導電型の低抵抗半導体層と第1導電型の高抵抗
半導体層と第2導電型の第1の半導体層とを順に積層し
て単結晶炭化珪素よりなる半導体基板が形成されるとと
もに、第1の半導体層内の表層部の所定領域に第1導電
型の半導体領域が形成される。そして、第2工程により
半導体領域と第1の半導体層を貫通し高抵抗半導体層に
達する溝が形成され、第3工程により、溝の内壁におけ
る少なくとも側面に、単結晶炭化珪素よりなる第2の半
導体層が形成される。さらに、第4工程により溝内にお
ける第2の半導体層の表面にゲート酸化膜が形成され、
第5工程により溝内におけるゲート酸化膜の表面にゲー
ト電極膜が形成される。第6工程により、第1の半導体
層の表面と半導体領域の表面のうちの少なくとも半導体
領域の表面に第1の電極が形成されるとともに、低抵抗
半導体層の表面に第2の電極が形成される。
The invention according to claim 9 is characterized in that in the fourth step in the invention according to any one of claims 1 to 4, a side surface is formed by an anisotropic thermal oxidation method as compared with a bottom surface of an inner wall of the groove. The gist is a method of manufacturing a silicon carbide semiconductor device in which the thin gate oxide film is formed. (Operation) According to the invention described in claim 1, the first conductive type low resistance semiconductor layer, the first conductive type high resistance semiconductor layer, and the second conductive type first semiconductor layer are formed by the first step. Are sequentially laminated to form a semiconductor substrate made of single crystal silicon carbide, and a first conductivity type semiconductor region is formed in a predetermined region of the surface layer portion in the first semiconductor layer. Then, in the second step, a groove that penetrates the semiconductor region and the first semiconductor layer and reaches the high resistance semiconductor layer is formed, and in the third step, at least a side surface of the inner wall of the groove is formed of a second single crystal silicon carbide. A semiconductor layer is formed. Further, a gate oxide film is formed on the surface of the second semiconductor layer in the groove by the fourth step,
By the fifth step, a gate electrode film is formed on the surface of the gate oxide film in the groove. By the sixth step, the first electrode is formed on at least the surface of the semiconductor region among the surface of the first semiconductor layer and the surface of the semiconductor region, and the second electrode is formed on the surface of the low resistance semiconductor layer. It

【0017】このように、第1工程における高抵抗半導
体層および第1の半導体層の形成と、第3工程における
第2の半導体層の形成とが、独立に行われる。よって、
チャネルを形成する第2の半導体層の不純物濃度を、ソ
ース・ドレイン間耐圧を設計するのに必要な高抵抗半導
体層と第1の半導体層の不純物濃度に対して独立に設計
でき任意な値とすることができる。その結果、チャネル
移動度の不純物散乱を抑えることでチャネル部でのドロ
ップ電圧を小さくし、かつ閾電圧が低い高耐圧低損失パ
ワーMOSFETを得ることができる。
As described above, the formation of the high resistance semiconductor layer and the first semiconductor layer in the first step and the formation of the second semiconductor layer in the third step are performed independently. Therefore,
The impurity concentration of the second semiconductor layer forming the channel can be designed independently with respect to the impurity concentrations of the high resistance semiconductor layer and the first semiconductor layer necessary for designing the breakdown voltage between the source and the drain, and can be set to an arbitrary value. can do. As a result, it is possible to obtain a high-breakdown-voltage low-loss power MOSFET having a low drop voltage in the channel portion and a low threshold voltage by suppressing the impurity scattering of the channel mobility.

【0018】又、第3工程において溝内に第2の半導体
層が形成されるので、この第2の半導体層においてはイ
オンダメージの無い半導体層が配置できる。よって、チ
ャネル形成面にイオンダメージや凹凸を低減することで
MOS界面特性が改善されスイッチング特性に優れた炭
化珪素半導体装置が製造される。
Further, since the second semiconductor layer is formed in the groove in the third step, a semiconductor layer free from ion damage can be arranged in this second semiconductor layer. Therefore, a silicon carbide semiconductor device having improved MOS interface characteristics and excellent switching characteristics can be manufactured by reducing ion damage and unevenness on the channel formation surface.

【0019】請求項2に記載の発明によれば、請求項1
に記載の発明の作用に加え、半導体基板を構成する炭化
珪素が六方晶系であり、かつ表面の面方位が略(000
1)カーボン面となっており、その他の面に対して化学
反応性の高い面を表面としたので、プロセス温度を下げ
ることが可能で、またプロセス時間を短くできる。
According to the second aspect of the present invention, the first aspect is provided.
In addition to the effect of the invention described in (3), the silicon carbide forming the semiconductor substrate is a hexagonal system, and the surface orientation of the surface is approximately (000
1) Since it is a carbon surface and has a surface having high chemical reactivity with other surfaces, the process temperature can be lowered and the process time can be shortened.

【0020】請求項3に記載の発明によれば、請求項1
又は2に記載の発明の作用に加え、第3工程において、
第1の半導体層および半導体領域の表面と溝の側面およ
び底面に第2の半導体層が形成され、その後に、溝の側
面における第2の半導体層に比べ第1の半導体層および
半導体領域の表面と溝の底面における第2の半導体層が
厚く熱酸化されて溝の側面にのみ第2の半導体層が残さ
れる。つまり、溝側面の酸化膜は薄く、基板表面、溝底
面の酸化膜は厚くできる。このことは図9に示すように
本発明者らの実験により明らかにされたSiC酸化異方
性の発見に基づく。この異方酸化工程により第2の半導
体層の除去を最小限に抑えて、基板表面と溝底面の不必
要な第2の半導体層を取り除くことが可能となる。
According to the invention of claim 3, according to claim 1,
Or in addition to the function of the invention described in 2, in the third step,
A second semiconductor layer is formed on the surfaces of the first semiconductor layer and the semiconductor region, and on the side surfaces and the bottom surface of the groove, and thereafter, the surfaces of the first semiconductor layer and the semiconductor area on the side surface of the groove as compared with the second semiconductor layer. The second semiconductor layer on the bottom surface of the groove is thickly thermally oxidized, and the second semiconductor layer is left only on the side surface of the groove. That is, the oxide film on the side surface of the groove can be thin, and the oxide film on the substrate surface and the bottom surface of the groove can be thick. This is based on the discovery of SiC oxidation anisotropy revealed by the experiments of the present inventors as shown in FIG. By this anisotropic oxidation step, the removal of the second semiconductor layer can be minimized, and the unnecessary second semiconductor layer on the substrate surface and the groove bottom surface can be removed.

【0021】請求項4に記載の発明によれば、請求項1
〜3のいずれか1項に記載の発明の作用に加え、第3工
程において、第2の半導体層がエピタキシャル成長法に
より形成される。よって、溝の側面に一様に第2の半導
体層を高品位に形成できる。この方法により得られた第
2の半導体層は移動度がその他の層の不純物の影響を受
けず移動度が大きい。
According to the invention of claim 4, claim 1
In addition to the effect of the invention described in any one of to 3, the second semiconductor layer is formed by the epitaxial growth method in the third step. Therefore, the second semiconductor layer can be uniformly formed on the side surface of the groove with high quality. The mobility of the second semiconductor layer obtained by this method is high without being affected by impurities in the other layers.

【0022】請求項5に記載の発明によれば、請求項1
〜4のいずれか1項に記載の発明の作用に加え、第1工
程において、半導体領域がエピタキシャル成長法にて形
成される。よって、厚いソース領域を形成することがで
き、また低抵抗なソース領域をエピタキシャル成長法に
より形成することができる。
According to the invention of claim 5, claim 1
In addition to the effect of the invention described in any one of to 4, the semiconductor region is formed by the epitaxial growth method in the first step. Therefore, a thick source region can be formed and a low resistance source region can be formed by an epitaxial growth method.

【0023】請求項6に記載の発明によれば、請求項1
〜4のいずれか1項に記載の発明の作用に加え、第2工
程において、溝の内壁における底面に比べ側面が薄い酸
化膜が形成および除去される。よって、局所異方性熱酸
化法により相対的に薄い酸化膜が形成され、溝内壁にイ
オンダメージの無い溝を形成することで、この溝側面に
形成する第2の半導体層を高品位に形成でき、この第2
の半導体層に形成されるMOS界面は良好なものとな
る。
According to the invention of claim 6, claim 1
In addition to the effect of the invention described in any one of 1 to 4, in the second step, an oxide film whose side surface is thinner than the bottom surface of the inner wall of the groove is formed and removed. Therefore, a relatively thin oxide film is formed by the local anisotropic thermal oxidation method, and a groove without ion damage is formed on the inner wall of the groove, so that the second semiconductor layer formed on the side surface of the groove is formed with high quality. Yes, this second
The MOS interface formed in the semiconductor layer is excellent.

【0024】請求項7に記載の発明によれば、請求項1
〜4のいずれか1項に記載の発明の作用に加え、第2工
程において、ドライエッチングにより溝が形成されると
ともに、溝の内壁における底面に比べ側面が薄い酸化膜
が形成および除去される。よって、溝側面に形成する第
2の半導体層を高品位に形成でき、この第2の半導体層
に形成されるMOS界面は良好なものとなる。
According to the invention of claim 7, claim 1
In addition to the effect of the invention described in any one of to 4, in the second step, a groove is formed by dry etching, and an oxide film whose side surface is thinner than the bottom surface of the inner wall of the groove is formed and removed. Therefore, the second semiconductor layer formed on the side surface of the groove can be formed with high quality, and the MOS interface formed on the second semiconductor layer becomes favorable.

【0025】請求項8に記載の発明によれば、請求項1
〜4のいずれか1項に記載の発明の作用に加え、第3工
程は、異方性エピタキシャル成長法により溝の内壁にお
いて底面に比べ側面が厚い第2の半導体層が形成され
る。つまり、異方性エピタキシャル成長法により第2の
半導体層を形成することで、溝側面にホモエピタキシャ
ル成長でき、かつ溝側面のエピタキシャル層の厚さを基
板表面及び溝底面のエピタキシャル層の厚さに対して1
0倍以上厚く成長できる。このことは図10に示すよう
に本発明者らの実験により明らかにされた炭化珪素のエ
ピタキシャル成長速度の発見に基づく。
According to the invention described in claim 8, according to claim 1,
In addition to the effect of the invention described in any one of to 4, the second semiconductor layer having a thicker side surface than the bottom surface on the inner wall of the groove is formed in the third step by the anisotropic epitaxial growth method. That is, by forming the second semiconductor layer by the anisotropic epitaxial growth method, homoepitaxial growth can be performed on the groove side surface, and the thickness of the epitaxial layer on the groove side surface can be compared with the thickness of the epitaxial layer on the substrate surface and the groove bottom surface. 1
It can grow thicker than 0 times. This is based on the discovery of the epitaxial growth rate of silicon carbide revealed by the experiments of the present inventors as shown in FIG.

【0026】請求項9に記載の発明によれば、請求項1
〜4のいずれか1項に記載の発明の作用に加え、第4工
程において異方性熱酸化法により溝の内壁における底面
に比べ側面が薄いゲート酸化膜が形成される。つまり、
ゲート酸化膜を熱酸化法により形成することによりMO
Sゲート構造とすることができる。この方法では側面の
酸化膜を選択的に薄くでき、基板表面、溝底面のフィー
ルド酸化膜は厚くできる。よって、チャネルを形成する
部位のみに薄い酸化膜を形成できる。
According to the invention of claim 9, according to claim 1,
In addition to the effect of the invention described in any one of 1 to 4, in the fourth step, an anisotropic thermal oxidation method is used to form a gate oxide film whose side surface is thinner than the bottom surface of the inner wall of the groove. That is,
By forming the gate oxide film by the thermal oxidation method, MO
It can have an S-gate structure. According to this method, the oxide film on the side surface can be selectively thinned, and the field oxide film on the substrate surface and the groove bottom surface can be thickened. Therefore, a thin oxide film can be formed only on the part where the channel is formed.

【0027】[0027]

【発明の実施の形態】以下、この発明を具体化した実施
の形態を図面に従って説明する。図1に、本実施の形態
における溝ゲート型パワーMOSFET(縦型パワーM
OSFET)の断面図を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a trench gate power MOSFET (vertical power M
OSFET) is shown.

【0028】図2から図8に従って製造工程を説明す
る。まず、図2に示すように、低抵抗半導体層としての
+ 型単結晶SiC基板1を用意する。このn+ 型単結
晶SiC基板1は、六方晶系であり、かつ表面の面方位
が略(0001)カーボン面となっている。そして、そ
のn+ 型単結晶SiC基板1の表面に、高抵抗半導体層
としてのn型エピタキシャル層2と第1の半導体層とし
てのp型エピタキシャル層3とを順に積層する。n型エ
ピタキシャル層2は、キャリア密度が1×1016cm-3
程度で、厚さが10μm程度である。又、p型エピタキ
シャル層3は、キャリア密度が1×1017cm-3程度
で、厚さが2μm程度である。
The manufacturing process will be described with reference to FIGS. First, as shown in FIG. 2, an n + type single crystal SiC substrate 1 as a low resistance semiconductor layer is prepared. This n + type single crystal SiC substrate 1 is a hexagonal crystal system, and the surface plane orientation is a (0001) carbon surface. Then, on the surface of the n + type single crystal SiC substrate 1, an n type epitaxial layer 2 as a high resistance semiconductor layer and a p type epitaxial layer 3 as a first semiconductor layer are sequentially laminated. The n-type epitaxial layer 2 has a carrier density of 1 × 10 16 cm −3.
The thickness is about 10 μm. The p-type epitaxial layer 3 has a carrier density of about 1 × 10 17 cm −3 and a thickness of about 2 μm.

【0029】このようにして、n+ 型単結晶SiC基板
1、n型エピタキシャル層2及びp型エピタキシャル層
3とからなる半導体基板4を形成する。続いて、図3に
示すように、p型エピタキシャル層3に対しマスク材5
を用いてイオン注入法によりp型エピタキシャル層3の
表層部の所定領域に半導体領域としてのn+ ソース領域
6を形成する。n+ ソース領域6は、表面のキャリア濃
度が1×1019cm-3程度で、接合深さが0.5μm程
度である。
Thus, the semiconductor substrate 4 composed of the n + type single crystal SiC substrate 1, the n type epitaxial layer 2 and the p type epitaxial layer 3 is formed. Then, as shown in FIG. 3, a mask material 5 is applied to the p-type epitaxial layer 3.
Is used to form an n + source region 6 as a semiconductor region in a predetermined region of the surface layer portion of the p-type epitaxial layer 3 by ion implantation. The n + source region 6 has a carrier concentration on the surface of about 1 × 10 19 cm −3 and a junction depth of about 0.5 μm.

【0030】この際、n+ ソース領域6がイオン注入法
にて形成されるので、n+ ソース領域6をp型エピタキ
シャル層3の任意の箇所に形成することができ、p型エ
ピタキシャル層3(すなわちボディー層)とソース領域
6の各表面の面積割合を自由に設計できる。
At this time, since the n + source region 6 is formed by the ion implantation method, the n + source region 6 can be formed at an arbitrary position of the p type epitaxial layer 3 and the p type epitaxial layer 3 ( That is, the area ratio of each surface of the body layer) and the source region 6 can be freely designed.

【0031】次に、図4に示すように、マスク材7,8
を用いてドライエッチングにより半導体基板4の表面か
らn+ ソース領域6とp型エピタキシャル層3を貫通し
n型エピタキシャル層2に達する溝9を形成する。この
溝9は、幅が例えば2μmで、深さが例えば2μmであ
る。又、溝9の内壁は側面9aと底面9bとを有してい
る。
Next, as shown in FIG. 4, mask materials 7 and 8 are formed.
A groove 9 penetrating the n + source region 6 and the p-type epitaxial layer 3 from the surface of the semiconductor substrate 4 to reach the n-type epitaxial layer 2 is formed by dry etching using. The groove 9 has a width of, for example, 2 μm and a depth of, for example, 2 μm. The inner wall of the groove 9 has a side surface 9a and a bottom surface 9b.

【0032】そして、図5に示すように、マスク材7を
耐酸化マスクとして使用し、例えば1100℃の熱酸化
法により例えば5時間程度の熱酸化を行い、溝9の内壁
に熱酸化膜10を形成する。ここで、溝9の側面9aに
おいては100nm程度の酸化膜10aが形成されると
ともに、溝9の底面9bにおいては500nm程度の酸
化膜10bが形成される。さらに、熱酸化膜10とマス
ク材7をエッチング除去する。
Then, as shown in FIG. 5, the mask material 7 is used as an oxidation resistant mask, and thermal oxidation is performed for about 5 hours, for example, by a thermal oxidation method at 1100 ° C., and the thermal oxide film 10 is formed on the inner wall of the groove 9. To form. Here, an oxide film 10a of about 100 nm is formed on the side surface 9a of the groove 9, and an oxide film 10b of about 500 nm is formed on the bottom surface 9b of the groove 9. Further, the thermal oxide film 10 and the mask material 7 are removed by etching.

【0033】引き続き、図6に示すように、CVD法に
よるエピタキシャル成長により溝9の内壁とn+ ソース
領域6およびp型エピタキシャル層3の表面に、第2の
半導体層としてのエピタキシャル層11を形成する。こ
のエピタキシャル成長により溝9の側面9aには、厚さ
が例えば100nm程度のエピタキシャル層11aが、
溝9の底面9bには、厚さが例えば10nm程度のエピ
タキシャル層11bが、基板表面には厚さが10nm程
度のエピタキシャル層11cが形成される。
Subsequently, as shown in FIG. 6, an epitaxial layer 11 as a second semiconductor layer is formed on the inner wall of the trench 9, the n + source region 6 and the surface of the p-type epitaxial layer 3 by epitaxial growth by the CVD method. . By this epitaxial growth, an epitaxial layer 11a having a thickness of, for example, about 100 nm is formed on the side surface 9a of the groove 9.
An epitaxial layer 11b having a thickness of, for example, about 10 nm is formed on the bottom surface 9b of the groove 9, and an epitaxial layer 11c having a thickness of about 10 nm is formed on the surface of the substrate.

【0034】このエピタキシャル層11は任意の不純物
濃度にコントロールされる。より具体的には、SiH4
ガスとC3 8 とを原料ガスとして流しながらCVD法
により炭化珪素を気相成長する際にN2 ガス(又はトリ
メチルアルミニウムガス)の供給量を調整することによ
りエピタキシャル層11の不純物濃度を1015〜10 17
/cm3 で調整する。この際、不純物濃度を低くするこ
とができる。
The epitaxial layer 11 is made of any impurities.
Controlled by concentration. More specifically, SiHFour
Gas and CThreeH8And CVD as a source gas
During the vapor phase growth of silicon carbide by N2Gas (or bird
Methyl aluminum gas)
The impurity concentration of the epitaxial layer 11 is set to 10Fifteen-10 17
/ CmThreeAdjust with. At this time, reduce the impurity concentration.
Can be.

【0035】ここで、厚さが異なるエピタキシャル層1
1が形成されることは実験的に分かっている。これを図
10を示す。図10は溝における側面および底面を含む
領域でのFE−SEM像のスケッチを示す。このように
炭化珪素のエピタキシャル成長速度の違いにより、溝側
面にホモエピタキシャル成長でき、かつ溝側面のエピタ
キシャル層の厚さを基板表面及び溝底面のエピタキシャ
ル層の厚さに対して10倍以上厚くホモエピタキシャル
層を成長できる。よって、エピタキシャル層11がチャ
ネル形成領域となるが、チャネルのドロップ電圧を小さ
くでき、また歩留りよく形成でき、低損失で歩留りが高
い装置を製造できる。
Here, the epitaxial layers 1 having different thicknesses
It is experimentally known that 1 is formed. This is shown in FIG. FIG. 10 shows a sketch of an FE-SEM image in a region including a side surface and a bottom surface in the groove. Due to the difference in the epitaxial growth rate of silicon carbide, homoepitaxial growth can be performed on the groove side surface, and the thickness of the epitaxial layer on the groove side surface is 10 times or more the thickness of the epitaxial layer on the substrate surface and the groove bottom surface. Can grow. Therefore, although the epitaxial layer 11 serves as a channel forming region, the channel drop voltage can be reduced, the device can be formed with high yield, and a device with low loss and high yield can be manufactured.

【0036】又、前述したように熱酸化膜10を形成お
よび除去することにより(局所異方性熱酸化法にて相対
的に薄い酸化膜10を形成および除去することによ
り)、溝9の内壁にイオンダメージの無い溝が形成され
ているので、この溝側面に形成するエピタキシャル層1
1を高品位に形成でき、このエピタキシャル層11に形
成されるMOS界面は良好なものとなり、スイッチング
特性に優れた装置を製造することができる。
Further, as described above, by forming and removing the thermal oxide film 10 (by forming and removing the relatively thin oxide film 10 by the local anisotropic thermal oxidation method), the inner wall of the groove 9 is formed. Since a groove without ion damage is formed in the epitaxial layer 1, the epitaxial layer 1 formed on the side surface of the groove is
1 can be formed in high quality, the MOS interface formed in this epitaxial layer 11 becomes good, and a device having excellent switching characteristics can be manufactured.

【0037】次に、図7に示すように、例えば1100
℃の異方性熱酸化法により5時間程度の熱酸化を行い、
エピタキシャル層11の表面にゲート熱酸化膜12を形
成する。この熱酸化により溝9の側面9aに位置するエ
ピタキシャル層11aにおいてはその表面に厚さが50
nm程度の薄いゲート熱酸化膜12aが形成される。
又、溝9の底面9bにおけるエピタキシャル層11bは
酸化され酸化膜に変化し厚さが500nm程度の厚いゲ
ート熱酸化膜12bが形成される。さらに、n+ソース
領域6上およびp型エピタキシャル層3上におけるエピ
タキシャル層11cは酸化膜に変化し厚さが500nm
程度の厚いゲート熱酸化膜12cが形成される。
Next, as shown in FIG. 7, for example, 1100
Approximately 5 hours of thermal oxidation by anisotropic thermal oxidation at ℃
A gate thermal oxide film 12 is formed on the surface of the epitaxial layer 11. Due to this thermal oxidation, the epitaxial layer 11a located on the side surface 9a of the groove 9 has a thickness of 50.
A thin gate thermal oxide film 12a having a thickness of about nm is formed.
Further, the epitaxial layer 11b on the bottom surface 9b of the groove 9 is oxidized and converted into an oxide film, and a thick gate thermal oxide film 12b having a thickness of about 500 nm is formed. Further, the epitaxial layer 11c on the n + source region 6 and the p-type epitaxial layer 3 is changed to an oxide film and has a thickness of 500 nm.
A thick gate thermal oxide film 12c is formed.

【0038】ここで、厚さが異なる熱酸化膜12が形成
されることは実験的に分かっている。つまり、図9に示
すように、(0001)カーボン面と角度θをなす斜状
面とを有する炭化珪素を用いて熱酸化膜の厚さを測定し
た。その結果、(0001)カーボン面に比べ、θ=9
0°である面{(112バー0)面}において膜厚が薄
くなる。この異方酸化工程によりエピタキシャル層11
の除去を最小限に抑えて、基板表面と溝底面の不必要な
エピタキシャル層11を取り除くことが可能となる。よ
って、一度の熱酸化にて簡便かつ歩留まりよく溝側面だ
けにエピタキシャル層11を形成することができ、安価
に歩留まりよく製造することができる。
Here, it has been experimentally known that the thermal oxide films 12 having different thicknesses are formed. That is, as shown in FIG. 9, the thickness of the thermal oxide film was measured using silicon carbide having a (0001) carbon surface and an inclined surface forming an angle θ. As a result, compared with the (0001) carbon surface, θ = 9
The film thickness becomes thin on the surface {(112 bar 0) surface} which is 0 °. By this anisotropic oxidation process, the epitaxial layer 11
It is possible to remove unnecessary unnecessary epitaxial layer 11 on the substrate surface and the groove bottom surface. Therefore, the epitaxial layer 11 can be formed only on the side surface of the groove easily and with a high yield by one thermal oxidation, and the manufacturing can be performed at a low cost and with a high yield.

【0039】続いて、図8に示すように、溝9内を、ゲ
ート電極膜としての第1ポリシリコン膜13a及び第2
ポリシリコン膜13bにより順次埋め戻す。その結果、
溝9内におけるゲート熱酸化膜12の内側に第1および
第2ポリシリコン膜13a,13bが配置される。ここ
で、第1および第2ポリシリコン膜13a,13bはn
+ ソース領域6上のゲート熱酸化膜12c上に形成され
てもよい。
Subsequently, as shown in FIG. 8, the inside of the trench 9 is covered with the first polysilicon film 13a and the second polysilicon film 13a as gate electrode films.
The polysilicon film 13b is sequentially backfilled. as a result,
First and second polysilicon films 13 a and 13 b are arranged inside gate thermal oxide film 12 in trench 9. Here, the first and second polysilicon films 13a and 13b are n
It may be formed on the gate thermal oxide film 12c on the + source region 6.

【0040】しかる後、図1に示すように、第1及び第
2ポリシリコン膜13a,13b上を含めたゲート熱酸
化膜12c上に、CVD法により層間絶縁層14を形成
し、ソースコンタクト予定位置のn+ ソース領域6とp
型エピタキシャル層3の表面上にあるゲート熱酸化膜1
2cと層間絶縁層14とを除去する。その後、n+ ソー
ス領域6とp型エピタキシャル層3及び層間絶縁層14
上に第1の電極としてのソース電極膜15を形成すると
ともに、半導体基板4の裏面(n+ 型単結晶SiC基板
1の表面)に第2の電極としてのドレイン電極膜16を
形成し、パワーMOSFETを完成する。
Thereafter, as shown in FIG. 1, an interlayer insulating layer 14 is formed by a CVD method on the gate thermal oxide film 12c including the first and second polysilicon films 13a and 13b, and a source contact is planned. Position n + source region 6 and p
Thermal oxide film 1 on the surface of the epitaxial layer 3
2c and the interlayer insulating layer 14 are removed. After that, the n + source region 6, the p-type epitaxial layer 3 and the interlayer insulating layer 14 are formed.
A source electrode film 15 as a first electrode is formed on the upper surface, and a drain electrode film 16 as a second electrode is formed on the back surface of the semiconductor substrate 4 (front surface of the n + -type single crystal SiC substrate 1). Complete the MOSFET.

【0041】このように、本実施の形態では、炭化珪素
よりなる半導体基板4を用いてチャネルを形成するエピ
タキシャル層11の不純物濃度をソース・ドレイン間耐
圧を設計するのに必要なn型エピタキシャル層2とp型
エピタキシャル層3の不純物濃度とは独立に任意に設計
することができるのでチャネル移動度の不純物散乱を抑
えることでチャネル部でのドロップ電圧を小さくし、か
つ低い閾電圧の高耐圧低損失パワーMOSFETを製造
することができる。
As described above, in the present embodiment, the impurity concentration of the epitaxial layer 11 forming the channel using the semiconductor substrate 4 made of silicon carbide is set to the n-type epitaxial layer necessary for designing the source-drain breakdown voltage. 2 and the impurity concentration of the p-type epitaxial layer 3 can be designed independently of each other, so that the drop voltage in the channel portion can be reduced by suppressing the impurity scattering of the channel mobility, and the high withstand voltage and low with a low threshold voltage. A loss power MOSFET can be manufactured.

【0042】又、溝9内にエピタキシャル層11が形成
されるので、このエピタキシャル層11においてはイオ
ンダメージの無い半導体層が配置できる。よって、チャ
ネル形成面にイオンダメージや凹凸を低減することでM
OS界面特性が改善されスイッチング特性に優れた炭化
珪素半導体装置が製造できる。
Since the epitaxial layer 11 is formed in the groove 9, a semiconductor layer without ion damage can be arranged in the epitaxial layer 11. Therefore, by reducing ion damage and unevenness on the channel formation surface, M
A silicon carbide semiconductor device having improved OS interface characteristics and excellent switching characteristics can be manufactured.

【0043】又、半導体基板4を構成する炭化珪素が六
方晶系であり、かつ表面の面方位が略(0001)カー
ボン面であるので、その他の面に対して化学反応性の高
い面を表面とでき、プロセス温度を下げ、プロセス時間
を短くできる。よって、安価なるデバイスとすることが
できる。
Further, since the silicon carbide forming the semiconductor substrate 4 is a hexagonal system and the surface orientation of the surface is a (0001) carbon surface, the surface having a high chemical reactivity with the other surface is the surface. Therefore, the process temperature can be lowered and the process time can be shortened. Therefore, an inexpensive device can be obtained.

【0044】又、チャネルを形成する第2の半導体層
(エピタキシャル層11)をエピタキシャル成長にて形
成したので、溝9の側面に一様に第2の半導体層(エピ
タキシャル層11)を高品位に形成できる。この方法に
より得られた第2の半導体層(エピタキシャル層11)
は移動度がその他の層の不純物の影響を受けず移動度が
大きいという特長を有し、このエピタキシャル層11に
形成したチャネルでのドロップ電圧を小さくでき、低損
失に製造することができる。さらに、異方性エピタキシ
ャル成長により低不純物濃度で形成したので、チャネル
の移動度が大きいチャネルを形成することができ、チャ
ネル部でのドロップ電圧を小さくできる。このように、
炭化珪素よりなる高耐圧低損失パワーMOSFETをよ
り低損失に歩留まりよく製造することができる。
Further, since the second semiconductor layer (epitaxial layer 11) forming the channel is formed by epitaxial growth, the second semiconductor layer (epitaxial layer 11) is uniformly formed on the side surface of the groove 9 with high quality. it can. Second semiconductor layer (epitaxial layer 11) obtained by this method
Has a characteristic that the mobility is large without being affected by impurities in other layers, and the drop voltage in the channel formed in the epitaxial layer 11 can be made small, so that it can be manufactured with low loss. Furthermore, since the film is formed by anisotropic epitaxial growth with a low impurity concentration, it is possible to form a channel having high channel mobility and reduce the drop voltage in the channel portion. in this way,
A high breakdown voltage and low loss power MOSFET made of silicon carbide can be manufactured with lower loss and high yield.

【0045】又、ドライエッチングにより溝9が形成さ
れるので、溝9を微細に深く、垂直に近く形成でき、溝
9の側面9aに形成されるエピタキシャル層11の表面
積を増やすことで単位面積当たりのチャネル幅の総計を
大きくできチャネル部でのドロップ電圧を小さくするこ
とができ、より低損失化した装置を製造することができ
る。
Further, since the groove 9 is formed by dry etching, the groove 9 can be formed finely deep and nearly vertical, and by increasing the surface area of the epitaxial layer 11 formed on the side surface 9a of the groove 9, the unit area per unit area is increased. The total channel width can be increased, the drop voltage in the channel portion can be decreased, and a device with lower loss can be manufactured.

【0046】又、ゲート電極膜はポリシリコン膜よりな
るので、溝内壁に歩留まりよくゲート電極膜を形成で
き、高耐圧低損失の装置を歩留まり良く製造できる。
尚、本実施例では、六方晶系炭化珪素についてのみ説明
したが、他の結晶系(例えば立方晶系)の炭化珪素につ
いても同じ効果が得られる。
Further, since the gate electrode film is made of a polysilicon film, the gate electrode film can be formed on the inner wall of the groove with a good yield, and a device with high breakdown voltage and low loss can be manufactured with a good yield.
In the present embodiment, only hexagonal system silicon carbide has been described, but the same effect can be obtained with other crystal system (eg, cubic system) silicon carbide.

【0047】又、p/n/n+ 構造の基板についてのみ
説明したが、半導体型のnとpを入れ換えた構造でも同
じ効果が得られることは言うまでもない。さらに、図7
に示すように、エピタキシャル層11を形成した後に、
熱酸化膜11を形成して溝9の側面にのみエピタキシャ
ル層11を残すとともに、溝9の内壁における底面9b
に比べ側面9aが薄いゲート酸化膜を配置したが、エピ
タキシャル層11を形成した後に、熱酸化膜を形成し、
溝9の側面にのみエピタキシャル層11を残した後にこ
の酸化膜を除去する第1の熱酸化膜形成工程と、その後
において、熱酸化膜を形成し、溝9の内壁における底面
9bに比べ側面9aが薄いゲート酸化膜を形成する第2
の熱酸化膜形成工程としてもよい。この第1の熱酸化膜
形成工程においては基板表面の不必要な第2の半導体層
を1回の酸化にて除去できる。又、第2の熱酸化膜形成
工程においては、異方性熱酸化法により側面の酸化膜を
選択的に薄くでき、基板表面、溝底面のフィールド酸化
膜は厚くでき、チャネルを形成する部位のみに薄い酸化
膜を形成できる。
Although only the substrate having the p / n / n + structure has been described, it goes without saying that the same effect can be obtained even if the semiconductor type n and p are interchanged. Furthermore, FIG.
As shown in, after forming the epitaxial layer 11,
The thermal oxide film 11 is formed to leave the epitaxial layer 11 only on the side surface of the groove 9, and the bottom surface 9b on the inner wall of the groove 9 is formed.
Although a gate oxide film having a thinner side surface 9a than the above is arranged, a thermal oxide film is formed after forming the epitaxial layer 11.
The first thermal oxide film forming step of removing this oxide film after leaving the epitaxial layer 11 only on the side surface of the groove 9 and then the thermal oxide film is formed, and the side surface 9a compared to the bottom surface 9b on the inner wall of the groove 9 is formed. Second to form a thin gate oxide film
The thermal oxide film forming step may be performed. In this first thermal oxide film forming step, the unnecessary second semiconductor layer on the substrate surface can be removed by one-time oxidation. In the second thermal oxide film forming step, the oxide film on the side surface can be selectively thinned by the anisotropic thermal oxidation method, the field oxide film on the substrate surface and the groove bottom surface can be thickened, and only the portion where the channel is formed is formed. A thin oxide film can be formed on the surface.

【0048】又、n+ ソース領域6はイオン注入によら
ずに、p型エピタキシャル層3の形成の際において成長
途中から不純物を含んだガスを供給することによりp型
エピタキシャル層3の表面にn+ ソース領域6を形成し
てもよい。このようにすると、厚いソース領域が形成す
ることができ、また低抵抗なソース領域をエピタキシャ
ル成長法により形成することができるのでソース領域で
のドロップ電圧を小さくすることができ、より低損失化
した装置を製造することができる。
Further, the n + source region 6 does not depend on the ion implantation but is supplied to the surface of the p-type epitaxial layer 3 by supplying a gas containing impurities during the growth of the p-type epitaxial layer 3 during the formation thereof. + The source region 6 may be formed. By doing so, a thick source region can be formed, and a low-resistance source region can be formed by an epitaxial growth method, so that the drop voltage in the source region can be reduced and a device with lower loss can be formed. Can be manufactured.

【0049】又、ソース電極膜15は、少なくともn+
ソース領域6の表面に形成されていればよい。又、溝9
の形状は、U字状の他にもV字状であってもよい。
The source electrode film 15 has at least n +.
It may be formed on the surface of the source region 6. Also, the groove 9
The shape of may be V-shaped as well as U-shaped.

【0050】尚、本発明において(0001)カーボン
面は、結晶学的にみて対称な面である(0001バー)
カーボン面を含むものである。
In the present invention, the (0001) carbon surface is a crystallographically symmetrical surface (0001 bar).
It includes a carbon surface.

【0051】[0051]

【発明の効果】以上詳述したように、請求項1に記載の
発明によれば、高耐圧、低オン抵抗でかつ閾値電圧を小
さくでき、さらに、チャネル形成面にイオンダメージや
凹凸を低減することでMOS界面特性を改善しスイッチ
ング特性に優れた炭化珪素半導体装置の製造方法を提供
することができる優れた効果を発揮する。
As described in detail above, according to the invention described in claim 1, it is possible to reduce the threshold voltage with a high breakdown voltage and a low on-resistance, and further to reduce ion damage and unevenness on the channel formation surface. As a result, the excellent effect of improving the MOS interface characteristics and providing a method for manufacturing a silicon carbide semiconductor device having excellent switching characteristics is exhibited.

【0052】請求項2に記載の発明によれば、請求項1
に記載の発明の効果に加え、プロセス温度を下げたりプ
ロセス時間を短くでき、安価に製造することができる。
請求項3に記載の発明によれば、請求項1又は2に記載
の発明の効果に加え、一度の熱酸化にて簡便かつ歩留ま
りよく溝側面だけに第2の半導体層を形成でき、安価に
歩留まりよく製造することができる。
According to the invention described in claim 2, according to claim 1
In addition to the effects of the invention described in 1), the process temperature can be lowered and the process time can be shortened, and the manufacturing can be performed at low cost.
According to the invention described in claim 3, in addition to the effect of the invention described in claim 1 or 2, the second semiconductor layer can be formed only on the side surface of the groove easily and with good yield by one thermal oxidation, which is inexpensive. It can be manufactured with high yield.

【0053】請求項4に記載の発明によれば、請求項1
〜3のいずれか1項に記載の発明の効果に加え、第2の
半導体層に形成したチャネル部でのドロップ電圧を小さ
くでき、低損失に製造することができる。
According to the invention of claim 4, claim 1
In addition to the effect of the invention described in any one of 1 to 3, it is possible to reduce the drop voltage in the channel portion formed in the second semiconductor layer and to manufacture with low loss.

【0054】請求項5に記載の発明によれば、請求項1
〜4のいずれか1項に記載の発明の効果に加え、ソース
領域でのドロップ電圧を小さくすることができ、より低
損失化した装置を製造することができる。
According to the fifth aspect of the present invention, the first aspect is provided.
In addition to the effect of the invention described in any one of to 4, it is possible to reduce the drop voltage in the source region and to manufacture a device with lower loss.

【0055】請求項6に記載の発明によれば、請求項1
〜4のいずれか1項に記載の発明の効果に加え、MOS
界面が良好なものとなり、スイッチング特性に優れた装
置を製造することができる。
According to the invention described in claim 6, according to claim 1,
In addition to the effect of the invention described in any one of
The interface becomes good, and a device having excellent switching characteristics can be manufactured.

【0056】請求項7に記載の発明によれば、請求項1
〜4のいずれか1項に記載の発明の効果に加え、MOS
界面が良好なものとなり、スイッチング特性に優れた装
置を製造することができる。
According to the invention of claim 7, claim 1
In addition to the effect of the invention described in any one of
The interface becomes good, and a device having excellent switching characteristics can be manufactured.

【0057】請求項8に記載の発明によれば、請求項1
〜4のいずれか1項に記載の発明の効果に加え、チャネ
ル部でのドロップ電圧を小さくでき、また歩留まりよく
形成することができ、これにより低損失で歩留まりが高
い装置を製造できる。
According to the invention of claim 8, claim 1
In addition to the effect of the invention described in any one of items 1 to 4, it is possible to reduce the drop voltage in the channel portion and to form the device with a high yield, whereby a device with low loss and high yield can be manufactured.

【0058】請求項9に記載の発明によれば、請求項1
〜4のいずれか1項に記載の発明の効果に加え、ソース
・ドレイン間耐圧が高く、スイッチング速度の速い装置
を製造できる。
According to the invention of claim 9, claim 1
In addition to the effect of the invention described in any one of items 1 to 4, a device having a high source-drain breakdown voltage and a high switching speed can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】発明の実施の形態における炭化珪素半導体装置
及び製造工程を説明するための断面構造図。
FIG. 1 is a cross-sectional structure diagram for illustrating a silicon carbide semiconductor device and a manufacturing process in an embodiment of the present invention.

【図2】図1に示す炭化珪素半導体装置の製造工程を説
明するための断面構造図。
FIG. 2 is a cross-sectional structure diagram for illustrating the manufacturing process for the silicon carbide semiconductor device shown in FIG.

【図3】図1に示す炭化珪素半導体装置の製造工程を説
明するための断面構造図。
FIG. 3 is a cross-sectional structure diagram for illustrating the manufacturing process for the silicon carbide semiconductor device shown in FIG.

【図4】図1に示す炭化珪素半導体装置の製造工程を説
明するための断面構造図。
FIG. 4 is a cross-sectional structure diagram for illustrating the manufacturing process for the silicon carbide semiconductor device shown in FIG.

【図5】図1に示す炭化珪素半導体装置の製造工程を説
明するための断面構造図。
5 is a cross-sectional structure diagram for illustrating the manufacturing process for the silicon carbide semiconductor device shown in FIG.

【図6】図1に示す炭化珪素半導体装置の製造工程を説
明するための断面構造図。
6 is a cross-sectional structure diagram for illustrating a manufacturing process for the silicon carbide semiconductor device shown in FIG.

【図7】図1に示す炭化珪素半導体装置の製造工程を説
明するための断面構造図。
7 is a cross-sectional structure diagram for illustrating the manufacturing process for the silicon carbide semiconductor device shown in FIG.

【図8】図1に示す炭化珪素半導体装置の製造工程を説
明するための断面構造図。
8 is a cross-sectional structure diagram for illustrating the manufacturing process for the silicon carbide semiconductor device shown in FIG.

【図9】炭化珪素半導体材料の熱酸化の異方性を説明す
るための図。
FIG. 9 is a diagram for explaining anisotropy of thermal oxidation of a silicon carbide semiconductor material.

【図10】炭化珪素半導体材料のエピタキシャル成長の
異方性を説明するためのスケッチ図。
FIG. 10 is a sketch diagram for explaining anisotropy of epitaxial growth of a silicon carbide semiconductor material.

【図11】従来技術の炭化珪素半導体装置を説明するた
めの断面構造図。
FIG. 11 is a cross-sectional structure diagram for illustrating a conventional silicon carbide semiconductor device.

【符号の説明】[Explanation of symbols]

1…低抵抗半導体層としてのn+ 型単結晶SiC基板、
2…高抵抗半導体層としてのn型エピタキシャル層、3
…第1の半導体層としてのp型エピタキシャル層、4…
半導体基板、6…半導体領域としてのn+ ソース領域、
9…溝、9a…側面、9b…底面、10…熱酸化膜、1
1…第2の半導体層としてのエピタキシャル層、12…
ゲート熱酸化膜、13a…ゲート電極膜としての第1ポ
リシリコン層、14…層間絶縁層、15…第1の電極と
してのソース電極膜、16…第2の電極としてのドレイ
ン電極膜
1. n + type single crystal SiC substrate as a low resistance semiconductor layer,
2 ... n-type epitaxial layer as high resistance semiconductor layer, 3
... p-type epitaxial layer as first semiconductor layer, 4 ...
Semiconductor substrate, 6 ... n + source region as semiconductor region,
9 ... Groove, 9a ... Side surface, 9b ... Bottom surface, 10 ... Thermal oxide film, 1
1 ... Epitaxial layer as second semiconductor layer, 12 ...
Gate thermal oxide film, 13a ... First polysilicon layer as gate electrode film, 14 ... Interlayer insulating layer, 15 ... Source electrode film as first electrode, 16 ... Drain electrode film as second electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮嶋 健 愛知県刈谷市昭和町1丁目1番地 日本電 装 株式会社内 (72)発明者 戸倉 規仁 愛知県刈谷市昭和町1丁目1番地 日本電 装 株式会社内 (72)発明者 夫馬 弘雄 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Ken Miyajima, 1-1, Showa-cho, Kariya city, Aichi Prefecture, Nihon Denso Co., Ltd. Co., Ltd. (72) Inventor Hiroo Ozuma, Toyota Central Research Institute Co., Ltd., 41, Yokomichi, Nagakute-cho, Aichi-gun, Aichi

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の低抵抗半導体層と第1導電
型の高抵抗半導体層と第2導電型の第1の半導体層とを
順に積層して単結晶炭化珪素よりなる半導体基板を形成
するとともに、前記第1の半導体層内の表層部の所定領
域に第1導電型の半導体領域を形成する第1工程と、 前記半導体領域と前記第1の半導体層を貫通し前記高抵
抗半導体層に達する溝を形成する第2工程と、 前記溝の内壁における少なくとも側面に、単結晶炭化珪
素よりなる第2の半導体層を形成する第3工程と、 前記溝内における前記第2の半導体層の表面にゲート酸
化膜を形成する第4工程と、 前記溝内における前記ゲート酸化膜の表面にゲート電極
膜を形成する第5工程と、 前記第1の半導体層の表面と前記半導体領域の表面のう
ちの少なくとも前記半導体領域の表面に第1の電極を形
成するとともに、前記低抵抗半導体層の表面に第2の電
極を形成する第6工程とを備えたことを特徴とする炭化
珪素半導体装置の製造方法。
1. A semiconductor substrate made of single crystal silicon carbide by sequentially laminating a low-resistance semiconductor layer of a first conductivity type, a high-resistance semiconductor layer of a first conductivity type, and a first semiconductor layer of a second conductivity type. A first step of forming and forming a semiconductor region of a first conductivity type in a predetermined region of a surface layer portion in the first semiconductor layer; and the high resistance semiconductor penetrating the semiconductor region and the first semiconductor layer. A second step of forming a groove reaching the layer, a third step of forming a second semiconductor layer made of single crystal silicon carbide on at least a side surface of the inner wall of the groove, and the second semiconductor layer in the groove A fourth step of forming a gate oxide film on the surface of the gate, a fifth step of forming a gate electrode film on the surface of the gate oxide film in the groove, a surface of the first semiconductor layer and a surface of the semiconductor region At least the semiconductor region And forming a first electrode on a surface, the method for manufacturing a silicon carbide semiconductor device is characterized in that a sixth step of forming a second electrode on the surface of the low-resistance semiconductor layer.
【請求項2】 前記半導体基板を構成する炭化珪素が六
方晶系であり、かつ表面の面方位が略(0001)カー
ボン面であることを特徴とする請求項1に記載の炭化珪
素半導体装置の製造方法。
2. The silicon carbide semiconductor device according to claim 1, wherein the silicon carbide forming the semiconductor substrate is a hexagonal crystal system, and the plane orientation of the surface is a (0001) carbon plane. Production method.
【請求項3】 前記第3工程は、前記第1の半導体層お
よび半導体領域の表面と前記溝の側面および底面に第2
の半導体層を形成するものであり、その後に、前記溝の
側面における前記第2の半導体層に比べ前記第1の半導
体層および半導体領域の表面と前記溝の底面における前
記第2の半導体層を厚く熱酸化して前記溝の側面にのみ
前記第2の半導体層を残す工程を含むことを特徴とする
請求項1又は2に記載の炭化珪素半導体装置の製造方
法。
3. In the third step, a second step is performed on the surface of the first semiconductor layer and the semiconductor region and the side surface and the bottom surface of the groove.
Of the first semiconductor layer and the semiconductor region on the side surface of the groove and the second semiconductor layer on the bottom surface of the groove as compared with the second semiconductor layer on the side surface of the groove. 3. The method for manufacturing a silicon carbide semiconductor device according to claim 1, further comprising a step of thickly thermally oxidizing and leaving the second semiconductor layer only on a side surface of the groove.
【請求項4】 前記第3工程は、前記第2の半導体層を
エピタキシャル成長法により形成することを特徴とする
請求項1〜3のいずれか1項に記載の炭化珪素半導体装
置の製造方法。
4. The method for manufacturing a silicon carbide semiconductor device according to claim 1, wherein in the third step, the second semiconductor layer is formed by an epitaxial growth method.
【請求項5】 前記第1工程は、前記半導体領域をエピ
タキシャル成長法にて形成することを特徴とする請求項
1〜4のいずれか1項に記載の炭化珪素半導体装置の製
造方法。
5. The method for manufacturing a silicon carbide semiconductor device according to claim 1, wherein in the first step, the semiconductor region is formed by an epitaxial growth method.
【請求項6】 前記第2工程は、前記溝の内壁における
底面に比べ側面が薄い酸化膜を形成および除去する工程
を含むことを特徴とする請求項1〜4のいずれか1項に
記載の炭化珪素半導体装置の製造方法。
6. The method according to claim 1, wherein the second step includes a step of forming and removing an oxide film whose side surface is thinner than a bottom surface of the inner wall of the groove. Manufacturing method of silicon carbide semiconductor device.
【請求項7】 前記第2工程は、ドライエッチングによ
り前記溝を形成するとともに、溝の内壁における底面に
比べ側面が薄い酸化膜を形成および除去する工程を含む
ことを特徴とする請求項1〜4のいずれか1項に記載の
炭化珪素半導体装置の製造方法。
7. The second step includes the steps of forming the groove by dry etching and forming and removing an oxide film having a side surface whose inner wall is thinner than a bottom surface of the groove. 5. The method for manufacturing a silicon carbide semiconductor device according to any one of 4 above.
【請求項8】 前記第3工程は、異方性エピタキシャル
成長法により前記溝の内壁において底面に比べ側面が厚
い前記第2の半導体層を形成することを特徴とする請求
項1〜4のいずれか1項に記載の炭化珪素半導体装置の
製造方法。
8. The third step of forming the second semiconductor layer in which the side surface of the inner wall of the groove is thicker than the bottom surface of the second semiconductor layer by an anisotropic epitaxial growth method. Item 1. A method for manufacturing a silicon carbide semiconductor device according to Item 1.
【請求項9】 前記第4工程は、異方性熱酸化法により
前記溝の内壁における底面に比べ側面が薄い前記ゲート
酸化膜を形成することを特徴とする請求項1〜4のいず
れか1項に記載の炭化珪素半導体装置の製造方法。
9. The method according to claim 1, wherein in the fourth step, the gate oxide film whose side surface is thinner than the bottom surface of the inner wall of the groove is formed by an anisotropic thermal oxidation method. Item 8. A method for manufacturing a silicon carbide semiconductor device according to item.
JP22948595A 1995-09-06 1995-09-06 Method for manufacturing silicon carbide semiconductor device Expired - Lifetime JP3419163B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP22948595A JP3419163B2 (en) 1995-09-06 1995-09-06 Method for manufacturing silicon carbide semiconductor device
KR1019960038644A KR100199997B1 (en) 1995-09-06 1996-09-06 Silicon carbide semiconductor device
DE19636302A DE19636302C2 (en) 1995-09-06 1996-09-06 Silicon carbide semiconductor device and manufacturing method
FR9610880A FR2738394B1 (en) 1995-09-06 1996-09-06 SILICON CARBIDE SEMICONDUCTOR DEVICE, AND MANUFACTURING METHOD THEREOF
US08/893,221 US5976936A (en) 1995-09-06 1997-07-15 Silicon carbide semiconductor device
US08/938,805 US6020600A (en) 1995-09-06 1997-09-26 Silicon carbide semiconductor device with trench

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22948595A JP3419163B2 (en) 1995-09-06 1995-09-06 Method for manufacturing silicon carbide semiconductor device

Publications (2)

Publication Number Publication Date
JPH0974191A true JPH0974191A (en) 1997-03-18
JP3419163B2 JP3419163B2 (en) 2003-06-23

Family

ID=16892911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22948595A Expired - Lifetime JP3419163B2 (en) 1995-09-06 1995-09-06 Method for manufacturing silicon carbide semiconductor device

Country Status (1)

Country Link
JP (1) JP3419163B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11266015A (en) * 1998-03-18 1999-09-28 Denso Corp Manufacture of silicon carbide semiconductor device
JP2000312003A (en) * 1999-02-23 2000-11-07 Matsushita Electric Ind Co Ltd Insulated gate type semiconductor element and manufacture thereof
KR100295063B1 (en) * 1998-06-30 2001-08-07 김덕중 Power semiconductor device having trench gate structure and method for fabricating thereof
KR100341214B1 (en) * 1999-12-21 2002-06-20 오길록 High speed power UMOSFETs and method for fabricating the same
KR100506055B1 (en) * 2001-12-31 2005-08-05 주식회사 하이닉스반도체 Method for manufacturing transistor of semiconductor device
US7091555B2 (en) 2003-04-02 2006-08-15 Rohm Co., Ltd. Semiconductor device for switching
JP2007258465A (en) * 2006-03-23 2007-10-04 Fuji Electric Holdings Co Ltd Semiconductor device
DE19809564B4 (en) * 1997-03-05 2008-07-31 Denso Corp., Kariya Silicon carbide semiconductor device
JP2011253929A (en) * 2010-06-02 2011-12-15 Mitsubishi Electric Corp Manufacturing method of semiconductor device and semiconductor device
KR101142536B1 (en) * 2010-07-26 2012-05-08 한국전기연구원 Fabrication method of the SiC trench MOSFET
JP2012089873A (en) * 1999-02-23 2012-05-10 Panasonic Corp Insulation gate type semiconductor element manufacturing method
WO2013094287A1 (en) 2011-12-19 2013-06-27 住友電気工業株式会社 Semiconductor device
WO2014164297A1 (en) * 2013-03-13 2014-10-09 Cree, Inc. Field effect transistor devices with regrown layers
US8981384B2 (en) 2010-08-03 2015-03-17 Sumitomo Electric Industries, Ltd. Semiconductor device and method for manufacturing same
US8999854B2 (en) 2011-11-21 2015-04-07 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide semiconductor device
US9000447B2 (en) 2011-09-26 2015-04-07 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device
US9012922B2 (en) 2011-09-14 2015-04-21 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method for manufacturing same
US9142668B2 (en) 2013-03-13 2015-09-22 Cree, Inc. Field effect transistor devices with buried well protection regions
US9240476B2 (en) 2013-03-13 2016-01-19 Cree, Inc. Field effect transistor devices with buried well regions and epitaxial layers
US9306061B2 (en) 2013-03-13 2016-04-05 Cree, Inc. Field effect transistor devices with protective regions
JP2016528729A (en) * 2013-07-17 2016-09-15 クリー インコーポレイテッドCree Inc. Enhanced gate dielectric for field effect devices with trench gates
JP2017005140A (en) * 2015-06-11 2017-01-05 トヨタ自動車株式会社 Insulated gate switching device and manufacturing method of the same
JP2018101706A (en) * 2016-12-20 2018-06-28 国立研究開発法人産業技術総合研究所 Silicon carbide semiconductor device and silicon carbide semiconductor device manufacturing method
CN114242768A (en) * 2021-11-18 2022-03-25 深圳真茂佳半导体有限公司 Silicon carbide MOSFET device with improved gate bottom charge balance and manufacturing method thereof
CN114242769A (en) * 2021-11-24 2022-03-25 深圳真茂佳半导体有限公司 Super-junction trapezoidal-groove silicon carbide MOSFET device and manufacturing method thereof

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19809564B4 (en) * 1997-03-05 2008-07-31 Denso Corp., Kariya Silicon carbide semiconductor device
JPH11266015A (en) * 1998-03-18 1999-09-28 Denso Corp Manufacture of silicon carbide semiconductor device
US6525373B1 (en) 1998-06-30 2003-02-25 Fairchild Korea Semiconductor Ltd. Power semiconductor device having trench gate structure and method for manufacturing the same
KR100295063B1 (en) * 1998-06-30 2001-08-07 김덕중 Power semiconductor device having trench gate structure and method for fabricating thereof
JP2012089873A (en) * 1999-02-23 2012-05-10 Panasonic Corp Insulation gate type semiconductor element manufacturing method
JP2000312003A (en) * 1999-02-23 2000-11-07 Matsushita Electric Ind Co Ltd Insulated gate type semiconductor element and manufacture thereof
KR100341214B1 (en) * 1999-12-21 2002-06-20 오길록 High speed power UMOSFETs and method for fabricating the same
KR100506055B1 (en) * 2001-12-31 2005-08-05 주식회사 하이닉스반도체 Method for manufacturing transistor of semiconductor device
US7091555B2 (en) 2003-04-02 2006-08-15 Rohm Co., Ltd. Semiconductor device for switching
JP2007258465A (en) * 2006-03-23 2007-10-04 Fuji Electric Holdings Co Ltd Semiconductor device
JP2011253929A (en) * 2010-06-02 2011-12-15 Mitsubishi Electric Corp Manufacturing method of semiconductor device and semiconductor device
KR101142536B1 (en) * 2010-07-26 2012-05-08 한국전기연구원 Fabrication method of the SiC trench MOSFET
JP5741584B2 (en) * 2010-08-03 2015-07-01 住友電気工業株式会社 Manufacturing method of semiconductor device
US9054022B2 (en) 2010-08-03 2015-06-09 Sumitomo Electric Industries, Ltd. Method for manufacturing semiconductor device
US8981384B2 (en) 2010-08-03 2015-03-17 Sumitomo Electric Industries, Ltd. Semiconductor device and method for manufacturing same
US9012922B2 (en) 2011-09-14 2015-04-21 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method for manufacturing same
US9000447B2 (en) 2011-09-26 2015-04-07 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device
US8999854B2 (en) 2011-11-21 2015-04-07 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide semiconductor device
WO2013094287A1 (en) 2011-12-19 2013-06-27 住友電気工業株式会社 Semiconductor device
US10784338B2 (en) 2013-03-13 2020-09-22 Cree, Inc. Field effect transistor devices with buried well protection regions
US9570585B2 (en) 2013-03-13 2017-02-14 Cree, Inc. Field effect transistor devices with buried well protection regions
US9142668B2 (en) 2013-03-13 2015-09-22 Cree, Inc. Field effect transistor devices with buried well protection regions
US9240476B2 (en) 2013-03-13 2016-01-19 Cree, Inc. Field effect transistor devices with buried well regions and epitaxial layers
US9306061B2 (en) 2013-03-13 2016-04-05 Cree, Inc. Field effect transistor devices with protective regions
US9012984B2 (en) 2013-03-13 2015-04-21 Cree, Inc. Field effect transistor devices with regrown p-layers
US10134834B2 (en) 2013-03-13 2018-11-20 Cree, Inc. Field effect transistor devices with buried well protection regions
WO2014164297A1 (en) * 2013-03-13 2014-10-09 Cree, Inc. Field effect transistor devices with regrown layers
JP2016528729A (en) * 2013-07-17 2016-09-15 クリー インコーポレイテッドCree Inc. Enhanced gate dielectric for field effect devices with trench gates
JP2017005140A (en) * 2015-06-11 2017-01-05 トヨタ自動車株式会社 Insulated gate switching device and manufacturing method of the same
JP2018101706A (en) * 2016-12-20 2018-06-28 国立研究開発法人産業技術総合研究所 Silicon carbide semiconductor device and silicon carbide semiconductor device manufacturing method
CN114242768A (en) * 2021-11-18 2022-03-25 深圳真茂佳半导体有限公司 Silicon carbide MOSFET device with improved gate bottom charge balance and manufacturing method thereof
CN114242769A (en) * 2021-11-24 2022-03-25 深圳真茂佳半导体有限公司 Super-junction trapezoidal-groove silicon carbide MOSFET device and manufacturing method thereof
CN114242769B (en) * 2021-11-24 2022-08-26 深圳真茂佳半导体有限公司 Super-junction trapezoidal-groove silicon carbide MOSFET device and manufacturing method thereof

Also Published As

Publication number Publication date
JP3419163B2 (en) 2003-06-23

Similar Documents

Publication Publication Date Title
JP3419163B2 (en) Method for manufacturing silicon carbide semiconductor device
US5976936A (en) Silicon carbide semiconductor device
US9490338B2 (en) Silicon carbide semiconductor apparatus and method of manufacturing same
US5744826A (en) Silicon carbide semiconductor device and process for its production
US7399676B2 (en) Silicon carbide semiconductor device and method for manufacturing the same
US5164325A (en) Method of making a vertical current flow field effect transistor
JP3719323B2 (en) Silicon carbide semiconductor device
JP2004087671A (en) Semiconductor device and method for manufacturing the same
CN103928344B (en) One kind improves N-type DiMOSFET channel mobility method based on N-type nano thin-layer
US7524726B2 (en) Method for fabricating a semiconductor device
US9293549B2 (en) Silicon carbide semiconductor device and method for manufacturing the same
JP2009266871A (en) Silicon carbide semiconductor device and method of manufacturing same
JPH07120796B2 (en) MOS field effect transistor and manufacturing method thereof
JP4842527B2 (en) Manufacturing method of semiconductor device
JPH0870124A (en) Fabrication of silicon carbide semiconductor device
US11245016B2 (en) Silicon carbide trench semiconductor device
JP2003309262A (en) Silicon carbide semiconductor device and its manufacturing method
JP2003229569A (en) Manufacturing method for superjunction semiconductor element
JP3972450B2 (en) Method for manufacturing silicon carbide semiconductor device
JP3600406B2 (en) SiC semiconductor device and method of manufacturing the same
JPH0927489A (en) Semiconductor substrate and method of manufacture
JP3415340B2 (en) Silicon carbide semiconductor device
JPH0758785B2 (en) Method for manufacturing vertical field effect transistor
US11652138B2 (en) Method for producing a superjunction device
JPS63142677A (en) Insulated-gate field-effect transistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term