JPS63142677A - Insulated-gate field-effect transistor - Google Patents

Insulated-gate field-effect transistor

Info

Publication number
JPS63142677A
JPS63142677A JP61289163A JP28916386A JPS63142677A JP S63142677 A JPS63142677 A JP S63142677A JP 61289163 A JP61289163 A JP 61289163A JP 28916386 A JP28916386 A JP 28916386A JP S63142677 A JPS63142677 A JP S63142677A
Authority
JP
Japan
Prior art keywords
layer
oxide film
drain
gate
ion implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61289163A
Other languages
Japanese (ja)
Other versions
JP2515524B2 (en
Inventor
Kenji Aoki
健二 青木
Masafumi Shinpo
新保 雅文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP61289163A priority Critical patent/JP2515524B2/en
Publication of JPS63142677A publication Critical patent/JPS63142677A/en
Application granted granted Critical
Publication of JP2515524B2 publication Critical patent/JP2515524B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66628Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation recessing the gate by forming single crystalline semiconductor material at the source or drain location
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7834Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a non-planar structure, e.g. the gate or the source or the drain being non-planar

Abstract

PURPOSE:To lower the impurity concentration in a drain region and to make the depth of a diffused layer shallow by a method wherein a high-concentration n<+> region is formed by an epitaxial growth method on an n<-> layer formed by an ion implantation method. CONSTITUTION:After a gate oxide film 2, a gate 3 and a field oxide film 4 have been formed on the surface of a silicon substrate 1, n<-> layers are formed on a source region 5 and a drain region 6 by an ion implantation method. Then, after an oxide film layer 7 has been deposited by a CVD method, the oxide film is etched by keeping the side wall of the gate 3 as it is. Furthermore, by means of MLE an n<+> epitaxial growth layer 3 is formed on the n<-> layer, and an n<+> polysilicon layer 9 is formed on the gate 3. By this method, it is possible to lower the impurity concentration in a drain and to make the depth of a diffused layer shallow.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、不純物制御されたエピタキシ中ル成長層を用
いてLDD構造を形成することによって、高速かつ低消
費電力で動作する絶縁ゲート電界効果トランジスタ(以
下MO3FETと略す)に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an insulated gate field effect that operates at high speed and with low power consumption by forming an LDD structure using an epitaxially grown layer with controlled impurities. It relates to a transistor (hereinafter abbreviated as MO3FET).

〔発明の概要〕[Summary of the invention]

m111MOsトランジスタにおいて短チャネル効果を
防ぐために、イオン注入により形成されたn一層の上に
高濃度n″領域エピタキシャル成長により形成すること
によってソース・ドレイン領域を設ける。これによりド
レイン領域の不純物濃度を下げ拡散層の深さを浅くでき
る。
In order to prevent the short channel effect in the m111 MOs transistor, source/drain regions are provided by epitaxially growing a high concentration n'' region on top of the n layer formed by ion implantation.This reduces the impurity concentration in the drain region and increases the diffusion layer. The depth can be made shallower.

〔従来の技術〕[Conventional technology]

MOS  FETの微細化を進めるうえで、短チャネル
効果は大きな障害となっている。これを防止するための
対策として、従来LDD構造が採用されている。従来の
LDD構造は第2図ta+〜(C1に示すように、低濃
度イオン注入と高濃度イオン注入を行なうことにより、
低濃度n−領域と高濃度n+領領域の間にオフセット領
域を形成していた。
Short channel effects are a major obstacle in the advancement of miniaturization of MOS FETs. As a measure to prevent this, a conventional LDD structure has been adopted. The conventional LDD structure is constructed by performing low-concentration ion implantation and high-concentration ion implantation, as shown in Figure 2 ta+ (C1).
An offset region was formed between the low concentration n- region and the high concentration n+ region.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記従来の方法は、イオン注入を用いてn
′層を形成するために、第2図(C1のようにn”ll
を形成するために、第2図fclのようにn・層はn一
層に比べて高濃度イオン注入に伴う拡散のために、拡散
層の深さを浅くできない。そのため実効的な横方法拡散
深さが浅くできず、短チャネル効果防止のうえで十分で
ない。
However, the above conventional method uses ion implantation to
' layer as shown in Figure 2 (C1).
As shown in FIG. 2 (fcl), the depth of the diffusion layer cannot be made shallower in the n-layer than in the n-layer due to diffusion associated with high-concentration ion implantation. Therefore, the effective lateral diffusion depth cannot be made shallow, which is insufficient to prevent short channel effects.

〔問題点を解決するための手段〕[Means for solving problems]

上記に述べたように従来の方法は、低taK!n一層及
び高濃度n゛層はイオン注入により形成されていたため
、拡散層の接合とその深さ制御には限界が伴う。これに
対して本発明では第1図(a)に示すように低濃度n−
領域をイオン注入により形成し、第1図(blに示すよ
うにCVDで酸化膜を堆積しゲート側壁部のみを残すよ
うに酸化膜をエツチングする。
As mentioned above, the conventional method has a low taK! Since the n1 layer and the high concentration n' layer are formed by ion implantation, there are limits to the junction of the diffusion layer and the control of its depth. In contrast, in the present invention, as shown in FIG. 1(a), the low concentration n-
A region is formed by ion implantation, and an oxide film is deposited by CVD as shown in FIG.

次に第1図(C1に示す高濃度n゛層をn一層の上に成
長させてLDD構造とする。このときゲート上にはn゛
ポリシリコン堆積している。MLEを用いてエピタキシ
ャル成長を行なえば、n″層の部分の膜厚は単原子層オ
ーダーの精度で制御できる。また単原子層オーダーの精
度で任意の不純物分布を形成することもできる。
Next, a high concentration n layer shown in FIG. 1 (C1) is grown on top of the n layer to form an LDD structure. At this time, n polysilicon is deposited on the gate. For example, the film thickness of the n'' layer can be controlled with precision on the order of a monoatomic layer. It is also possible to form an arbitrary impurity distribution with precision on the order of a monoatomic layer.

〔実施例〕〔Example〕

以下、実施例に基づいて本発明を説明する。第1図ta
g、 (blにおいてP型シリコン基板1の表面上にゲ
ート酸化膜2.ゲート3.フィールド酸化膜4を設けた
後、イオン注入によりソース領域5及びドレイン領域6
にn一層を形成する。次にCVDで酸化膜N7を堆積さ
せた後、ゲート3の側壁を残して酸化膜をエツチングす
る。更に第11’J(C1に示すように、MLEを用い
てn一層の上にn゛エピタキシャル成長層8を、ゲート
3の上にn゛ポ9293フ層9設ける。以上のような方
法でLDD構造を作れば、ドレイン領域の不純物濃度は
従来のLDD構造に比べ、十分低くできる。
Hereinafter, the present invention will be explained based on Examples. Figure 1 ta
g, (In BL, after providing a gate oxide film 2, a gate 3, and a field oxide film 4 on the surface of a P-type silicon substrate 1, a source region 5 and a drain region 6 are formed by ion implantation.
A single layer is formed on the surface. Next, after depositing an oxide film N7 by CVD, the oxide film is etched leaving the sidewalls of the gate 3 intact. Furthermore, as shown in the 11th J (C1), an n epitaxial growth layer 8 is formed on the n single layer using MLE, and an n po 9293 layer 9 is formed on the gate 3. By the above method, the LDD structure is formed. By creating this structure, the impurity concentration in the drain region can be made sufficiently lower than in the conventional LDD structure.

第3図(al及び(blは、本発明によるドレイン構造
における不純物濃度分布を示しており、第3図ia+は
エピタキシャル成長層の不純物濃度を一定にした場合、
第3図fblは同じく不純物濃度をステ、プ状に変化さ
せた場合を、それぞれ表わしている。
Figure 3 (al and (bl) show the impurity concentration distribution in the drain structure according to the present invention, and Figure 3 ia+ shows the impurity concentration distribution of the epitaxially grown layer when the impurity concentration is constant.
FIG. 3 fbl similarly shows the case where the impurity concentration is changed stepwise and stepwise.

このように、本発明によれば、ドレインを浅くし、かつ
任意の不純物濃度分布を設けることができる。
As described above, according to the present invention, the drain can be made shallow and an arbitrary impurity concentration distribution can be provided.

従って本発明によって得られるLDD構造を有するMO
S  FETでは、ドレイン不純物濃度が従来に比べて
低くなり空乏層がドレイン側に伸びる。そのため基板側
で受は持つ電圧が小さくなって電界が弱められ、単チャ
ネル効果を防ぐうえで有効な構造となっている。
Therefore, an MO having an LDD structure obtained by the present invention
In SFETs, the drain impurity concentration is lower than in the past, and the depletion layer extends toward the drain side. Therefore, the voltage held by the receiver on the substrate side is reduced, weakening the electric field, making it an effective structure for preventing single-channel effects.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に本発明によれば、高濃度n″層はイオン
注入ではなくエピタキシャル成長により作られる。ML
EやMBEを用いた場合、エピタキシャル成長における
基板温度は850℃以下であるためオートドーピングも
十分に小さい。本発明を用いると、従来のイオン注入を
用いる方法では形成できないようなLDD構造が実現で
き、従来のLDD構造に比べてドレイン不純’j!11
 ?m度をより低く、拡散層の深さをより浅くすること
ができる。
As described above, according to the present invention, the high concentration n'' layer is formed not by ion implantation but by epitaxial growth.ML
When E or MBE is used, the substrate temperature during epitaxial growth is 850° C. or lower, so autodoping is sufficiently small. By using the present invention, an LDD structure that cannot be formed using conventional ion implantation methods can be realized, and drain impurity 'j! 11
? m degree can be lowered and the depth of the diffusion layer can be made shallower.

従ってMOS  FETの微細化に伴う短チャネル効果
防止のうえで著しい効果がある。
Therefore, it is extremely effective in preventing short channel effects caused by miniaturization of MOS FETs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al〜(C1は、本発明を実施するに際して製
作したMOS  FETの製造工程順断面図である。 第2図[al〜(C1は、従来の方法を用いたI、DD
構造を存するMOS  FETの製造工程順断面図であ
る。第3図+alは、本発明の高濃度エピタキシャル成
長によるドレイン構造において、エピタキシャル成長層
の不純物濃度を一定にした場合のドレイン領域における
深さ方向不純物濃度分布図であり、第3図fblは、同
じくエピタキシャル成長層の不純物濃度をステップ状に
変化させた場合のドレイン領域における深さ方向不純物
1度分布図である。 1・・・P型シリコン基板 2・・・ゲート酸化膜 3・・・ゲート 4・・・フィールド酸化膜 5・・・ソース領域 6・・ ・ドレイン領域 7・・・CVD酸化膜 8・・・n0工ピタキシヤル層 9・・・n9ポリシリコン 以上 出願人 セイコー電子工業株式会社 第2図
Figure 1 (al ~ (C1 is a cross-sectional view of the MOS FET manufactured in the process of carrying out the present invention in the order of manufacturing steps.
FIG. 3 is a cross-sectional view showing the manufacturing process of a MOS FET having a structure. FIG. 3+al is a depth direction impurity concentration distribution diagram in the drain region when the impurity concentration of the epitaxial growth layer is kept constant in the drain structure formed by high concentration epitaxial growth of the present invention, and FIG. FIG. 3 is a depth direction impurity distribution diagram in the drain region when the impurity concentration is changed stepwise. 1...P-type silicon substrate 2...Gate oxide film 3...Gate 4...Field oxide film 5...Source region 6... -Drain region 7...CVD oxide film 8... N0 Pitaxial Layer 9...N9 Polysilicon and above Applicant: Seiko Electronic Industries Co., Ltd. Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)短チャネル効果を防止するために、ソース及びド
レインをイオン注入により低濃度n^−領域とした後に
ゲートを設け、更に酸化膜層を堆積した後、分子層エピ
タキシャル法を用いてソース・ドレインn^−層の上に
高濃度n^+層を選択的に成長させることにより、LD
D構造を設けたことを特徴とする絶縁ゲート電界効果ト
ランジスタ。
(1) In order to prevent the short channel effect, the source and drain are made into low concentration n^- regions by ion implantation, a gate is provided, an oxide film layer is deposited, and the source and drain are formed using molecular layer epitaxial method. By selectively growing a high concentration n^+ layer on the drain n^- layer, the LD
An insulated gate field effect transistor characterized by having a D structure.
(2)前記高濃度n^+層を選択的に形成することが、
分子線エピタキシャル法あるいは気相成長法により行な
われることを特徴とする特許請求の範囲第1項記載の絶
縁ゲート電界効果トランジスタ。
(2) selectively forming the high concentration n^+ layer;
2. The insulated gate field effect transistor according to claim 1, wherein the insulated gate field effect transistor is formed by a molecular beam epitaxial method or a vapor phase growth method.
JP61289163A 1986-12-04 1986-12-04 Method for manufacturing insulating gate field effect transistor Expired - Lifetime JP2515524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61289163A JP2515524B2 (en) 1986-12-04 1986-12-04 Method for manufacturing insulating gate field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61289163A JP2515524B2 (en) 1986-12-04 1986-12-04 Method for manufacturing insulating gate field effect transistor

Publications (2)

Publication Number Publication Date
JPS63142677A true JPS63142677A (en) 1988-06-15
JP2515524B2 JP2515524B2 (en) 1996-07-10

Family

ID=17739574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61289163A Expired - Lifetime JP2515524B2 (en) 1986-12-04 1986-12-04 Method for manufacturing insulating gate field effect transistor

Country Status (1)

Country Link
JP (1) JP2515524B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270272A (en) * 1988-04-20 1989-10-27 Fujitsu Ltd Manufacture of mis type semiconductor device
US4998150A (en) * 1988-12-22 1991-03-05 Texas Instruments Incorporated Raised source/drain transistor
EP0452495A4 (en) * 1989-07-27 1991-08-02 Seiko Instr Inc Misfet and method of producing the same.
US5198378A (en) * 1988-10-31 1993-03-30 Texas Instruments Incorporated Process of fabricating elevated source/drain transistor
US6335252B1 (en) 1999-12-06 2002-01-01 Mitsubishi Denki Kabushiki Kaisha Semiconductor device manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270272A (en) * 1988-04-20 1989-10-27 Fujitsu Ltd Manufacture of mis type semiconductor device
US5198378A (en) * 1988-10-31 1993-03-30 Texas Instruments Incorporated Process of fabricating elevated source/drain transistor
US4998150A (en) * 1988-12-22 1991-03-05 Texas Instruments Incorporated Raised source/drain transistor
EP0452495A4 (en) * 1989-07-27 1991-08-02 Seiko Instr Inc Misfet and method of producing the same.
EP0452495A1 (en) * 1989-07-27 1991-10-23 Seiko Instruments Inc. Misfet and method of producing the same
US6335252B1 (en) 1999-12-06 2002-01-01 Mitsubishi Denki Kabushiki Kaisha Semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP2515524B2 (en) 1996-07-10

Similar Documents

Publication Publication Date Title
JP2929291B2 (en) Method of manufacturing insulated gate field effect transistor
US7368358B2 (en) Method for producing field effect device that includes epitaxially growing SiGe source/drain regions laterally from a silicon body
US4841347A (en) MOS VLSI device having shallow junctions and method of making same
US8847224B2 (en) Fin-based bipolar junction transistor and method for fabrication
US6064077A (en) Integrated circuit transistor
EP0077737A3 (en) Low capacitance field effect transistor
JPS63142677A (en) Insulated-gate field-effect transistor
JPH0350771A (en) Semiconductor device
US20170154993A1 (en) Reduced Gate Charge Field-Effect Transistor
EP0436038A1 (en) Semiconductor device and method of producing the same
JP2869653B2 (en) Semiconductor device and manufacturing method thereof
JPS63278273A (en) Semiconductor device
JPH036863A (en) Semiconductor device
JPH0196961A (en) High breakdown voltage mis transistor and manufacture thereof
JPH01293668A (en) Manufacture of insulated-gate field-effect transistor
JP3014138B2 (en) Semiconductor device
JPS63177470A (en) Manufacture of insulated-gate field-effect transistor
JPS63204651A (en) Insulated gate field effect transistor
JPH0491481A (en) Mis field effect transistor
JPS6017946A (en) Semiconductor device
JPS6173380A (en) Manufacture of semiconductor device
JP2610423B2 (en) Insulated gate field effect transistor and method of manufacturing insulated gate field effect transistor
JPH0414815A (en) Manufacture of semiconductor device
JPH05102192A (en) Field-effect transistor
JPH04303963A (en) Semiconductor device

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term