JPS63204651A - Insulated gate field effect transistor - Google Patents

Insulated gate field effect transistor

Info

Publication number
JPS63204651A
JPS63204651A JP3661887A JP3661887A JPS63204651A JP S63204651 A JPS63204651 A JP S63204651A JP 3661887 A JP3661887 A JP 3661887A JP 3661887 A JP3661887 A JP 3661887A JP S63204651 A JPS63204651 A JP S63204651A
Authority
JP
Japan
Prior art keywords
epitaxial growth
growth layer
substrate
impurity concentration
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3661887A
Other languages
Japanese (ja)
Inventor
Kenji Aoki
健二 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP3661887A priority Critical patent/JPS63204651A/en
Priority to EP87311541A priority patent/EP0274278B1/en
Priority to DE3789894T priority patent/DE3789894T2/en
Publication of JPS63204651A publication Critical patent/JPS63204651A/en
Priority to US08/538,980 priority patent/US6229188B1/en
Priority to US08/782,975 priority patent/US5923985A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce parasitic capacitance, to prevent short-channel effect and to improve carrier mobility, by providing three epitaxial layers. CONSTITUTION:Junction capacitance between a substrate 1 and source/drain 5, 6 is reduced by providing a first low-concentration epitaxial layer 2 on the substrate 1, while short-channel effect is prevented by providing a second high- concentration epitaxial layer 3 on the first epitaxial layer 2. Then, a third low-concentration epitaxial layer 4 is provided as a channel region. A field-effect transistor thus constructed is allowed to have desirable resistance to latch-up. Further, the short-channel effect can be prevented and the effective mobility of carriers can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分腎〕 本発明は、膜厚及び不純物濃度の異なる3種類のエピタ
キシャル成長層を高濃度基板上・に設けた構造により、
高速かつ低消費電力で動作する絶縁ゲート電界効果トラ
ンジスタ(以下、MOS F ETと略す)に関する。
[Detailed description of the invention] [Industrial application] The present invention has a structure in which three types of epitaxial growth layers with different film thicknesses and impurity concentrations are provided on a high concentration substrate.
The present invention relates to an insulated gate field effect transistor (hereinafter abbreviated as MOS FET) that operates at high speed and with low power consumption.

〔発明の概要〕[Summary of the invention]

本発明は、基板上に設けた低濃度の第1エピタキシャル
成長層によって基板とソース・ドレイン間の接合容量を
小さくし、前記第1のエピタキシャル成長層の上に設け
た高濃度の第2エピタキシャル成長層により短チヤネル
効果を防止し、更に前記第2のエピタキシャル成長層の
上に低濃度の第3エピタキシャル成長層を設けてチャネ
ル領域とした構造により、高速化の上で大きな作用効果
を有する。
The present invention reduces the junction capacitance between the substrate and the source/drain by a first epitaxial growth layer with a low concentration provided on the substrate, and shortens the junction capacitance between the substrate and the source/drain by a second epitaxial growth layer with a high concentration provided on the first epitaxial growth layer. The structure prevents the channel effect and further provides a third epitaxial growth layer with a low concentration on the second epitaxial growth layer to form a channel region, which has a great effect in increasing the speed.

〔従来の技術〕[Conventional technology]

半導体デバイスの微細化に伴って発生する短チヤネル効
果、ラッチアップなどの現象を防止するために、従来、
第3図に示すように高濃度基板に膜厚が数μmのエピタ
キシャル成長層を設けていた。しかし、従来はエピタキ
シャル成長時の基板温度がtooo℃以上の高温であっ
たために、オートドーピングの影響が大きく、ソース・
ドレインの拡散深さよりも浅い領域に急峻な不純物濃度
分布を有するデバイス構造を形成することは不可能であ
った。第4図は、第3図に示すMOSFETのチャネル
領域における深さ方向の不純物濃度分布図であり、チャ
ネル領域に前述の急峻な不純物濃度分布が形成されてい
ない。
In order to prevent phenomena such as short channel effects and latch-up that occur with the miniaturization of semiconductor devices,
As shown in FIG. 3, an epitaxially grown layer with a thickness of several μm was provided on a highly concentrated substrate. However, in the past, the substrate temperature during epitaxial growth was too high, which caused the influence of autodoping to be large and the source
It has been impossible to form a device structure having a steep impurity concentration distribution in a region shallower than the drain diffusion depth. FIG. 4 is a diagram of the impurity concentration distribution in the depth direction in the channel region of the MOSFET shown in FIG. 3, and the steep impurity concentration distribution described above is not formed in the channel region.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

デバイスの動作速度を決定する要因の一つはキャリアの
移動度であり、これにはチャネル領域の不純物濃度が大
きく影響する。上述のように、従来の技術ではチャネル
領域の不純物濃度を十分に低くするためには、オートド
ーピングを考慮し数μm以上の膜厚を有するエピタキシ
ャル成長層を設けねばならなかった。しかもエピタキシ
ャル成長層の不純物濃度は表面に近づくにつれて低(な
るためにパンチスルー等が起こりやすい構造であった。
One of the factors that determines the operating speed of a device is carrier mobility, which is greatly influenced by the impurity concentration in the channel region. As described above, in the conventional technology, in order to sufficiently lower the impurity concentration in the channel region, it was necessary to provide an epitaxially grown layer having a thickness of several μm or more in consideration of autodoping. Furthermore, the impurity concentration of the epitaxially grown layer decreases as it approaches the surface, so punch-through and the like tend to occur.

従来はこれを避けるために、チャネル領域にイオン注入
を行っていたが、イオン注入によりチャネル領域の結晶
性が低下し、キャリアの移動度が実効的に高くならない
という問題があった。
Conventionally, in order to avoid this, ions were implanted into the channel region, but there was a problem in that the ion implantation reduced the crystallinity of the channel region and did not effectively increase carrier mobility.

不純物濃度の制御精度も十分ではなかった。Control accuracy of impurity concentration was also not sufficient.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記従来の方法のもつ欠点を克服するために
、基板温度850℃以下、膜厚制御精度が単原子層オー
ダーという条件下で、不純物濃度及び膜厚が異なる3種
類のエピタキシャル成長層を高濃度基板上に設けた構造
となっている。このため、耐ランチアップ性に優れ、短
チヤネル効果を防止でき、更にキャリアの実効的移動度
を向上させるデバイス構造となっている。
In order to overcome the drawbacks of the above-mentioned conventional methods, the present invention forms three types of epitaxial growth layers with different impurity concentrations and film thicknesses under the conditions that the substrate temperature is 850°C or less and the film thickness control accuracy is on the order of a single atomic layer. The structure is provided on a high concentration substrate. Therefore, the device structure has excellent launch-up resistance, can prevent short channel effects, and further improves the effective mobility of carriers.

〔実施例〕〔Example〕

以下、実施例に基づいて、本発明の詳細な説明する。第
1図は、本発明の実施例であるMOSFETの構造断面
図である。第1図において基板1は不純物濃度が1.O
Xl0I?ロー3のP°型、同しく第1のエピタキシャ
ル成長層2は膜厚が1500人で不純物濃度が1.OX
1015cm−’のP−型、同じく第2のエピタキシャ
ル成長層3は膜厚が2500人で不純物濃度が1.Q 
X(Q”cm−コのP°型、同じく第3のエピタキシャ
ル成長N4は膜厚が200 人で不純物1度が1.OX
l0I4e11弓のP−型である。又、第1図において
ソース5及びドレイン6の拡散深さは共に約3000人
である。第2図には、第1図に示したMOS F ET
のチャネル領域における深さ方向の不純物濃度分布図を
示している。第2図において横軸Xは、チャネル表面を
0として下向きを正にとっている。
Hereinafter, the present invention will be described in detail based on Examples. FIG. 1 is a structural sectional view of a MOSFET that is an embodiment of the present invention. In FIG. 1, a substrate 1 has an impurity concentration of 1. O
Xl0I? The first epitaxial growth layer 2 of the P° type of Row 3 has a film thickness of 1500 nm and an impurity concentration of 1. OX
The second epitaxial growth layer 3, which is 1015 cm-' P- type, has a film thickness of 2500 cm and an impurity concentration of 1. Q
P degree type of
It is a P-type of l0I4e11 arch. Further, in FIG. 1, the diffusion depths of the source 5 and drain 6 are both about 3000. Figure 2 shows the MOS FET shown in Figure 1.
3 shows a diagram of the impurity concentration distribution in the depth direction in the channel region of FIG. In FIG. 2, the horizontal axis X takes the channel surface as 0 and points downward as positive.

第2図から明らかなように、本発明はチャネル領域に非
常に急峻な不純物濃度分布が形成されている構造となっ
ている。第1図の第1のエピタキシャル成長層2は低濃
度であるためにソース・ドレインと基板間の接合容量は
小さく、同じく第2のエピタキシャル成長層3は高濃度
であるために短チヤネル効果を防止する上で有効な構造
となっている。更に、第3のエピタキシャル成長層はイ
ンプラ及びアニールの影響の全くない純粋な低濃度成長
層であり、不純物原子による散乱が少なくキャリアの実
効的移動度の高い領域となっている。
As is clear from FIG. 2, the present invention has a structure in which a very steep impurity concentration distribution is formed in the channel region. The first epitaxial growth layer 2 in FIG. 1 has a low concentration, so the junction capacitance between the source/drain and the substrate is small, and the second epitaxial growth layer 3 has a high concentration, so it can be used to prevent short channel effects. It is a valid structure. Furthermore, the third epitaxially grown layer is a pure, low-concentration grown layer that is completely unaffected by implantation and annealing, and is a region with little scattering by impurity atoms and high effective carrier mobility.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明であるMOSFETは、寄生
寄量が小さく、又短チヤネル効果が防止でき、キャリア
移動度も高いという構造となっている。更に、結晶成長
温度が850℃以下であるために高濃度基板上に設ける
エピタキシャル成長層の厚さを従来の1710程度に薄
くできるため、同じ不純物濃度の基板を用いる場合、従
来のMOSFETに比べて耐ランチアップという点で優
れていることはいうまでもない。このように本発明であ
るMOS F ETは、その静特性及び動特性において
、従来のMOS F ETにない高性能を実現するもの
である。
As described above, the MOSFET according to the present invention has a structure in which parasitics are small, short channel effects can be prevented, and carrier mobility is high. Furthermore, since the crystal growth temperature is 850°C or less, the thickness of the epitaxial growth layer formed on the high concentration substrate can be reduced to about 1710 mm compared to conventional MOSFETs. Needless to say, it is excellent as a lunch stop. In this way, the MOS FET of the present invention achieves high performance in its static and dynamic characteristics that is not found in conventional MOS FETs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例であるMOSFETの構造断面
図、第2図は第1図に示すMOS F ETのチャネル
領域における深さ方向の不純濃度分布図である。第3図
は従来のMOS F ETの構造断面図、第4図は第3
図に示すM’OS F E Tのチャネル領域における
深さ方向の不純物濃度分布図である。 l・・・基板 2・・・第1エピタキシャル成長層 3・・・第2エピタキシャル成長層 4・・・第3エピタキシャル成長層 5・・・ソース 6・・・ドレイン 7・・・ゲート酸化nり 8・・・ゲート 以上
FIG. 1 is a cross-sectional view of the structure of a MOSFET according to an embodiment of the present invention, and FIG. 2 is a diagram showing the impurity concentration distribution in the depth direction in the channel region of the MOSFET shown in FIG. Figure 3 is a cross-sectional view of the structure of a conventional MOS FET, and Figure 4 is a cross-sectional view of the structure of a conventional MOS FET.
FIG. 3 is an impurity concentration distribution diagram in the depth direction in the channel region of the M'OS FET shown in the figure. l...Substrate 2...First epitaxial growth layer 3...Second epitaxial growth layer 4...Third epitaxial growth layer 5...Source 6...Drain 7...Gate oxidation 8...・Gate or higher

Claims (1)

【特許請求の範囲】[Claims]  高濃度基板上に、前記基板よりも不純物濃度の低い第
1のエピタキシャル成長層と、前記第1のエピタキシャ
ル成長層の上に前記第1のエピタキシャル成長層よりも
不純物濃度が高く膜厚がソース・ドレインの拡散深さと
同程度以下である第2のエピタキシャル成長層と、前記
第2のエピタキシャル成長層の上に前記第2のエピタキ
シャル成長層よりも不純物濃度が低く膜厚が500Å以
下である第3のエピタキシャル成長層とを有する絶縁ゲ
ート電界効果トランジスタ。
A first epitaxial growth layer having an impurity concentration lower than that of the substrate is formed on a high concentration substrate, and a source/drain diffusion layer having an impurity concentration higher than that of the first epitaxial growth layer is formed on the first epitaxial growth layer. A second epitaxial growth layer having a depth of about the same level or less, and a third epitaxial growth layer on the second epitaxial growth layer having a lower impurity concentration than the second epitaxial growth layer and a film thickness of 500 Å or less. Insulated gate field effect transistor.
JP3661887A 1987-01-05 1987-02-19 Insulated gate field effect transistor Pending JPS63204651A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3661887A JPS63204651A (en) 1987-02-19 1987-02-19 Insulated gate field effect transistor
EP87311541A EP0274278B1 (en) 1987-01-05 1987-12-31 MOS field effect transistor and method of manufacturing the same
DE3789894T DE3789894T2 (en) 1987-01-05 1987-12-31 MOS field effect transistor and its manufacturing method.
US08/538,980 US6229188B1 (en) 1987-01-05 1995-10-05 MOS field effect transistor and its manufacturing method
US08/782,975 US5923985A (en) 1987-01-05 1997-01-14 MOS field effect transistor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3661887A JPS63204651A (en) 1987-02-19 1987-02-19 Insulated gate field effect transistor

Publications (1)

Publication Number Publication Date
JPS63204651A true JPS63204651A (en) 1988-08-24

Family

ID=12474790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3661887A Pending JPS63204651A (en) 1987-01-05 1987-02-19 Insulated gate field effect transistor

Country Status (1)

Country Link
JP (1) JPS63204651A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442854A (en) * 1987-08-10 1989-02-15 Toshiba Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442854A (en) * 1987-08-10 1989-02-15 Toshiba Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US6229188B1 (en) MOS field effect transistor and its manufacturing method
US5016066A (en) Vertical power MOSFET having high withstand voltage and high switching speed
US5320974A (en) Method for making semiconductor transistor device by implanting punch through stoppers
US4599118A (en) Method of making MOSFET by multiple implantations followed by a diffusion step
US5272365A (en) Silicon transistor device with silicon-germanium electron gas hetero structure channel
JP3319215B2 (en) Insulated gate semiconductor device and method of manufacturing the same
KR950034761A (en) High Voltage Metal Oxide Semiconductor Device and Manufacturing Method Thereof
US4994881A (en) Bipolar transistor
JPH01232765A (en) Insulated-gate field-effect transistor
EP0077737A3 (en) Low capacitance field effect transistor
JPS5916427B2 (en) Junction field effect transistor
JPH0582067B2 (en)
JP2515524B2 (en) Method for manufacturing insulating gate field effect transistor
JPH0350771A (en) Semiconductor device
JPS63204651A (en) Insulated gate field effect transistor
JPH04346272A (en) Semiconductor device and manufacture thereof
KR940004852A (en) Most transistor structure and manufacturing method
JPH051083Y2 (en)
JPS61177776A (en) Semiconductor device
JPS6017946A (en) Semiconductor device
JPH0196961A (en) High breakdown voltage mis transistor and manufacture thereof
JPS63204768A (en) Insulated gate field-effect transistor
JPS63284858A (en) Insulated-gate field-effect transistor
JPH0346338A (en) Manufacture of semiconductor device
JPH03169080A (en) Field effect transistor