JP2003229569A - Manufacturing method for superjunction semiconductor element - Google Patents

Manufacturing method for superjunction semiconductor element

Info

Publication number
JP2003229569A
JP2003229569A JP2002024779A JP2002024779A JP2003229569A JP 2003229569 A JP2003229569 A JP 2003229569A JP 2002024779 A JP2002024779 A JP 2002024779A JP 2002024779 A JP2002024779 A JP 2002024779A JP 2003229569 A JP2003229569 A JP 2003229569A
Authority
JP
Japan
Prior art keywords
trench
epitaxial growth
manufacturing
super
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002024779A
Other languages
Japanese (ja)
Other versions
JP3913564B2 (en
Inventor
Akinori Shimizu
了典 清水
Daisuke Kishimoto
大輔 岸本
Katsunori Ueno
勝典 上野
Tetsushi Oka
哲史 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Shin Etsu Handotai Co Ltd
Original Assignee
Fuji Electric Co Ltd
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Shin Etsu Handotai Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2002024779A priority Critical patent/JP3913564B2/en
Publication of JP2003229569A publication Critical patent/JP2003229569A/en
Application granted granted Critical
Publication of JP3913564B2 publication Critical patent/JP3913564B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To fill a trench by epitaxial growth so as not to leave a void and to eliminate the void in the case that the void remains in manufacturing a semiconductor element having a superjunction structure. <P>SOLUTION: By inclining a trench side wall, and performing the epitaxial growth using a dichlorosilane as a gaseous raw material at the temperature ≥800°C and ≤1000°C and also by the pressure ≥1333.22 Pa and ≤13332.2 Pa, the trench is filled with an epitaxial layer 2 so as not to leave the void inside the epitaxial layer 2. Also, even in the case that the trench can not be fully filled by the epitaxial growth, the void inside the trench is eliminated by performing hydrogen reduction atmosphere annealing at the temperature above 900°C after the epitaxial growth. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超接合半導体素子
の製造方法に関し、より詳細には、MOSFET(絶縁
ゲート型電界効果トランジスタ)やIGBT(絶縁ゲー
ト型バイポーラトランジスタ)、バイポーラトランジス
タ、ダイオード等に適用可能な高耐圧化と大電流容量化
を両立させることのできる超接合半導体素子の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a super-junction semiconductor device, and more particularly to a MOSFET (insulated gate type field effect transistor), an IGBT (insulated gate type bipolar transistor), a bipolar transistor, a diode and the like. The present invention relates to a method for manufacturing a super-junction semiconductor element that can achieve both high breakdown voltage and large current capacity that can be applied.

【0002】[0002]

【従来の技術】従来の高耐圧半導体素子は、高い降伏電
圧を得るために高比抵抗のドリフト領域を主電流経路に
設けるため、高耐圧のものほどこの部分の電圧降下が大
きくなってオン電圧が高くなるという問題があった。
2. Description of the Related Art In a conventional high breakdown voltage semiconductor element, a drift region having a high specific resistance is provided in a main current path in order to obtain a high breakdown voltage. There was a problem that would be high.

【0003】この問題に対する解決法として、ドリフト
層を、不純物濃度を高めたn型とp型の領域とを交互に
積層した並列pn層で構成し、オフ状態の時は空乏化し
て耐圧を負担するようにした構造の半導体装置が、たと
えば、特公平2−54661号公報、米国特許第521
6275号明細書、特開平7−7154号公報に開示さ
れている。
As a solution to this problem, the drift layer is formed by a parallel pn layer in which n-type and p-type regions having an increased impurity concentration are alternately stacked, and depleted in the off state to bear the breakdown voltage. A semiconductor device having such a structure is disclosed in, for example, Japanese Patent Publication No. 2-54661 and US Pat. No. 521.
No. 6275 and Japanese Patent Laid-Open No. 7-7154.

【0004】[0004]

【発明が解決しようとする課題】このような超接合構造
を形成するために、エピタキシャル成長によってトレン
チ構造を埋め込む方法や、プレーナ基板上においてエピ
タキシャル成長とイオン打ち込みを繰り返す方法が使わ
れてきた。
In order to form such a super junction structure, a method of filling a trench structure by epitaxial growth or a method of repeating epitaxial growth and ion implantation on a planar substrate have been used.

【0005】しかしながら、トレンチ構造を形成してこ
のトレンチ部を埋め込む方法には、2つの問題点があっ
た。その第1の問題点は、トレンチの幅が1〜10μm
で、その深さが20〜100μmであり、アスペクト比
が10〜50という高いアスペクト比のトレンチ構造を
形成する過程で、エッチングにより結晶欠陥や凹凸や残
留応力や不純物の混入などのダメージが基板に残り、こ
のダメージを除去するためにプラズマエッチングや犠牲
酸化やアニールなどの工程が増えるほか、除去しきれな
いダメージが残るという問題点である。
However, the method of forming the trench structure and filling the trench portion has two problems. The first problem is that the width of the trench is 1 to 10 μm.
In the process of forming a trench structure having a high aspect ratio of 20 to 100 μm and an aspect ratio of 10 to 50, the substrate may be damaged by etching such as crystal defects, unevenness, residual stress, and impurities. The remaining problems are that plasma etching, sacrificial oxidation, annealing, and other steps increase in order to remove this damage, and damage that cannot be completely removed remains.

【0006】また、第2の問題点は、従来のエピタキシ
ャル成長技術による場合、たとえば耐圧クラスが600
VのMOSFETではアスペクト比が10〜20である
が、このようなアスペクト比の極めて深いトレンチ構造
を埋め込む必要があり、成長中にトレンチの開口部がふ
さがってしまい、トレンチ内部に空間(ボイド)が残る
という問題点である。トレンチに対するエピタキシャル
成長によるこの問題を解決する指針は、これまでに与え
られていなかった。
The second problem is that when the conventional epitaxial growth technique is used, the breakdown voltage class is 600, for example.
The V MOSFET has an aspect ratio of 10 to 20, but it is necessary to embed an extremely deep trench structure having such an aspect ratio, the opening of the trench is blocked during growth, and a space (void) is formed inside the trench. The problem remains. No guidance has previously been given to solve this problem due to epitaxial growth on trenches.

【0007】また、エピタキシャル成長とイオン打ち込
みを繰り返す形成方法では、工程数が増加するため耐圧
構造部のコストが極めて高くなり、また、リソグラフィ
とイオン打ち込みの繰り返しによりプロセスダメージや
不純物汚染が増え、結晶品質を劣化させるという問題点
があった。また、この方法は、特定の位置にイオン打ち
込みした不純物を熱拡散により広げる方法であるため、
超接合領域における不純物分布が不均一であり、この不
均一性がデバイス特性を不安定にするという問題があっ
た。
Further, in the forming method in which the epitaxial growth and the ion implantation are repeated, the number of steps is increased, the cost of the breakdown voltage structure portion becomes extremely high, and the process damage and the impurity contamination are increased due to the repetition of the lithography and the ion implantation, and the crystal quality is increased. There was a problem that it deteriorated. In addition, this method is a method for spreading impurities ion-implanted at a specific position by thermal diffusion,
There is a problem that the impurity distribution in the super junction region is non-uniform and this non-uniformity makes device characteristics unstable.

【0008】これらの問題を解決するためには、高アス
ペクト比のトレンチの奥方においても十分に速い成長速
度でもってエピタキシャル成長をおこなうことができる
技術を導入することが望ましい。このようなエピタキシ
ャル成長技術については、従来以下の2つの方法があ
る。
In order to solve these problems, it is desirable to introduce a technique capable of performing epitaxial growth even at the back of a trench having a high aspect ratio at a sufficiently high growth rate. Regarding such an epitaxial growth technique, there are conventionally the following two methods.

【0009】第1は、原子線または分子線を用いたエピ
タキシー法により、分子の直進性を使って特定の面だけ
に原子線または分子線を当て、選択的に成長する方法で
ある。すなわち、トレンチの底部のみに選択的に原子線
または分子線を当てエピタキシャル成長を促し、側壁に
は当たりにくくして側壁の成長を抑え、エピタキシャル
成長中に開口部がふさがらないようにする方法である。
The first is a method of selectively growing by applying an atomic beam or a molecular beam only to a specific surface by using the straightness of a molecule by an epitaxy method using an atomic beam or a molecular beam. That is, this is a method in which an atomic beam or a molecular beam is selectively applied only to the bottom of the trench to promote epitaxial growth so that the sidewall is less likely to hit and growth of the sidewall is suppressed so that the opening is not blocked during the epitaxial growth.

【0010】第2は、異方性成長効果を利用するもの
で、平坦化して安定しやすく成長速度が遅い面での成長
と、荒れやすく成長速度が速い面での成長との差を利用
して選択成長をおこなう方法である。この異方性成長効
果は液相成長(LPE:Liquid Phase E
pitaxy)法で最も顕著に現れるが、気相成長(C
VD:Chemical Vapor Deposit
ion)法でも得ることができる。この場合、トレンチ
の側面として平坦化しやすい面、たとえば(111)面
や(100)面を選び、底面に荒れやすい面、たとえば
(110)面を選び、底面の成長速度を上げて、エピタ
キシャル成長中に開口部がふさがらないようにする。し
かしながら、このような解決方法にもまだまだ改善の余
地が残されているのが現状である。
Secondly, the anisotropic growth effect is utilized, and the difference between the growth on the surface which is flat and stable and has a slow growth rate and the growth on the surface which is rough and has a high growth rate is utilized. This is a method for selective growth. This anisotropic growth effect is caused by liquid phase growth (LPE: Liquid Phase E).
It appears most significantly in the pittaxy method, but vapor phase growth (C
VD: Chemical Vapor Deposition
Ion method. In this case, as the side surface of the trench, a surface that is likely to be flattened, for example, a (111) surface or a (100) surface is selected, and a surface that is easily roughened, for example, a (110) surface is selected. Do not block the opening. However, there is still room for improvement in such a solution.

【0011】ところで、トレンチをエピタキシャル成長
によって埋め込む際に、原料ガスとしてジクロロシラン
を用いる方法が、たとえば特開平1−214013号公
報や特開平11−102870号公報に開示されてい
る。しかし、特開平1−214013号公報に開示され
た方法は、ポリシリコン層に形成されたトレンチ内に単
結晶シリコンを成長させる方法であるため、厳密にはエ
ピタキシャル成長ではない。
By the way, a method of using dichlorosilane as a source gas when burying a trench by epitaxial growth is disclosed in, for example, Japanese Patent Application Laid-Open Nos. 1-214013 and 11-102870. However, the method disclosed in Japanese Patent Application Laid-Open No. 1-214013 is a method of growing single crystal silicon in a trench formed in a polysilicon layer, and is not strictly epitaxial growth.

【0012】また、この方法は、複数のトレンチ内に成
長した単結晶シリコンの結晶方位がトレンチごとに異な
る可能性があるので、超接合構造を製造するには不適で
ある。一方、特開平11−102870号公報に開示さ
れた方法は、底面がシリコンで側面が二酸化シリコンよ
りなるトレンチ内にシリコンをエピタキシャル成長させ
る方法であるため、得られる構造は超接合構造ではな
い。
Further, this method is unsuitable for manufacturing a super junction structure because the crystal orientation of single crystal silicon grown in a plurality of trenches may be different for each trench. On the other hand, the method disclosed in Japanese Unexamined Patent Publication No. 11-102870 is a method of epitaxially growing silicon in a trench having a bottom surface of silicon and a side surface of silicon dioxide, and thus the obtained structure is not a super junction structure.

【0013】本発明は、上述した事情に鑑みてなされた
もので、その目的とするところは、トレンチをエピタキ
シャル成長によって埋め込む工程で、ボイドが残らない
ようにトレンチを埋めることができる超接合半導体素子
の製造方法を提供することにある。また他の目的は、エ
ピタキシャル成長によってトレンチを十分に埋め込めな
かった場合でも、トレンチ内のボイドを消失させること
ができる超接合半導体素子の製造方法を提供することに
ある。
The present invention has been made in view of the above circumstances. An object of the present invention is to provide a super-junction semiconductor device capable of filling a trench without leaving a void in the step of filling the trench by epitaxial growth. It is to provide a manufacturing method. Another object of the present invention is to provide a method for manufacturing a super-junction semiconductor device capable of eliminating voids in the trench even when the trench cannot be sufficiently filled by epitaxial growth.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の発明は、トレンチ構造を有する第
1導電型の半導体基板に、原料ガスとしてジクロロシラ
ンを用いて第2導電型のエピタキシャル層を成長させる
工程を含むことを特徴とする。
In order to achieve the above object, the invention according to claim 1 is a semiconductor substrate of the first conductivity type having a trench structure, in which dichlorosilane is used as a source gas, and the second conductivity type is used. Of the epitaxial layer.

【0015】また、請求項2に記載の発明は、トレンチ
構造を有する第1導電型の半導体基板に、第2導電型の
エピタキシャル層を成長させる工程と、エピタキシャル
成長につづいて、水素還元雰囲気にて900℃を超える
温度でアニールをおこなう工程と、を含むことを特徴と
する。
The invention according to claim 2 is the step of growing an epitaxial layer of the second conductivity type on the semiconductor substrate of the first conductivity type having a trench structure, and the subsequent epitaxial growth in a hydrogen reducing atmosphere. And a step of performing annealing at a temperature higher than 900 ° C.

【0016】また、請求項3に記載の発明は、請求項2
に記載の発明において、原料ガスとしてジクロロシラン
を用いてエピタキシャル成長をおこなうことを特徴とす
る。
The invention described in claim 3 is the same as that of claim 2
In the invention described in (3), the epitaxial growth is performed by using dichlorosilane as a raw material gas.

【0017】また、請求項4に記載の発明は、請求項1
〜3のいずれか一つに記載の発明において、800℃以
上1000℃以下の温度でエピタキシャル成長をおこな
うことを特徴とする。
The invention according to claim 4 is the same as claim 1.
1 to 3, the epitaxial growth is performed at a temperature of 800 ° C. or higher and 1000 ° C. or lower.

【0018】また、請求項5に記載の発明は、請求項1
〜3のいずれか一つに記載の発明において、1333.
22Pa以上13332.2Pa以下の圧力でエピタキ
シャル成長をおこなうことを特徴とする。
The invention described in claim 5 is the same as claim 1.
In the invention according to any one of 1 to 3, 1333.
It is characterized in that epitaxial growth is performed at a pressure of 22 Pa or more and 13332.2 Pa or less.

【0019】また、請求項6に記載の発明は、請求項1
〜5のいずれか一つに記載の発明において、トレンチ開
口部が基板表面側からトレンチの底面に向かって徐々に
狭くなるように、相対峙する両トレンチ側壁が基板表面
に対して90°未満の角度θで傾斜し、かつ前記角度θ
とトレンチのアスペクト比ARとの間にAR<1/2×
tanθの関係が成り立つように、トレンチを形成する
ことを特徴とする。
The invention according to claim 6 is the same as claim 1.
In the invention described in any one of 5 to 5, both trench sidewalls facing each other are less than 90 ° with respect to the substrate surface so that the trench opening gradually narrows from the substrate surface side toward the bottom surface of the trench. Inclined by an angle θ, and said angle θ
Between the trench and the aspect ratio AR of the trench AR <1/2 ×
A feature is that the trench is formed so that the relationship of tan θ is established.

【0020】また、請求項7に記載の発明は、請求項1
〜6のいずれか一つに記載の発明において、前記エピタ
キシャル層の、トレンチの非開口部直上に堆積した部分
を、ポリシングにより除去する工程をさらに有すること
を特徴とする。
The invention described in claim 7 is the same as claim 1.
The invention described in any one of 1 to 6 above is characterized by further including a step of removing, by polishing, a portion of the epitaxial layer deposited immediately above the non-opening portion of the trench.

【0021】[0021]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて図面を参照しつつ詳細に説明する。図1は、本発明
方法により製造される超接合構造の断面図であり、図2
〜図7は、本発明の実施の形態にかかる超接合構造の製
造工程を示す断面図である。図中符号1はn型半導体基
板であり、符号2はp型エピタキシャル層であり、符号
3は酸化膜または窒化膜などの絶縁性マスクである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a cross-sectional view of a super junction structure manufactured by the method of the present invention.
7 to 7 are cross-sectional views showing a manufacturing process of the super junction structure according to the embodiment of the present invention. In the figure, reference numeral 1 is an n-type semiconductor substrate, reference numeral 2 is a p-type epitaxial layer, and reference numeral 3 is an insulating mask such as an oxide film or a nitride film.

【0022】本発明は、耐圧領域の構造と製造方法にか
かわるもので、ソース構造およびドレイン構造は任意で
ある。したがって、IGBTやバイポーラトランジス
タ、GTOサイリスタ、ダイオード等にも適用される。
The present invention relates to the structure of the breakdown voltage region and the manufacturing method, and the source structure and the drain structure are arbitrary. Therefore, it is also applied to IGBTs, bipolar transistors, GTO thyristors, diodes and the like.

【0023】以下、図1に示した超接合構造の製造方法
について、図2〜図7に基づいて説明する。まず、低抵
抗のn型半導体基板1を準備する。ついで、図2に示す
ように、このn型半導体基板1の表面上にエピタキシャ
ル成長のマスクとなる酸化膜または窒化膜などの絶縁性
マスク3を形成する。ついで、図3に示すように、図示
しないマスクを使って、絶縁性マスク3にストライプ状
の窓開け部3aを形成する。ストライプの窓開け部3a
と絶縁性マスク3の幅は、1〜20μm程度とする。
The method of manufacturing the super junction structure shown in FIG. 1 will be described below with reference to FIGS. First, a low resistance n-type semiconductor substrate 1 is prepared. Then, as shown in FIG. 2, an insulating mask 3 such as an oxide film or a nitride film serving as a mask for epitaxial growth is formed on the surface of the n-type semiconductor substrate 1. Then, as shown in FIG. 3, a striped window opening 3a is formed in the insulating mask 3 using a mask (not shown). Striped window opening 3a
The width of the insulating mask 3 is about 1 to 20 μm.

【0024】ついで、図4に示すように、n型半導体基
板1の、窓開け部3aに相当する領域をエッチングによ
り除去して所望の深さ、たとえば20〜100μm程度
の深さのトレンチ開口部13を、基板表面側からトレン
チの底面に向かって徐々に狭くなるように形成する。そ
して、絶縁性マスク3をエッチングにより除去する。こ
こで、相対峙する両トレンチ側壁は、基板表面(厳密に
は基板表面をトレンチ開口部13上へ延長した仮想面)
とのなす角度θが90°未満で、かつトレンチのアスペ
クト比ARに対してつぎの(1)式を満たすように傾斜
する。 AR<1/2×tanθ ・・・(1)
Next, as shown in FIG. 4, a region corresponding to the window opening 3a of the n-type semiconductor substrate 1 is removed by etching to remove a trench opening having a desired depth, for example, about 20 to 100 μm. 13 is formed so as to gradually narrow from the substrate surface side toward the bottom surface of the trench. Then, the insulating mask 3 is removed by etching. Here, both side walls of the trench facing each other are the substrate surface (strictly, a virtual surface obtained by extending the substrate surface onto the trench opening 13).
The angle θ formed by and is less than 90 °, and is inclined so as to satisfy the following expression (1) with respect to the trench aspect ratio AR. AR <1/2 × tan θ (1)

【0025】このように、トレンチ側壁を傾斜させるた
めのトレンチエッチングの方法や条件としては、ドライ
エッチングとウエットエッチングの2種類を採用するこ
とができる。
As described above, two types of dry etching and wet etching can be adopted as the method and conditions of the trench etching for inclining the side wall of the trench.

【0026】ドライエッチングとしては、たとえば、プ
ラズマエッチング、RIE(Reactive Ion Etching)な
どの異方性をもつドライなエッチングによって酸化膜の
絶縁性マスク3でマスクされていないシリコンの露出部
を垂直または垂直に近い角度でエッチングする。この場
合、トレンチを形成する結晶面方位が限定されないとい
う特徴がある。
As the dry etching, for example, by plasma etching, dry etching having anisotropy such as RIE (Reactive Ion Etching), the exposed portion of the silicon which is not masked by the insulating mask 3 of the oxide film is vertical or vertical. Etch at an angle close to. In this case, there is a feature that the crystal plane orientation forming the trench is not limited.

【0027】ウエットエッチングとしては、異方性をも
つウエットエッチングによってトレンチを形成すること
ができる。この場合、トレンチを形成する結晶面方位が
限定されるが、ドライエッチングよりも結晶に与えるダ
メージを小さくすることができるという特徴がある。
As the wet etching, the trench can be formed by wet etching having anisotropy. In this case, the crystal plane orientation for forming the trench is limited, but it is characterized in that damage to the crystal can be made smaller than that in dry etching.

【0028】ついで、図5に示すように、トレンチ開口
部13に、CVD法によりp型のエピタキシャル層2
を、トレンチ幅の1/2以上の厚さとなるように結晶成
長させる。つまり、トレンチの全面にわたって同じ厚さ
のエピタキシャル層2が付着するように、理想的なエピ
タキシャル成長が進んだとすると、エピタキシャル層2
の厚さがトレンチ幅の1/2になった時点でトレンチが
エピタキシャル層2で埋まることとなる。このため、結
晶成長をトレンチ幅の1/2以上の厚さとしている。こ
のとき、トレンチ窓開け部3aの周囲の成長速度がトレ
ンチ開口部13の成長速度を上回らないようにすること
が望ましい。
Then, as shown in FIG. 5, the p-type epitaxial layer 2 is formed in the trench opening 13 by the CVD method.
Are crystal-grown so as to have a thickness of ½ or more of the trench width. That is, assuming that the ideal epitaxial growth proceeds so that the epitaxial layer 2 having the same thickness adheres to the entire surface of the trench, the epitaxial layer 2
The trench is filled with the epitaxial layer 2 when the thickness of the trench becomes 1/2 of the trench width. Therefore, the crystal growth is made to have a thickness of ½ or more of the trench width. At this time, it is desirable that the growth rate around the trench window opening 3a does not exceed the growth rate of the trench opening 13.

【0029】このような成長条件を達成するため、エピ
タキシャル成長の原料ガスの付着確率を低減し、またガ
ス分子の平均自由工程を大きくして原料の反応性ガスが
トレンチの奥深くまで飛来するようにすることが重要で
ある。原料ガスの付着確率を低減させるためには、原料
ガスとしてジクロロシランを用いることと、成長温度を
800℃以上1000℃以下の温度に制御することが有
効である。また、ガス分子の平均自由工程を大きくする
ためには、エピタキシャル成長時にチャンバー内の圧力
を1333.22Pa以上13332.2Pa以下の圧
力に制御することが有効である。
In order to achieve such growth conditions, the probability of deposition of the raw material gas for epitaxial growth is reduced, and the mean free path of gas molecules is increased so that the reactive gas of the raw material can fly deep into the trench. This is very important. In order to reduce the sticking probability of the raw material gas, it is effective to use dichlorosilane as the raw material gas and control the growth temperature to a temperature of 800 ° C. or higher and 1000 ° C. or lower. Further, in order to increase the mean free path of gas molecules, it is effective to control the pressure in the chamber at a pressure of 1333.22 Pa or more and 133332.2 Pa or less during epitaxial growth.

【0030】さらにエピタキシャル成長をつづけ、図6
に示すように、エピタキシャル層2が十分厚く成長し
て、トレンチ底部がn型半導体基板1の表面より高くな
れば成長を終了する。ついで、水素還元雰囲気にて90
0℃よりも高い温度でアニールをおこなう。その後、エ
ピタキシャル層2をポリシングし、その表面の高さがも
とのn型半導体基板1の表面と同じになるようにする。
その結果、図7に示すような超接合構造を得る。
Continuing epitaxial growth, FIG.
As shown in, the growth is completed when the epitaxial layer 2 grows sufficiently thick and the bottom of the trench becomes higher than the surface of the n-type semiconductor substrate 1. Then, in a hydrogen reducing atmosphere, 90
Annealing is performed at a temperature higher than 0 ° C. After that, the epitaxial layer 2 is polished so that the surface of the epitaxial layer 2 has the same height as the original surface of the n-type semiconductor substrate 1.
As a result, a super junction structure as shown in FIG. 7 is obtained.

【0031】つぎに、前記角度θが90°未満である理
由について説明する。まず、前記角度θが90°未満で
あれば、CVDの原料ガスの存在する気相からトレンチ
側壁を見込む角度が有限の値となる。そのため、トレン
チの下部と上部で側壁膜厚の差が低減し、トレンチ開口
部13の上部がその付近のエピタキシャル成長によりふ
さがれてしまう前にトレンチを埋め込むことができるか
らである。
Next, the reason why the angle θ is less than 90 ° will be described. First, if the angle θ is less than 90 °, the angle at which the trench sidewall is seen from the vapor phase in which the CVD source gas exists has a finite value. Therefore, the difference in sidewall film thickness between the lower part and the upper part of the trench is reduced, and the trench can be filled before the upper part of the trench opening 13 is blocked by the epitaxial growth in the vicinity thereof.

【0032】つぎに、前記(1)式を満たす必要がある
理由について図8を参照しながら説明する。トレンチ開
口部13の基板表面における開口幅をW、トレンチ深さ
をdとすると、図8よりつぎの(2)式が成り立つ。 d=W/2×tanθ ・・・(2)
Next, the reason why it is necessary to satisfy the expression (1) will be described with reference to FIG. Assuming that the opening width of the trench opening 13 on the substrate surface is W and the trench depth is d, the following equation (2) is established from FIG. d = W / 2 × tan θ (2)

【0033】トレンチ開口部13にトレンチ底面が存在
するためには、トレンチ深さdはW/2×tanθより
も浅くなくてはならない。つまり、つぎの(3)式が成
り立たなくてはならない。 d<W/2×tanθ ・・・(3)
In order for the bottom of the trench to exist in the trench opening 13, the trench depth d must be shallower than W / 2 × tan θ. That is, the following expression (3) must hold. d <W / 2 × tan θ (3)

【0034】上記(3)式より、つぎの(4)式が導か
れ、また、アスペクト比ARはd/Wであるから、前記
(1)式が導かれる。 d/W<1/2×tanθ ・・・(4)
From the above equation (3), the following equation (4) is derived, and since the aspect ratio AR is d / W, the above equation (1) is derived. d / W <1/2 × tan θ (4)

【0035】図9に、トレンチ側壁の角度θを90°ま
たは87°として、ジクロロシランを原料ガスに用いた
CVD法によりトレンチを埋め込んだ状態の断面写真の
模式図を示す。図9(a)はθ=90°であり、同図
(b)はθ=87°であり、両図において矢印で指し示
すトレンチが同じ開口幅のトレンチである。図9より、
明らかにθ=87°の方が埋め込み状態が優れているこ
とがわかる。
FIG. 9 shows a schematic view of a cross-sectional photograph of a state where the trench side wall angle is 90 ° or 87 ° and the trench is buried by the CVD method using dichlorosilane as a source gas. 9A shows θ = 90 °, and FIG. 9B shows θ = 87 °, and the trenches indicated by the arrows in both figures are trenches having the same opening width. From Figure 9,
It is apparent that the embedded state is better when θ = 87 °.

【0036】つぎに、エピタキシャル成長の原料ガスと
してジクロロシランを用いる理由について説明する。図
10に、原料ガスをトリクロロシランまたはジクロロシ
ランとして、CVD法によりトレンチを埋め込む途中の
段階における断面写真の模式図を示す。図10(a)は
トリクロロシランを用いたものであり、同図(b)はジ
クロロシランを用いたものであり、両図において矢印で
指し示すトレンチが同じ開口幅のトレンチである。
Next, the reason why dichlorosilane is used as a raw material gas for epitaxial growth will be described. FIG. 10 shows a schematic view of a cross-sectional photograph at the stage of filling the trench by the CVD method with the raw material gas of trichlorosilane or dichlorosilane. FIG. 10 (a) uses trichlorosilane, and FIG. 10 (b) uses dichlorosilane. The trenches indicated by the arrows in both figures are trenches having the same opening width.

【0037】トレンチ窓開け部3aではトレンチ開口部
13をふさぐような庇が成長するので、それを抑えるた
めにエッチング作用を並行して施しながら成長させる必
要がある。そのためには、塩素を含む原料ガス、たとえ
ばトリクロロシランまたはジクロロシランが有効であ
る。トリクロロシランの場合には、その付着確率が0.
1以上と大きいため、図10(a)に示すように、トレ
ンチが埋まり切る前に窓開け部3aがふさがってしま
う。
In the trench window opening 3a, an eave grows so as to block the trench opening 13. Therefore, in order to suppress it, it is necessary to grow it while performing an etching action in parallel. For that purpose, a source gas containing chlorine, such as trichlorosilane or dichlorosilane, is effective. In the case of trichlorosilane, the adhesion probability is 0.
Since it is as large as 1 or more, as shown in FIG. 10A, the window opening 3a is closed before the trench is completely filled.

【0038】それに対して、ジクロロシランでは、付着
確率が0.01以下と小さいため、図10(b)に示す
ように、成長速度が小さいながらもトレンチ形状にほぼ
コンフォーマルに埋まっていく。したがって、ジクロロ
シランを原料ガスに用いることが有効である。図11
は、原料ガスとしてジクロロシランを用いたCVD法に
よりトレンチが完全に埋め込まれた状態を示す断面写真
の模式図である。
On the other hand, with dichlorosilane, since the adhesion probability is as small as 0.01 or less, as shown in FIG. 10 (b), the growth rate is small, but it is almost conformally buried in the trench shape. Therefore, it is effective to use dichlorosilane as the source gas. Figure 11
[Fig. 4] is a schematic view of a cross-sectional photograph showing a state in which a trench is completely filled by a CVD method using dichlorosilane as a source gas.

【0039】つぎに、エピタキシャル成長温度が800
℃以上1000℃以下の温度である理由について説明す
る。図12に、エピタキシャル成長温度を1100℃ま
たは900℃として、ジクロロシランを原料ガスに用い
たCVD法によりトレンチを埋め込む途中の段階におけ
る断面写真の模式図を示す。図12(a)は1100℃
のものであり、同図(b)は900℃のものであり、両
図において矢印で指し示すトレンチが同じ開口幅のトレ
ンチである。
Next, the epitaxial growth temperature is 800
The reason why the temperature is from 1000C to 1000C will be described. FIG. 12 shows a schematic diagram of a cross-sectional photograph at a stage in the middle of filling a trench by a CVD method using dichlorosilane as a raw material gas with an epitaxial growth temperature of 1100 ° C. or 900 ° C. Figure 12 (a) shows 1100 ° C
(B) is at 900 ° C., and the trenches indicated by the arrows in both figures are trenches having the same opening width.

【0040】原料ガスの付着確率は、成長温度が100
℃増減すると、1桁増減するため、成長温度が1100
℃になるとジクロロシランの付着確率は0.1近くまで
増大する。そのため、図12(a)に示すように、エピ
タキシャル成長の途中で窓開け部3aがふさがれてしま
う。この不具合は、成長温度が1000℃を超えると発
生しやすくなる。
The probability of deposition of the source gas is 100 when the growth temperature is 100.
As the temperature increases or decreases by 1 degree, the growth temperature increases or decreases by 1 digit.
The adhesion probability of dichlorosilane increases to about 0.1 at 0 ° C. Therefore, as shown in FIG. 12A, the window opening 3a is blocked during the epitaxial growth. This defect is likely to occur when the growth temperature exceeds 1000 ° C.

【0041】それに対して成長温度が900℃では、図
12(b)に示すように、窓開け部3aがふさがれず
に、トレンチ形状にほぼコンフォーマルに埋まっていく
のがわかる。このように、成長温度は1000℃以下で
あればよいが、成長温度が800℃未満では、成長速度
が著しく小さくなり、量産に向かない。したがって、成
長温度は800℃以上1000℃以下であるのが適当で
ある。
On the other hand, when the growth temperature is 900 ° C., as shown in FIG. 12 (b), the window opening 3a is not covered and the trench shape is almost conformally filled. As described above, the growth temperature may be 1000 ° C. or lower, but if the growth temperature is less than 800 ° C., the growth rate becomes remarkably low, which is not suitable for mass production. Therefore, it is suitable that the growth temperature is 800 ° C. or higher and 1000 ° C. or lower.

【0042】つぎに、エピタキシャル成長時の圧力が1
333.22Pa以上13332.2Pa以下の圧力で
ある理由について説明する。図13に、エピタキシャル
成長圧力を101324.72Paまたは5332.8
8Paとして、ジクロロシランを原料ガスに用いたCV
D法によりトレンチを埋め込む途中の段階における断面
写真の模式図を示す。図13(a)は101324.7
2Paのものであり、同図(b)は5332.88Pa
のものであり、両図において矢印で指し示すトレンチが
同じ開口幅のトレンチである。
Next, the pressure during epitaxial growth is 1
The reason why the pressure is 333.22 Pa or more and 13332.2 Pa or less will be described. In FIG. 13, the epitaxial growth pressure is 101324.72 Pa or 5332.8.
CV using dichlorosilane as raw material gas at 8 Pa
The schematic diagram of the cross-sectional photograph in the step of filling the trench by the D method is shown. FIG. 13A shows 1011324.7.
2Pa, 5332.88Pa in the figure (b)
The trenches indicated by the arrows in both figures are trenches having the same opening width.

【0043】圧力を101324.72Paから533
2.88Paまで低下させると、分子の平均自由工程は
それに反比例して19倍に伸びる。したがって、圧力を
下げるとアスペクト比の大きいトレンチでも分子がトレ
ンチの奥深くまで侵入し、トレンチ形状にコンフォーマ
ルな埋め込みがより容易となる。図13より明らかなよ
うに、低圧力の方がトレンチ内にできたボイドが小さ
い。
The pressure is changed from 101324.72 Pa to 533.
When it is reduced to 2.88 Pa, the mean free path of the molecule increases 19 times in inverse proportion to it. Therefore, when the pressure is lowered, even in a trench having a large aspect ratio, the molecules penetrate deep into the trench, making it easier to conformally fill the trench shape. As is clear from FIG. 13, the low pressure produces smaller voids in the trench.

【0044】しかし、圧力が1333.22Pa未満に
なると、成長速度が著しく小さくなり、量産に向かな
い。また、圧力が13332.2Paを超えると、後の
水素還元雰囲気アニール工程をおこなっても埋めること
が困難な程度に大きいボイドが残ってしまう。したがっ
て、エピタキシャル成長時の圧力は1333.22Pa
以上13332.2Pa以下であるのが適当である。
However, when the pressure is less than 1333.22 Pa, the growth rate becomes remarkably low, which is not suitable for mass production. Further, if the pressure exceeds 13332.2 Pa, large voids remain that are difficult to fill even if the subsequent hydrogen reducing atmosphere annealing step is performed. Therefore, the pressure during epitaxial growth is 1333.22 Pa.
It is suitable that it is above 13332.2 Pa and below.

【0045】つぎに、エピタキシャル成長につづいて、
水素還元雰囲気にて900℃よりも高い温度でアニール
をおこなう理由について説明する。図14に、900℃
または1000℃でアニールを施したトレンチ部分の断
面写真の模式図を示す。図14(a)は900℃のもの
であり、同図(b)は1000℃のものである。なお、
アニール効果を明瞭にするため、エピタキシャル層を埋
め込む前にアニールをおこなっており、図14はそのト
レンチの断面を示している。
Next, following the epitaxial growth,
The reason why annealing is performed at a temperature higher than 900 ° C. in a hydrogen reducing atmosphere will be described. In Figure 14, 900 ℃
Alternatively, a schematic view of a cross-sectional photograph of a trench portion annealed at 1000 ° C. is shown. 14 (a) is at 900 ° C., and FIG. 14 (b) is at 1000 ° C. In addition,
In order to clarify the annealing effect, annealing is performed before embedding the epitaxial layer, and FIG. 14 shows a cross section of the trench.

【0046】図14において丸印で囲む部分に着目する
と、アニール温度が900℃ではトレンチ上部の角や下
部のコーナー部で曲率半径の増加が見られないが、アニ
ール温度が1000℃では曲率半径が増加している。つ
まり、1000℃でアニールをおこなうことによって、
シリコンの表面マイグレーションが大幅に起こりやすく
なっていることがわかる。このような曲率半径の増加、
すなわちシリコンの表面マイグレーションは、アニール
温度が900℃よりも高くなると起こりやすくなる。し
たがって、エピタキシャル成長時に万一エピタキシャル
層2内にボイドが残っても、900℃よりも高い温度で
アニールをおこなうことによって、そのボイドを完全に
消失させることができる。
Focusing on the portion surrounded by a circle in FIG. 14, when the annealing temperature is 900 ° C., no increase in the radius of curvature is seen at the upper corners or the lower corners of the trench. It has increased. In other words, by annealing at 1000 ° C,
It can be seen that the surface migration of silicon is much more likely to occur. Such an increase in the radius of curvature,
That is, the surface migration of silicon easily occurs when the annealing temperature is higher than 900 ° C. Therefore, even if voids remain in the epitaxial layer 2 during epitaxial growth, the voids can be completely eliminated by annealing at a temperature higher than 900 ° C.

【0047】図15は、実施の形態にかかる超接合構造
を適用したプレーナ構造の縦型MOSFETの構造を示
す断面斜視図である。なお、説明を理解しやすくするた
めに、半導体基板の表面に形成される酸化膜やソース電
極などは省略してある(図16においても同じ)。上述
したようにして形成されたエピタキシャル層2を有する
n型半導体基板1に対し、その表面に図示しない酸化膜
とポリシリコンのゲート電極層を形成し、この酸化膜と
ゲート電極層をマスクとしてpベース領域6とnソース
領域7を拡散にて順次形成する。
FIG. 15 is a sectional perspective view showing the structure of a vertical MOSFET having a planar structure to which the superjunction structure according to the embodiment is applied. Note that the oxide film, the source electrode, and the like formed on the surface of the semiconductor substrate are omitted for easy understanding of the description (the same applies to FIG. 16). An oxide film and a polysilicon gate electrode layer (not shown) are formed on the surface of the n-type semiconductor substrate 1 having the epitaxial layer 2 formed as described above, and the oxide film and the gate electrode layer are used as a mask for p-type etching. The base region 6 and the n source region 7 are sequentially formed by diffusion.

【0048】本例では、このpベース領域6が、ストラ
イプ状になっており、エピタキシャル層2のストライプ
方向と直交するように形成されている。このように直交
されることで、pベース領域6が確実にエピタキシャル
層2およびn型半導体基板1と接するようになるため、
位置合わせの精度を高める必要がなく、製造が容易とな
る。
In this example, the p base region 6 has a stripe shape and is formed so as to be orthogonal to the stripe direction of the epitaxial layer 2. By being orthogonal to each other in this manner, the p base region 6 surely comes into contact with the epitaxial layer 2 and the n-type semiconductor substrate 1,
It is not necessary to increase the accuracy of alignment, which facilitates manufacturing.

【0049】図16は、実施の形態にかかる超接合構造
を適用したトレンチ構造の縦型MOSFETの構造を示
す断面斜視図である。上述したようにして形成されたエ
ピタキシャル層2を有するn型半導体基板1に対し、p
ベース領域8を形成し、つづいてストライプ状の、n型
ソース領域9を拡散やイオン注入などの方法で形成し、
その後、このnソース領域上にエッチングによりトレン
チを形成し、そのトレンチ内に酸化膜10とポリシリコ
ンのゲート電極11を形成して、トレンチ構造の縦型M
OSFETを形成する。
FIG. 16 is a sectional perspective view showing the structure of a vertical MOSFET having a trench structure to which the superjunction structure according to the embodiment is applied. For the n-type semiconductor substrate 1 having the epitaxial layer 2 formed as described above, p
The base region 8 is formed, and then the stripe-shaped n-type source region 9 is formed by a method such as diffusion or ion implantation.
Then, a trench is formed on the n source region by etching, and an oxide film 10 and a polysilicon gate electrode 11 are formed in the trench to form a vertical structure M having a trench structure.
Form OSFET.

【0050】図16に示す例でも図15に示す例と同じ
くpベース領域8のストライプ方向とエピタキシャル層
2のストライプ方向が直交している。なお、図15また
は図16に示す例において、pベース領域6,8のスト
ライプ方向とエピタキシャル層2のストライプ方向が、
直交でなく同じ方向となっていてもよい。
In the example shown in FIG. 16 as well, as in the example shown in FIG. 15, the stripe direction of the p base region 8 and the stripe direction of the epitaxial layer 2 are orthogonal to each other. In the example shown in FIG. 15 or 16, the stripe direction of the p base regions 6 and 8 and the stripe direction of the epitaxial layer 2 are
The directions may not be orthogonal but the same direction.

【0051】上述した実施の形態によれば、トレンチ側
壁を傾斜させ、原料ガスとしてジクロロシランを用い
て、800℃以上1000℃以下の温度で、かつ133
3.22Pa以上13332.2Pa以下の圧力でエピ
タキシャル成長をおこなうため、エピタキシャル層2内
にボイドが残らないように、トレンチをエピタキシャル
層2で埋めることができる。また、エピタキシャル成長
によってトレンチを十分に埋め込めなかった場合でも、
エピタキシャル成長後に900℃よりも高い温度で水素
還元雰囲気アニールをおこなうことによってトレンチ内
のボイドを消失させることができる。したがって、エピ
タキシャル層2内にボイドのない超接合半導体素子を得
ることができる。
According to the above embodiment, the sidewall of the trench is inclined and dichlorosilane is used as the source gas at a temperature of 800 ° C. or more and 1000 ° C. or less and 133
Since the epitaxial growth is performed at a pressure of 3.22 Pa or more and 13332.2 Pa or less, the trench can be filled with the epitaxial layer 2 so that no void remains in the epitaxial layer 2. In addition, even if the trench cannot be filled sufficiently by epitaxial growth,
Voids in the trench can be eliminated by performing hydrogen reducing atmosphere annealing at a temperature higher than 900 ° C. after the epitaxial growth. Therefore, it is possible to obtain a super-junction semiconductor device having no void in the epitaxial layer 2.

【0052】[0052]

【発明の効果】本発明によれば、半導体基板に設けられ
たトレンチをエピタキシャル成長により埋め込む際に、
エピタキシャル層内にボイドが残らないように、トレン
チをエピタキシャル層で埋めることができる。また、エ
ピタキシャル成長時に万一ボイドが残っても、エピタキ
シャル成長後に高温水素還元雰囲気アニールをおこなう
ことによってトレンチ内のボイドを消失させることがで
きる。したがって、ボイドのない超接合半導体素子を得
ることができる。
According to the present invention, when a trench provided in a semiconductor substrate is filled by epitaxial growth,
The trench can be filled with an epitaxial layer so that no voids remain in the epitaxial layer. Further, even if voids remain during the epitaxial growth, the voids in the trench can be eliminated by performing high-temperature hydrogen reduction atmosphere annealing after the epitaxial growth. Therefore, it is possible to obtain a void-free super-junction semiconductor element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態にかかる製造方法により製
造される超接合構造の断面図である。
FIG. 1 is a cross-sectional view of a super junction structure manufactured by a manufacturing method according to an embodiment of the present invention.

【図2】本発明の実施の形態にかかる超接合構造の製造
工程を示す断面図である。
FIG. 2 is a cross-sectional view showing a manufacturing process of the super junction structure according to the embodiment of the present invention.

【図3】本発明の実施の形態にかかる超接合構造の製造
工程を示す断面図である。
FIG. 3 is a cross-sectional view showing a manufacturing process of the super junction structure according to the embodiment of the present invention.

【図4】本発明の実施の形態にかかる超接合構造の製造
工程を示す断面図である。
FIG. 4 is a cross-sectional view showing a manufacturing process of the super junction structure according to the embodiment of the present invention.

【図5】本発明の実施の形態にかかる超接合構造の製造
工程を示す断面図である。
FIG. 5 is a cross-sectional view showing a manufacturing process of the super junction structure according to the embodiment of the present invention.

【図6】本発明の実施の形態にかかる超接合構造の製造
工程を示す断面図である。
FIG. 6 is a cross-sectional view showing a manufacturing process of the super junction structure according to the embodiment of the present invention.

【図7】本発明の実施の形態にかかる超接合構造の製造
工程を示す断面図である。
FIG. 7 is a cross-sectional view showing a manufacturing process of the super junction structure according to the embodiment of the present invention.

【図8】トレンチ側壁角度の限定理由を説明するための
トレンチの模式図である。
FIG. 8 is a schematic view of a trench for explaining the reason for limiting the sidewall angle of the trench.

【図9】トレンチへの埋め込みエピタキシャル成長のト
レンチ側壁角度依存性を調べた結果を示す断面写真の模
式図である。
FIG. 9 is a schematic view of a cross-sectional photograph showing the result of examining the trench sidewall angle dependence of the epitaxial growth grown in the trench.

【図10】トレンチへの埋め込みエピタキシャル成長の
原料ガス依存性を調べた結果を示す断面写真の模式図で
ある。
FIG. 10 is a schematic diagram of a cross-sectional photograph showing the result of examining the source gas dependency of epitaxial growth that is embedded in a trench.

【図11】原料ガスとしてジクロロシランを用いたCV
D法によりトレンチが完全に埋め込まれた状態を示す断
面写真の模式図である。
FIG. 11: CV using dichlorosilane as a source gas
It is a schematic diagram of a cross-sectional photograph showing a state in which a trench is completely buried by the D method.

【図12】トレンチへの埋め込みエピタキシャル成長の
温度依存性を調べた結果を示す断面写真の模式図であ
る。
FIG. 12 is a schematic diagram of a cross-sectional photograph showing the results of examining the temperature dependence of epitaxial growth that is embedded in a trench.

【図13】トレンチへの埋め込みエピタキシャル成長の
圧力依存性を調べた結果を示す断面写真の模式図であ
る。
FIG. 13 is a schematic view of a cross-sectional photograph showing the results of examining the pressure dependence of the epitaxial growth for burying in a trench.

【図14】高温水素還元雰囲気アニールの効果の温度依
存性を調べた結果を示す断面写真の模式図である。
FIG. 14 is a schematic view of a cross-sectional photograph showing the results of examining the temperature dependence of the effect of high-temperature hydrogen reduction atmosphere annealing.

【図15】本発明の実施の形態にかかる超接合構造を適
用したプレーナ構造の縦型MOSFETの構造を示す断
面斜視図である。
FIG. 15 is a sectional perspective view showing the structure of a vertical MOSFET having a planar structure to which the super junction structure according to the embodiment of the present invention is applied.

【図16】本発明の実施の形態にかかる超接合構造を適
用したトレンチ構造の縦型MOSFETの構造を示す断
面斜視図である。
FIG. 16 is a cross-sectional perspective view showing the structure of a vertical MOSFET having a trench structure to which the superjunction structure according to the embodiment of the present invention is applied.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 エピタキシャル層 13 トレンチ開口部 1 Semiconductor substrate 2 Epitaxial layer 13 Trench opening

フロントページの続き (72)発明者 岸本 大輔 神奈川県横須賀市長坂2丁目2番1号 株 式会社富士電機総合研究所内 (72)発明者 上野 勝典 神奈川県横須賀市長坂2丁目2番1号 株 式会社富士電機総合研究所内 (72)発明者 岡 哲史 群馬県安中市磯部2丁目13番1号 信越半 導体株式会社半導体磯部研究所内Continued front page    (72) Inventor Daisuke Kishimoto             2-2-1 Nagasaka, Yokosuka City, Kanagawa Prefecture             Inside the Fuji Electric Research Institute (72) Inventor Katsunori Ueno             2-2-1 Nagasaka, Yokosuka City, Kanagawa Prefecture             Inside the Fuji Electric Research Institute (72) Inventor Satoshi Oka             2-13-1, Isobe, Annaka-shi, Gunma Shinetsuhan             Conductor Co., Ltd. Semiconductor Isobe Laboratory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 トレンチ構造を有する第1導電型の半導
体基板に、原料ガスとしてジクロロシランを用いて第2
導電型のエピタキシャル層を成長させる工程を含むこと
を特徴とする超接合半導体素子の製造方法。
1. A semiconductor substrate of a first conductivity type having a trench structure, wherein dichlorosilane is used as a source gas to form a second semiconductor substrate.
A method of manufacturing a super-junction semiconductor device, comprising the step of growing a conductive type epitaxial layer.
【請求項2】 トレンチ構造を有する第1導電型の半導
体基板に、第2導電型のエピタキシャル層を成長させる
工程と、 エピタキシャル成長につづいて、水素還元雰囲気にて9
00℃を超える温度でアニールをおこなう工程と、 を含むことを特徴とする超接合半導体素子の製造方法。
2. A step of growing a second-conductivity-type epitaxial layer on a first-conductivity-type semiconductor substrate having a trench structure, and a step of growing the second-conductivity-type epitaxial layer in a hydrogen-reducing atmosphere.
A method of manufacturing a super-junction semiconductor device, comprising: a step of annealing at a temperature higher than 00 ° C.
【請求項3】 原料ガスとしてジクロロシランを用いて
エピタキシャル成長をおこなうことを特徴とする請求項
2に記載の超接合半導体素子の製造方法。
3. The method for manufacturing a super-junction semiconductor device according to claim 2, wherein dichlorosilane is used as a source gas to perform epitaxial growth.
【請求項4】 800℃以上1000℃以下の温度でエ
ピタキシャル成長をおこなうことを特徴とする請求項1
〜3のいずれか一つに記載の超接合半導体素子の製造方
法。
4. The epitaxial growth is performed at a temperature of 800 ° C. or higher and 1000 ° C. or lower.
4. The method for manufacturing a super junction semiconductor device according to any one of 3 to 3.
【請求項5】 1333.22Pa以上13332.2
Pa以下の圧力でエピタキシャル成長をおこなうことを
特徴とする請求項1〜3のいずれか一つに記載の超接合
半導体素子の製造方法。
5. 1333.22 Pa or more 133333.2.
The method for producing a super-junction semiconductor device according to claim 1, wherein epitaxial growth is performed at a pressure of Pa or less.
【請求項6】 トレンチ開口部が基板表面側からトレン
チの底面に向かって徐々に狭くなるように、相対峙する
両トレンチ側壁が基板表面に対して90°未満の角度θ
で傾斜し、かつ前記角度θとトレンチのアスペクト比A
Rとの間にAR<1/2×tanθの関係が成り立つよ
うに、トレンチを形成することを特徴とする請求項1〜
5のいずれか一つに記載の超接合半導体素子の製造方
法。
6. An angle θ of less than 90 ° with respect to the substrate surface such that the two trench sidewalls facing each other face each other so that the trench opening gradually narrows from the substrate surface side toward the bottom surface of the trench.
And the aspect ratio A of the trench
The trench is formed so that a relation of AR <1/2 × tan θ is established between R and R.
5. The method for manufacturing a super junction semiconductor device according to any one of 5 above.
【請求項7】 前記エピタキシャル層の、トレンチの非
開口部直上に堆積した部分を、ポリシングにより除去す
る工程をさらに有することを特徴とする請求項1〜6の
いずれか一つに記載の超接合半導体素子の製造方法。
7. The super junction according to claim 1, further comprising a step of removing a portion of the epitaxial layer, which is deposited on the non-opening portion of the trench, by polishing. Manufacturing method of semiconductor device.
JP2002024779A 2002-01-31 2002-01-31 Superjunction semiconductor device manufacturing method Expired - Lifetime JP3913564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002024779A JP3913564B2 (en) 2002-01-31 2002-01-31 Superjunction semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002024779A JP3913564B2 (en) 2002-01-31 2002-01-31 Superjunction semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2003229569A true JP2003229569A (en) 2003-08-15
JP3913564B2 JP3913564B2 (en) 2007-05-09

Family

ID=27747122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002024779A Expired - Lifetime JP3913564B2 (en) 2002-01-31 2002-01-31 Superjunction semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP3913564B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040959A (en) * 2004-07-22 2006-02-09 Renesas Technology Corp Manufacturing method of semiconductor device
US7075149B2 (en) 2003-05-13 2006-07-11 Kabushiki Kaisha Toshiba Semiconductor device and its manufacturing method
EP1742249A1 (en) * 2005-07-08 2007-01-10 STMicroelectronics S.r.l. Power field effect transistor and manufacturing method thereof
JP2008041942A (en) * 2006-08-07 2008-02-21 Denso Corp Semiconductor substrate, and its manufacturing method
US7601603B2 (en) 2004-03-31 2009-10-13 Denso Corporation Method for manufacturing semiconductor device
JP2009272324A (en) * 2008-04-30 2009-11-19 Fuji Electric Device Technology Co Ltd Method of manufacturing semiconductor device
JP2013048279A (en) * 2005-11-28 2013-03-07 Fuji Electric Co Ltd Semiconductor device
US8956947B2 (en) 2005-10-06 2015-02-17 Sumco Corporation Method for manufacturing semiconductor substrate
US9041070B2 (en) 2013-01-07 2015-05-26 Renesas Electronics Corporation Vertical power MOSFET
JPWO2013179820A1 (en) * 2012-05-31 2016-01-18 国立研究開発法人産業技術総合研究所 Semiconductor device
CN106409763A (en) * 2016-11-11 2017-02-15 电子科技大学 Wafer and preparation method thereof
CN106505094A (en) * 2016-11-11 2017-03-15 电子科技大学 Wafer and preparation method thereof
JP2021128952A (en) * 2020-02-10 2021-09-02 株式会社デンソー Manufacturing method for switching element
WO2023286235A1 (en) * 2021-07-15 2023-01-19 三菱電機株式会社 Silicon carbide semiconductor device and power conversion device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7075149B2 (en) 2003-05-13 2006-07-11 Kabushiki Kaisha Toshiba Semiconductor device and its manufacturing method
USRE44236E1 (en) 2004-03-31 2013-05-21 Denso Corporation Method for manufacturing semiconductor device
US7601603B2 (en) 2004-03-31 2009-10-13 Denso Corporation Method for manufacturing semiconductor device
JP2006040959A (en) * 2004-07-22 2006-02-09 Renesas Technology Corp Manufacturing method of semiconductor device
EP1742249A1 (en) * 2005-07-08 2007-01-10 STMicroelectronics S.r.l. Power field effect transistor and manufacturing method thereof
US8956947B2 (en) 2005-10-06 2015-02-17 Sumco Corporation Method for manufacturing semiconductor substrate
US9034721B2 (en) 2005-10-06 2015-05-19 Sumco Corporation Method for manufacturing semiconductor substrate
JP2013048279A (en) * 2005-11-28 2013-03-07 Fuji Electric Co Ltd Semiconductor device
JP2008041942A (en) * 2006-08-07 2008-02-21 Denso Corp Semiconductor substrate, and its manufacturing method
JP2009272324A (en) * 2008-04-30 2009-11-19 Fuji Electric Device Technology Co Ltd Method of manufacturing semiconductor device
JPWO2013179820A1 (en) * 2012-05-31 2016-01-18 国立研究開発法人産業技術総合研究所 Semiconductor device
US9041070B2 (en) 2013-01-07 2015-05-26 Renesas Electronics Corporation Vertical power MOSFET
CN106409763A (en) * 2016-11-11 2017-02-15 电子科技大学 Wafer and preparation method thereof
CN106505094A (en) * 2016-11-11 2017-03-15 电子科技大学 Wafer and preparation method thereof
JP2021128952A (en) * 2020-02-10 2021-09-02 株式会社デンソー Manufacturing method for switching element
JP7318553B2 (en) 2020-02-10 2023-08-01 株式会社デンソー Method for manufacturing switching element
WO2023286235A1 (en) * 2021-07-15 2023-01-19 三菱電機株式会社 Silicon carbide semiconductor device and power conversion device

Also Published As

Publication number Publication date
JP3913564B2 (en) 2007-05-09

Similar Documents

Publication Publication Date Title
JP6720962B2 (en) Annealing apparatus for trench of vertical silicon carbide semiconductor device, method of manufacturing vertical silicon carbide semiconductor device, and vertical silicon carbide semiconductor device
JP4695824B2 (en) Manufacturing method of semiconductor wafer
JP6848317B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
US7459365B2 (en) Method for fabricating a semiconductor component
US7230298B2 (en) Transistor having narrow trench filled with epitaxially-grown filling material free of voids
US8080846B2 (en) Semiconductor device having improved breakdown voltage and method of manufacturing the same
US6974750B2 (en) Process for forming a trench power MOS device suitable for large diameter wafers
JP2003517208A (en) Method for producing semiconductor material and apparatus using this material
US9293549B2 (en) Silicon carbide semiconductor device and method for manufacturing the same
JP3913564B2 (en) Superjunction semiconductor device manufacturing method
US8343841B2 (en) Method for fabricating a semiconductor device
US20130065384A1 (en) Method for manufacturing silicon carbide semiconductor device
US11245016B2 (en) Silicon carbide trench semiconductor device
KR20170005139A (en) Simplified charge balance in a semiconductor device
JP2009141307A (en) Method of manufacturing semiconductor device
US11158705B2 (en) Method for forming a superjunction transistor device
US7391077B2 (en) Vertical type semiconductor device
JP4783975B2 (en) MIS semiconductor device and manufacturing method thereof
JP2002353451A (en) Method for manufacturing super junction semiconductor element
JP2004158835A (en) Method of manufacturing super junction semiconductor element
JP2004253576A (en) Method of manufacturing semiconductor device
JP5055687B2 (en) Manufacturing method of semiconductor wafer
KR101051809B1 (en) High voltage device and manufacturing method thereof
JP2004311673A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070131

R150 Certificate of patent or registration of utility model

Ref document number: 3913564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term