JP2004158835A - Method of manufacturing super junction semiconductor element - Google Patents

Method of manufacturing super junction semiconductor element Download PDF

Info

Publication number
JP2004158835A
JP2004158835A JP2003338850A JP2003338850A JP2004158835A JP 2004158835 A JP2004158835 A JP 2004158835A JP 2003338850 A JP2003338850 A JP 2003338850A JP 2003338850 A JP2003338850 A JP 2003338850A JP 2004158835 A JP2004158835 A JP 2004158835A
Authority
JP
Japan
Prior art keywords
trench
semiconductor
conductivity type
manufacturing
super
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003338850A
Other languages
Japanese (ja)
Other versions
JP4304034B2 (en
Inventor
Daisuke Kishimoto
大輔 岸本
Katsunori Ueno
勝典 上野
Akinori Shimizu
了典 清水
Tetsushi Oka
哲史 岡
Sho Nishinaga
頌 西永
Shigeya Narizuka
重弥 成塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd, Fuji Electric Holdings Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2003338850A priority Critical patent/JP4304034B2/en
Publication of JP2004158835A publication Critical patent/JP2004158835A/en
Application granted granted Critical
Publication of JP4304034B2 publication Critical patent/JP4304034B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures

Abstract

<P>PROBLEM TO BE SOLVED: To promote the epitaxial growth of a semiconductor on the bottom of a trench and fill the trench with the semiconductor without generating a void or a crystal lattice deviation by suppressing the growth in a trench opening part, in manufacturing a super junction structure growing a second conductivity semiconductor epitaxially in the trench formed on a first conductivity semiconductor substrate. <P>SOLUTION: The upper half part 31 of a trench, in which a sidewall 32 is vertical or nearly vertical to a substrate surface 21 and inclines so as to become narrower toward the bottom of the trench, is formed on an n-type semiconductor substrate 2. Following under it, a lower half part 36 of the trench, which a sidewall 37 inclines more gentler than the sidewall 32 of the upper half part 31 of the trench so that a longitudinal section is formed into a V-shaped. A p-type semiconductor 4 is grown epitaxially in the trench 3 consisting of the upper half part 31 and the lower half part 36 of the trench. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、超接合半導体素子の製造方法に関し、より詳細には、MOSFET(絶縁ゲート型電界効果トランジスタ)やIGBT(絶縁ゲート型バイポーラトランジスタ)、バイポーラトランジスタ、ダイオード等に適用可能な高耐圧化と大電流容量化を両立させることのできる超接合半導体素子の製造方法に関する。   The present invention relates to a method for manufacturing a super-junction semiconductor device, and more specifically, to a method for manufacturing a MOSFET (insulated gate type field effect transistor), an IGBT (insulated gate type bipolar transistor), a bipolar transistor, a diode, and the like. The present invention relates to a method for manufacturing a super-junction semiconductor element capable of achieving both high current capacity.

従来の高耐圧半導体素子は、高い降伏電圧を得るために主電流経路に高比抵抗のドリフト領域を設けており、高耐圧のものほどこの部分の電圧降下が大きくなるので、オン電圧が高くなるという問題があった。この問題の解決法として、ドリフト層を、不純物濃度を高めたn型半導体領域とp型半導体領域とを交互に積層した並列pn層(これを、超接合構造とよぶ)で構成し、オフ状態の時は空乏化して耐圧を負担するようにした構造の半導体装置が公知である(たとえば、特許文献1、特許文献2、特許文献3、特許文献4参照。)。   Conventional high-breakdown-voltage semiconductor elements are provided with a high-resistivity drift region in the main current path in order to obtain a high breakdown voltage, and the higher the breakdown voltage, the greater the voltage drop in this portion, so the on-voltage increases. There was a problem. As a solution to this problem, the drift layer is composed of a parallel pn layer in which an n-type semiconductor region and a p-type semiconductor region with an increased impurity concentration are alternately stacked (this is called a super-junction structure). In such a case, a semiconductor device having a structure that is depleted to bear the breakdown voltage is known (for example, refer to Patent Literature 1, Patent Literature 2, Patent Literature 3, and Patent Literature 4).

上述した超接合構造を低コストで量産するため、n型(またはp型)の半導体基板に複数のトレンチを形成し、そのトレンチ内にp型(またはn型)の半導体をエピタキシャル成長させる方法が開発されている。また、超接合構造に限らず、トレンチ内に半導体をエピタキシャル成長させる技術(たとえば、特許文献5、特許文献6参照。)や、CVD法によりトレンチ内を埋め込む技術(たとえば、特許文献7参照。)が公知である。   In order to mass-produce the above-mentioned super junction structure at low cost, a method of forming a plurality of trenches in an n-type (or p-type) semiconductor substrate and epitaxially growing a p-type (or n-type) semiconductor in the trenches has been developed. Have been. In addition to the super-junction structure, a technique for epitaxially growing a semiconductor in a trench (for example, see Patent Documents 5 and 6) and a technique for filling the trench by a CVD method (for example, see Patent Document 7). It is known.

欧州特許出願第0053854号明細書European Patent Application No. 0053854 米国特許第5216275号明細書U.S. Pat. No. 5,216,275 米国特許第5438215号明細書U.S. Pat. No. 5,438,215 特開平9−266311号公報JP-A-9-26631 特開2000−260982号公報JP 2000260982 A 特開2000−340578号公報JP 2000-340578 A 特開平11−307767号公報JP-A-11-307767

しかしながら、従来のトレンチ内に半導体をエピタキシャル成長させる技術では、トレンチ内部にボイド(気泡)が残ったままトレンチ開口部が閉じてしまうという問題点がある。これは、図19に示すように、材料ガスの流れ13は、拡散過程にしたがってトレンチ11内を開口部から底部に向かうが、その過程で材料原子を失っていくことが原因である。つまり、トレンチ開口部からトレンチ底部に向かって成長ガスの濃度が低くなり、それによって、トレンチ開口部においてトレンチ底部よりも厚くエピタキシャル成長層12が成長するからである。   However, the conventional technique of epitaxially growing a semiconductor in a trench has a problem that the trench opening is closed with voids (bubbles) remaining in the trench. This is because, as shown in FIG. 19, the flow 13 of the material gas flows from the opening to the bottom in the trench 11 according to the diffusion process, but loses material atoms in the process. That is, the concentration of the growth gas becomes lower from the trench opening toward the trench bottom, whereby the epitaxial growth layer 12 grows thicker at the trench opening than at the trench bottom.

そこで、図20に示すように、トレンチ14を、その縦断面形状がV字状になるように形成し、その中に半導体をエピタキシャル成長させることによって、トレンチ開口部がふさがる前にトレンチ内を半導体で埋め込む方法がある。この方法において、トレンチ14のアスペクト比を10以上にするためには、トレンチ側壁15のテーパー角を85°以上90°未満に設定する必要があるが、テーパー角を85°にしても、トレンチ開口部がふさがる問題を十分に解決することはできない。   Therefore, as shown in FIG. 20, the trench 14 is formed so that its vertical sectional shape is V-shaped, and a semiconductor is epitaxially grown therein, so that the trench is filled with the semiconductor before the trench opening is closed. There is a way to embed. In this method, in order to set the aspect ratio of the trench 14 to 10 or more, it is necessary to set the taper angle of the trench side wall 15 to 85 ° or more and less than 90 °. The problem that the department is blocked cannot be fully solved.

ここで、図20に示すように、トレンチのアスペクト比とは、トレンチ14の深さおよび基板表面におけるトレンチ14の開口幅をそれぞれdおよびwとすると、[d/w]で表される。また、トレンチ側壁のテーパー角とは、基板表面16に平行な仮想面、たとえばトレンチ底部を通る基板表面16に平行な仮想面17に対するトレンチ側壁15の角度αのことである。   Here, as shown in FIG. 20, the aspect ratio of the trench is represented by [d / w], where d and w are the depth of the trench 14 and the opening width of the trench 14 on the substrate surface, respectively. The taper angle of the trench side wall refers to an angle α of the trench side wall 15 with respect to a virtual plane parallel to the substrate surface 16, for example, a virtual plane 17 parallel to the substrate surface 16 passing through the bottom of the trench.

また、トレンチ側壁のテーパー角が85°であるトレンチに対してエピタキシャル成長をおこなうと、図21に示すように、エピタキシャル成長の最終段階で、エピタキシャル成長層12内にナノスケールのボイド18や、転位(結晶格子ずれ)19が生じるという問題点がある。これは、相対峙するトレンチ側壁15からトレンチ14の中央に向かって成長したエピタキシャル成長層12の成長面が両側から平行に合体するため生じると考えられる。   When epitaxial growth is performed on a trench having a taper angle of 85 ° on the side wall of the trench, as shown in FIG. 21, nano-scale voids 18 and dislocations (crystal lattices) are formed in the epitaxial growth layer 12 at the final stage of the epitaxial growth. (Displacement) 19 occurs. This is considered to be caused by the fact that the growth surfaces of the epitaxial growth layers 12 grown from the opposing trench sidewalls 15 toward the center of the trench 14 are united in parallel from both sides.

本発明は、上記問題点に鑑みてなされたものであって、トレンチ底部における半導体のエピタキシャル成長を促進するとともに、トレンチ開口部での成長を抑制することによって、ボイドや結晶格子ずれを発生させることなく、トレンチ内を半導体で埋め込むことができ、それによって、超接合半導体素子を簡易に量産性よく製造することができる超接合半導体素子の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and promotes the epitaxial growth of a semiconductor at the bottom of a trench and suppresses the growth at the opening of the trench, so that voids and crystal lattice misalignment do not occur. It is another object of the present invention to provide a method of manufacturing a super junction semiconductor device which can fill a trench with a semiconductor, thereby easily manufacturing a super junction semiconductor device with good mass productivity.

上記目的を達成するため、請求項1に記載の発明は、第1導電型の半導体基板に設けられた、深さがdで基板表面における開口幅がwのトレンチ内に、第2導電型の半導体が埋め込まれた構造を有する超接合半導体素子を製造するにあたって、第1導電型の半導体基板に、側壁が基板表面に対して垂直か、または略垂直のトレンチ上半部を形成する工程と、前記トレンチ上半部につづいてその下に、側壁が前記トレンチ上半部の側壁よりも緩く傾斜し、かつ前記トレンチ上半部との境界からの深さがhのトレンチ下半部を形成する工程と、前記トレンチ上半部および前記トレンチ下半部よりなるトレンチ内に、第2導電型の半導体をエピタキシャル成長させる工程と、を含むことを特徴とする。この発明によれば、トレンチ下半部の縦断面形状がV字状もしくは略V字状となるため、エピタキシャル成長時に、トレンチ下半部での原子層ステップの供給が盛んになり、トレンチ底部の成長速度が、トレンチ開口部の成長速度よりも相対的に速くなる。   In order to achieve the above object, the invention according to claim 1 is characterized in that a trench of a second conductivity type is provided in a trench having a depth d and an opening width w in a substrate surface provided in a semiconductor substrate of the first conductivity type. In manufacturing a super-junction semiconductor device having a structure in which a semiconductor is embedded, a step of forming an upper half of a trench whose side wall is perpendicular to or substantially perpendicular to the substrate surface in a semiconductor substrate of the first conductivity type; Subsequent to the upper half of the trench, a lower side wall is formed, the side wall of which is more gradually inclined than the side wall of the upper half of the trench, and whose depth from the boundary with the upper half of the trench is h. And a step of epitaxially growing a second conductivity type semiconductor in a trench formed by the upper half portion of the trench and the lower half portion of the trench. According to the present invention, since the vertical cross section of the lower half of the trench is V-shaped or substantially V-shaped, the supply of atomic layer steps in the lower half of the trench becomes active during epitaxial growth, and the growth of the bottom of the trench is increased. The rate is relatively faster than the growth rate of the trench opening.

請求項2に記載の発明は、請求項1に記載の発明において、[h<d/2]を満たすことを特徴とする。ここで、トレンチ下半部の深さhが、トレンチ全体の深さdの1/2よりも小さいのは、トレンチ上半部では、第1導電型の半導体基板の総電荷量と第2導電型の半導体の総電荷量とのバランスが保たれるが、トレンチ下半部では、第2導電型の半導体の総電荷量が第1導電型の半導体基板の総電荷量を上回り、バランスが崩れるからである。バランスが崩れる領域では耐圧が墜ちる傾向がある、そのため、トレンチの全深さdのうち、バランスが崩れる領域hが占める深さは半分以下であることが望ましい。この発明によれば、上記のことから、超接合構造の特徴である高耐圧を保持し、かつエピタキシャル成長が容易な形状を実現することができる。   According to a second aspect of the present invention, in the first aspect, [h <d / 2] is satisfied. Here, the reason why the depth h of the lower half of the trench is smaller than の of the depth d of the entire trench is that the total charge amount of the semiconductor substrate of the first conductivity type and the second conductivity are lower in the upper half of the trench. Although the balance with the total charge of the semiconductor of the type is maintained, in the lower half of the trench, the total charge of the semiconductor of the second conductivity exceeds the total charge of the semiconductor substrate of the first conductivity, and the balance is lost. Because. The breakdown voltage tends to fall in the region where the balance is lost. Therefore, it is desirable that the depth h occupied by the region h where the balance is lost is less than half of the total depth d of the trench. According to the present invention, from the above, it is possible to maintain a high breakdown voltage, which is a feature of the super junction structure, and to realize a shape that facilitates epitaxial growth.

請求項3に記載の発明は、請求項1または2に記載の発明において、前記トレンチ下半部の側壁は、トレンチ底部を通る基板表面に平行な仮想面に対して85°以下の角度で傾いており、前記トレンチ下半部はV字状の縦断面形状をなしていることを特徴とする。この発明によれば、エピタキシャル成長時に、トレンチ下半部での原子層ステップの供給が盛んになり、トレンチ底部の成長速度が、トレンチ開口部の成長速度よりも相対的に速くなる。ここで、トレンチ下半部の側壁のテーパー角を85°以下にすることによって、材料ガスが先端部に達するまでに側壁に吸着されたり、側壁の成長速度が上がってもボイドや転位を残しやすくなってしまうことを防止することができる。   According to a third aspect of the present invention, in the first or second aspect, the side wall of the lower half of the trench is inclined at an angle of 85 ° or less with respect to a virtual plane parallel to the substrate surface passing through the bottom of the trench. The lower half of the trench has a V-shaped vertical cross section. According to the present invention, during epitaxial growth, the supply of atomic layer steps in the lower half of the trench becomes active, and the growth rate at the bottom of the trench becomes relatively faster than the growth rate at the opening of the trench. Here, by setting the taper angle of the side wall of the lower half of the trench to 85 ° or less, the material gas is easily adsorbed on the side wall by the time it reaches the tip, or voids and dislocations are easily left even if the growth rate of the side wall increases. Can be prevented.

請求項4に記載の発明は、請求項1〜3のいずれか一つに記載の発明において、[10≦d/w]を満たすことを特徴とする。この発明によれば、アスペクト比が10以上の深いトレンチにおいても、エピタキシャル成長時に、トレンチ下半部での原子層ステップの供給が盛んになり、トレンチ底部の成長速度が、トレンチ開口部の成長速度よりも相対的に速くなる。   According to a fourth aspect of the present invention, in the first aspect of the present invention, [10 ≦ d / w] is satisfied. According to the present invention, even in a deep trench having an aspect ratio of 10 or more, the supply of atomic layer steps in the lower half of the trench becomes active during epitaxial growth, and the growth rate of the trench bottom is lower than the growth rate of the trench opening. Is also relatively fast.

請求項5に記載の発明は、請求項1〜4のいずれか一つに記載の発明において、前記トレンチ下半部の側壁、または前記トレンチ下半部と上半部の側壁が、ファセットを形成する低指数面であることを特徴とする。仮に、これらの側壁がファセットを形成する低指数面でない場合、側壁のいたるところで核形成が起こりやすく、特に材料ガス濃度が高い開口部に近いほど核形成が盛んとなり、エピタキシャル成長速度が速くなって開口部をふさぎやすくなる。この発明によれば、側壁がファセットであり安定な結晶面であるため、核形成が起こりにくく、材料ガス濃度が高い開口部付近でもエピタキシャル成長速度は0または非常に遅くなる。しかし、トレンチ底部では原子層ステップの供給が続くためエピタキシャル成長が速いので、開口部がふさがることなくエピタキシャル層でトレンチを埋め込むことができる。   According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the sidewall of the lower half of the trench or the sidewall of the lower half and the upper half of the trench forms a facet. Low index surface. If these sidewalls are not low-index faces that form facets, nucleation is likely to occur throughout the sidewalls, and nucleation is particularly active near the opening where the material gas concentration is high, and the epitaxial growth rate is increased and the epitaxial growth rate is increased. It becomes easier to close the part. According to the present invention, since the side wall is a facet and a stable crystal plane, nucleation is unlikely to occur, and the epitaxial growth rate becomes zero or extremely slow even near the opening where the material gas concentration is high. However, since the supply of atomic layer steps continues at the bottom of the trench, the epitaxial growth is fast, so that the trench can be filled with the epitaxial layer without closing the opening.

請求項6に記載の発明は、請求項1〜5のいずれか一つに記載の発明において、前記半導体基板を、前記トレンチの開口部からトレンチ底部へ向かって基板内の温度が低くなるように保持した状態で、前記トレンチ内に液相成長または略1000℃以上の気相成長によって第2導電型の半導体をエピタキシャル成長させることを特徴とする。この発明によれば、エピタキシャル成長時に、トレンチ下半部での原子層ステップの供給が盛んであるのに加えて、トレンチ底部が低温であることにより、トレンチ底部の成長速度がトレンチ開口部の成長速度よりもより一層相対的に速くなる。   According to a sixth aspect of the present invention, in the first aspect of the present invention, the temperature of the semiconductor substrate is reduced such that the temperature in the substrate decreases from the opening of the trench toward the bottom of the trench. The semiconductor of the second conductivity type is epitaxially grown in the trench by liquid phase growth or vapor phase growth at about 1000 ° C. or higher in the trench. According to the present invention, during epitaxial growth, in addition to the active supply of atomic layer steps in the lower half of the trench and the low temperature of the trench bottom, the growth rate of the trench bottom is reduced by the growth rate of the trench opening. Much faster than before.

請求項7に記載の発明は、請請求項1〜5のいずれか一つに記載の発明において、前記半導体基板を、前記トレンチの開口部からトレンチ底部へ向かって基板内の温度が高くなるように保持した状態で、前記トレンチ内に略1000℃以下の気相成長によって第2導電型の半導体をエピタキシャル成長させることを特徴とする。この発明によれば、エピタキシャル成長時に、トレンチ下半部での原子層ステップの供給が盛んであるのに加えて、トレンチ底部が高温であることにより、トレンチ底部の成長速度がトレンチ開口部の成長速度よりもより一層相対的に速くなる。   The invention according to claim 7 is the invention according to any one of claims 1 to 5, wherein the temperature of the semiconductor substrate is increased from the opening of the trench toward the bottom of the trench. And a semiconductor of the second conductivity type is epitaxially grown in the trench by vapor phase growth at about 1000 ° C. or less. According to the present invention, during epitaxial growth, in addition to the active supply of atomic layer steps in the lower half of the trench, the high temperature of the trench bottom allows the growth rate of the trench bottom to be reduced by the growth rate of the trench opening. Much faster than before.

請求項8に記載の発明は、請求項1〜7のいずれか一つに記載の発明において、減圧CVD法により、前記トレンチ内に第2導電型の半導体をエピタキシャル成長させることを特徴とする。この発明によれば、減圧CVD法によるエピタキシャル成長時に、トレンチ下半部での原子層ステップの供給が盛んになり、トレンチ底部の成長速度が、トレンチ開口部の成長速度よりも相対的に速くなる。   According to an eighth aspect of the present invention, in the first aspect of the present invention, a semiconductor of the second conductivity type is epitaxially grown in the trench by a low pressure CVD method. According to the present invention, during epitaxial growth by the low pressure CVD method, the supply of atomic layer steps in the lower half of the trench becomes active, and the growth rate at the bottom of the trench is relatively higher than the growth rate at the opening of the trench.

請求項9に記載の発明は、請求項1〜8のいずれか一つに記載の発明において、前記トレンチ内に開口部からパイプを挿入し、エピタキシャル成長用の材料ガスを、前記パイプ内を通してトレンチ底部にのみ供給することを特徴とする。この発明によれば、エピタキシャル成長時に、トレンチ下半部での原子層ステップの供給が盛んであるのに加えて、トレンチ底部での成長ガス濃度がトレンチ開口部での成長ガス濃度よりも高くなることにより、トレンチ底部の成長速度が、トレンチ開口部の成長速度よりもより一層相対的に速くなる。   According to a ninth aspect of the present invention, in the invention according to any one of the first to eighth aspects, a pipe is inserted into the trench from an opening, and a material gas for epitaxial growth is passed through the pipe to form a bottom portion of the trench. It is characterized in that it is supplied only to According to the present invention, during epitaxial growth, in addition to the active supply of atomic layer steps in the lower half of the trench, the growth gas concentration at the trench bottom becomes higher than the growth gas concentration at the trench opening. As a result, the growth rate at the bottom of the trench becomes much higher than the growth rate at the opening of the trench.

また、上記目的を達成するため、請求項10に記載の発明は、第1導電型の半導体基板に設けられたトレンチ内に、第2導電型の半導体が埋め込まれた構造を有する超接合半導体素子を製造するにあたって、第1導電型の半導体基板にトレンチを形成する工程と、前記半導体基板を、前記トレンチの開口部からトレンチ底部へ向かって基板内の温度が低くなるように保持した状態で、前記トレンチ内に液相成長または略1000℃以上の気相成長によって第2導電型の半導体をエピタキシャル成長させる工程と、を含むことを特徴とする。この発明によれば、エピタキシャル成長時に、トレンチ底部が低温であるため、トレンチ底部の成長速度がトレンチ開口部の成長速度よりも相対的に速くなる。   According to another aspect of the present invention, there is provided a super junction semiconductor device having a structure in which a semiconductor of a second conductivity type is embedded in a trench provided in a semiconductor substrate of a first conductivity type. Forming a trench in the semiconductor substrate of the first conductivity type, and holding the semiconductor substrate so that the temperature in the substrate decreases from the opening of the trench toward the bottom of the trench, Epitaxially growing a second conductivity type semiconductor by liquid phase growth or vapor phase growth at about 1000 ° C. or higher in the trench. According to the present invention, at the time of epitaxial growth, the temperature at the bottom of the trench is low, so that the growth rate at the bottom of the trench is relatively higher than the growth rate at the opening of the trench.

請求項11に記載の発明は、第1導電型の半導体基板に設けられたトレンチ内に、第2導電型の半導体が埋め込まれた構造を有する超接合半導体素子を製造するにあたって、第1導電型の半導体基板にトレンチを形成する工程と、前記半導体基板を、前記トレンチの開口部からトレンチ底部へ向かって基板内の温度が高くなるように保持した状態で、前記トレンチ内に略1000℃以下の気相成長によって第2導電型の半導体をエピタキシャル成長させる工程と、を含むことを特徴とする。この発明によれば、エピタキシャル成長時に、トレンチ底部が高温であるため、トレンチ底部の成長速度がトレンチ開口部の成長速度よりもより一層相対的に速くなる。   According to an eleventh aspect of the present invention, in manufacturing a super junction semiconductor element having a structure in which a semiconductor of a second conductivity type is embedded in a trench provided in a semiconductor substrate of a first conductivity type, the first conductivity type is used. Forming a trench in the semiconductor substrate, and holding the semiconductor substrate so that the temperature in the substrate increases from the opening of the trench toward the bottom of the trench. Epitaxially growing a semiconductor of the second conductivity type by vapor phase growth. According to the present invention, since the trench bottom is at a high temperature during epitaxial growth, the growth rate at the trench bottom is much higher than the growth rate at the trench opening.

請求項12に記載の発明は、請求項10または11に記載の発明において、減圧CVD法により、前記トレンチ内に第2導電型の半導体をエピタキシャル成長させることを特徴とする。この発明によれば、減圧CVD法によるエピタキシャル成長時に、トレンチ底部が低温であるため、トレンチ底部の成長速度が、トレンチ開口部の成長速度よりも相対的に速くなる。   According to a twelfth aspect of the present invention, in the tenth or eleventh aspect, a semiconductor of the second conductivity type is epitaxially grown in the trench by a low pressure CVD method. According to the present invention, the growth rate of the trench bottom is relatively higher than the growth rate of the trench opening because the temperature at the bottom of the trench is low during the epitaxial growth by the low pressure CVD method.

また、上記目的を達成するため、請求項13に記載の発明は、第1導電型の半導体基板に設けられたトレンチ内に、第2導電型の半導体が埋め込まれた構造を有する超接合半導体素子を製造するにあたって、第1導電型の半導体基板にトレンチを形成する工程と、前記トレンチ内に開口部からパイプを挿入し、エピタキシャル成長用の材料ガスを、前記パイプ内を通してトレンチ底部にのみ供給しながら、前記トレンチ内に第2導電型の半導体をエピタキシャル成長させる工程と、を含むことを特徴とする。この発明によれば、エピタキシャル成長時に、トレンチ底部での成長ガス濃度がトレンチ開口部での成長ガス濃度よりも高くなるため、トレンチ底部の成長速度が、トレンチ開口部の成長速度よりも相対的に速くなる。   According to another aspect of the present invention, there is provided a super-junction semiconductor device having a structure in which a semiconductor of a second conductivity type is embedded in a trench provided in a semiconductor substrate of a first conductivity type. Forming a trench in a semiconductor substrate of the first conductivity type, inserting a pipe into the trench through an opening, and supplying a material gas for epitaxial growth only to the trench bottom through the pipe. And epitaxially growing a second conductivity type semiconductor in the trench. According to the present invention, at the time of epitaxial growth, the growth gas concentration at the trench bottom becomes higher than the growth gas concentration at the trench opening, so that the growth rate at the trench bottom is relatively higher than the growth rate at the trench opening. Become.

本発明によれば、エピタキシャル成長時に、トレンチ下半部での原子層ステップの供給が盛んになり、トレンチ底部の成長速度が、トレンチ開口部の成長速度よりも相対的に速くなるため、ボイドや結晶格子ずれを発生させることなく、トレンチ内を半導体で埋め込むことができる。したがって、超接合半導体素子を簡易に量産性よく製造することができる。   According to the present invention, during epitaxial growth, the supply of atomic layer steps in the lower half of the trench becomes active, and the growth rate at the bottom of the trench becomes relatively faster than the growth rate at the opening of the trench. The trench can be filled with the semiconductor without causing a lattice shift. Therefore, a super-junction semiconductor element can be easily manufactured with good mass productivity.

以下に、本発明の実施の形態について図面を参照しつつ詳細に説明する。なお、本発明は、耐圧領域を構成する超接合構造の製造方法にかかわるものであるため、ソースやドレインの構造およびそれらの製造プロセス等については任意であり、以下の説明および添付図面では省略する。したがって、本発明は、MOSFET、IGBT、バイポーラトランジスタ、GTOサイリスタまたはダイオード等に適用される。また、以下の説明では、第1導電型をn型とし、第2導電型をp型とするが、その逆の場合も同様である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Since the present invention relates to a method for manufacturing a super junction structure forming a breakdown voltage region, the structures of the source and drain and the manufacturing process thereof are arbitrary, and are omitted in the following description and the accompanying drawings. . Therefore, the present invention is applied to a MOSFET, an IGBT, a bipolar transistor, a GTO thyristor or a diode. In the following description, the first conductivity type is n-type, and the second conductivity type is p-type. The same applies to the opposite case.

実施の形態1.
図1は、本発明の実施の形態1にかかる製造方法により製造された超接合構造の構成を示す縦断面図である。図1に示すように、n型半導体基板2に深さdのトレンチ3が複数形成されており、それらトレンチ3内は、エピタキシャル成長されたp型半導体4により埋められている。トレンチ3は、基板表面21からの深さが[d−h]のトレンチ上半部31と、このトレンチ上半部31の下につづく、トレンチ上半部31との境界からの深さがhのトレンチ下半部36とから構成されている。
Embodiment 1 FIG.
FIG. 1 is a vertical cross-sectional view showing the configuration of the super-joined structure manufactured by the manufacturing method according to the first embodiment of the present invention. As shown in FIG. 1, a plurality of trenches 3 having a depth d are formed in an n-type semiconductor substrate 2, and these trenches 3 are filled with an epitaxially grown p-type semiconductor 4. The trench 3 has a depth h from the boundary between the upper half portion 31 of the trench and the lower half portion 31 following the upper half portion 31 of the trench. And the lower half portion 36 of the trench.

トレンチ上半部31の側壁32は、基板表面21に対してたとえば垂直になっている。すなわち、トレンチ上半部31の側壁32のテーパー角はたとえば90°である。また、トレンチ下半部36の側壁37のテーパー角はたとえば85°以下である。トレンチ下半部36は、その縦断面形状がたとえばV字状をなすように形成されている。   The side wall 32 of the trench upper half 31 is, for example, perpendicular to the substrate surface 21. That is, the taper angle of the side wall 32 of the trench upper half portion 31 is, for example, 90 °. The taper angle of the side wall 37 of the lower half portion 36 of the trench is, for example, 85 ° or less. The trench lower half portion 36 is formed such that its vertical cross section has, for example, a V-shape.

ここで、特に限定しないが、たとえばトレンチ下半部36の深さhは、トレンチ全体の深さdの1/2よりも小さいとよい。すなわち、[h<d/2]を満たすとよい。また、基板表面21におけるトレンチ3の開口幅をwとすると、超接合構造におけるトレンチ3の一般的なアスペクト比d/wは10以上である。トレンチ下半部36の側壁37はファセットを形成する低指数面であることが望ましい。具体的には、半導体材料としてシリコンを用いた場合、ファセットを形成しやすいのは(1,1,1)面、(1,0,0)面、(3,1,1)面、(4,1,1)面などであるが、これら以外にも、エピタキシャル成長時の基板温度、真空度または材料原子の供給圧力などの条件に依存して、ファセットを形成しやすい面方位が存在する。   Here, although not particularly limited, for example, the depth h of the lower trench portion 36 may be smaller than 1 / of the depth d of the entire trench. That is, it is preferable to satisfy [h <d / 2]. Further, assuming that the opening width of the trench 3 on the substrate surface 21 is w, the general aspect ratio d / w of the trench 3 in the super junction structure is 10 or more. The sidewall 37 of the lower trench half 36 is preferably a low index surface forming a facet. More specifically, when silicon is used as a semiconductor material, facets are easily formed on the (1,1,1) plane, the (1,0,0) plane, the (3,1,1) plane, and the (4,1) plane. , 1,1) planes, and other than these, there are plane orientations in which facets are easily formed depending on conditions such as the substrate temperature during epitaxial growth, the degree of vacuum, or the supply pressure of material atoms.

つぎに、本発明の実施の形態1にかかる製造方法について図2〜図12を参照しつつ説明する。まず、低抵抗のn型半導体基板2を用意し、その表面21を、エピタキシャル成長のマスクとなる酸化膜または窒化膜などの絶縁性マスク5で被覆する(図2)。ついで、図示しないマスクを用いて、絶縁性マスク5に、特に限定しないが、たとえばストライプ状の窓あけをおこなう(図3)。   Next, a manufacturing method according to the first embodiment of the present invention will be described with reference to FIGS. First, an n-type semiconductor substrate 2 having a low resistance is prepared, and its surface 21 is covered with an insulating mask 5 such as an oxide film or a nitride film serving as a mask for epitaxial growth (FIG. 2). Then, using a mask (not shown), the insulating mask 5 is subjected to, for example, but not limited to, striping window opening (FIG. 3).

窓あけ部の幅、すなわちトレンチ開口幅w、および隣り合う窓あけ部と窓あけ部との間隔sは、それぞれ1〜20μm程度とする。ここで、wとsは同じでもよいし、同じでなくてもよいが、図1に示す超接合構造の最終的な仕上がり構造において、n型半導体基板2とp型半導体4とが柱状に交互に並ぶ領域において、電荷のチャージバランスがとれていることが重要である。   The width of the window opening, that is, the trench opening width w, and the distance s between adjacent window openings are about 1 to 20 μm. Here, w and s may or may not be the same. However, in the final finished structure of the super junction structure shown in FIG. 1, the n-type semiconductor substrate 2 and the p-type semiconductor 4 are alternately formed in a columnar shape. It is important that the electric charge is balanced in the regions arranged in a row.

ついで、半導体基板2の、絶縁性マスク5に被覆されていない領域を、異方性エッチングにより基板表面21から深さ[d−h]までエッチングし、トレンチ上半部31を形成する(図4)。その際、エッチング方法として、たとえばプラズマエッチャーやRIE(反応性イオンエッチング)を利用する。また、エッチング条件は、トレンチ上半部31の側壁32のテーパー角が90°になる条件とする。   Next, a region of the semiconductor substrate 2 that is not covered with the insulating mask 5 is etched from the substrate surface 21 to a depth [dh] by anisotropic etching to form the upper half portion 31 of the trench (FIG. 4). ). At that time, for example, a plasma etcher or RIE (reactive ion etching) is used as an etching method. The etching condition is such that the taper angle of the side wall 32 of the upper half portion 31 of the trench is 90 °.

つづいて、基板表面21からの深さが[d−h]〜dとなる部分、すなわちトレンチ上半部31の下の深さhの部分については、トレンチ下半部36の側壁37が寝て、テーパー角が90°未満、好ましくは85°以下となる条件で異方性エッチングをおこない、トレンチ下半部36を形成する(図5)。このとき、トレンチ下半部36は、その縦断面形状がたとえばV字状となり、相対峙する側壁37の間に、基板表面に平行な平面がないのが望ましい。ここで、トレンチ下半部36のV字のなす角θは、10°の範囲の角度であるのが好ましい。   Subsequently, in a portion where the depth from the substrate surface 21 is [dh] to d, that is, in a portion having a depth h below the upper half portion 31 of the trench, the side wall 37 of the lower half portion 36 of the trench is laid down. Then, anisotropic etching is performed under the condition that the taper angle is less than 90 °, preferably 85 ° or less, to form the lower half portion 36 of the trench (FIG. 5). At this time, it is preferable that the trench lower half portion 36 has a vertical cross-sectional shape of, for example, a V shape, and that there is no plane parallel to the substrate surface between the opposing side walls 37. Here, the angle θ formed by the V-shape of the lower half portion 36 of the trench is preferably in the range of 10 °.

なぜなら、V字形状の先端部が鋭い鋭角であると、材料ガスが細かい領域を通るため先端部まで十分供給されず、先端部に達するまでに側壁に吸着され、側壁の成長速度が上がってもボイドや転位を残しやすくなってしまう。したがって、トレンチ下半部36の側壁37のテーパー角は85°以下である必要がある。なお、側壁37の上部に側壁32が存在する場合であっても、側壁37の領域のみを取り出すと上記と同じような問題が生じる。すなわち、上記の問題は、側壁32の存在の有無に関わらずに発生する。したがって、側壁37が低指数面でファセットを形成しやすいとしても、側壁37のテーパー角が垂直に近い場合はあまり好ましくない。   This is because if the V-shaped tip has a sharp acute angle, the material gas passes through a small area and is not sufficiently supplied to the tip, and is adsorbed on the sidewall before reaching the tip, so that even if the growth rate of the sidewall increases, Voids and dislocations are likely to remain. Therefore, the taper angle of the side wall 37 of the lower half portion 36 of the trench needs to be 85 ° or less. Even if the side wall 32 exists above the side wall 37, the same problem as described above occurs if only the region of the side wall 37 is taken out. That is, the above problem occurs regardless of the presence or absence of the side wall 32. Therefore, even if the side wall 37 is easy to form a facet on a low index surface, it is not preferable that the taper angle of the side wall 37 is almost vertical.

ついで、トレンチ3の内部にp型半導体4をエピタキシャル成長させる(図6)。このように絶縁性マスク5を除去しないままエピタキシャル成長をおこなう場合には、絶縁性マスク5の表面に多結晶が付着するのを防ぐため、チャンバー内に、エッチング効果を有するガスを同時に流す。たとえば、半導体材料としてシリコンを用いて、減圧CVD法によりエピタキシャル成長をおこなう場合には、成長ガスに塩素(Cl)等のハロゲンを混ぜる。具体的には、成長ガスとしてジクロロシラン(SiHCl)やトリクロロシラン(SiHCl)を用いればよい。あるいは、成長ガスとしてシラン(SiH)やジシラン(SiH)を用い、これと一緒にチャンバー内にHClやClなどのエッチングガスを供給する。   Next, a p-type semiconductor 4 is epitaxially grown inside the trench 3 (FIG. 6). When epitaxial growth is performed without removing the insulating mask 5 as described above, a gas having an etching effect is simultaneously flowed into the chamber in order to prevent polycrystal from adhering to the surface of the insulating mask 5. For example, when epitaxial growth is performed by low pressure CVD using silicon as a semiconductor material, a halogen such as chlorine (Cl) is mixed into a growth gas. Specifically, dichlorosilane (SiHCl) or trichlorosilane (SiHCl) may be used as a growth gas. Alternatively, silane (SiH) or disilane (SiH) is used as a growth gas, and an etching gas such as HCl or Cl is supplied into the chamber together with the gas.

ここで、エピタキシャル成長中のトレンチ底部のV字構造部分(図6において丸印で囲む部分)を拡大し、ミクロに原子層レベルで見ると、図9に示すように、V字の頂点に無数の原子層ステップ41が存在する。この原子層ステップ41は、結晶格子1ないし数個分の高さを持つナノスケールの構造である。側壁37が安定なファセットを形成していれば、側壁37には原子層ステップ41はほとんど存在せず、V字の頂点に原子層ステップ41が高密度で存在している。   Here, the V-shaped structure portion (the portion surrounded by a circle in FIG. 6) at the bottom of the trench during the epitaxial growth is enlarged, and when viewed microscopically at the atomic layer level, as shown in FIG. There is an atomic layer step 41. The atomic layer step 41 has a nano-scale structure having a height of one or several crystal lattices. If the side wall 37 forms a stable facet, the atomic layer step 41 hardly exists on the side wall 37, and the atomic layer step 41 exists at the vertex of the V-shape at high density.

原子層ステップ41では、材料原子が結晶中に盛んに取り込まれるので、結晶成長が速い。図10に示すように、結晶成長が進行するにしたがって、新たに結晶に固着された領域42が広がっていき、原子層ステップ41が前進する。そして、一つの原子層ステップ41が前進しても、V字の頂点から新たに次の原子層ステップ41が供給される。そのため、トレンチ底部では、結晶中への材料原子の取り込みが盛んな状態に保たれるので、成長速度が落ちることはない(凹入角効果)。   In the atomic layer step 41, the crystal growth is fast because material atoms are actively incorporated into the crystal. As shown in FIG. 10, as the crystal growth proceeds, the region 42 newly fixed to the crystal expands, and the atomic layer step 41 advances. Then, even if one atomic layer step 41 advances, the next atomic layer step 41 is newly supplied from the top of the V-shape. Therefore, at the bottom of the trench, the incorporation of material atoms into the crystal is maintained in a vigorous state, so that the growth rate does not decrease (recess angle effect).

図11は、側壁が点線で示す安定なファセット面よりも広角だった場合の断面を、図12は、側壁37が同じくファセット面よりも狭角だった場合の断面を、それぞれミクロスケールで模式的に示したものである。この場合、各ステップで材料原子の取り込みが盛んにおこなわれるため、側壁37のあらゆる位置で同時にエピタキシャル成長が起こってしまう。また、材料ガスの濃度が高い場所ほど取り込みが盛んとなり、エピタキシャル成長速度が速くなるので、トレンチの埋め込みには不利となる。   FIG. 11 is a schematic cross-sectional view when the side wall is wider than the stable facet surface indicated by a dotted line, and FIG. 12 is a schematic cross-sectional view when the side wall 37 is also narrower than the facet surface. This is shown in FIG. In this case, since material atoms are actively taken in each step, epitaxial growth occurs simultaneously at all positions on the side wall 37. In addition, the higher the concentration of the material gas, the more the gas is taken in and the higher the epitaxial growth rate, which is disadvantageous for filling the trench.

しかし、図11、図12に示すような形状においても、既存の原子層ステップが原子を取り込んで前進することによって、点線で示すファセットを形成できれば、図9と同じ形状を作ることができ、凹入角効果を利用できるようになる。図11、図12の状態からファセットを形成させるためには、エッチングガスによって異方性エッチングをおこなったり、エピタキシャル成長の初期段階において材料ガスの供給をしぼり、低速でエピタキシャル成長して安定化面を形成しやすくするなどの方法が考えられる。   However, in the shapes as shown in FIGS. 11 and 12, if the existing atomic layer steps can take in the atoms and move forward to form the facets indicated by the dotted lines, the same shape as in FIG. The angle-of-incidence effect can be used. In order to form a facet from the state shown in FIGS. 11 and 12, anisotropic etching is performed using an etching gas, or a material gas is supplied in an initial stage of epitaxial growth, and epitaxial growth is performed at a low speed to form a stabilized surface. For example, it is possible to make it easier.

一方、マクロスケールで平坦な結晶面、すなわちトレンチ上半部31の側壁32では、原子層ステップ41の存在密度が極めて低いため、結晶中への材料原子の取り込みがあまりおこなわれない。また、トレンチ上半部31の側壁32において、表面に傷がつくなどの原因により一つの原子層ステップが発生しても、この原子層ステップが前進した跡には新たな原子層ステップが供給されないので、結晶成長は継続しない。したがって、トレンチ上半部31の側壁32では、トレンチ底部のV字構造部分よりも成長速度が遅くなる。   On the other hand, in the crystal plane which is flat on the macro scale, that is, on the side wall 32 of the upper half portion 31 of the trench, since the existence density of the atomic layer steps 41 is extremely low, material atoms are hardly taken into the crystal. Further, even if one atomic layer step occurs on the side wall 32 of the trench upper half portion 31 due to, for example, damage to the surface, a new atomic layer step is not supplied to the trace where the atomic layer step has advanced. Therefore, the crystal growth does not continue. Therefore, the growth rate of the sidewall 32 of the upper half portion 31 of the trench is lower than that of the V-shaped structure at the bottom of the trench.

その結果、図6に示すように、エピタキシャル成長したp型半導体4は、トレンチ3の底部で極端に厚くなり、トレンチ開口部では薄くなる。したがって、図7に示すように、トレンチ内部にボイドを残さずに、トレンチ3の内部はp型半導体4により埋められる。エピタキシャル成長が終了した後、絶縁性マスク5を除去し、図1に示す構成の超接合構造が完成する。しかる後、ソースやドレインの形成などをおこなって所望の半導体素子が完成する。   As a result, as shown in FIG. 6, the epitaxially grown p-type semiconductor 4 becomes extremely thick at the bottom of the trench 3 and becomes thin at the trench opening. Therefore, as shown in FIG. 7, the inside of the trench 3 is filled with the p-type semiconductor 4 without leaving a void inside the trench. After the epitaxial growth is completed, the insulating mask 5 is removed, and the super junction structure having the configuration shown in FIG. 1 is completed. After that, a desired semiconductor element is completed by forming a source and a drain.

上述した実施の形態1によれば、エピタキシャル成長時に、トレンチ下半部36での原子層ステップ41の供給が盛んになり、トレンチ底部の成長速度が、トレンチ開口部の成長速度よりも相対的に速くなるため、トレンチ底部からトレンチ開口部へ向かって徐々にp型半導体4がエピタキシャル成長するので、ボイドや結晶格子ずれを発生させることなく、トレンチ3の内部をp型半導体4で埋め込むことができる。したがって、超接合半導体素子を簡易に量産性よく製造することができる。   According to the above-described first embodiment, the supply of the atomic layer steps 41 in the lower half portion 36 of the trench becomes active during the epitaxial growth, and the growth speed of the trench bottom is relatively faster than the growth speed of the trench opening. Therefore, the p-type semiconductor 4 gradually grows epitaxially from the trench bottom toward the trench opening, so that the inside of the trench 3 can be filled with the p-type semiconductor 4 without generating voids or crystal lattice shift. Therefore, a super-junction semiconductor element can be easily manufactured with good mass productivity.

なお、実施の形態1において、トレンチ3の内部にp型半導体4をエピタキシャル成長させる際に、あらかじめ絶縁性マスク5を除去しておいてもよい。その場合には、図8に示すように、n型半導体基板2の表面全体がp型半導体4により被覆されるので、エピタキシャル成長の終了後に、基板表面21上のp型半導体4を研磨して除去し、n型半導体基板2の表面21を露出させればよい。   In the first embodiment, when epitaxially growing the p-type semiconductor 4 inside the trench 3, the insulating mask 5 may be removed in advance. In this case, as shown in FIG. 8, since the entire surface of the n-type semiconductor substrate 2 is covered with the p-type semiconductor 4, the p-type semiconductor 4 on the substrate surface 21 is polished and removed after the completion of the epitaxial growth. Then, the surface 21 of the n-type semiconductor substrate 2 may be exposed.

また、実施の形態1において、図13に示すように、トレンチ下半部36が、相対峙する側壁37の間に、基板表面21に平行な平面38を有する形状に形成されていてもよい。この場合には、p型半導体4のエピタキシャル成長の初期段階において、図6に示すように、トレンチ底部にV字形状が現れるようにすればよい。   Further, in the first embodiment, as shown in FIG. 13, lower trench portion 36 may be formed in a shape having a plane 38 parallel to substrate surface 21 between opposed side walls 37. In this case, at the initial stage of the epitaxial growth of the p-type semiconductor 4, a V-shape may be formed at the bottom of the trench as shown in FIG.

また、実施の形態1において、トレンチ上半部31の側壁32が、ファセット(安定化した平坦面)を形成する面方位になっているとよい。具体的には、半導体材料としてシリコンを用いた場合、ファセットを形成しやすいのは(1,1,1)面や(1,0,0)面、(3,1,1)面、(4,1,1)面であるが、これら以外にも、エピタキシャル成長時の基板温度、真空度または材料原子の供給圧力などの条件に依存して、ファセットを形成しやすい面方位が存在する。このようにすれば、p型半導体4のエピタキシャル成長時に、トレンチ開口部がより一層閉じにくくなるという効果が得られる。   In the first embodiment, the side wall 32 of the upper half portion 31 of the trench preferably has a plane orientation that forms a facet (a stabilized flat surface). Specifically, when silicon is used as a semiconductor material, facets are easily formed on the (1,1,1) plane, the (1,0,0) plane, the (3,1,1) plane, and the (4,1) plane. In addition to these, there are plane orientations in which facets are easily formed depending on conditions such as the substrate temperature, the degree of vacuum, or the supply pressure of material atoms during epitaxial growth. In this manner, an effect is obtained that the trench opening is more difficult to close during the epitaxial growth of the p-type semiconductor 4.

ウエハとトレンチの面方位にを含めた具体例を、図14および図15に示す。図14、図15において、それぞれ、エピタキシャル成長層4の形成前に露出している面方位を記載してある。図14では、最初の半導体基板1として(1,1,0)ウエハを用いており、トレンチの側壁32に(0,0,1)面が、側壁37に(1,1,1)面がそれぞれ対応する。いずれもファセットを形成する低指数面である。なお、(0,0,1)面は(1,0,0)面と等価であり、(1,−1,0)面は(1,1,0)面と等価である。   14 and 15 show specific examples including the plane orientations of the wafer and the trench. 14 and 15, the plane orientations exposed before the formation of the epitaxial growth layer 4 are shown. In FIG. 14, a (1,1,0) wafer is used as the first semiconductor substrate 1, and the (0,0,1) plane is formed on the side wall 32 of the trench and the (1,1,1) plane is formed on the side wall 37. Each corresponds. Both are low index surfaces that form facets. The (0,0,1) plane is equivalent to the (1,0,0) plane, and the (1, -1,0) plane is equivalent to the (1,1,0) plane.

図15では、最初の半導体基板1として(1,0,0)ウエハを用いており、トレンチの側壁32に(0,1,1)面が、側壁37に(1,1,1)面が対応する。(1,1,1)面はファセットを形成する低指数面である。この場合、側壁32に2〜3°程度のテーパー角をあらかじめつけて寝かせておくと、開口部での速いエピタキシャル成長を相殺し、開口部をふさがりにくくすることができる。   In FIG. 15, a (1,0,0) wafer is used as the first semiconductor substrate 1, and the (0,1,1) plane is formed on the side wall 32 of the trench and the (1,1,1) plane is formed on the side wall 37. Corresponding. The (1,1,1) plane is a low index plane forming a facet. In this case, if a taper angle of about 2 to 3 ° is provided in advance on the side wall 32 and then the side wall 32 is laid down, rapid epitaxial growth in the opening can be canceled out, and the opening can be hardly blocked.

また、実施の形態1において、トレンチ上半部31の側壁32は、必ずしもテーパー角90°で垂直に立っている必要はなく、やや寝ていてもよいが、トレンチ3のアスペクト比d/wが10以上であることを考慮すれば、トレンチ上半部31の側壁32のテーパー角は85°以上であるのが望ましい。図16に、トレンチ上半部31の側壁32が寝ているトレンチを、エピタキシャル成長層で埋め込んでいく途中の断面写真の様子を示す。図16では、初期のトレンチ形状が点線で示されている。このように、トレンチ上半部31の側壁32が寝ているトレンチは埋め込みに有利であることがわかる。   In the first embodiment, the side wall 32 of the upper half portion 31 of the trench does not necessarily have to stand vertically at a taper angle of 90 ° and may be slightly laid, but the trench 3 has an aspect ratio d / w. Considering that it is 10 or more, the taper angle of the side wall 32 of the upper half portion 31 of the trench is desirably 85 ° or more. FIG. 16 shows a state of a cross-sectional photograph in the middle of filling the trench in which the side wall 32 of the upper half portion 31 of the trench is lying with the epitaxial growth layer. In FIG. 16, the initial trench shape is indicated by a dotted line. Thus, it can be seen that the trench in which the side wall 32 of the trench upper half 31 is lying is advantageous for filling.

また、実施の形態1において、トレンチ上半部31を形成するにあたっては、必ずしもRIEやプラズマエッチャーを用いる必要はない。たとえば、異方性を具えたウェットエッチングをおこなってもよい。具体的には、たとえばシリコンの(1,1,0)ウエハに対して、KOHとイソプロピルアルコールと水との混合液を用いて異方性エッチングをおこなうと、トレンチ側壁32に、ファセットを形成しやすい(1,1,1)面が露出しやすいという効果が得られる。   In the first embodiment, it is not always necessary to use RIE or plasma etcher when forming the upper half portion 31 of the trench. For example, wet etching with anisotropy may be performed. Specifically, for example, when a silicon (1,1,0) wafer is subjected to anisotropic etching using a mixed solution of KOH, isopropyl alcohol and water, a facet is formed on the trench side wall 32. The effect of easily exposing the (1,1,1) plane is obtained.

また、実施の形態1において、上述した形状のトレンチ下半部36を形成するにあたっては、必ずしもRIEやプラズマエッチャーを用いる必要はない。たとえば、トレンチ上半部31を形成した後、エッチング性のガスにより異方性エッチングをおこなうことによっても、縦断面形状がたとえばV字状のトレンチ下半部36を形成することができる。この場合、半導体基板2の材料がシリコンであれば、エッチングガスとしてHClやCl2を用いればよい。   Further, in the first embodiment, it is not always necessary to use RIE or a plasma etcher to form the trench lower half portion 36 having the above-described shape. For example, after forming the upper half portion 31 of the trench, the lower half portion 36 having a V-shaped vertical cross section can be formed by performing anisotropic etching with an etching gas. In this case, if the material of the semiconductor substrate 2 is silicon, HCl or Cl2 may be used as an etching gas.

実施の形態2.
本発明の実施の形態2にかかる製造方法は、トレンチ内に半導体をエピタキシャル成長させる際に、トレンチ開口部とトレンチ底部との間に温度差を設けることによって、トレンチ底部の成長速度を、トレンチ開口部の成長速度よりも相対的に速くする方法である。実施の形態2では、上述した実施の形態1のようにトレンチ底部の縦断面形状がV字状もしくは略V字状になっていてもよいし、基板表面に平行な平面形状となっていてもよい。
Embodiment 2 FIG.
In the manufacturing method according to the second embodiment of the present invention, when a semiconductor is epitaxially grown in a trench, the growth rate of the trench bottom is reduced by providing a temperature difference between the trench opening and the trench bottom. This is a method of making the growth rate relatively higher than the growth rate. In the second embodiment, the vertical sectional shape of the trench bottom may be V-shaped or substantially V-shaped as in the first embodiment described above, or may be a planar shape parallel to the substrate surface. Good.

たとえば、半導体材料がシリコンであり、成長ガスとしてジクロロシランを用いて、減圧CVD法によりエピタキシャル成長をおこなう場合、トレンチ底部の温度がトレンチ開口部の温度よりも1℃高くなるごとにトレンチ底部の反応速度が2%上がっていく。したがって、トレンチ底部の温度をトレンチ開口部の温度よりもたとえば1℃以上高くなるようにしてトレンチ底部の反応速度を上げることにより、トレンチ底部でのエピタキシャル成長を促進することができる。   For example, when the semiconductor material is silicon and epitaxial growth is performed by a low-pressure CVD method using dichlorosilane as a growth gas, the reaction rate at the bottom of the trench is increased every time the temperature of the bottom of the trench becomes 1 ° C. higher than the temperature of the opening of the trench. Increases by 2%. Therefore, the epitaxial growth at the bottom of the trench can be promoted by increasing the reaction rate at the bottom of the trench by making the temperature at the bottom of the trench higher than the temperature of the opening of the trench by, for example, 1 ° C. or more.

このように、半導体基板を、トレンチの開口部からトレンチ底部へ向かって基板内の温度が低くなるように保持した状態で、トレンチ内に液相成長または略1000℃以上の気相成長によって第2導電型の半導体をエピタキシャル成長させる。これによって、エピタキシャル成長時に、トレンチ下半部での原子層ステップの供給が盛んであるのに加えて、トレンチ底部が低温であることにより、トレンチ底部の成長速度がトレンチ開口部の成長速度よりもより一層相対的に速くなる。   In this manner, while the semiconductor substrate is held so that the temperature in the substrate decreases from the opening of the trench toward the bottom of the trench, the second phase is formed in the trench by liquid phase growth or vapor phase growth at about 1000 ° C. or higher. A conductive semiconductor is epitaxially grown. As a result, in addition to the active supply of atomic layer steps in the lower half of the trench during epitaxial growth, the growth rate of the trench bottom is higher than that of the trench opening due to the low temperature of the trench bottom. It is much faster.

また、半導体基板を、トレンチの開口部からトレンチ底部へ向かって基板内の温度が高くなるように保持した状態で、トレンチ内に略1000℃以下の気相成長によって第2導電型の半導体をエピタキシャル成長させるようにしてもよい。これによって、エピタキシャル成長時に、トレンチ下半部での原子層ステップの供給が盛んであるのに加えて、トレンチ底部が高温であることにより、トレンチ底部の成長速度がトレンチ開口部の成長速度よりもより一層相対的に速くなる。   In a state where the semiconductor substrate is held so that the temperature in the substrate increases from the opening of the trench toward the bottom of the trench, a semiconductor of the second conductivity type is epitaxially grown in the trench by vapor phase growth at about 1000 ° C. or less. You may make it do. As a result, in addition to the active supply of atomic layer steps in the lower half of the trench during epitaxial growth, the high temperature at the bottom of the trench makes the growth rate at the bottom of the trench higher than that at the opening of the trench. It is much faster.

ここで、液相成長は、ウエハ温度が低いほど成長速度が速く、温度が高いと成長速度が遅くなる。したがって液相成長を使ってトレンチを埋め込むことを想定すると、トレンチ底部は温度を低めにし、トレンチ開口部は温度を高めにするとよい。   Here, in liquid phase growth, the growth rate increases as the wafer temperature decreases, and the growth rate decreases as the temperature increases. Therefore, assuming that the trench is buried using liquid phase growth, it is preferable to lower the temperature at the bottom of the trench and increase the temperature at the opening of the trench.

また、気相成長は、略1000℃以下の低温では、ウエハ温度が高いほど成長速度が速く、温度が低いほど成長速度が遅くなる。そたがって、気相成長で比較的低温の条件を想定すると、トレンチ底部の温度を高めにし、トレンチ開口部の温度を低めにするとよい。一方、略1000℃以上の高温では、塩素によるエッチング効果が優勢になるため、ウエハ温度が高いほど成長速度が遅く、温度が低いほど成長速度が速くなる場合がある。したがって気相成長で比較的高温の条件を想定すると、トレンチ底部の温度を低めにし、トレンチ開口部の温度を高めにするとよい。   Further, in the vapor phase growth, at a low temperature of about 1000 ° C. or lower, the growth rate increases as the wafer temperature increases, and the growth rate decreases as the temperature decreases. Accordingly, assuming a relatively low temperature condition in the vapor phase growth, it is preferable to increase the temperature at the bottom of the trench and lower the temperature at the opening of the trench. On the other hand, at a high temperature of about 1000 ° C. or more, the etching effect by chlorine becomes dominant, so that the growth rate may be slower as the wafer temperature is higher, and may be higher as the temperature is lower. Therefore, assuming relatively high temperature conditions in the vapor phase growth, it is preferable to lower the temperature at the bottom of the trench and increase the temperature at the opening of the trench.

また、面方位依存性などを無視して、ポリシリコンなどの等方的材料を想定した付着確率(成長速度)ηは次の式で表される。   Further, the adhesion probability (growth rate) η assuming an isotropic material such as polysilicon, ignoring the plane orientation dependence, is expressed by the following equation.

η=Aexp(−E/RT)     η = Aexp (-E / RT)

ここで、Eは活性化エネルギー(モル当たり)、Rはモル気体定数、Tはウエハ温度である。Eはガス種や実験系によって差が生じるが、たとえばシラン(SiH)では[E/R≒2.0e4 K]である。すなわち、η=Aexp(−2.0e4/T)である。   Here, E is activation energy (per mole), R is molar gas constant, and T is wafer temperature. E varies depending on the gas type and the experimental system. For example, in the case of silane (SiH), [E / R ≒ 2.0e4 K]. That is, η = Aexp (−2.0e4 / T).

エピタキシャル成長をおこなうT=1200K前後の温度領域では、温度が1℃上がると成長速度が約2%大きくなる。これにより、材料供給量によって生じるトレンチ開口部とトレンチ底部との成長速度差を、温度差で打ち消すことができる。   In a temperature region around T = 1200 K where epitaxial growth is performed, if the temperature increases by 1 ° C., the growth rate increases by about 2%. Thereby, the difference in growth rate between the trench opening and the trench bottom caused by the material supply amount can be canceled by the temperature difference.

具体的には、図17に示すように、CVD装置の内部構造を、半導体ウエハ6の表面側を加熱するヒーター71と、半導体ウエハ6の裏面側を加熱するヒーター72とを備えた構造とし、表側のヒーター71の出力と裏側のヒーター72の出力とに差を設ければよい。このようにすれば、ウエハ6の厚み方向に沿って温度勾配を設けることができる。ただし、温度勾配が大きすぎるとスリップ転位が発生するなどの問題が生じるので、温度勾配の大きさは2000℃/cm以下であるのが適当である。   Specifically, as shown in FIG. 17, the internal structure of the CVD apparatus has a structure including a heater 71 for heating the front side of the semiconductor wafer 6 and a heater 72 for heating the back side of the semiconductor wafer 6, What is necessary is just to provide a difference between the output of the heater 71 on the front side and the output of the heater 72 on the back side. By doing so, a temperature gradient can be provided along the thickness direction of the wafer 6. However, if the temperature gradient is too large, a problem such as occurrence of slip dislocation occurs. Therefore, it is appropriate that the temperature gradient is 2000 ° C./cm or less.

上述した実施の形態2によれば、エピタキシャル成長時に、トレンチ底部が高温であるため、トレンチ底部の成長速度が、トレンチ開口部の成長速度よりも相対的に速くなるため、トレンチ底部からトレンチ開口部へ向かって徐々に半導体がエピタキシャル成長するので、ボイドや結晶格子ずれを発生させることなく、トレンチの内部を半導体で埋め込むことができる。したがって、超接合半導体素子を簡易に量産性よく製造することができる。   According to the second embodiment described above, during the epitaxial growth, since the trench bottom is at a high temperature, the growth rate of the trench bottom is relatively higher than the growth rate of the trench opening. Since the semiconductor gradually grows epitaxially toward it, the inside of the trench can be filled with the semiconductor without generating a void or a crystal lattice shift. Therefore, a super-junction semiconductor element can be easily manufactured with good mass productivity.

実施の形態3.
本発明の実施の形態3にかかる製造方法は、トレンチ内に半導体をエピタキシャル成長させる際に、トレンチ開口部とトレンチ底部との間に成長ガスの濃度差を設けることによって、トレンチ底部の成長速度を、トレンチ開口部の成長速度よりも相対的に速くする方法である。実施の形態3では、上述した実施の形態1のようにトレンチ底部の縦断面形状がV字状もしくは略V字状になっていてもよいし、基板表面に平行な平面形状となっていてもよい。
Embodiment 3 FIG.
In the manufacturing method according to the third embodiment of the present invention, when the semiconductor is epitaxially grown in the trench, the growth rate of the trench bottom is reduced by providing a concentration difference of the growth gas between the trench opening and the trench bottom. This is a method of making the growth rate relatively higher than the growth rate of the trench opening. In the third embodiment, the vertical sectional shape of the trench bottom may be V-shaped or substantially V-shaped as in the first embodiment described above, or may be a planar shape parallel to the substrate surface. Good.

従来のように、成長ガスの供給を、トレンチの開口部から底部への拡散過程によりおこなう場合には、トレンチ開口部においてガス濃度が高くなるので、トレンチ開口部付近でのエピタキシャル成長速度が速くなってしまう。これは、ボイドが生じないようにトレンチを埋め込むためには、好ましくない。そこで、トレンチ底部に直接成長ガスを供給することによって、成長ガス濃度がトレンチ底部において高くなり、トレンチ開口部において低くなるようにする。   In the case where the growth gas is supplied by a diffusion process from the opening to the bottom of the trench as in the related art, the gas concentration becomes high at the trench opening, so that the epitaxial growth rate near the trench opening increases. I will. This is not preferable for filling the trench so as not to cause voids. Therefore, by supplying the growth gas directly to the trench bottom, the growth gas concentration is increased at the trench bottom and reduced at the trench opening.

具体的には、図18に示すように、エピタキシャル成長時に、たとえばカーボンナノチューブなどからなるパイプ8をトレンチ3内に挿入し、このパイプ8を通して成長ガスをトレンチ3に供給する。このようにすれば、図18において符号9で示す矢印のように、成長ガスはトレンチ底部へ向かって流れ、トレンチ底部で折り返されてトレンチ開口部へ向かって流れるので、トレンチ底部において最も成長ガス濃度が高くなり、トレンチ開口部に向かって低くなる。   More specifically, as shown in FIG. 18, during epitaxial growth, a pipe 8 made of, for example, carbon nanotubes is inserted into the trench 3, and a growth gas is supplied to the trench 3 through the pipe 8. In this manner, as indicated by an arrow 9 in FIG. 18, the growth gas flows toward the bottom of the trench, turns at the bottom of the trench, and flows toward the opening of the trench. And becomes lower toward the trench opening.

上述した実施の形態3によれば、エピタキシャル成長時に、トレンチ底部での成長ガス濃度がトレンチ開口部での成長ガス濃度よりも高くなるため、トレンチ底部の成長速度が、トレンチ開口部の成長速度よりも相対的に速くなり、トレンチ底部からトレンチ開口部へ向かって徐々に半導体がエピタキシャル成長するので、ボイドや結晶格子ずれを発生させることなく、トレンチ3の内部を半導体で埋め込むことができる。したがって、超接合半導体素子を簡易に量産性よく製造することができる。   According to the third embodiment described above, during epitaxial growth, the growth gas concentration at the trench bottom becomes higher than the growth gas concentration at the trench opening, so that the growth rate at the trench bottom is higher than the growth rate at the trench opening. Since the semiconductor becomes relatively faster and the semiconductor gradually grows epitaxially from the bottom of the trench toward the opening of the trench, the inside of the trench 3 can be filled with the semiconductor without generating a void or a crystal lattice shift. Therefore, a super-junction semiconductor element can be easily manufactured with good mass productivity.

以上において本発明は、上述した各実施の形態に限らず、種々変更可能である。たとえば、トレンチのパターンは、ストライプ状に限らず、格子状や円柱状でもよい。また、実施の形態1〜実施の形態3を適宜組み合わせてもよい。   In the above, the present invention is not limited to the above-described embodiments, but can be variously modified. For example, the pattern of the trench is not limited to the stripe shape, but may be a lattice shape or a column shape. Further, Embodiments 1 to 3 may be appropriately combined.

以上のように、本発明にかかる超接合半導体素子の製造方法は、第1導電型半導体基板に形成されたトレンチ内に、第2導電型半導体をエピタキシャル成長させた超接合構造を製造するために有用であり、特に、トレンチ底部における半導体のエピタキシャル成長を促進するとともに、トレンチ開口部での成長を抑制することによって、ボイドや結晶格子ずれを発生させることなく、トレンチ内を半導体で埋め込むことに適している。   As described above, the method for manufacturing a super junction semiconductor device according to the present invention is useful for manufacturing a super junction structure in which a second conductivity type semiconductor is epitaxially grown in a trench formed in a first conductivity type semiconductor substrate. In particular, by promoting the epitaxial growth of the semiconductor at the bottom of the trench and suppressing the growth at the opening of the trench, it is suitable for filling the trench with the semiconductor without generating a void or a crystal lattice shift. .

本発明の実施の形態1にかかる製造方法により製造された超接合構造の構成を示す縦断面図である。FIG. 2 is a longitudinal sectional view illustrating a configuration of a super-joined structure manufactured by the manufacturing method according to the first embodiment of the present invention. 本発明の実施の形態1にかかる製造方法により製造される超接合構造の製造途中の構成を示す縦断面図である。FIG. 2 is a vertical cross-sectional view showing a configuration of the super-joined structure manufactured by the manufacturing method according to the first embodiment of the present invention during manufacture. 本発明の実施の形態1にかかる製造方法により製造される超接合構造の製造途中の構成を示す縦断面図である。FIG. 2 is a vertical cross-sectional view showing a configuration of the super-joined structure manufactured by the manufacturing method according to the first embodiment of the present invention during manufacture. 本発明の実施の形態1にかかる製造方法により製造される超接合構造の製造途中の構成を示す縦断面図である。FIG. 2 is a vertical cross-sectional view showing a configuration of the super-joined structure manufactured by the manufacturing method according to the first embodiment of the present invention during manufacture. 本発明の実施の形態1にかかる製造方法により製造される超接合構造の製造途中の構成を示す縦断面図である。FIG. 2 is a vertical cross-sectional view showing a configuration of the super-joined structure manufactured by the manufacturing method according to the first embodiment of the present invention during manufacture. 本発明の実施の形態1にかかる製造方法により製造される超接合構造の製造途中の構成を示す縦断面図である。FIG. 2 is a vertical cross-sectional view showing a configuration of the super-joined structure manufactured by the manufacturing method according to the first embodiment of the present invention during manufacture. 本発明の実施の形態1にかかる製造方法により製造される超接合構造の製造途中の構成を示す縦断面図である。FIG. 2 is a vertical cross-sectional view showing a configuration of the super-joined structure manufactured by the manufacturing method according to the first embodiment of the present invention during manufacture. 本発明の実施の形態1にかかる製造方法により製造される超接合構造の製造途中の構成を示す縦断面図である。FIG. 2 is a vertical cross-sectional view showing a configuration of the super-joined structure manufactured by the manufacturing method according to the first embodiment of the present invention during manufacture. 本発明の実施の形態1にかかる製造方法により製造される超接合構造のエピタキシャル成長中のV字構造部分を拡大して示す縦断面図である。FIG. 2 is an enlarged longitudinal sectional view showing a V-shaped structure portion during the epitaxial growth of the super junction structure manufactured by the manufacturing method according to the first embodiment of the present invention. 本発明の実施の形態1にかかる製造方法により製造される超接合構造のエピタキシャル成長中のV字構造部分を拡大して示す縦断面図である。FIG. 2 is an enlarged longitudinal sectional view showing a V-shaped structure portion during the epitaxial growth of the super junction structure manufactured by the manufacturing method according to the first embodiment of the present invention. 本発明の実施の形態1にかかる製造方法により製造される超接合構造のエピタキシャル成長中のV字構造部分を拡大して示す縦断面図である。FIG. 2 is an enlarged longitudinal sectional view showing a V-shaped structure portion during the epitaxial growth of the super junction structure manufactured by the manufacturing method according to the first embodiment of the present invention. 本発明の実施の形態1にかかる製造方法により製造される超接合構造のエピタキシャル成長中のV字構造部分を拡大して示す縦断面図である。FIG. 2 is an enlarged longitudinal sectional view showing a V-shaped structure portion during the epitaxial growth of the super junction structure manufactured by the manufacturing method according to the first embodiment of the present invention. 本発明の実施の形態1にかかる製造方法により製造される超接合構造の製造途中の構成において、トレンチ底部に平面が存在する構成を示す縦断面図である。FIG. 4 is a longitudinal sectional view showing a configuration in which a plane exists at the bottom of the trench in the configuration of the super junction structure manufactured by the manufacturing method according to the first embodiment of the present invention; 本発明の実施の形態1にかかる製造方法により製造される超接合構造のエピタキシャル成長層の形成前に露出している面方位を示す説明図である。FIG. 4 is an explanatory diagram showing a plane orientation exposed before forming an epitaxial growth layer of a super junction structure manufactured by the manufacturing method according to the first embodiment of the present invention. 本発明の実施の形態1にかかる製造方法により製造される超接合構造のエピタキシャル成長層の形成前に露出している面方位を示す説明図である。FIG. 4 is an explanatory diagram showing a plane orientation exposed before forming an epitaxial growth layer of a super junction structure manufactured by the manufacturing method according to the first embodiment of the present invention. トレンチ上半部31の側壁32が寝ているトレンチを、エピタキシャル成長層で埋め込んでいく途中の断面写真の様子を示す説明図である。It is explanatory drawing which shows the mode of the cross-section photograph in the middle of filling the trench in which the side wall 32 of the trench upper half part 31 is lying with an epitaxial growth layer. 本発明の実施の形態2にかかる製造方法を説明するための模式図である。FIG. 9 is a schematic diagram for explaining the manufacturing method according to the second embodiment of the present invention. 本発明の実施の形態3にかかる製造方法を説明するための模式図である。FIG. 9 is a schematic diagram for explaining the manufacturing method according to the third embodiment of the present invention. 従来の超接合半導体素子の製造方法によってトレンチ開口部に厚いエピタキシャル成長層が生じた様子を模式的に示す縦断面図である。FIG. 11 is a longitudinal sectional view schematically showing a state in which a thick epitaxial growth layer is formed in a trench opening by a conventional method for manufacturing a super junction semiconductor element. 従来の超接合半導体素子の製造方法において縦断面形状がV字状のトレンチを形成した半導体基板を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the semiconductor substrate in which the vertical cross-sectional shape formed the V-shaped trench in the manufacturing method of the conventional super junction semiconductor element. 従来の超接合半導体素子の製造方法において縦断面形状がV字状のトレンチをエピタキシャル成長層で埋めた状態を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the state where the vertical cross-sectional shape was filled with the epitaxial growth layer in the manufacturing method of the conventional super junction semiconductor element.

符号の説明Explanation of reference numerals

2 第1導電型の半導体基板
3 トレンチ
4 第2導電型の半導体
8 パイプ
21 基板表面
31 トレンチ上半部
32 トレンチ上半部の側壁
36 トレンチ下半部
37 トレンチ下半部の側壁
2 Semiconductor substrate of first conductivity type 3 Trench 4 Semiconductor of second conductivity type 8 Pipe 21 Substrate surface 31 Upper half of trench 32 Side wall of upper half of trench 36 Lower half of trench 37 Side wall of lower half of trench

Claims (13)

第1導電型の半導体基板に設けられた、深さがdで基板表面における開口幅がwのトレンチ内に、第2導電型の半導体が埋め込まれた構造を有する超接合半導体素子を製造するにあたって、
第1導電型の半導体基板に、側壁が基板表面に対して垂直か、または略垂直のトレンチ上半部を形成する工程と、
前記トレンチ上半部につづいてその下に、側壁が前記トレンチ上半部の側壁よりも緩く傾斜し、かつ前記トレンチ上半部との境界からの深さがhのトレンチ下半部を形成する工程と、
前記トレンチ上半部および前記トレンチ下半部よりなるトレンチ内に、第2導電型の半導体をエピタキシャル成長させる工程と、
を含むことを特徴とする超接合半導体素子の製造方法。
In manufacturing a superjunction semiconductor device having a structure in which a semiconductor of the second conductivity type is embedded in a trench having a depth of d and an opening width of w on the substrate surface provided in a semiconductor substrate of the first conductivity type. ,
Forming, on a semiconductor substrate of the first conductivity type, an upper half of a trench whose side walls are perpendicular or substantially perpendicular to the substrate surface;
Subsequent to the upper half of the trench, a lower side wall is formed, the side wall of which is more gradually inclined than the side wall of the upper half of the trench, and whose depth from the boundary with the upper half of the trench is h. Process and
Epitaxially growing a semiconductor of the second conductivity type in a trench formed by the upper half of the trench and the lower half of the trench;
A method for manufacturing a super-junction semiconductor device, comprising:
[h<d/2]を満たすことを特徴とする請求項1に記載の超接合半導体素子の製造方法。   2. The method according to claim 1, wherein h <d / 2 is satisfied. 前記トレンチ下半部の側壁は、トレンチ底部を通る基板表面に平行な仮想面に対して85°以下の角度で傾いており、前記トレンチ下半部はV字状の縦断面形状をなしていることを特徴とする請求項1または2に記載の超接合半導体素子の製造方法。   Side walls of the lower half of the trench are inclined at an angle of 85 ° or less with respect to an imaginary plane parallel to the substrate surface passing through the bottom of the trench, and the lower half of the trench has a V-shaped vertical sectional shape. The method for manufacturing a super junction semiconductor device according to claim 1, wherein: [10≦d/w]を満たすことを特徴とする請求項1〜3のいずれか一つに記載の超接合半導体素子の製造方法。   The method for manufacturing a super junction semiconductor device according to claim 1, wherein [10 ≦ d / w] is satisfied. 前記トレンチ下半部の側壁、または前記トレンチ下半部と上半部の側壁が、ファセットを形成する低指数面であることを特徴とする請求項1〜4のいずれか一つに記載の超接合半導体素子の製造方法。   The ultra-thin surface according to any one of claims 1 to 4, wherein a sidewall of the lower half of the trench or a sidewall of the lower half and the upper half of the trench is a low index surface forming a facet. A method for manufacturing a junction semiconductor device. 前記半導体基板を、前記トレンチの開口部からトレンチ底部へ向かって基板内の温度が低くなるように保持した状態で、前記トレンチ内に液相成長または略1000℃以上の気相成長によって第2導電型の半導体をエピタキシャル成長させることを特徴とする請求項1〜5のいずれか一つに記載の超接合半導体素子の製造方法。   In a state where the semiconductor substrate is held so that the temperature in the substrate decreases from the opening of the trench toward the bottom of the trench, the second conductive layer is formed in the trench by liquid phase growth or vapor phase growth of about 1000 ° C. or more. The method for manufacturing a super-junction semiconductor device according to claim 1, wherein a semiconductor of a type is epitaxially grown. 前記半導体基板を、前記トレンチの開口部からトレンチ底部へ向かって基板内の温度が高くなるように保持した状態で、前記トレンチ内に略1000℃以下の気相成長によって第2導電型の半導体をエピタキシャル成長させることを特徴とする請求項1〜5のいずれか一つに記載の超接合半導体素子の製造方法。   In a state where the semiconductor substrate is held so that the temperature in the substrate increases from the opening of the trench toward the bottom of the trench, a semiconductor of the second conductivity type is formed in the trench by vapor phase growth at about 1000 ° C. or less. The method for manufacturing a super junction semiconductor device according to claim 1, wherein the super junction semiconductor device is grown epitaxially. 減圧CVD法により、前記トレンチ内に第2導電型の半導体をエピタキシャル成長させることを特徴とする請求項1〜7のいずれか一つに記載の超接合半導体素子の製造方法。   8. The method according to claim 1, wherein a semiconductor of a second conductivity type is epitaxially grown in the trench by a low pressure CVD method. 前記トレンチ内に開口部からパイプを挿入し、エピタキシャル成長用の材料ガスを、前記パイプ内を通してトレンチ底部にのみ供給することを特徴とする請求項1〜8のいずれか一つに記載の超接合半導体素子の製造方法。   The super-junction semiconductor according to any one of claims 1 to 8, wherein a pipe is inserted into the trench from an opening, and a material gas for epitaxial growth is supplied only to the bottom of the trench through the pipe. Device manufacturing method. 第1導電型の半導体基板に設けられたトレンチ内に、第2導電型の半導体が埋め込まれた構造を有する超接合半導体素子を製造するにあたって、
第1導電型の半導体基板にトレンチを形成する工程と、
前記半導体基板を、前記トレンチの開口部からトレンチ底部へ向かって基板内の温度が低くなるように保持した状態で、前記トレンチ内に液相成長または略1000℃以上の気相成長によって第2導電型の半導体をエピタキシャル成長させる工程と、
を含むことを特徴とする超接合半導体素子の製造方法。
In manufacturing a super junction semiconductor device having a structure in which a semiconductor of a second conductivity type is embedded in a trench provided in a semiconductor substrate of a first conductivity type,
Forming a trench in a semiconductor substrate of a first conductivity type;
In a state where the semiconductor substrate is held so that the temperature in the substrate decreases from the opening of the trench toward the bottom of the trench, the second conductive layer is formed in the trench by liquid phase growth or vapor phase growth of about 1000 ° C. or more. Epitaxially growing a semiconductor of a mold type;
A method for manufacturing a super-junction semiconductor device, comprising:
第1導電型の半導体基板に設けられたトレンチ内に、第2導電型の半導体が埋め込まれた構造を有する超接合半導体素子を製造するにあたって、
第1導電型の半導体基板にトレンチを形成する工程と、
前記半導体基板を、前記トレンチの開口部からトレンチ底部へ向かって基板内の温度が高くなるように保持した状態で、前記トレンチ内に略1000℃以下の気相成長によって第2導電型の半導体をエピタキシャル成長させる工程と、
を含むことを特徴とする超接合半導体素子の製造方法。
In manufacturing a super junction semiconductor device having a structure in which a semiconductor of a second conductivity type is embedded in a trench provided in a semiconductor substrate of a first conductivity type,
Forming a trench in a semiconductor substrate of a first conductivity type;
In a state where the semiconductor substrate is held so that the temperature in the substrate increases from the opening of the trench toward the bottom of the trench, a semiconductor of the second conductivity type is formed in the trench by vapor phase growth at about 1000 ° C. or less. A step of epitaxial growth;
A method for manufacturing a super-junction semiconductor device, comprising:
減圧CVD法により、前記トレンチ内に第2導電型の半導体をエピタキシャル成長させることを特徴とする請求項10または11に記載の超接合半導体素子の製造方法。   The method according to claim 10, wherein a semiconductor of a second conductivity type is epitaxially grown in the trench by a low-pressure CVD method. 第1導電型の半導体基板に設けられたトレンチ内に、第2導電型の半導体が埋め込まれた構造を有する超接合半導体素子を製造するにあたって、
第1導電型の半導体基板にトレンチを形成する工程と、
前記トレンチ内に開口部からパイプを挿入し、エピタキシャル成長用の材料ガスを、前記パイプ内を通してトレンチ底部にのみ供給しながら、前記トレンチ内に第2導電型の半導体をエピタキシャル成長させる工程と、
を含むことを特徴とする超接合半導体素子の製造方法。
In manufacturing a super junction semiconductor device having a structure in which a semiconductor of a second conductivity type is embedded in a trench provided in a semiconductor substrate of a first conductivity type,
Forming a trench in the semiconductor substrate of the first conductivity type;
Inserting a pipe into the trench from an opening, and epitaxially growing a second conductivity type semiconductor in the trench while supplying a material gas for epitaxial growth only to the bottom of the trench through the pipe;
A method for manufacturing a super-junction semiconductor device, comprising:
JP2003338850A 2002-10-18 2003-09-29 Superjunction semiconductor device manufacturing method Expired - Lifetime JP4304034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003338850A JP4304034B2 (en) 2002-10-18 2003-09-29 Superjunction semiconductor device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002303863 2002-10-18
JP2003338850A JP4304034B2 (en) 2002-10-18 2003-09-29 Superjunction semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2004158835A true JP2004158835A (en) 2004-06-03
JP4304034B2 JP4304034B2 (en) 2009-07-29

Family

ID=32827980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003338850A Expired - Lifetime JP4304034B2 (en) 2002-10-18 2003-09-29 Superjunction semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP4304034B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004114384A1 (en) * 2003-06-17 2004-12-29 Shin-Etsu Handotai Co.,Ltd. Silicon epitaxial wafer manufacturing method and silicon epitaxial wafer
JP2012064958A (en) * 2011-10-28 2012-03-29 Denso Corp Method of producing semiconductor substrate
CN103413763A (en) * 2013-08-22 2013-11-27 上海宏力半导体制造有限公司 Super junction transistor and forming method thereof
CN105655385A (en) * 2016-01-15 2016-06-08 上海华虹宏力半导体制造有限公司 Manufacturing method of groove-type super junction device
CN106328687A (en) * 2015-07-02 2017-01-11 北大方正集团有限公司 Manufacturing method and structure of epitaxial wafer for super-junction device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409334B (en) * 2014-11-06 2017-06-16 中航(重庆)微电子有限公司 A kind of preparation method of superjunction devices

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004114384A1 (en) * 2003-06-17 2004-12-29 Shin-Etsu Handotai Co.,Ltd. Silicon epitaxial wafer manufacturing method and silicon epitaxial wafer
JP2012064958A (en) * 2011-10-28 2012-03-29 Denso Corp Method of producing semiconductor substrate
CN103413763A (en) * 2013-08-22 2013-11-27 上海宏力半导体制造有限公司 Super junction transistor and forming method thereof
CN106328687A (en) * 2015-07-02 2017-01-11 北大方正集团有限公司 Manufacturing method and structure of epitaxial wafer for super-junction device
CN105655385A (en) * 2016-01-15 2016-06-08 上海华虹宏力半导体制造有限公司 Manufacturing method of groove-type super junction device

Also Published As

Publication number Publication date
JP4304034B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
JP4695824B2 (en) Manufacturing method of semiconductor wafer
JP5217257B2 (en) Semiconductor device and manufacturing method thereof
TWI329925B (en) Semiconductor device and method of fabricating the same
JP5400405B2 (en) Manufacturing method of semiconductor device
US11342187B2 (en) Method for producing a superjunction device
CN102254796B (en) Method for forming alternative arrangement of P-type and N-type semiconductor thin layers
US10950487B2 (en) Method for forming an alignment mark
CN103855222B (en) The method of semiconductor devices and manufacture semiconductor devices
US10141431B1 (en) Epitaxy source/drain regions of FinFETs and method forming same
CN102208336B (en) Technical method for forming alternately arranged P type and N type semiconductor thin layers
JP5806600B2 (en) Method for manufacturing silicon carbide semiconductor device
KR102123919B1 (en) Selective film growth for bottom-up gap filling
JP2016066669A (en) Silicon carbide semiconductor device manufacturing method and silicon carbide semiconductor device
KR20140060264A (en) Silicon carbide semiconductor device and method for manufacturing same
CN103026461A (en) Process for filling deep trenches in a semiconductor material body, and semiconductor device resulting from the same process
CN102013394A (en) Method for forming thick oxygen at bottom of trench type MOSFET
CN103765594A (en) Silicon carbide semiconductor device
CN107887271A (en) Silicon epitaxy for the substantially vertical deep silicon trench of high aspect ratio
JP2013110238A5 (en)
JP2009141307A (en) Method of manufacturing semiconductor device
JP3913564B2 (en) Superjunction semiconductor device manufacturing method
TW201826529A (en) Semiconductor device and method of manufacturing the semiconductor device
JP4304034B2 (en) Superjunction semiconductor device manufacturing method
JP2004063894A (en) Method of manufacturing semiconductor substrate
WO2024036792A1 (en) Super-junction semiconductor device and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4304034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term