JP2002353451A - Method for manufacturing super junction semiconductor element - Google Patents

Method for manufacturing super junction semiconductor element

Info

Publication number
JP2002353451A
JP2002353451A JP2001152686A JP2001152686A JP2002353451A JP 2002353451 A JP2002353451 A JP 2002353451A JP 2001152686 A JP2001152686 A JP 2001152686A JP 2001152686 A JP2001152686 A JP 2001152686A JP 2002353451 A JP2002353451 A JP 2002353451A
Authority
JP
Japan
Prior art keywords
epitaxial layer
trench
semiconductor substrate
growth
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001152686A
Other languages
Japanese (ja)
Inventor
Daisuke Kishimoto
大輔 岸本
Akinori Shimizu
了典 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001152686A priority Critical patent/JP2002353451A/en
Publication of JP2002353451A publication Critical patent/JP2002353451A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Thyristors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a trench aperture part from being closed, by preventing polycrystal from growing in a process for embedding trenches by epitaxial growth. SOLUTION: An insulation mask, turning into a mask for epitaxial growth, is formed in the surface region of an n-type semiconductor substrate 1. A stripe- shape window opening part is formed in the insulating mask. A trench aperture part is formed by eliminating the n-type semiconductor substrate 1, corresponding to the window opening part by etching, and further the insulation mask is eliminated by etching. A p-type epitaxial layer 2 is crystal-grown in the trench aperture part. When the epitaxial layer 2 is grown to be sufficiently thick, and a trench bottom part becomes higher than the surface of the substrate 1, the growth is ended. By polishing the epitaxial layer 2, its surface height is made equal to the surface height of the substrate 1. When the epitaxial layer 2 is grown, since the insulation mask 2 is no longer present, polycrystal will not deposit on the insulation mask.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超接合半導体素子
の製造方法に関し、より詳細には、MOSFET(絶縁
ゲート型電界効果トランジスタ)やIGBT(絶縁ゲー
トバイポーラトランジスタ)、バイポーラトランジス
タ、ダイオード等に適用可能な高耐圧化と大電流容量化
を両立させることのできる超接合半導体素子の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a super junction semiconductor device, and more particularly, to a method for manufacturing a MOSFET (insulated gate field effect transistor), an IGBT (insulated gate bipolar transistor), a bipolar transistor, a diode, and the like. The present invention relates to a method for manufacturing a super-junction semiconductor element capable of achieving both a high withstand voltage and a large current capacity.

【0002】[0002]

【従来の技術】従来の高耐圧半導体素子は、高い降伏電
圧を得るために高比抵抗のドリフト領域を主電流経路に
もうけるため、高耐圧のものほどこの部分の電圧降下が
大きくなってオン電圧が高くなるという問題があった。
2. Description of the Related Art In a conventional high breakdown voltage semiconductor element, a drift region having a high specific resistance is provided in a main current path in order to obtain a high breakdown voltage. There was a problem that becomes high.

【0003】この問題に対する解決法として、ドリフト
層を、不純物濃度を高めたn型とp型の領域とを交互に
積層した並列pn層で構成し、オフ状態のときは空乏化
して耐圧を負担するようにした構造の半導体装置が、例
えば、特公平2−54661号公報、米国特許第521
6275号明細書、特開平7−7154号公報に開示さ
れている。
As a solution to this problem, a drift layer is constituted by a parallel pn layer in which n-type and p-type regions with an increased impurity concentration are alternately stacked, and when in an off state, it is depleted to bear a breakdown voltage. A semiconductor device having such a structure is disclosed in, for example, Japanese Patent Publication No. 2-54661, U.S. Pat.
No. 6,275, and JP-A-7-7154.

【0004】[0004]

【発明が解決しようとする課題】このような超接合構造
を形成するために、エピタキシャル成長によってトレン
チ構造を埋め込む方法や、プレーナー基板上においてエ
ピタキシャル成長とイオン打ち込みを繰り返す方法が使
われてきた。
In order to form such a super junction structure, a method of filling a trench structure by epitaxial growth and a method of repeating epitaxial growth and ion implantation on a planar substrate have been used.

【0005】しかしながら、トレンチ構造を形成してこ
のトレンチ部を埋め込む方法には、2つの問題点があっ
た。その第1の問題点は、アスペクト比の高いトレンチ
構造を形成する過程で、エッチングによるダメージが基
板に残り、このダメージを除去するために工程が増える
ほか、除去しきれないダメージが残るという問題点であ
る。
However, the method of forming the trench structure and filling the trench portion has two problems. The first problem is that in the process of forming a trench structure having a high aspect ratio, damage due to etching remains on the substrate, and additional steps are required to remove the damage, and damage that cannot be removed remains. It is.

【0006】また、第2の問題点は、従来のエピタキシ
ャル成長技術による場合、アスペクト比が10前後であ
る極めて深いトレンチ構造を埋め込む必要があり、成長
中にトレンチの開口部がふさがってしまい、トレンチ内
部に空間が残るという問題点である。トレンチに対する
エピタキシャル成長によるこの問題を解決する指針は、
これまでに与えられていなかった。
A second problem is that in the case of the conventional epitaxial growth technique, it is necessary to embed an extremely deep trench structure having an aspect ratio of about 10, and the opening of the trench is blocked during the growth, so that the inside of the trench is obstructed. The problem is that space remains in the space. The guideline to solve this problem by epitaxial growth for trench is
Had never been given before.

【0007】また、エピタキシャル成長とイオン打ち込
みを繰り返す形成方法では、工程数が増加するため耐圧
構造部のコストが極めて高くなり、また、リソグラフィ
とイオン打ち込みの繰り返しによりプロセスダメージや
不純物汚染が増え、結晶品質を劣化するという問題点が
あった。また、この方法は、特定の位置にイオン打ち込
みした不純物を熱拡散により広げる方法であるため、超
接合領域における不純物分布が不均一であり、この不均
一性がデバイス特性を不安定にするという問題があっ
た。
In the formation method in which epitaxial growth and ion implantation are repeated, the number of steps is increased, so that the cost of the breakdown voltage structure becomes extremely high. In addition, process damage and impurity contamination increase due to repetition of lithography and ion implantation, and crystal quality is reduced. There is a problem of deterioration. In addition, this method is a method in which the impurity implanted into a specific position is spread by thermal diffusion, so that the impurity distribution in the super junction region is non-uniform, and the non-uniformity makes device characteristics unstable. was there.

【0008】これらの問題を解決するために、面間選択
性の高いエピタキシャル成長技術を導入することが望ま
しい。選択比を高める方法としては、以下の2つの方法
がある。
In order to solve these problems, it is desirable to introduce an epitaxial growth technique having high inter-plane selectivity. There are the following two methods for increasing the selection ratio.

【0009】第1は、原子線または分子線を用いたエピ
タキシー法により、分子の直進性を使って特定の面だけ
に原子線または分子線を当て、選択的に成長する方法で
ある。すなわち、トレンチ構造または凹凸構造の底部の
みに選択的に原子線または分子線を当てエピタキシャル
成長を促し、側壁には当たりにくくして側壁の成長を抑
え、エピタキシャル成長中に開口部が塞がらないように
する方法である。
The first is a method in which an atomic beam or a molecular beam is applied only to a specific surface by using an epitaxy method using an atomic beam or a molecular beam, by using the rectilinearity of the molecule, and selectively grows. That is, a method in which an atomic beam or a molecular beam is selectively applied only to the bottom of a trench structure or a concavo-convex structure to promote epitaxial growth, hardly hit the side wall to suppress the growth of the side wall, and prevent the opening from being closed during the epitaxial growth. It is.

【0010】第2は、異方性成長効果を利用するもの
で、平坦化して安定しやすく成長速度が遅い面での成長
と、荒れやすく成長速度が速い面での成長との差を利用
して選択成長を行う方法である。この異方性成長効果は
液相成長(LPE;Liquid Phase Epitaxial)法で最も
顕著に現われるが、気相成長(CVD;Chemical Vapor
Deposition)法でも得ることができ、原子線または分子
線を用いたエピタキシー法でもわずかに得ることができ
る。この場合、トレンチ構造または凹凸構造の側壁とし
て平坦化しやすい面を選び、底面に荒れやすい面を選
び、底面の成長速度を上げて、エピタキシャル成長中に
開口部が塞がらないようにする。
The second method utilizes the anisotropic growth effect, and utilizes the difference between growth on a surface which is flattened and stable and has a low growth rate and growth on a surface which is rough and has a high growth rate. This is a method of performing selective growth. This anisotropic growth effect is most prominent in a liquid phase epitaxy (LPE) method, but is a chemical vapor deposition (CVD) method.
Deposition) method, and a slight amount can also be obtained by an epitaxy method using an atomic beam or a molecular beam. In this case, a surface that is easily flattened is selected as a sidewall of the trench structure or the uneven structure, a surface that is easily roughened is selected as a bottom surface, and the growth rate of the bottom surface is increased so that the opening is not blocked during epitaxial growth.

【0011】しかしながら、このような解決方法にもま
だまだ改善の余地が残されているのが現状である。本発
明は、このような問題に鑑みてなされたもので、その目
的とするところは、トレンチをエピタキシャル成長によ
って埋め込む工程で、多結晶が生成しないようにし、そ
の結果、多結晶がトレンチ開口部を塞いでトレンチ内に
ボイドが残ることを防ぐようにした超接合半導体素子の
製造方法を提供することにある。
However, at present, there is still room for improvement in such a solution. The present invention has been made in view of such a problem, and an object of the present invention is to prevent a polycrystal from being generated in a step of filling a trench by epitaxial growth, and as a result, the polycrystal blocks the trench opening. Accordingly, it is an object of the present invention to provide a method of manufacturing a super junction semiconductor device in which voids are prevented from remaining in a trench.

【0012】また他の目的は、エピタキシャル成長によ
ってトレンチを十分に埋め込めなかった場合でも、耐圧
低下をまねくことのないような超接合半導体素子の製造
方法を提供することにある。
Another object of the present invention is to provide a method of manufacturing a super junction semiconductor device which does not cause a decrease in breakdown voltage even when a trench cannot be sufficiently filled by epitaxial growth.

【0013】さらに他の目的は、多結晶が生成しても成
長条件を選ぶことによりこれを最小限に抑え、ポリシン
グ工程において研磨膜厚を小さくし、研磨装置の寿命を
のばして基板にかかる機械的負荷も抑えることができる
ようにした超接合半導体素子の製造方法を提供すること
にある。
Still another object of the present invention is to minimize the growth of polycrystals by selecting the growth conditions even if they are formed, to reduce the thickness of the polished film in the polishing step, to extend the life of the polishing apparatus, and to reduce the mechanical load on the substrate. It is an object of the present invention to provide a method of manufacturing a super junction semiconductor device capable of suppressing a mechanical load.

【0014】[0014]

【課題を解決するための手段】本発明は、このような目
的を達成するために、請求項1に記載の発明は、トレン
チ構造を有する第1導電型の半導体基板に、第2導電型
のエピタキシャル層を成長させる第1の工程と、該第1
の工程により成長されたエピタキシャル層のうちトレン
チの非開口部直上に堆積した部分を、ポリシングにより
除去する第2の工程とを有することを特徴とする。
In order to achieve the above object, the present invention is directed to a semiconductor device of the first conductivity type having a trench structure. A first step of growing an epitaxial layer;
And removing a portion of the epitaxial layer grown immediately above the non-opening portion of the trench, by polishing, in the epitaxial layer.

【0015】また、請求項2に記載の発明は、請求項1
に記載の発明において、前記エピタキシャル層のポリシ
ングを少なくとも半導体基板の表面に達するまで行うこ
とを特徴とする。
The invention described in claim 2 is the first invention.
The polishing of the epitaxial layer is performed at least until the epitaxial layer reaches the surface of the semiconductor substrate.

【0016】また、請求項3に記載の発明は、トレンチ
構造を有する第1導電型の半導体基板の非開口部をマス
クする第1の工程と、該第1の工程において前記半導体
基板のマスクされていない領域に第2導電型のエピタキ
シャル層を成長させる第2の工程と、前記マスクをエッ
チングして、該マスク及びマスク上に付着した堆積物を
除去する第3の工程とを有することを特徴とする。
According to a third aspect of the present invention, there is provided a first step of masking a non-opening portion of a semiconductor substrate of a first conductivity type having a trench structure, and the step of masking the semiconductor substrate in the first step. A second step of growing an epitaxial layer of a second conductivity type in a region that is not present, and a third step of etching the mask to remove the mask and deposits deposited on the mask. And

【0017】また、請求項4に記載の発明は、請求項3
に記載の発明において、前記半導体基板の表面を少なく
ともエピタキシャル層の最上端に達するまでポリシング
する第4の工程を含むことを特徴とする。
The invention described in claim 4 is the same as the invention described in claim 3.
The method according to the above aspect, further comprising a fourth step of polishing the surface of the semiconductor substrate until at least the top end of the epitaxial layer is reached.

【0018】また、請求項5に記載の発明は、請求項1
乃至4いずれかに記載の発明において、前記トレンチ構
造の内部に成長したエピタキシャル層に生じた間隙を、
ポリイミドなどの絶縁性材料で埋め込むことを特徴とす
る。
The invention described in claim 5 is the first invention.
5. The method according to any one of claims 1 to 4, wherein a gap generated in the epitaxial layer grown inside the trench structure is
It is characterized by being embedded with an insulating material such as polyimide.

【0019】[0019]

【発明の実施の形態】以下、図面を参照して本発明の実
施例について説明する。 [第1の実施形態]図1は、本発明の第1の実施形態に係
わる超接合構造の断面図で、図2〜図7は、本発明の第
1の実施形態に係わる超接合構造の製造工程を示す断面
図である。図中符号1は、n型半導体基板、2はn型エ
ピタキシャル層、3は酸化膜又は窒化膜などの絶縁性マ
スクである。
Embodiments of the present invention will be described below with reference to the drawings. [First Embodiment] FIG. 1 is a sectional view of a super junction structure according to a first embodiment of the present invention. FIGS. 2 to 7 are cross-sectional views of a super junction structure according to the first embodiment of the present invention. It is sectional drawing which shows a manufacturing process. In the figure, reference numeral 1 denotes an n-type semiconductor substrate, 2 denotes an n-type epitaxial layer, and 3 denotes an insulating mask such as an oxide film or a nitride film.

【0020】本発明は、耐圧領域の構造と製造方法にか
かわるもので、ソース構造およびドレイン構造は任意で
ある。従って、IGBT(絶縁ゲート型バイポーラトラ
ンジスタ)やバイポーラトランジスタ、GTOサイリス
タ、ダイオード等にも適用される。
The present invention relates to the structure of the breakdown voltage region and the manufacturing method, and the source structure and the drain structure are arbitrary. Therefore, the present invention is also applied to an IGBT (insulated gate bipolar transistor), a bipolar transistor, a GTO thyristor, a diode, and the like.

【0021】以下、図1に示した第1の実施形態に係わ
る超接合構造の製造方法について、図2〜図7に基づい
て説明する。まず、低抵抗のn型半導体基板1を準備す
る。次いで、このn型半導体基板1の表面領域にエピタ
キシャル成長のマスクとなる酸化膜または窒化膜などの
絶縁性マスク3を形成する。次いで、図3に示すよう
に、図示しないマスクを使って、絶縁性マスク3にスト
ライプ状の窓開け部3aを形成する。ストライプの窓開
け部3aと絶縁性マスク3の幅は、1μm乃至20μm
程度とする。
Hereinafter, a method of manufacturing the super junction structure according to the first embodiment shown in FIG. 1 will be described with reference to FIGS. First, a low-resistance n-type semiconductor substrate 1 is prepared. Next, an insulating mask 3 such as an oxide film or a nitride film serving as a mask for epitaxial growth is formed on the surface region of the n-type semiconductor substrate 1. Next, as shown in FIG. 3, a striped window opening 3a is formed in the insulating mask 3 using a mask (not shown). The width between the window opening 3a of the stripe and the insulating mask 3 is 1 μm to 20 μm.
Degree.

【0022】次いで、図4に示すように、窓開け部3a
に相当するn型半導体基板1をエッチングにより除去し
てトレンチ開口部13を形成し、さらに絶縁性マスク3
をエッチングにより除去する。次いで、図5に示すよう
に、トレンチ開口部13に、MBE(分子線エピタキシ
ー法および原子線エピタキシー法を含み、以下、MBE
という)、またはCVDまたはLPEにより、p型のエ
ピタキシャル層2を結晶成長させる。このとき、トレン
チ底部の成長速度Vbが、トレンチ側壁の成長速度Vs
より十分大きく、両者の速度比Vb/Vsがトレンチの
アスぺクト比を上回ることが望ましい。
Next, as shown in FIG.
Is removed by etching to form a trench opening 13, and furthermore, an insulating mask 3 is formed.
Is removed by etching. Next, as shown in FIG. 5, MBE (including a molecular beam epitaxy method and an atomic beam epitaxy method,
Or p-type epitaxial layer 2 is crystal-grown by CVD or LPE. At this time, the growth speed Vb of the trench bottom is equal to the growth speed Vs of the trench sidewall.
More preferably, it is desirable that the speed ratio Vb / Vs of both of them exceeds the aspect ratio of the trench.

【0023】このような成長条件を達成するため、CV
DおよびLPEでは異方性成長効果を利用するとよい。
すなわち、トレンチ側壁がファセットとなり、平坦で安
定な面を形成して成長速度が落ち、トレンチ底面が荒れ
た面となり成長速度が上がるように面方位を選ぶ。
In order to achieve such growth conditions, CV
In D and LPE, the anisotropic growth effect may be used.
That is, the plane orientation is selected so that the trench sidewall becomes a facet, a flat and stable surface is formed, the growth rate is reduced, and the trench bottom becomes a rough surface and the growth rate is increased.

【0024】一方、MBEでは主に分子線(原子線も含
み、以下、分子線という)の直進性を利用して、側壁の
成長速度を抑える。すなわち、指向性の揃った分子線を
n型半導体基板1に対して垂直に照射し、成長反応を供
給律速条件(エピタキシャル成長の反応過程には、大き
く分けて供給律速と反応律速の2種類があり、供給律速
とは、材料(分子や原子)が結晶に初めて衝突した時、
その場で反応して結晶の一部となることである。そし
て、供給律速の特徴としては、付着率が100%で跳ね
返りがない。材料がたくさん供給されると供給量に比例
した成長速度が速くなる。)とする。その結果、n型半
導体基板1のうちトレンチ底部および非開口部では分子
線が入射するためエピタキシャル成長するが、トレンチ
側壁には分子線が入射しないのでほとんど成長しない。
その結果、速度比Vb/Vsを大きくすることができ
る。分子線の指向性を揃えるためには、分子線に含まれ
る分子運動の角度のばらつきが6°以内となるのが望ま
しいので、分子線の供給ノズルを細長くし、横方向の速
度成分を持った分子を吸着したり、供給ノズルを基板か
ら遠く離すなどの方法がとられる。
On the other hand, in MBE, the growth rate of the side wall is suppressed mainly by utilizing the straightness of a molecular beam (including an atomic beam, hereinafter, referred to as a molecular beam). That is, a molecular beam having uniform directivity is irradiated perpendicularly to the n-type semiconductor substrate 1 to control the growth reaction under supply-determining conditions (reaction processes of epitaxial growth are roughly classified into two types: supply-limiting and reaction-limiting. , Supply-limiting is when a material (molecule or atom) collides with a crystal for the first time,
It reacts in situ and becomes part of the crystal. As a characteristic of the supply rate control, there is no rebound at an adhesion rate of 100%. When a large amount of material is supplied, the growth rate proportional to the supplied amount is increased. ). As a result, the n-type semiconductor substrate 1 is epitaxially grown at the bottom and the non-opening of the trench because the molecular beam is incident thereon, but hardly grows because the molecular beam does not enter the sidewall of the trench.
As a result, the speed ratio Vb / Vs can be increased. In order to make the directivity of the molecular beam uniform, it is desirable that the variation of the angle of the molecular motion included in the molecular beam is within 6 °. Therefore, the supply nozzle of the molecular beam is made elongated to have a lateral velocity component. A method of adsorbing molecules or a method of moving the supply nozzle far from the substrate is used.

【0025】図6に示すように、エピタキシャル層2が
十分厚く成長して、トレンチ底部がn型半導体基板1の
表面より高くなれば成長を終了する。次いで、エピタキ
シャル層2をポリシングし、その表面の高さがもとのn
型半導体基板1の表面と同じになるようにする。その結
果、図7に示すような超接合構造を得る。
As shown in FIG. 6, when the epitaxial layer 2 grows sufficiently thick and the trench bottom becomes higher than the surface of the n-type semiconductor substrate 1, the growth is terminated. Next, the epitaxial layer 2 is polished so that the height of the surface is equal to the original n.
It should be the same as the surface of the mold semiconductor substrate 1. As a result, a super junction structure as shown in FIG. 7 is obtained.

【0026】このように、本実施形態によれば、エピタ
キシャル層2を成長する際、絶縁性マスク3が存在しな
いので、絶縁性マスク3の上に多結晶が堆積することが
ない。多結晶が堆積すると、横方向に成長してトレンチ
の開口部を塞ぎやすい。その結果、トレンチ内に材料が
供給されなくなってエピタキシャル層2が十分成長せず
ボイドが残り、耐圧低下や素子特性のばらつきを招く。
本実施形態によれば多結晶の堆積を防ぐことができるの
で、超接合構造を安定して形成できる。
As described above, according to the present embodiment, when the epitaxial layer 2 is grown, since the insulating mask 3 does not exist, no polycrystal is deposited on the insulating mask 3. When the polycrystal is deposited, it grows in the lateral direction and tends to close the opening of the trench. As a result, no material is supplied into the trench, and the epitaxial layer 2 does not grow sufficiently, leaving voids, leading to a decrease in breakdown voltage and variations in element characteristics.
According to this embodiment, since the deposition of polycrystals can be prevented, the super junction structure can be formed stably.

【0027】[第2の実施形態]図5において、トレンチ
底面の成長速度Vbが、トレンチ側壁の成長速度Vsに
比べて十分大きくとれなかった場合、エピタキシャル層
2に、図8に示すような間隙4aが残る。この場合、こ
の間隙4aをそのまま残すと耐圧低下を招くことにな
る。そこで、この間隙4aを、図9に示すように、ポリ
イミド4で埋め、次いで、第1の実施形態と同様にエピ
タキシャル層2およびポリイミド4をポリシングして、
図10に示すような超接合構造を得る。図10におい
て、残ったエピタキシャル層2とn型半導体基板1との
間でチャージバランスが取れていることが必要である。
このとき、耐圧構造部分は、ポリイミド4によって保護
されているので耐圧低下を起こさない。
[Second Embodiment] In FIG. 5, if the growth rate Vb at the bottom of the trench cannot be made sufficiently higher than the growth rate Vs at the side wall of the trench, the epitaxial layer 2 has a gap as shown in FIG. 4a remains. In this case, if the gap 4a is left as it is, a decrease in withstand voltage will be caused. Therefore, as shown in FIG. 9, the gap 4a is filled with polyimide 4, and then the epitaxial layer 2 and the polyimide 4 are polished in the same manner as in the first embodiment.
A super junction structure as shown in FIG. 10 is obtained. In FIG. 10, it is necessary that the charge balance between the remaining epitaxial layer 2 and the n-type semiconductor substrate 1 be maintained.
At this time, since the withstand voltage structure is protected by the polyimide 4, the withstand voltage does not decrease.

【0028】このように、本実施形態によれば、第1の
実施形態と比較して、成長速度比Vb/Vsが十分大き
くとれなかった場合でも、超接合半導体素子を形成する
ことができる。
As described above, according to the present embodiment, a superjunction semiconductor device can be formed even when the growth rate ratio Vb / Vs cannot be made sufficiently large as compared with the first embodiment.

【0029】[第3の実施形態]第1の実施形態におい
て、図4に示した状態から絶縁性マスク3を除去せずに
エピタキシャル成長を開始してもよい。この場合、図1
1に示すように、絶縁性マスク3の上に多結晶5が堆積
され、この多結晶5が横にのびてトレンチ開口部13を
塞ぎやすくする。しかし、基板温度を800℃以上に上
げたり、MBEの場合は分子線の指向性を揃えることで
多結晶5の横方向ののびを抑えることができる。エピタ
キシャル層2の成長は、その上端部が多結晶5に接する
手前で終了する。次いで、絶縁性マスク3をエッチング
により除去する。このとき、多結晶5も同時に除去さ
れ、図12に示すような超接合構造を得る。図12に示
す構造は、表面にわずかに段差が生じているので、これ
をポリシングして平坦化し、図7に示すような超接合構
造を得る。
Third Embodiment In the first embodiment, epitaxial growth may be started from the state shown in FIG. 4 without removing the insulating mask 3. In this case, FIG.
As shown in FIG. 1, a polycrystal 5 is deposited on the insulating mask 3, and the polycrystal 5 extends laterally to make it easier to close the trench opening 13. However, the lateral growth of the polycrystal 5 can be suppressed by increasing the substrate temperature to 800 ° C. or higher, or in the case of MBE, by adjusting the directivity of the molecular beam. The growth of epitaxial layer 2 ends before its upper end comes into contact with polycrystal 5. Next, the insulating mask 3 is removed by etching. At this time, the polycrystal 5 is also removed at the same time, and a super junction structure as shown in FIG. 12 is obtained. The structure shown in FIG. 12 has a slight step on its surface. This is polished and flattened to obtain a super junction structure as shown in FIG.

【0030】このように本実施形態によれば、第1の実
施形態と比較してポリシングして除去する膜厚を小さく
できるという特徴がある。その結果、研磨装置の寿命を
のばし、基板にかかる機械的負荷も小さくすることがで
きる。しかし、多結晶が横方向にのびないようにするた
め、エピタキシャル層2の成長条件が制約されるという
問題がある。
As described above, according to the present embodiment, there is a feature that the film thickness to be removed by polishing can be reduced as compared with the first embodiment. As a result, the life of the polishing apparatus can be extended, and the mechanical load on the substrate can be reduced. However, there is a problem that the growth conditions of the epitaxial layer 2 are restricted in order to prevent the polycrystal from extending in the horizontal direction.

【0031】[第4の実施形態]図13は、第1の実施形
態に係る超接合構造において、MOSFETを形成した
実施形態の断面斜視図であり、図13(a)はプレーナ
構造の縦型MOSFETであり、図13(b)はトレン
チ構造の縦型MOSFETである。なお、説明を理解し
やすくするために、半導体基板に表面に形成される酸化
膜やソース電極などは省略してある。なお、第2の実施
形態を示す図10のポリイミド4を有する構造に置きか
えることができることは容易に理解できる。
[Fourth Embodiment] FIG. 13 is a sectional perspective view of an embodiment in which a MOSFET is formed in the super junction structure according to the first embodiment, and FIG. 13 (a) is a vertical type having a planar structure. FIG. 13B shows a vertical MOSFET having a trench structure. Note that an oxide film, a source electrode, and the like formed on the surface of the semiconductor substrate are omitted for easy understanding of the description. It can be easily understood that the structure having the polyimide 4 in FIG. 10 showing the second embodiment can be replaced.

【0032】まず、図13(a)について説明すると、
第1の実施形態で選られたエピタキシャル層2を有する
n型半導体基板1に対し、その表面に図示しない酸化膜
とポリシリコンのゲート電極層を形成し、この酸化膜と
ゲート電極層をマスクとしてpベース領域6とnソース
領域7を拡散にて順次形成する。本例では、このpベー
ス領域6が、ストライプ状になっており、エピタキシャ
ル層2のストライプ方向と直交するように形成されてい
る。このように直交されることで、pベース領域6が確
実にエピタキシャル層2及びn型半導体基板1と接する
ようになるため、位置合わせの精度を高める必要がな
く、製造が容易となる。
First, referring to FIG. 13A,
An oxide film and a polysilicon gate electrode layer (not shown) are formed on the surface of the n-type semiconductor substrate 1 having the epitaxial layer 2 selected in the first embodiment, and the oxide film and the gate electrode layer are used as masks. A p base region 6 and an n source region 7 are sequentially formed by diffusion. In this example, the p base region 6 has a stripe shape and is formed to be orthogonal to the stripe direction of the epitaxial layer 2. The orthogonality ensures that the p base region 6 comes into contact with the epitaxial layer 2 and the n-type semiconductor substrate 1 without necessity, so that it is not necessary to increase the accuracy of the alignment, and the manufacturing is facilitated.

【0033】次に、図13(b)では、第1の実施形態
で得られたエピタキシャル層2を有するn型半導体基板
1に対し、pベース領域8を形成し、続いてストライプ
状のn型ソース領域9を拡散やイオン注入などの方法で
形成し、その後、このnソース領域上にエッチングによ
りトレンチ溝を形成し、そのトレンチ溝内に酸化膜10
とポリシリコンのゲート電極11を形成して、トレンチ
構造の縦型MOSFETを形成する。なお、この実施例
形態も図13(a)と同じくpベース領域8のストライ
プ方向とエピタキシャル層2のストライプ方向が直交し
ている。ただし、図13(a),(b)の実施形態にお
いて、直交でなく同じ方向としてもよい。
Next, in FIG. 13B, a p-base region 8 is formed on the n-type semiconductor substrate 1 having the epitaxial layer 2 obtained in the first embodiment, and then a striped n-type region is formed. A source region 9 is formed by a method such as diffusion or ion implantation. Thereafter, a trench is formed on the n source region by etching, and an oxide film 10 is formed in the trench.
And a polysilicon gate electrode 11 to form a vertical MOSFET having a trench structure. In this embodiment, the stripe direction of the p base region 8 and the stripe direction of the epitaxial layer 2 are orthogonal to each other as in FIG. However, in the embodiments of FIGS. 13A and 13B, the directions may be the same as the directions instead of orthogonal.

【0034】[0034]

【発明の効果】以上説明したように本発明によれば、ト
レンチ構造を有する第1導電型の半導体基板に、第2導
電型のエピタキシャル層を成長させる第1の工程と、第
1の工程により成長されたエピタキシャル層のうちトレ
ンチの非開口部直上に堆積した部分を、ポリシングによ
り除去する第2の工程とを有し、トレンチ構造の内部に
成長したエピタキシャル層に生じた間隙を、ポリイミド
などの絶縁性材料で埋め込むようにしたので、トレンチ
をエピタキシャル成長によって埋め込む工程で、多結晶
が生成しないようにし、その結果、多結晶がトレンチ開
口部を塞いでトレンチ内にボイドが残るという問題を解
決することができる。
As described above, according to the present invention, a first step of growing a second conductivity type epitaxial layer on a first conductivity type semiconductor substrate having a trench structure, and a first step. A second step of removing, by polishing, a portion of the grown epitaxial layer immediately above the non-opening portion of the trench, wherein a gap generated in the epitaxial layer grown inside the trench structure is made of polyimide or the like. Since the insulating material is used to fill the trench, the process of filling the trench by epitaxial growth prevents polycrystals from being generated, thereby solving the problem that the polycrystal blocks the trench opening and voids remain in the trench. Can be.

【0035】また、エピタキシャル成長によってトレン
チを十分に埋め込めなかった場合でも、耐圧低下をまね
くことなく超接合素子を形成することができる。
Further, even when the trench cannot be sufficiently filled by the epitaxial growth, a super junction element can be formed without lowering the breakdown voltage.

【0036】さらに、多結晶が生成しても成長条件を選
ぶことによりこれを最小限に抑えれば、ポリシング工程
において研磨膜厚を小さくし、研磨装置の寿命をのばし
て基板にかかる機械的負荷も抑えることができる。
Further, even if polycrystals are formed, by minimizing the growth conditions by selecting the growth conditions, the polishing film thickness is reduced in the polishing step, the life of the polishing apparatus is extended, and the mechanical load applied to the substrate is reduced. Can also be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係わる超接合構造の
断面図である。
FIG. 1 is a cross-sectional view of a super junction structure according to a first embodiment of the present invention.

【図2】本発明の第1の実施形態に係わる超接合構造の
製造工程を示す断面図(その1)である。
FIG. 2 is a cross-sectional view (part 1) illustrating a process for manufacturing the super-joined structure according to the first embodiment of the present invention.

【図3】本発明の第1の実施形態に係わる超接合構造の
製造工程を示す断面図(その2)である。
FIG. 3 is a cross-sectional view (part 2) illustrating a step of manufacturing the super-joined structure according to the first embodiment of the present invention.

【図4】本発明の第1の実施形態に係わる超接合構造の
製造工程を示す断面図(その3)である。
FIG. 4 is a sectional view (No. 3) showing a step of manufacturing the super-joined structure according to the first embodiment of the present invention.

【図5】本発明の第1の実施形態に係わる超接合構造の
製造工程を示す断面図(その4)である。
FIG. 5 is a sectional view (No. 4) showing a step of manufacturing the super-joined structure according to the first embodiment of the present invention.

【図6】本発明の第1の実施形態に係わる超接合構造の
製造工程を示す断面図(その5)である。
FIG. 6 is a cross-sectional view (No. 5) showing a step of manufacturing the super-joined structure according to the first embodiment of the present invention.

【図7】本発明の第1の実施形態に係わる超接合構造の
製造工程を示す断面図(その6)である。
FIG. 7 is a sectional view (part 6) illustrating a step of manufacturing the super-joined structure according to the first embodiment of the present invention.

【図8】本発明の第2の実施形態に係わる超接合構造の
製造工程を示す断面図(その1)である。
FIG. 8 is a cross-sectional view (part 1) illustrating a process for manufacturing the super-joined structure according to the second embodiment of the present invention.

【図9】本発明の第2の実施形態に係わる超接合構造の
製造工程を示す断面図(その2)である。
FIG. 9 is a cross-sectional view (2) illustrating a step of manufacturing the super-joined structure according to the second embodiment of the present invention.

【図10】本発明の第2の実施形態に係わる超接合構造
の製造工程を示す断面図(その3)である。
FIG. 10 is a sectional view (part 3) illustrating a process for manufacturing the super-joined structure according to the second embodiment of the present invention;

【図11】本発明の第3の実施形態に係わる超接合構造
の製造工程を示す断面図(その1)である。
FIG. 11 is a cross-sectional view (part 1) illustrating a process for manufacturing the super-joined structure according to the third embodiment of the present invention.

【図12】本発明の第3の実施形態に係わる超接合構造
の製造工程を示す断面図(その2)である。
FIG. 12 is a cross-sectional view (2) illustrating a step of manufacturing the super-joined structure according to the third embodiment of the present invention.

【図13】第1の実施形態に係る超接合構造において、
MOSFETを形成した実施形態の断面斜視図で、
(a)はプレーナ構造の縦型MOSFET、(b)はト
レンチ構造の縦型MOSFETである。
FIG. 13 shows a super junction structure according to the first embodiment.
FIG. 2 is a cross-sectional perspective view of an embodiment in which a MOSFET is formed,
(A) is a vertical MOSFET having a planar structure, and (b) is a vertical MOSFET having a trench structure.

【符号の説明】[Explanation of symbols]

1 n型半導体基板 2 n型エピタキシャル層 3 酸化膜又は窒化膜などの絶縁性マスク 3a 窓開け部 4 ポリイミド 4a 間隙 5 多結晶 6 pベース領域 7 nシース領域 8 pベース領域 9 nシース領域 10 酸化膜 11 ゲート電極 13 トレンチ開口部 Reference Signs List 1 n-type semiconductor substrate 2 n-type epitaxial layer 3 insulating mask such as oxide film or nitride film 3 a window opening 4 polyimide 4 a gap 5 polycrystal 6 p base region 7 n sheath region 8 p base region 9 n sheath region 10 oxidation Film 11 gate electrode 13 trench opening

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 29/74 H01L 29/74 Q Fターム(参考) 5F005 AH02 AH03 5F103 AA04 BB13 GG01 HH03 JJ01 NN01 PP07 PP08 RR05 RR08──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI theme coat ゛ (Reference) H01L 29/74 H01L 29/74 Q F term (Reference) 5F005 AH02 AH03 5F103 AA04 BB13 GG01 HH03 JJ01 NN01 PP07 PP08 RR05 RR08

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 トレンチ構造を有する第1導電型の半導
体基板に、第2導電型のエピタキシャル層を成長させる
第1の工程と、該第1の工程により成長されたエピタキ
シャル層のうちトレンチの非開口部直上に堆積した部分
を、ポリシングにより除去する第2の工程とを有するこ
とを特徴とする超接合半導体素子の製造方法。
A first step of growing a second conductivity type epitaxial layer on a first conductivity type semiconductor substrate having a trench structure; A second step of removing, by polishing, a portion deposited immediately above the opening, the method comprising the steps of:
【請求項2】 前記エピタキシャル層のポリシングを少
なくとも半導体基板の表面に達するまで行うことを特徴
とする請求項1に記載の超接合半導体素子の製造方法。
2. The method according to claim 1, wherein the polishing of the epitaxial layer is performed at least until the epitaxial layer reaches the surface of the semiconductor substrate.
【請求項3】 トレンチ構造を有する第1導電型の半導
体基板の非開口部をマスクする第1の工程と、該第1の
工程において前記半導体基板のマスクされていない領域
に第2導電型のエピタキシャル層を成長させる第2の工
程と、前記マスクをエッチングして、該マスク及びマス
ク上に付着した堆積物を除去する第3の工程とを有する
ことを特徴とする超接合半導体素子の製造方法。
3. A first step of masking a non-opening portion of a semiconductor substrate of a first conductivity type having a trench structure, and a step of masking a second conductivity type on an unmasked region of the semiconductor substrate in the first step. A method of manufacturing a super junction semiconductor device, comprising: a second step of growing an epitaxial layer; and a third step of etching the mask to remove the mask and deposits deposited on the mask. .
【請求項4】 前記半導体基板の表面を少なくともエピ
タキシャル層の最上端に達するまでポリシングする第4
の工程を含むことを特徴とする請求項3に記載の超接合
半導体素子の製造方法。
4. A fourth step of polishing the surface of the semiconductor substrate at least until reaching the top end of the epitaxial layer.
4. The method according to claim 3, further comprising the step of:
【請求項5】 前記トレンチ構造の内部に成長したエピ
タキシャル層に生じた間隙を、ポリイミドなどの絶縁性
材料で埋め込むことを特徴とする請求項1乃至4のいず
れかに記載の超接合半導体素子の製造方法。
5. The super-junction semiconductor device according to claim 1, wherein a gap generated in the epitaxial layer grown inside the trench structure is filled with an insulating material such as polyimide. Production method.
JP2001152686A 2001-05-22 2001-05-22 Method for manufacturing super junction semiconductor element Pending JP2002353451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001152686A JP2002353451A (en) 2001-05-22 2001-05-22 Method for manufacturing super junction semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001152686A JP2002353451A (en) 2001-05-22 2001-05-22 Method for manufacturing super junction semiconductor element

Publications (1)

Publication Number Publication Date
JP2002353451A true JP2002353451A (en) 2002-12-06

Family

ID=18997316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001152686A Pending JP2002353451A (en) 2001-05-22 2001-05-22 Method for manufacturing super junction semiconductor element

Country Status (1)

Country Link
JP (1) JP2002353451A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004114384A1 (en) * 2003-06-17 2004-12-29 Shin-Etsu Handotai Co.,Ltd. Silicon epitaxial wafer manufacturing method and silicon epitaxial wafer
JP2007173734A (en) * 2005-12-26 2007-07-05 Toshiba Corp Semiconductor device and manufacturing method therefor
US7601603B2 (en) 2004-03-31 2009-10-13 Denso Corporation Method for manufacturing semiconductor device
JP2010525605A (en) * 2007-04-23 2010-07-22 アイスモス・テクノロジー・リミテッド Method for manufacturing trench-type semiconductor device with thermally sensitive refill material
CN102184861A (en) * 2011-04-08 2011-09-14 上海先进半导体制造股份有限公司 Trench filling method and trench structure of cold MOS (metal oxide semiconductor)
CN102184860A (en) * 2011-04-08 2011-09-14 上海先进半导体制造股份有限公司 Cold MOS (Metal Oxide Semiconductor) groove padding method and cold MOS groove structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0453142A (en) * 1990-06-18 1992-02-20 Fujitsu Ltd Manufacture of semiconductor device
JPH04198089A (en) * 1990-11-28 1992-07-17 Toshiba Corp Molecular beam source
JPH07113169A (en) * 1993-10-13 1995-05-02 Mitsubishi Electric Corp Device for forming thin film
JP2000340578A (en) * 1999-05-28 2000-12-08 Hitachi Ltd Manufacture of semiconductor device
JP2001087996A (en) * 1999-09-22 2001-04-03 Shin Etsu Handotai Co Ltd Method and device for specularly chamfering periphery of semiconductor wafer
DE10053463A1 (en) * 1999-10-28 2001-05-03 Denso Corp Semiconductor substrate comprises substrate component of one conductivity type with channels which taper from top to bottom and are deeper than their width and which are filled with semiconductor of opposite type to first component
JP2001127289A (en) * 1999-10-28 2001-05-11 Denso Corp Semiconductor device and manufacturing method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0453142A (en) * 1990-06-18 1992-02-20 Fujitsu Ltd Manufacture of semiconductor device
JPH04198089A (en) * 1990-11-28 1992-07-17 Toshiba Corp Molecular beam source
JPH07113169A (en) * 1993-10-13 1995-05-02 Mitsubishi Electric Corp Device for forming thin film
JP2000340578A (en) * 1999-05-28 2000-12-08 Hitachi Ltd Manufacture of semiconductor device
JP2001087996A (en) * 1999-09-22 2001-04-03 Shin Etsu Handotai Co Ltd Method and device for specularly chamfering periphery of semiconductor wafer
DE10053463A1 (en) * 1999-10-28 2001-05-03 Denso Corp Semiconductor substrate comprises substrate component of one conductivity type with channels which taper from top to bottom and are deeper than their width and which are filled with semiconductor of opposite type to first component
JP2001127289A (en) * 1999-10-28 2001-05-11 Denso Corp Semiconductor device and manufacturing method thereof
JP2001196573A (en) * 1999-10-28 2001-07-19 Denso Corp Semiconductor substrate and manufacturing method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004114384A1 (en) * 2003-06-17 2004-12-29 Shin-Etsu Handotai Co.,Ltd. Silicon epitaxial wafer manufacturing method and silicon epitaxial wafer
CN100428411C (en) * 2003-06-17 2008-10-22 信越半导体株式会社 Silicon epitaxial wafer manufacturing method and silicon epitaxial wafer
US7601603B2 (en) 2004-03-31 2009-10-13 Denso Corporation Method for manufacturing semiconductor device
USRE44236E1 (en) 2004-03-31 2013-05-21 Denso Corporation Method for manufacturing semiconductor device
JP2007173734A (en) * 2005-12-26 2007-07-05 Toshiba Corp Semiconductor device and manufacturing method therefor
JP2010525605A (en) * 2007-04-23 2010-07-22 アイスモス・テクノロジー・リミテッド Method for manufacturing trench-type semiconductor device with thermally sensitive refill material
CN102184861A (en) * 2011-04-08 2011-09-14 上海先进半导体制造股份有限公司 Trench filling method and trench structure of cold MOS (metal oxide semiconductor)
CN102184860A (en) * 2011-04-08 2011-09-14 上海先进半导体制造股份有限公司 Cold MOS (Metal Oxide Semiconductor) groove padding method and cold MOS groove structure

Similar Documents

Publication Publication Date Title
US7554137B2 (en) Power semiconductor component with charge compensation structure and method for the fabrication thereof
JP4695824B2 (en) Manufacturing method of semiconductor wafer
US8569106B2 (en) Method for manufacturing silicon carbide semiconductor device
JP5010774B2 (en) Semiconductor device manufacturing method and semiconductor device
US20110018004A1 (en) Semiconductor device with large blocking voltage and manufacturing method thereof
EP1289022A2 (en) Power MOSFET transistor and Schottky diode
TWI780571B (en) Silicon carbide trench semiconductor device
CN105448959A (en) Method for manufacturing silicon carbide semiconductor device and silicon carbide semiconductor device
JP2018101706A (en) Silicon carbide semiconductor device and silicon carbide semiconductor device manufacturing method
JP3913564B2 (en) Superjunction semiconductor device manufacturing method
KR20200018301A (en) Oxygen inserted si-layers for reduced contact implant outdiffusion in vertical power devices
JP2018142682A (en) Silicon carbide semiconductor device and manufacturing method of the silicon carbide semiconductor device
US11158705B2 (en) Method for forming a superjunction transistor device
JP4039161B2 (en) Manufacturing method of semiconductor substrate
KR102100863B1 (en) SiC MOSFET power semiconductor device
US20240128356A1 (en) Method for producing a superjunction device
JP2002353451A (en) Method for manufacturing super junction semiconductor element
JP5529908B2 (en) Method for manufacturing power semiconductor device having charge compensation structure
JP4783975B2 (en) MIS semiconductor device and manufacturing method thereof
JP6125568B2 (en) Optimization layer for semiconductors
JP2006303231A (en) Method of manufacturing silicon carbide semiconductor apparatus
US20150137142A1 (en) Junction Field Effect Transistor Cell with Lateral Channel Region
JP2022093100A (en) Silicon carbide semiconductor device and manufacturing method thereof
US20190245079A1 (en) Semiconductor device and method of manufacturing semiconductor device
KR101190007B1 (en) Semiconductor device and super junction structure forming method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080415

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120907