JPH09283313A - Sintered permanent magnet - Google Patents

Sintered permanent magnet

Info

Publication number
JPH09283313A
JPH09283313A JP8119598A JP11959896A JPH09283313A JP H09283313 A JPH09283313 A JP H09283313A JP 8119598 A JP8119598 A JP 8119598A JP 11959896 A JP11959896 A JP 11959896A JP H09283313 A JPH09283313 A JP H09283313A
Authority
JP
Japan
Prior art keywords
permanent magnet
main phase
sintered permanent
grain size
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8119598A
Other languages
Japanese (ja)
Other versions
JP3255344B2 (en
Inventor
Kimio Uchida
公穂 内田
Masahiro Takahashi
昌弘 高橋
Fumitake Taniguchi
文丈 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP11959896A priority Critical patent/JP3255344B2/en
Publication of JPH09283313A publication Critical patent/JPH09283313A/en
Application granted granted Critical
Publication of JP3255344B2 publication Critical patent/JP3255344B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Abstract

PROBLEM TO BE SOLVED: To improve corrosion resistance by making the main phase crystal particle diameters of a magnet to be not more than a specified value in the R-Fe-B system sintered permanent magnet with rare earth and oxygen of the specified range amounts. SOLUTION: In the sintered permanent magnet, composition where R (R is one type or more than two types of rare earth elements containing Y) is 28.0-33.0%, B is 0.5-2.0%, O is 0.3-0.7% and a remaining part is Fe at a weight percentage is provided, and the sum of the areas of main phase crystal particles whose crystal particle diameters are not more than 10μm is not more than 10% against the total area of the magnetic main phase. In the sintered permanent magnet, a part of Fe is substituted for one type or more than two types among Nb 0.1-2.0%, Al 0.02-2.0%, Co 0.3-5.0%, Ga 0.01-0.5% and Cu 0.01-1.0 or the value of coercive force iHc is made to be not less than 13.0kOe. Thus, the R-Fe-B system sintered permanent magnet having superior corrosion resistance can be obtained without deteriorating a magnetic characteristic.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、R-Fe-B系の希土類
磁石の性能改善に関するものである。
TECHNICAL FIELD The present invention relates to improving the performance of R-Fe-B rare earth magnets.

【0002】[0002]

【従来の技術】焼結型希土類永久磁石の中でR-Fe-B系(R
はYを含む希土類元素のうちの1種又は2種以上)焼結型
永久磁石は高性能磁石として注目され、広い分野で使用
されている。このR-Fe-B系焼結型永久磁石は、基本的に
はR2Fe14B相(主相)、RFe7B6相(Brich相)、R85Fe15相(Rr
ich相)の3相から成る構造を有している。組成的に希土
類元素に豊んだRrich相の存在と、このような3相構造
に由来して、R-Fe-B系焼結型永久磁石はSm-Co系焼結型
永久磁石に比べて耐蝕性が劣り、この永久磁石の開発当
初から現在に至るまで欠点の1つとなっている。R-Fe-B
系焼結型永久磁石の腐蝕のメカニズムについての定説は
無いが、Rrich相を起点とした腐蝕の形態が一般的であ
ることから、Rrich相を陽極とした陽極腐蝕との見方も
ある。確かに、R-Fe-B系焼結型永久磁石の希土類元素の
量を減少することによって、その焼結体内部のRrich相
の量は減少し、かつ相の形態は微細化し、これに対応し
て永久磁石の耐蝕性は向上する。従って、希土類元素の
量を減少することは、R-Fe-B系焼結型永久磁石の耐蝕性
改善の一つの方法である。
2. Description of the Related Art Among sintered rare earth permanent magnets, R-Fe-B (R
Is one or more of rare earth elements including Y). Sintered permanent magnets are attracting attention as high-performance magnets and are used in a wide range of fields. This R-Fe-B sintered permanent magnet basically consists of R2Fe14B phase (main phase), RFe7B6 phase (Brich phase), R85Fe15 phase (Rr
ich phase). Due to the existence of the Rrich phase compositionally rich in rare earth elements and such three-phase structure, the R-Fe-B system sintered permanent magnets are better than the Sm-Co system sintered permanent magnets. It is inferior in corrosion resistance and is one of the drawbacks from the beginning of the development of this permanent magnet to the present. R-Fe-B
Although there is no established theory about the corrosion mechanism of sintered sintered permanent magnets, there is a general view that the Rrich phase is the starting point of corrosion, and therefore it is also regarded as anodic corrosion using the Rrich phase as an anode. Certainly, by reducing the amount of rare earth elements in the R-Fe-B system sintered permanent magnet, the amount of Rrich phase inside the sintered body is reduced, and the phase morphology becomes finer. As a result, the corrosion resistance of the permanent magnet is improved. Therefore, reducing the amount of rare earth elements is one method of improving the corrosion resistance of the R-Fe-B system sintered permanent magnet.

【0003】R-Fe-B系を含む焼結型の希土類永久磁石
は、原料金属を溶解し鋳型に注湯して得られたインゴッ
トを粉砕,成形,焼結,熱処理,加工するという粉末冶
金的な工程によって製造されるのが一般的である。しか
し、インゴットを粉砕して得られる合金粉末は、希土類
元素を多量に含むため化学的に非常に活性であり、大気
中において酸化して含有酸素量が増加する。これによっ
て、焼結後の焼結体では希土類元素の一部が酸化物を形
成し、磁気的に有効な希土類元素が減少する。このた
め、実用的な磁気特性の水準、例えばiHc≧13kOeを実現
するためには、R-Fe-B系焼結型永久磁石の希土類元素の
量を増やす必要があり、重量百分比率で31%を越える希
土類元素の添加量が実用材料では採用されている。この
ため、これまでのR-Fe-B系焼結型永久磁石の耐蝕性は十
分ではなかった。
Sintering type rare earth permanent magnets containing R-Fe-B system are powder metallurgy in which raw metal is melted and an ingot obtained by pouring in a mold is crushed, molded, sintered, heat treated and processed. It is generally manufactured by a conventional process. However, the alloy powder obtained by crushing the ingot is chemically very active because it contains a large amount of rare earth elements, and is oxidized in the atmosphere to increase the oxygen content. As a result, in the sintered body after sintering, a part of the rare earth element forms an oxide, and the magnetically effective rare earth element is reduced. Therefore, in order to achieve a practical level of magnetic characteristics, for example, iHc ≧ 13 kOe, it is necessary to increase the amount of rare earth elements in the R-Fe-B sintered permanent magnet, which is 31% by weight. The amount of rare earth element added exceeding the range is adopted in practical materials. Therefore, the corrosion resistance of the R-Fe-B system sintered permanent magnets to date has not been sufficient.

【0004】[0004]

【発明が解決しようとする課題】本発明は、以上述べた
R-Fe-B系焼結型永久磁石の耐蝕性を大幅に改善しようと
するものである。
The present invention has been described above.
It is intended to significantly improve the corrosion resistance of R-Fe-B sintered permanent magnets.

【0005】[0005]

【問題を解決するための手段】本発明者らは、R-Fe-B系
焼結型永久磁石の耐蝕性を改善するため種々検討した結
果、特定範囲量の希土類量と酸素量のR-Fe-B系焼結型永
久磁石において、その磁石主相結晶粒径を特定値以下と
することによって、耐蝕性が向上することを見い出して
本発明に至ったものである。
[Means for Solving the Problems] The inventors of the present invention have conducted various studies to improve the corrosion resistance of R-Fe-B system sintered permanent magnets, and as a result, R-Fe of a specific range amount of rare earth and oxygen The present invention has been completed by finding that in a Fe-B sintered permanent magnet, the corrosion resistance is improved by setting the crystal grain size of the main phase of the magnet to a specific value or less.

【0006】以下、本発明を具体的に説明する。本発明
における焼結型永久磁石は、重量百分率でR(RはYを含む
希土類元素のうちの1種又は2種以上)28.0〜33.0%,B
0.5〜2.0%,O 0.3〜0.7%,残部Feの組成を有し、磁石主
相の総面積に対し、結晶粒径が10μm以下の主相結晶粒
の面積の和が80%以上、結晶粒径が13μm以上の主相結
晶粒の面積の和が10%以下であることを特徴とする。ま
た、本発明焼結型永久磁石において、Feの一部をNb 0.1
〜2.0%,Al 0.02〜2.0%,Co 0.3〜5.0%,Ga 0.01〜0.5
%,Cu 0.01〜1.0%のうち1種又は2種以上で置換する
ことができる。
Hereinafter, the present invention will be described specifically. The sintered permanent magnet according to the present invention has a weight percentage of R (R is one or more of rare earth elements including Y) 28.0 to 33.0%, B
It has a composition of 0.5 to 2.0%, O 0.3 to 0.7%, and the balance of Fe, and the total area of main phase crystal grains with a grain size of 10 μm or less is 80% or more with respect to the total area of the magnet main phase. The sum of the areas of the main phase crystal grains having a diameter of 13 μm or more is 10% or less. Further, in the sintered permanent magnet of the present invention, part of Fe is Nb 0.1
~ 2.0%, Al 0.02 ~ 2.0%, Co 0.3 ~ 5.0%, Ga 0.01 ~ 0.5
%, Cu 0.01 to 1.0%, and may be replaced by one kind or two or more kinds.

【0007】本発明者らは、上記組成を有するR-Fe-B系
焼結型永久磁石の耐蝕性に結晶粒径依存性があり、磁石
主相結晶粒径を特定値以下にすることによって、特に優
れた耐蝕性が発現されることを見い出した。磁石結晶粒
径の定義と測定には種々の方法があり得、一義的ではな
いが、発明者らは磁石主相の総面積に対する粒径が一定
寸法以下の主相結晶粒の面積の和の割合と、同じく磁石
主相の総面積に対する粒径が一定寸法以上の主相結晶粒
の面積の和の割合によって、磁石結晶粒径の状態を示す
尺度とした。以下この尺度を用いて本発明の効果を説明
することとする。また、この割合を算出するに当たって
の計測は、対象とするR-Fe-B系焼結型永久磁石の結晶組
織を、OLYMPUS社製顕微鏡(商品名VANOX)で観察し、この
画像をNIRECO社製画像処理装置(商品名LUZEX2)に直接
投入して行った。
The present inventors have found that the corrosion resistance of the R-Fe-B system sintered permanent magnet having the above composition depends on the crystal grain size, and the crystal grain size of the main phase of the magnet is set to a specific value or less. It has been found that particularly excellent corrosion resistance is exhibited. There are various methods for defining and measuring the magnet crystal grain size, and although it is not unambiguous, the inventors of the present invention calculated the sum of the areas of the main phase crystal grains whose grain size is equal to or less than a certain dimension with respect to the total area of the magnet main phase. Similarly, the ratio of the ratio and the sum of the areas of the main phase crystal grains having a grain size equal to or larger than a certain dimension to the total area of the magnet main phase was used as a scale indicating the state of the magnet crystal grain size. The effects of the present invention will be described below using this scale. The measurement in calculating this ratio was performed by observing the crystal structure of the target R-Fe-B sintered permanent magnet with an OLYMPUS microscope (product name VANOX), and measuring this image by NIRECO. It was carried out by directly inserting it into an image processing device (trade name LUZEX2).

【0008】本発明者らは、特許請求範囲に示す組成を
有するR-Fe-B系焼結型永久磁石の主相結晶粒径と耐蝕性
の関係について下記の様な評価を行い、図1に示すよう
な結果を得た。図1は、磁石主相結晶の総面積に対す
る、結晶粒径が10μm以下の主相結晶粒の面積の和の割
合と、同じく磁石主相結晶の総面積に対する結晶粒径が
13μm以上の主相の結晶粒の面積の和の割合と、耐蝕性
の加速試験での、Niメッキのハクリ開始が生じるまでの
経過的間との関係を示したものである。○印は重量百分
比率でNd 22.8%,Pr 6.7%,Dy 2.0%,B 1.0%,Al 1.0
%,O 0.45%,C 0.08%,N 0.015%,残部Feの組成を有す
る焼結体、□印は重量百分比率でNd 31.0%,Dy 1.0%,B
1.05%,Al 0.05%,Co 2.0%,Ga 0.09%,O 0.55%,C 0.
07%,N 0.008%,残部Feの組成を有する焼結体、△印は
重量百分比率でNd 23.0%,Pr 5.0%,Dy 4.5%,B1.1%,N
b 1.0%,Al 0.2%,Co 2.0%,Cu 0.08%,O 0.35%,C 0.0
6%,N 0.030%,残部Feの組成を有する焼結体を示す。こ
の場合の加速試験では、磁石を10mm×10mm×2mmの寸法
に加工後、その表面に15μmのNiメッキを施し、次いで
試料を2気圧,120℃,湿度100%の条件に放置した。図1
から、磁石主相の結晶の総面積に対し、結晶粒径が10μ
m以下の主相結晶粒の面積の和が80%以上で、かつ結晶
粒径が13μm以上の主相結晶粒の面積の和が10%以下で
ある場合において、特許請求範囲に示す組成を有するR-
Fe-B系焼結型永久磁石の耐蝕性が特に優れたものになる
ことがわかる。従って、磁石主相結晶粒の大きさは、上
記に規定される。
The present inventors have made the following evaluations on the relationship between the main phase crystal grain size and the corrosion resistance of the R-Fe-B system sintered permanent magnet having the composition shown in the claims. The results shown in are obtained. FIG. 1 shows the ratio of the sum of the areas of the main phase crystal grains having a grain size of 10 μm or less to the total area of the magnet main phase crystals, and the crystal grain size of the total area of the magnet main phase crystals.
It shows the relationship between the ratio of the sum of the areas of the crystal grains of the main phase of 13 μm or more and the elapsed time until the initiation of peeling of Ni plating in the accelerated corrosion resistance test. ○ indicates percentage by weight of Nd 22.8%, Pr 6.7%, Dy 2.0%, B 1.0%, Al 1.0
%, O 0.45%, C 0.08%, N 0.015%, balance Fe composition, □ indicates weight percentage of Nd 31.0%, Dy 1.0%, B
1.05%, Al 0.05%, Co 2.0%, Ga 0.09%, O 0.55%, C 0.
Sintered body with composition of 07%, N 0.008%, balance Fe, △ mark is Nd 23.0%, Pr 5.0%, Dy 4.5%, B1.1%, N in percentage by weight.
b 1.0%, Al 0.2%, Co 2.0%, Cu 0.08%, O 0.35%, C 0.0
A sintered body having a composition of 6%, N 0.030% and balance Fe is shown. In the acceleration test in this case, the magnet was processed into a size of 10 mm × 10 mm × 2 mm, the surface thereof was plated with Ni of 15 μm, and then the sample was left under the conditions of 2 atm, 120 ° C., and 100% humidity. FIG.
Therefore, the crystal grain size is 10μ with respect to the total area of the crystals of the main phase of the magnet.
When the sum of the areas of the main phase crystal grains of m or less is 80% or more and the sum of the areas of the main phase crystal grains of 13 μm or more of the crystal grain size is 10% or less, it has the composition shown in the claims. R-
It can be seen that the corrosion resistance of the Fe-B sintered permanent magnet is particularly excellent. Therefore, the size of the crystal grains of the main phase of the magnet is specified above.

【0009】この原因を推定すると、比較的大きな主相
結晶粒が存在する永久磁石焼結体においては、相対的に
主相結晶粒の間の空隙部、具体的には粒界3重点がその
種たる部分であり、ここには極めて酸化されやすいNd
rich相が存在しているが、このNdrich相で充填されて
いる空隙部の体積が大きくなる。腐食破壊をもたらす因
子、例えば本加速試験では水分であるが、この様な因子
の浸透性が良く、結晶粒界の破壊が連鎖反応的に起こり
やすい状態にあるものと考えられる。以上は、特許請求
の範囲に示す組成を有するR-Fe-B系焼結型永久磁石の耐
食性に主相結晶粒径依存性があることを、本発明者等の
研究結果の一例を示すことによって説明したものであ
る。
Presuming the cause of this, in the permanent magnet sintered body in which relatively large main phase crystal grains are present, the voids between the main phase crystal grains, specifically, the grain boundary triple point is the cause. Nd, which is a seed part, is extremely susceptible to oxidation.
Although the rich phase exists, the volume of the void filled with the Ndrich phase becomes large. Factors that cause corrosion destruction, such as water in this accelerated test, are considered to be in a state in which the permeability of such factors is good and the destruction of grain boundaries is likely to occur in a chain reaction. The above shows that the corrosion resistance of the R-Fe-B system sintered permanent magnet having the composition shown in the claims depends on the crystal grain size of the main phase, and shows an example of the research results of the present inventors. It was explained by.

【0010】特許請求範囲の組成を有するR-Fe-B系焼結
型永久磁石の主相の結晶粒径を上記の規定範囲のものに
制御する方法は必ずしも一義的ではなく、種々の方法あ
るいはそれらの方法の組合せによって達成することがで
きるが、発明者らの研究では、通常の方法ではかなりの
困難を伴う。一般に、R-Fe-B系焼結型永久磁石の製造に
おいては、原料粗粉を微粉砕によって微粉化し、この微
粉を磁界中で金型成形して成形体を得、これを焼結して
焼結体とする方法が採られる。例えば、微粉砕をジェッ
トミルを用いて行う場合には、粉砕時のガスの圧力や粗
粉の供給速度等を制御することにより、所定の平均粒度
や粒度分布を持つ微粉を得ることができる。また、必要
に応じて、分級をおこなうことにより、微粉の粒度分布
を制御することもできる。このようにして作製した微粉
を成形し、焼結するにあたっては、さらに適切な焼結温
度・時間・パターンを選択することによって、R-Fe-B系
焼結型永久磁石の主相の結晶粒径を上記の規定範囲のも
のとすることは必ずしも不可能ではない。しかし、多く
の条件を設定し、これを制御する必要があり、所定の結
晶粒径を有する焼結体を再現性よく製造するのははなは
だ困難であることが判った。
The method of controlling the crystal grain size of the main phase of the R-Fe-B system sintered permanent magnet having the composition of the claims to the above-specified range is not necessarily unique, and various methods or Although it can be achieved by a combination of these methods, our work involves considerable difficulty with conventional methods. Generally, in the production of R-Fe-B system sintered permanent magnets, raw material coarse powder is pulverized into fine powder, and the fine powder is molded in a magnetic field to obtain a compact, which is then sintered. A method of forming a sintered body is adopted. For example, when fine pulverization is performed using a jet mill, fine powder having a predetermined average particle size and particle size distribution can be obtained by controlling the gas pressure during pulverization, the coarse powder supply rate, and the like. In addition, the particle size distribution of the fine powder can be controlled by performing classification, if necessary. When molding and sintering the fine powder produced in this way, the crystal grains of the main phase of the R-Fe-B sintered permanent magnet can be selected by selecting an appropriate sintering temperature, time, and pattern. It is not always impossible to set the diameter within the specified range. However, it has been found that it is extremely difficult to manufacture a sintered body having a predetermined crystal grain size with good reproducibility because many conditions must be set and controlled.

【0011】本発明者らは特許請求範囲の組成を有する
R-Fe-B系焼結型永久磁石の主相の結晶粒径を上記の規定
範囲とするのに容易で量産上適した方法を探索した結
果、いわゆるストリップキャスト法と呼ばれる方法で製
造された所定の組成を有するR-Fe-B系急冷薄帯状合金
を、所定の温度範囲で熱処理し、これを粉砕して原料粗
粉とする方法を見い出した。また熱処理後の薄帯状合金
を粉砕するにあたっては、水素吸蔵により自然崩壊させ
た後脱水素処理を施してから行うことが微粉砕性能を高
めるうえで有効である。図2は、重量百分比率でNd 22.
7%,Pr 7.6%,Dy 1.5%,B 1.05%,Al 0.05%,O0.01%,N
0.004%,C 0.007%,残部Feの組成を有する、ストリッ
プキャスト法で製造された薄帯状合金の断面組織である
(as cast)。デンドライト状の微細な組織が存在してい
る。写真の中で白色に観察される相は希土類量が少なく
永久磁石焼結体の主相に相当する相、黒色に観察される
相は希土類量が多い永久磁石焼結体のRrich相に相当す
る相である。このRrich相は微粉砕時に破壊の起点とな
るので、このRrich相が図2に示すように微細に分散し
ている帯状合金を使用した場合、粒径が細かくて均一な
微粉が確率的に生成しやすい。従って、微粉砕時や焼結
時の多くの条件を厳密に管理することなく、比較的容易
にしかも再現性よく特許請求範囲の粒径分布を有する焼
結体が製造可能となるのである。しかしこの薄帯状合金
(急冷鋳造のまま)をこのまま直接粉砕して原料粗粉と
し、これを微粉砕しても、良好な微粉の粒度分布は得ら
れず、これを成形・焼結した焼結体では、本発明にかか
る主相結晶粒径は得られない。この理由は、急冷鋳造に
よって薄帯状合金の表面が硬化し、微粉砕時の被粉砕性
をいちじるしく悪化させるからである。
We have the claimed composition
As a result of searching for a method that is easy and suitable for mass production so that the crystal grain size of the main phase of the R-Fe-B sintered permanent magnet falls within the specified range, it was manufactured by the so-called strip casting method. An R-Fe-B system quenched ribbon-shaped alloy having a predetermined composition was heat-treated in a predetermined temperature range and pulverized to obtain a raw material coarse powder. Further, in crushing the ribbon-shaped alloy after the heat treatment, it is effective to naturally disintegrate by hydrogen absorption and then to perform dehydrogenation treatment in order to improve the fine pulverization performance. Figure 2 shows Nd 22.
7%, Pr 7.6%, Dy 1.5%, B 1.05%, Al 0.05%, O0.01%, N
This is a cross-sectional structure of a strip-shaped alloy produced by strip casting with a composition of 0.004%, C 0.007%, and the balance Fe.
(as cast). There is a dendrite-like fine structure. In the photograph, the phase observed in white corresponds to the main phase of the permanent magnet sintered body with a small amount of rare earth, and the phase observed in black corresponds to the Rrich phase of the sintered permanent magnet with a large amount of rare earth. It is a phase. Since this Rrich phase becomes the starting point of fracture during fine pulverization, when a strip-shaped alloy in which this Rrich phase is finely dispersed is used, a fine powder with a fine grain size is generated stochastically. It's easy to do. Therefore, it is possible to manufacture a sintered body having a particle size distribution within the scope of the claims with relative ease and with good reproducibility without strictly controlling many conditions during fine pulverization and sintering. However, this ribbon alloy
Directly crushing (as-quenched casting) as it is to obtain raw material coarse powder, even if this is finely pulverized, a good particle size distribution of fine powder cannot be obtained. The crystal grain size of the main phase cannot be obtained. The reason for this is that the surface of the ribbon-shaped alloy is hardened by quenching casting, and the pulverizability during fine pulverization is significantly deteriorated.

【0012】本発明者らは、この問題を解決する手段と
して、この薄帯状合金を特定温度範囲で熱処理して薄帯
状合金表面の硬化を除去することが有効であることを見
い出した。熱処理の温度は800℃〜1100℃とされる。こ
れは、熱処理温度が800℃未満では硬化の除去が不十分
だからである。また、1100℃より高い温度では、熱処理
時に薄帯状合金間で反応が生じ、後工程での処理に困難
が生じるからである。活性な希土類元素を多量に含有す
る薄帯状合金であるため、熱処理は不活性ガス雰囲気中
又は実質的な真空中で行う必要があることは言うまでも
ない。また、前記のように、熱処理後の薄帯状合金に水
素を吸蔵させて自然崩壊させ、脱水素処理をおこなった
後、これを粗粉化することは、微粉砕性を高めるうえで
さらに有効である。これは、熱処理による薄帯状合金表
面の硬化の除去効果に加え、水素による薄帯状合金内部
の主にはRrich相のぜい化効果が加わることによる。
The present inventors have found that as a means for solving this problem, it is effective to heat-treat the ribbon-shaped alloy within a specific temperature range to remove the hardening of the ribbon-shaped alloy surface. The heat treatment temperature is set to 800 ° C to 1100 ° C. This is because if the heat treatment temperature is lower than 800 ° C., the curing removal is insufficient. Further, at a temperature higher than 1100 ° C., a reaction occurs between the ribbon-shaped alloys during the heat treatment, which makes it difficult to perform the treatment in the subsequent step. Needless to say, the heat treatment must be performed in an inert gas atmosphere or in a substantial vacuum because it is a ribbon-shaped alloy containing a large amount of active rare earth elements. In addition, as described above, it is more effective to make the strip-shaped alloy after heat treatment occlude hydrogen to spontaneously disintegrate, dehydrogenate, and then coarsely pulverize it so as to improve fine pulverizability. is there. This is because, in addition to the effect of removing the hardening of the surface of the ribbon alloy by heat treatment, the effect of embrittlement of the Rrich phase mainly inside the ribbon alloy by hydrogen is added.

【0013】表1に、薄帯状合金を各種条件で熱処理(1
Hr)あるいは粉砕して粗粉とし、これを同一条件で微粉
砕し、成形・焼結した場合の焼結体の主相結晶粒径の状
態を示す。
In Table 1, the ribbon-shaped alloy is heat-treated under various conditions (1
Hr) or crushed into coarse powder, finely crushed under the same conditions, shaped and sintered, and shows the state of the main phase crystal grain size of the sintered body.

【0014】[0014]

【表1】 [Table 1]

【0015】表1から、薄帯状合金を800℃以上の温度
で熱処理し、これを用いることによって、特許請求範囲
に示す主相粒径の割合を有する焼結体が得られることが
わかる。また、前述したように、水素処理の有効性も明
かである。同時に表1から、700℃での熱処理での主相
粒径の状態は、急冷鋳造したままでのものとほぼ同水準
である。700℃の熱処理温度では、薄帯合金の表面硬化
の除去に不十分であることがわかる。同時に本発明者ら
は、薄帯状合金の800℃以上の温度での熱処理が、磁気
特性のうち特にBrの向上効果をもたらすことを見い出し
た。結果を同じく表1に示す。表1から、急冷鋳造状態
と700℃の熱処理の薄帯状合金による永久磁石焼結体のB
rは12.8〜12.9KGであるが、800℃と900℃の熱処理の薄
帯状合金を使用した場合には、Brは13.1KGと急激に増加
する。熱処理温度が1000℃では、結果として得られるBr
は微増し、13.2KGとなる。1100℃,1200℃の熱処理温度
では、Brの増加は飽和に達し、13.2KGと変わらない。表
1に示した薄体状合金のうち、急冷鋳造後の薄体状合金
の金属組織写真を図2に、急冷鋳造後1000℃で熱処
理した薄体状合金の金属組織写真を図3に示す。図2、
図3を比較すると、熱処理により、薄体状合金内の主相
に相当する白色組織、Rrich相に相当する黒色組織のい
ずれもが粗大化していることがわかる。これらのことか
ら本発明者等は、急冷鋳造のままの薄体状合金では主相
およびRrich相に相当する相から構成される組織が微細
であるために、これを用いて微粉を製造した場合、微粉
の内に多結晶状態のままのものが確率的に多く存在し、
微粉を磁界中で金型成形する際の配向性の低下を招き、
永久磁石焼結体のBr低下をもたらしているものと考え
る。700℃の熱処理温度では、組織の成長が不十分で
配向性の改善には至らない。熱処理温度の上昇にしたが
って薄体状合金の内部組織が粗大化しているが、これに
よって多結晶状態の微粉の発生の確率が低下し、Brが
改善されると考えられるが、表1の結果から判断する限
り、800℃の熱処理温度でその効果はかなりででいる
ものと考えられる。薄体状合金の熱処理温度のさらなる
増加にしたがって、得られる焼結体のBrは向上するも
のの1000℃以上の熱処理温度では飽和の傾向を示
す。これは、薄体状合金内部の組織がある程度粗大化
し、多結晶状態の微粉が確率的にほとんど発生しない状
態に達した段階では、熱処理温度をさらに上げて組織の
粗大化を促進させても、それは得られる焼結体のBrの
向上として反映しないということで理解できる。
It can be seen from Table 1 that a sintered body having the proportion of the main phase grain size shown in the claims is obtained by heat treating the ribbon alloy at a temperature of 800 ° C. or higher and using it. Moreover, as described above, the effectiveness of the hydrogen treatment is also clear. At the same time, from Table 1, the state of the grain size of the main phase in the heat treatment at 700 ° C. is almost the same level as that in the as-quenched casting. It can be seen that the heat treatment temperature of 700 ° C is insufficient for removing the surface hardening of the ribbon alloy. At the same time, the present inventors have found that heat treatment of the ribbon-shaped alloy at a temperature of 800 ° C. or higher brings about an effect of improving Br in the magnetic properties. The results are also shown in Table 1. From Table 1, B of the permanent magnet sintered body made of ribbon-shaped alloy in the state of rapid casting and heat treatment at 700 ° C
Although r is 12.8 to 12.9 KG, Br rapidly increases to 13.1 KG when using a ribbon alloy heat treated at 800 ℃ and 900 ℃. At a heat treatment temperature of 1000 ° C, the resulting Br
Is slightly increased to 13.2KG. At the heat treatment temperatures of 1100 ℃ and 1200 ℃, the increase of Br reaches saturation, which is the same as 13.2KG. Among the thin alloys shown in Table 1, a metallographic photograph of the thin alloy after rapid cooling casting is shown in FIG. 2, and a metallographic photograph of the thin alloy subjected to heat treatment at 1000 ° C. after rapid casting is shown in FIG. . FIG.
Comparing FIG. 3, it can be seen that the heat treatment causes coarsening of both the white structure corresponding to the main phase and the black structure corresponding to the Rrich phase in the thin alloy. From these facts, the inventors of the present invention have found that when a fine alloy is produced by using a thin alloy that has been as-quenched and cast, the structure composed of a phase corresponding to the main phase and the Rrich phase is fine. , Among the fine powders, there are stochastically many that remain in the polycrystalline state,
Inducing deterioration of orientation when molding fine powder in a magnetic field,
It is considered that Br of the permanent magnet sintered body is lowered. At the heat treatment temperature of 700 ° C., the growth of the structure is insufficient and the orientation cannot be improved. Although the internal structure of the thin alloy is coarsened as the heat treatment temperature is increased, it is considered that the probability of generation of fine powder in a polycrystalline state is reduced and Br is improved. As far as it can be judged, it is considered that the effect is remarkable at the heat treatment temperature of 800 ° C. As the heat treatment temperature of the thin alloy further increases, the Br of the obtained sintered body increases, but it tends to be saturated at the heat treatment temperature of 1000 ° C. or higher. This is because when the structure inside the thin alloy is coarsened to some extent, and fine powder in a polycrystalline state has reached a state in which almost no stochastically occurs, even if the heat treatment temperature is further raised to promote coarsening of the structure, It can be understood that this is not reflected as an improvement in Br of the obtained sintered body.

【0016】以上詳細に説明したように、ストリップキ
ャスト法による所定の組成の急冷鋳造薄帯状合金を、特
定の温度範囲において熱処理し、あるいはこれに水素吸
蔵処理を施して自然崩壊させ、これを粉砕して粗粉化す
ることによって、微粉砕時の粉砕性が改善され、これを
用いて製造された永久磁石焼結体は、耐蝕性にきわめて
優れた特許請求範囲に示した主相結晶粒径を有するもの
となるのであるが、それのみならず、高い磁気特性を有
するものにもなるのである。なお、薄帯状合金の800〜1
100℃での熱処理時間は、少なくとも15分以上好ましく
は30分以上行う必要がある。
As described above in detail, the rapidly cast ribbon-shaped alloy having a predetermined composition by the strip casting method is heat-treated in a specific temperature range, or is subjected to a hydrogen storage treatment to spontaneously disintegrate and is crushed. By crushing into coarse powder, the pulverizability at the time of fine pulverization is improved, and the permanent magnet sintered body produced using this is excellent in corrosion resistance. However, not only that, but also those having high magnetic characteristics. In addition, 800 to 1 of thin strip alloy
The heat treatment time at 100 ° C. needs to be at least 15 minutes or longer, preferably 30 minutes or longer.

【0017】以下では、本発明のR-Fe-B系焼結型永久磁
石の組成の限定理由を述べる。希土類元素の量は、重量
百分率で28.0〜33.0%とされる。希土類元素の量が31.0
%を越えると、焼結体内部のRrich相の量が多くなり、
かつ形態も粗大化して耐蝕性が悪くなる。一方、希土類
元素の量が28.0%未満であると、焼結体の緻密化に必要
な液相量が不足して焼結体密度が低下し、同時に磁気特
性のうち残留磁束密度Brと保磁力iHcが共に低下する。
従って、希土類元素の量は28.0〜33.0%とされる。ま
た、希土類元素の量を31.0%以上とすることにより、高
い焼結体密度を有する焼結体を容易に得ることができ
る。Oの量は重量百分率で0.3〜0.7%とされる。Oの量が
0.7%を越える場合には、希土類元素の一部が酸化物を
形成し、磁気的に有効な希土類元素が減少して保磁力iH
cが低下する。一方、微粉砕工程での酸化によって、最
終焼結体のO量を0.3%未満とすることは困難であり、O
量は0.3〜0.7%とする。
The reasons for limiting the composition of the R-Fe-B system sintered permanent magnet of the present invention will be described below. The amount of rare earth element is 28.0 to 33.0% by weight. Amount of rare earth elements 31.0
%, The amount of Rrich phase inside the sintered body increases,
In addition, the morphology becomes coarse and the corrosion resistance deteriorates. On the other hand, if the amount of rare earth element is less than 28.0%, the amount of liquid phase required for densification of the sintered body is insufficient and the density of the sintered body decreases, and at the same time, among the magnetic properties, the residual magnetic flux density Br and the coercive force are reduced. iHc decreases together.
Therefore, the amount of rare earth elements is 28.0 to 33.0%. Moreover, by setting the amount of the rare earth element to 31.0% or more, a sintered body having a high sintered body density can be easily obtained. The amount of O is 0.3 to 0.7% by weight. The amount of O
If it exceeds 0.7%, a part of the rare earth element forms an oxide, and the magnetically effective rare earth element decreases, resulting in a coercive force iH.
c decreases. On the other hand, it is difficult to reduce the O content in the final sintered body to less than 0.3% due to the oxidation in the fine pulverization process.
The amount is 0.3-0.7%.

【0018】Cの量は重量百分率で0.15%以下とするこ
とが好ましい。Cの量が0.15%より多い場合には、希土
類元素の一部が炭化物を形成し、磁気的に有効な希土類
元素が減少して保磁力iHcが低下する。C量は、0.12%以
下とすることがより好ましく、0.10%以下とすることが
さらに好ましい。一方、溶解によって作製するインゴッ
トのC量の水準は最大0.008%であり、最終焼結体のC量
をこの値以下とすることは困難であり、焼結体のC量は
0.01〜0.15%とすることが好ましい。Nの量は、重量百
分率で0.002〜0.04%とすることが好ましい。Nの量が
0.04%を超えると、希土類元素の一部が窒化物を形成し
磁気的に有効な希土類元素が減少して保磁力iHcが低
下する。また、微粉砕の過程で若干の窒化を伴うことか
ら、最終焼結体のN量を0.002%未満とすることは困難
である。従ってN量は0.002〜0.04%とすることが好ま
しい。
The amount of C is preferably 0.15% or less by weight. When the amount of C is more than 0.15%, a part of the rare earth element forms a carbide, the magnetically effective rare earth element is reduced, and the coercive force iHc is lowered. The C content is more preferably 0.12% or less, further preferably 0.10% or less. On the other hand, the level of C content of the ingot produced by melting is 0.008% at maximum, and it is difficult to keep the C content of the final sintered body below this value.
It is preferably 0.01 to 0.15%. The amount of N is preferably 0.002 to 0.04% by weight. The amount of N
If it exceeds 0.04%, a part of the rare earth element forms a nitride, the magnetically effective rare earth element is reduced, and the coercive force iHc is lowered. Further, it is difficult to set the N content of the final sintered body to less than 0.002% because some nitriding is involved in the process of fine pulverization. Therefore, the N content is preferably 0.002 to 0.04%.

【0019】本発明のR-Fe-B系焼結型永久磁石においい
ては、Feの一部をNb,Al,Co,Ga,Cuのうち1種類又は2種
類以上で置換することができ以下に各元素の置換量(こ
こでは置換後の永久磁石の全組成に対する重量百分率)
の限定の理由を説明する。Nbの置換量は0.1〜2.0%とさ
れる。Nbの添加によって、焼結過程でNbのほう化物が生
成し、これが結晶粒の異常粒成長を抑制する。Nbの置換
量が0.1%より少ない場合には、結晶粒の異常粒成長の
抑制効果が十分ではなくなる。一方、Nbの置換量が2.0
%を越えると、Nbのほう化物の生成量が多くなるため残
留磁束密度Brが低下する。Alの置換量は0.02〜2.0%と
される。Alの添加は保磁力iHcを高める効果がある。Al
の置換量が0.02%より少ない場合には、保磁力の向上効
果が少ない。置換量が2.0%を越えると、残留磁束密度B
rが急激に低下する。Coの置換量は0.3〜5.0%とされ
る。Coの添加はキューリ点の向上即ち飽和磁化の温度係
数の改善をもたらす。Coの置換量が0.3%より少ない場
合には、温度係数の改善効果は小さい。Coの置換量が5.
0%を越えると、残留磁束密度Br、保磁力iHcが共に急激
に低下する。Gaの置換量は0.01〜0.5%とされる。Gaの
微量添加は保磁力iHcの向上をもたらすが、置換量が0.0
1%より少ない場合には、添加効果は小さい。一方、Ga
の置換量が0.5%を越えると、残留磁束密度Brの低下が
顕著になるとともに保磁力iHcも低下する。Cuの置換量
は0.01〜1.0%とされる。Cuの微量添加は保磁力iHcの向
上をもたらすが、置換量が1.0%を越えるとその添加効
果は飽和する。添加量が0.01%より少ない場合には、保
磁力iHcの向上効果は小さい。
In the R-Fe-B system sintered permanent magnet of the present invention, a part of Fe can be replaced by one kind or two or more kinds of Nb, Al, Co, Ga and Cu. Is the substitution amount of each element (here, the weight percentage with respect to the total composition of the permanent magnet after substitution)
The reason for the limitation will be explained. The substitution amount of Nb is set to 0.1 to 2.0%. The addition of Nb produces Nb boride during the sintering process, which suppresses abnormal grain growth. When the Nb substitution amount is less than 0.1%, the effect of suppressing abnormal grain growth of crystal grains becomes insufficient. On the other hand, the substitution amount of Nb is 2.0
%, The amount of Nb boride produced increases, and the residual magnetic flux density Br decreases. The substitution amount of Al is 0.02 to 2.0%. The addition of Al has the effect of increasing the coercive force iHc. Al
When the substitution amount of is less than 0.02%, the effect of improving the coercive force is small. When the substitution amount exceeds 2.0%, the residual magnetic flux density B
r decreases sharply. The substitution amount of Co is 0.3 to 5.0%. The addition of Co brings about the improvement of the Curie point, that is, the temperature coefficient of the saturation magnetization. When the substitution amount of Co is less than 0.3%, the effect of improving the temperature coefficient is small. The substitution amount of Co is 5.
When it exceeds 0%, the residual magnetic flux density Br and the coercive force iHc both decrease sharply. The substitution amount of Ga is 0.01 to 0.5%. Addition of a small amount of Ga improves the coercive force iHc, but the substitution amount is 0.0
If it is less than 1%, the effect of addition is small. On the other hand, Ga
When the amount of substitution of is greater than 0.5%, the residual magnetic flux density Br is significantly reduced and the coercive force iHc is also reduced. The substitution amount of Cu is 0.01 to 1.0%. Addition of a small amount of Cu improves the coercive force iHc, but if the amount of substitution exceeds 1.0%, the effect of addition becomes saturated. If the added amount is less than 0.01%, the effect of improving the coercive force iHc is small.

【0020】[0020]

【発明の実施の態様】以下、本発明を実施例をもって具
体的に説明するが、本発明の内容はこれに限定されるも
のではない。 (実施例1)重量百分率でNd 23.5%,Pr 7.0%,Dy 1.5%,
B 1.05%,Al 0.10%,O 0.03%,C0.005%,N 0.004%,残
部Feの組成を有する、厚さが0.2〜0.5mmの薄帯状合金
を、ストリップキャスト法で作製した。この薄帯状の合
金を、Arガス雰囲気中で1000℃で2時間加熱した。次に
水素炉を使用し、この薄帯状の合金を常温で水素ガス雰
囲気中で水素吸蔵させ、自然崩壊させた。次いで炉内を
真空排気しつつ550℃まで薄帯状の合金を加熱し、その
温度で1時間保持して脱水素処理を行った。崩壊した合
金を窒素ガス雰囲気中で機械的に破砕して、32mesh以下
の原料粗粉とした。この原料粗粉の組成を分析したとこ
ろ、Nd 23.5%,Pr 7.0%,Dy 1.5%,B 1.05%,Al 0.10
%,O 0.14%,C 0.02%,N 0.007%,残部Feという分析値
を得た。この原料粗粉50kgをジェットミル内に装入した
後、ジェットミル内部をN2ガスで置換し、N2ガス中の酸
素濃度を酸素分析計値で0.100vol%とした。次いで、粉
砕圧力7.0kg/cm2、原料粗粉の供給量10kg/Hrの条件で粉
砕した。微粉の平均粒度は4.3μmであった。この微粉
を、金型キャビティ内で12kOeの配向磁界を印加しなが
ら0.8ton/cm2の成形圧で成形した。配向磁界の印加方向
は、成形方向と垂直である。成形体は、4.0×10-4torr
の条件下で15℃/分の昇温速度で1100℃まで昇温し、そ
の温度で2時間保持して焼結した。焼結体の組成を分析
したところ、Nd 23.5%,Pr 7.0%,Dy 1.5%,B 1.05%,A
l0.10%,O 0.55%,C 0.07%,N 0.012%,残部Feという分
析値を得た。この焼結体の、磁石主相結晶の総面積に対
する、結晶粒径が10μm以下の主相結晶粒の面積の和は
94%、結晶粒径が13μm以上の主相結晶粒の面積の和は
3%であった。この焼結体にArガス雰囲気中で900℃×2
時間と550℃×1時間の熱処理を各1回施した。機械加工
後磁気特性を測定したところ、表2に示すような良好な
値を得た。この永久磁石の耐蝕性を評価するために、磁
石を10mm×10mm×2mmの一定寸法に加工後、その表面に1
0μmのNiメッキを施した。次いでこの試料を2気圧,120
℃,湿度100%の条件に放置し、時間の経過に対するNiメ
ッキのハクリ程度を調べた。表2に示すように、2000時
間を経過してもNiメッキに異常が認められず、良好な耐
蝕性を示した。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be specifically described with reference to Examples, but the contents of the present invention are not limited thereto. (Example 1) Nd 23.5%, Pr 7.0%, Dy 1.5% by weight percentage,
A strip-shaped alloy with a thickness of 0.2 to 0.5 mm having a composition of B 1.05%, Al 0.10%, O 0.03%, C 0.005%, N 0.004% and the balance Fe was prepared by the strip casting method. This ribbon-shaped alloy was heated in an Ar gas atmosphere at 1000 ° C. for 2 hours. Next, using a hydrogen furnace, this ribbon-shaped alloy was allowed to occlude hydrogen at room temperature in a hydrogen gas atmosphere and naturally collapsed. Then, while the vacuum in the furnace was evacuated, the ribbon-shaped alloy was heated to 550 ° C., and was held at that temperature for 1 hour for dehydrogenation treatment. The collapsed alloy was mechanically crushed in a nitrogen gas atmosphere to obtain a raw material coarse powder of 32 mesh or less. Analysis of the composition of this raw material coarse powder revealed that Nd 23.5%, Pr 7.0%, Dy 1.5%, B 1.05%, Al 0.10
%, O 0.14%, C 0.02%, N 0.007%, balance Fe were obtained. After charging 50 kg of this raw material coarse powder into a jet mill, the inside of the jet mill was replaced with N2 gas, and the oxygen concentration in the N2 gas was set to 0.100 vol% as an oxygen analyzer value. Then, the crushing pressure was 7.0 kg / cm 2 and the raw material coarse powder was supplied at a rate of 10 kg / Hr. The average particle size of the fine powder was 4.3 μm. The fine powder was molded in a mold cavity at a molding pressure of 0.8 ton / cm2 while applying an orientation magnetic field of 12 kOe. The application direction of the orientation magnetic field is perpendicular to the molding direction. Molded body is 4.0 × 10-4 torr
Under the above conditions, the temperature was raised to 1100 ° C at a rate of 15 ° C / min, and the temperature was maintained for 2 hours for sintering. When the composition of the sintered body was analyzed, Nd 23.5%, Pr 7.0%, Dy 1.5%, B 1.05%, A
The analytical values were 0.10%, O 0.55%, C 0.07%, N 0.012% and balance Fe. The sum of the area of the main phase crystal grains with a grain size of 10 μm or less to the total area of the magnet main phase crystals of this sintered body is
94%, the sum of the areas of the main phase crystal grains with a grain size of 13 μm or more is
3%. 900 ° C x 2 in this sintered body in Ar gas atmosphere
Heat treatment for 1 hour and 550 ° C. × 1 hour each. When the magnetic properties were measured after machining, good values as shown in Table 2 were obtained. In order to evaluate the corrosion resistance of this permanent magnet, after processing the magnet to a certain size of 10 mm × 10 mm × 2 mm, 1
Ni plating of 0 μm was applied. The sample was then placed at 2 atmospheres and 120
After leaving it in the condition of ℃ and 100% humidity, the degree of peeling of the Ni plating with time was examined. As shown in Table 2, no abnormalities were found in the Ni plating even after 2000 hours, indicating good corrosion resistance.

【0021】(実施例2)重量百分率でNd 19.5%,Pr 6.5
%,Dy 5.5%,B 1.0%,Nb 0.5%,Al 0.2%,Co 2.0%,Ga
0.1%,O 0.02%,C 0.005%,N 0.003%,残部Feの組成を
有する、厚さが0.2〜0.4mmの薄帯状合金を、ストリップ
キャスト法で作製した。この薄帯状の合金を、Arガス雰
囲気中で1100℃で1時間加熱した。次に水素炉を使用
し、この薄帯状の合金を常温で水素ガス雰囲気中で水素
吸蔵させ、自然崩壊させた。次いで炉内を真空排気しつ
つ550℃まで薄帯状の合金を加熱し、その温度で1時間保
持して脱水素処理を行った。崩壊した合金を窒素ガス雰
囲気中で機械的に破砕して、32mesh以下の原料粗粉とし
た。この原料粗粉の組成を分析したところ、Nd 19.5%,
Pr 6.5%,Dy 5.5%,B 1.0%,Nb 0.5%,Al 0.2%,Co 2.0
%,Ga 0.10%,O 0.12%,C 0.02%,N 0.007%,残部Feと
いう分析値を得た。この原料粗粉50kgをジェットミル内
に装入した後、ジェットミル内部をN2ガスで置換し、N2
ガス中の酸素濃度を酸素分析計値で0.15%とした。次い
で、粉砕圧力8.0kg/cm2、原料粗粉の供給量12kg/Hrの条
件で粉砕した。微粉の平均粒度は4.6μmであった。こ
の微粉を、金型キャビティ内で8kOeの配向磁界を印加し
ながら1.5ton/cm2の成形圧で成形した。配向磁界の印加
方向は、成形方向と垂直である。 成形体は、5.0×10-
4torrの条件下で15℃/分の昇温速度で1080℃まで昇温
し、その温度で3時間保持して焼結した。焼結体の組成
を分析したところ、Nd 19.5%,Pr 6.5%,Dy 5.5%,B 1.
0%,Nb 0.5%,Al 0.2%,Co 2.0%,Ga 0.10%,O 0.48%,
C 0.06%,N 0.008%,残部Feという分析値を得た。この
焼結体の、磁石主相結晶の総面積に対する、結晶粒径が
10μm以下の主相結晶粒の面積の和は90%、結晶粒径が
13μm以上の主相結晶粒の面積の和は6%であった。こ
の焼結体にArガス雰囲気中で900℃×2時間と600℃×1時
間の熱処理を各1回施した。機械加工後磁気特性を測定
したところ、表2に示すような良好な値を得た。この永
久磁石の耐蝕性を評価するために、磁石を10mm×10mm×
2mmの一定寸法に加工後、その表面に10μmのNiメッキ
を施した。次いでこの試料を2気圧,120℃,湿度100%の
条件に放置し、時間の経過に対するNiメッキのハクリ程
度を調べた。表2に示すように、2000時間を経過しても
Niメッキに異常が認められず、良好な耐蝕性を示した。
また、得られた永久磁石の金属組織写真を図4に示す。
図5の金属組織写真に比し、組織が微細かつ均一である
ことがわかる。
(Example 2) Nd 19.5% by weight percentage, Pr 6.5
%, Dy 5.5%, B 1.0%, Nb 0.5%, Al 0.2%, Co 2.0%, Ga
A strip-shaped alloy having a composition of 0.1%, O 0.02%, C 0.005%, N 0.003% and the balance Fe and a thickness of 0.2 to 0.4 mm was prepared by a strip casting method. This ribbon-shaped alloy was heated at 1100 ° C. for 1 hour in an Ar gas atmosphere. Next, using a hydrogen furnace, this ribbon-shaped alloy was allowed to occlude hydrogen at room temperature in a hydrogen gas atmosphere and naturally collapsed. Then, while the vacuum in the furnace was evacuated, the ribbon-shaped alloy was heated to 550 ° C., and was held at that temperature for 1 hour for dehydrogenation treatment. The collapsed alloy was mechanically crushed in a nitrogen gas atmosphere to obtain a raw material coarse powder of 32 mesh or less. When the composition of this raw material coarse powder was analyzed, Nd 19.5%,
Pr 6.5%, Dy 5.5%, B 1.0%, Nb 0.5%, Al 0.2%, Co 2.0
%, Ga 0.10%, O 0.12%, C 0.02%, N 0.007%, balance Fe were obtained. After charging 50kg of this raw material coarse powder into the jet mill, the inside of the jet mill was replaced with N2 gas,
The oxygen concentration in the gas was set to 0.15% as an oxygen analyzer value. Then, the crushing was performed under the conditions of a crushing pressure of 8.0 kg / cm 2 and a raw material coarse powder supply rate of 12 kg / Hr. The average particle size of the fine powder was 4.6 μm. This fine powder was molded in a mold cavity at a molding pressure of 1.5 ton / cm2 while applying an orientation magnetic field of 8 kOe. The application direction of the orientation magnetic field is perpendicular to the molding direction. Molded body is 5.0 × 10-
Under the conditions of 4 torr, the temperature was raised to 1080 ° C. at a heating rate of 15 ° C./min, and the temperature was maintained for 3 hours for sintering. When the composition of the sintered body was analyzed, Nd 19.5%, Pr 6.5%, Dy 5.5%, B 1.
0%, Nb 0.5%, Al 0.2%, Co 2.0%, Ga 0.10%, O 0.48%,
The analytical values were C 0.06%, N 0.008%, and the balance Fe. The crystal grain size of this sintered body is based on the total area of the magnet main phase crystals.
The sum of the areas of the main phase crystal grains of 10 μm or less is 90%, and the crystal grain size is
The sum of the areas of the main phase crystal grains of 13 μm or more was 6%. This sintered body was heat-treated once at 900 ° C. × 2 hours and 600 ° C. × 1 hour each in an Ar gas atmosphere. When the magnetic properties were measured after machining, good values as shown in Table 2 were obtained. In order to evaluate the corrosion resistance of this permanent magnet, a magnet of 10 mm × 10 mm ×
After processing to a constant size of 2 mm, its surface was plated with 10 μm of Ni. Next, this sample was left under the conditions of 2 atm, 120 ° C., and 100% humidity, and the degree of peeling of Ni plating with time was examined. As shown in Table 2, after 2000 hours
No abnormalities were found in the Ni plating, indicating good corrosion resistance.
A photograph of the metal structure of the obtained permanent magnet is shown in FIG.
It can be seen that the structure is fine and uniform as compared with the metal structure photograph of FIG.

【0022】(実施例3)重量百分率でNd 25.8%,Pr 5.5
%,Dy 1.2%,B 1.05%,Al 0.08%,Co 2.0%,Ga0.09%,C
u 0.1%,O 0.03%,C 0.005%,N 0.005%,残部Feの組成
を有する、厚さが0.1〜0.5mmの薄帯状合金を、ストリッ
プキャスト法で作製した。この薄帯状の合金を、Arガス
雰囲気中で900℃で2時間加熱した。次に水素炉を使用
し、この薄帯状の合金を常温で水素ガス雰囲気中で水素
吸蔵させ、自然崩壊させた。次いで炉内を真空排気しつ
つ550℃まで薄帯状の合金を加熱し、その温度で1時間保
持して脱水素処理を行った。崩壊した合金を窒素ガス雰
囲気中で機械的に破砕して、32mesh以下の原料粗粉とし
た。この原料粗粉の組成を分析したところ、Nd 25.8%,
Pr 5.5%,Dy 1.2%,B 1.05%,Al 0.08%,Ga 0.09%,Cu
0.1%,O 0.14%,C 0.03%,N 0.009%,残部Feという分析
値を得た。この原料粗粉50kgをジェットミル内に装入し
た後、ジェットミル内部をArガスで置換し、Arガス中の
酸素濃度を酸素分析計値で0.050vol%とした。次いで、
粉砕圧力7.5kg/cm2、原料粗粉の供給量9kg/Hrの条件で
粉砕した。微粉の平均粒度は4.7μmであった。この原
料スラリーを、金型キャビティ内で8kOeの配向磁界を印
加しながら0.6ton/cm2の成形圧で湿式成形した。配向磁
界の印加方向は、成形方向と垂直である。成形体は、4.
0×10-4torrの条件下で15℃/分の昇温速度で110
0℃まで昇温し、その温度で2時間保持して焼結した。
焼結体の組成を分析したところ、Nd 25.8%,Pr 5.5%,D
y 1.2%,B 1.05%,Al0.08%,Ga 0.09%,Cu 0.1%,O 0.3
5%,C 0.07%,N 0.025%,残部Feという分析値を得た。
この焼結体の、磁石主相結晶の総面積に対する、結晶粒
径が10μm以下の主相結晶粒の面積の和は88%、結晶粒
径が13μm以上の主相結晶粒の面積の和は7%であっ
た。この焼結体にArガス雰囲気中で900℃×2時間と580
℃×1時間の熱処理を各1回施した。機械加工後磁気特
性を測定したところ、表2に示すような良好な値を得
た。この永久磁石の耐蝕性を評価するために、磁石を10
mm×10mm×2mmの一定寸法に加工後、その表面に10μm
のNiメッキを施した。次いでこの試料を2気圧,120℃,湿
度100%の条件に放置し、時間の経過に対するNiメッキ
のハクリ程度を調べた。表2に示すように、2000時間を
経過してもNiメッキに異常が認められず、良好な耐蝕性
を示した。
Example 3 Nd 25.8%, Pr 5.5 by weight percentage
%, Dy 1.2%, B 1.05%, Al 0.08%, Co 2.0%, Ga 0.09%, C
A strip alloy having a composition of 0.1%, O 0.03%, C 0.005%, N 0.005% and the balance Fe and having a thickness of 0.1 to 0.5 mm was prepared by the strip casting method. This ribbon-shaped alloy was heated at 900 ° C. for 2 hours in an Ar gas atmosphere. Next, using a hydrogen furnace, this ribbon-shaped alloy was allowed to occlude hydrogen at room temperature in a hydrogen gas atmosphere and naturally collapsed. Then, while the vacuum in the furnace was evacuated, the ribbon-shaped alloy was heated to 550 ° C., and was held at that temperature for 1 hour for dehydrogenation treatment. The collapsed alloy was mechanically crushed in a nitrogen gas atmosphere to obtain a raw material coarse powder of 32 mesh or less. When the composition of this raw material coarse powder was analyzed, Nd 25.8%,
Pr 5.5%, Dy 1.2%, B 1.05%, Al 0.08%, Ga 0.09%, Cu
The analytical values were 0.1%, O 0.14%, C 0.03%, N 0.009% and balance Fe. After charging 50 kg of this raw material coarse powder into a jet mill, the inside of the jet mill was replaced with Ar gas, and the oxygen concentration in Ar gas was adjusted to 0.050 vol% as an oxygen analyzer value. Then
Crushing was performed under the conditions of a crushing pressure of 7.5 kg / cm2 and a raw material coarse powder supply rate of 9 kg / Hr. The average particle size of the fine powder was 4.7 μm. This raw material slurry was wet-molded in the mold cavity at a molding pressure of 0.6 ton / cm 2 while applying an orienting magnetic field of 8 kOe. The application direction of the orientation magnetic field is perpendicular to the molding direction. The molded body is 4.
110 at a heating rate of 15 ° C / min under the condition of 0 × 10-4 torr
The temperature was raised to 0 ° C., and the temperature was maintained for 2 hours for sintering.
When the composition of the sintered body was analyzed, Nd 25.8%, Pr 5.5%, D
y 1.2%, B 1.05%, Al 0.08%, Ga 0.09%, Cu 0.1%, O 0.3
The analytical values were 5%, C 0.07%, N 0.025% and balance Fe.
In this sintered body, the sum of the areas of the main phase crystal grains with a grain size of 10 μm or less to the total area of the magnet main phase crystals is 88%, and the sum of the areas of the main phase grains with a grain size of 13 μm or more is It was 7%. This sintered body was heated at 900 ° C for 2 hours and 580 in Ar gas atmosphere.
Heat treatment was performed once at each temperature of 1 ° C for 1 hour. When the magnetic properties were measured after machining, good values as shown in Table 2 were obtained. In order to evaluate the corrosion resistance of this permanent magnet, we
After processing to a certain size of mm × 10 mm × 2 mm, 10 μm on the surface
Ni plating was applied. Next, this sample was left under the conditions of 2 atm, 120 ° C., and 100% humidity, and the degree of peeling of Ni plating with time was examined. As shown in Table 2, no abnormalities were found in the Ni plating even after 2000 hours, indicating good corrosion resistance.

【0023】(比較例1)実施例1で作製した薄帯状の合
金を、熱処理をおこなわずに直接水素炉に入れ、常温で
水素ガス雰囲気中で水素吸蔵させ、自然崩壊させた。そ
の後、実施例1と同じ条件で脱水素処理と機械的破砕を
おこない、32mesh以下の原料粗粉とした。この原料粗粉
の組成を分析したところ、重量百分率でNd 23.5%,Pr
7.0%,Dy1.5%,B 1.05%,Al 0.10%,O 0.11%,C 0.02
%,N 0.006%,残部Feという分析値を得た。この原料粗
粉を、実施例1と同一の条件で微粉砕した。得られた微
粉の平均粒度は4.6μmと、実施例1の場合に比べて粗
かった。成形、焼結、熱処理、耐蝕性の評価などの以降
の工程も、実施例1と同一の条件で行った。焼結体の組
成を分析したところ、Nd 23.5%,Pr 7.0%,Dy 1.5%,B
1.05%,Al 0.10%,O 0.51%,C 0.06%,N 0.015%,残部F
eという分析値を得た。この焼結体の、磁石主相結晶の
総面積に対する、結晶粒径が10μm以下の主相結晶粒の
面積の和は77%、結晶粒径が13μm以上の主相結晶粒の
面積の和は14%であった。この永久磁石の磁気特性を評
価したところ、表2に示すように、実施例1の値に比べ
てBr,iHc共若干低い値であった。また、この永久磁石の
耐蝕性は、表2に示すように1000時間を経過してもNiメ
ッキに異常が認められず実用上全く問題ない水準にある
ことがわかったが、1500時間の経過でNiメッキのわずか
なハク離が発生し、実施例1で製造した焼結体との比較
では耐蝕性に劣ることが判明した。
Comparative Example 1 The ribbon-shaped alloy produced in Example 1 was directly placed in a hydrogen furnace without heat treatment and allowed to occlude hydrogen in a hydrogen gas atmosphere at room temperature to spontaneously disintegrate. Then, dehydrogenation treatment and mechanical crushing were performed under the same conditions as in Example 1 to obtain raw material coarse powder of 32 mesh or less. When the composition of this raw material coarse powder was analyzed, Nd 23.5%, Pr
7.0%, Dy1.5%, B 1.05%, Al 0.10%, O 0.11%, C 0.02
%, N 0.006%, balance Fe were obtained. This raw material coarse powder was finely pulverized under the same conditions as in Example 1. The average particle size of the obtained fine powder was 4.6 μm, which was coarser than that in the case of Example 1. Subsequent steps such as molding, sintering, heat treatment, and evaluation of corrosion resistance were also performed under the same conditions as in Example 1. When the composition of the sintered body was analyzed, Nd 23.5%, Pr 7.0%, Dy 1.5%, B
1.05%, Al 0.10%, O 0.51%, C 0.06%, N 0.015%, balance F
An analytical value of e was obtained. In this sintered body, the sum of the areas of the main phase crystal grains with a grain size of 10 μm or less and the total area of the main phase grains with a grain size of 13 μm or more is 77% of the total area of the magnet main phase crystals. It was 14%. When the magnetic properties of this permanent magnet were evaluated, as shown in Table 2, both Br and iHc were slightly lower than those of Example 1. Also, as shown in Table 2, the corrosion resistance of this permanent magnet was found to be at a level where practically no problem was observed, with no abnormality observed in the Ni plating even after 1000 hours had passed, but after 1500 hours had passed. It was found that a slight peeling of the Ni plating occurred, which was inferior in corrosion resistance as compared with the sintered body produced in Example 1.

【0024】(比較例2)実施例2と同一の組成を有する
R-Fe-B系合金インゴットを作製した。この合金の組成分
析値は重量百分比率でNd 19.5%,Pr 6.5%,Dy 5.5%,B
1.0%,Nb 0.5%,Al 0.2%,Co 2.0%,Ga 0.1%,O 0.01
%,C 0.004%,N 0.002%,残部Feであった。合金の組織
中にα-Feの析出が認められたため、これを消去するた
め、合金インゴットにアルゴンガス雰囲気中で1100℃×
6時間の液体化処理を施した。次に合金インゴットを水
素炉中に入れ、常温で水素吸蔵させて自然崩壊させた。
自然崩壊後の合金を、実施例2と同一の条件で脱水素処
理と機械的破砕し、32mesh以下の原料粗粉とした。この
原料粗粉の組成を分析したところ、重量百分率でNd 19.
5%,Pr 6.5%,Dy5.5%,B 1.0%,Nb 0.5%,Al 0.2%,Co
2.0%,Ga 0.1%,O 0.09%,C 0.02%,N 0.006%,残部Fe
という分析値を得た。この原料粗粉を、実施例2と同一
の条件で微粉砕した。得られた微粉の平均粒度は5.1μ
mと、実施例1の場合に比べて粗かった。成形、焼結、
熱処理、耐蝕性の評価などの以降の工程も、実施例2と
同一の条件でおこなった。焼結体の組成を分析したとこ
ろ、Nd 19.5%,Pr 6.5%,Dy 5.5%,B 1.0%,Nb 0.5%,A
l 0.2%,Co 2.0%,Ga 0.10%,O 0.42%,C 0.06%,N 0.0
07%,残部Feという分析値を得た。この焼結体の、磁石
主相結晶の総面積に対する、結晶粒径が10μm以下の主
相結晶粒の面積の和は65%、結晶粒径が13μm以上の主
相結晶粒の面積の和は19%であった。金属組織写真を図
5に示す。この永久磁石の磁気特性を評価したところ、
表2に示すように、実施例2の値とほぼ同等の良好な値
であった。また、この永久磁石の耐蝕性は、表2に示す
ように700時間を経過してもNiメッキに異常が認められ
ず実用上全く問題ない水準にあることがわかったが、10
00時間の経過でNiメッキの一部にわずかなハク離が発生
し、実施例2で製造した永久磁石との比較では耐蝕性に
劣ることが判明した。
(Comparative Example 2) Same composition as in Example 2
An R-Fe-B alloy ingot was prepared. The compositional analysis value of this alloy is Nd 19.5%, Pr 6.5%, Dy 5.5%, B by weight percentage.
1.0%, Nb 0.5%, Al 0.2%, Co 2.0%, Ga 0.1%, O 0.01
%, C 0.004%, N 0.002%, and the balance Fe. Precipitation of α-Fe was found in the structure of the alloy, so in order to erase it, the alloy ingot was heated at 1100 ° C in an argon gas atmosphere.
A liquefaction process was performed for 6 hours. Next, the alloy ingot was put into a hydrogen furnace and allowed to occlude hydrogen at room temperature to spontaneously collapse.
The alloy after natural disintegration was subjected to dehydrogenation treatment and mechanical crushing under the same conditions as in Example 2 to obtain raw material coarse powder of 32 mesh or less. When the composition of this raw material coarse powder was analyzed, Nd 19.
5%, Pr 6.5%, Dy 5.5%, B 1.0%, Nb 0.5%, Al 0.2%, Co
2.0%, Ga 0.1%, O 0.09%, C 0.02%, N 0.006%, balance Fe
I got the analysis value. This raw material coarse powder was finely pulverized under the same conditions as in Example 2. The average particle size of the obtained fine powder is 5.1μ
m, which is coarser than that of the first embodiment. Molding, sintering,
Subsequent steps such as heat treatment and evaluation of corrosion resistance were also performed under the same conditions as in Example 2. When the composition of the sintered body was analyzed, Nd 19.5%, Pr 6.5%, Dy 5.5%, B 1.0%, Nb 0.5%, A
l 0.2%, Co 2.0%, Ga 0.10%, O 0.42%, C 0.06%, N 0.0
The analytical values were 07% and the balance Fe. In this sintered body, the total area of the main phase crystal grains with a grain size of 10 μm or less is 65%, and the total area of the main phase crystal grains with a grain size of 13 μm or more is 65% of the total area of the magnet main phase crystals. It was 19%. A photograph of the metal structure is shown in FIG. When the magnetic characteristics of this permanent magnet were evaluated,
As shown in Table 2, it was a good value almost equivalent to the value of Example 2. Further, as shown in Table 2, the corrosion resistance of this permanent magnet was found to be at a level where practically no problem was observed, with no abnormality observed in the Ni plating even after 700 hours had passed.
After a lapse of 00 hours, a slight peeling occurred on a part of the Ni plating, and it was found that the corrosion resistance was inferior to that of the permanent magnet manufactured in Example 2.

【0025】[0025]

【表2】 [Table 2]

【発明の効果】本発明により、磁気特性を低下させず
に、優れた耐食性を有するR-Fe-B系焼結型永久磁石が得
られる。
According to the present invention, an R-Fe-B system sintered permanent magnet having excellent corrosion resistance can be obtained without deteriorating the magnetic properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】 磁石主相結晶の総面積に対する結晶粒径が10
μm以下の主相結晶粒の面積の和の割合と、磁石主相結
晶の総面積に対する結晶粒径が13μm以上の主相の結晶
粒の面積の和の割合と、耐蝕性の加速試験での、Niメッ
キのハクリ開始が生じるまでの経過的間との関係を示し
た図である。
Fig. 1 The crystal grain size is 10 with respect to the total area of the magnet main phase crystals.
The ratio of the sum of the areas of the main phase crystal grains of μm or less, the ratio of the sum of the areas of the crystal grains of the main phase with a crystal grain size of 13 μm or more to the total area of the magnet main phase crystals, and the corrosion resistance accelerated test FIG. 5 is a diagram showing a relationship with a lapse of time until peeling of Ni plating starts.

【図2】 ストリップキャスト法で作製した薄帯状合金
の断面の金属組織写真である。
FIG. 2 is a metallographic photograph of a cross section of a ribbon-shaped alloy produced by a strip casting method.

【図3】 ストリップキャスト法で作製した薄帯状合金
を1000℃で熱処理した後の断面の金属組織写真であ
る。
FIG. 3 is a photograph of a metallographic structure of a cross section of a strip-shaped alloy produced by the strip casting method after heat treatment at 1000 ° C.

【図4】 磁石主相の総面積に対する結晶粒径が10μm
以下の主相結晶粒の面積の和が90%、結晶粒径が13μ
m以上の主相結晶粒の面積の和が6%である焼結型永久
磁石の金属組織写真である。
[Fig. 4] The crystal grain size with respect to the total area of the main phase of the magnet is 10 μm.
The sum of the areas of the following main phase crystal grains is 90%, and the crystal grain size is 13μ.
3 is a photograph of a metal structure of a sintered permanent magnet having a sum of areas of main phase crystal grains of m or more being 6%.

【図5】 磁石主相の総面積に対する結晶粒径が10μm
以下の主相結晶粒の面積の和が65%,結晶粒径が13μ
m以上の主相結晶粒の面積の和が19%の焼結型永久磁
石の金属組織写真である。
FIG. 5: Crystal grain size is 10 μm with respect to the total area of the magnet main phase
The sum of the areas of the following main phase crystal grains is 65%, and the crystal grain size is 13μ.
3 is a photograph of a metallographic structure of a sintered permanent magnet having a sum of areas of main phase crystal grains of m or more of 19%.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量百分率でR(RはYを含む希土類元素の
うちの1種又は2種以上)28.0〜33.0%,B 0.5〜2.0%,O
0.3〜0.7%,残部Feの組成を有し、磁石主相結晶粒の総
面積に対し、結晶粒径が10μm以下の主相結晶粒の面積
の和が80%以上,結晶粒が13μm以上の主相結晶粒の面
積の和が10%以下であることを特徴とする焼結型永久磁
石。
1. R by weight percentage (R is one or more of rare earth elements including Y) 28.0 to 33.0%, B 0.5 to 2.0%, O
It has a composition of 0.3 to 0.7% and the balance Fe, and the total area of the main phase crystal grains with a grain size of 10 μm or less is 80% or more and the grain size of 13 μm or more with respect to the total area of the magnet main phase crystal grains. A sintered permanent magnet characterized in that the sum of the areas of the main phase crystal grains is 10% or less.
【請求項2】 Feの一部をNb 0.1〜2.0%,Al 0.02〜2.0
%,Co 0.3〜5.0%,Ga 0.01〜0.5%,Cu 0.01〜1.0%のう
ち1種または2種以上で置換する請求項1に記載の焼結
型永久磁石。
2. A part of Fe is Nb 0.1 to 2.0%, Al 0.02 to 2.0
%, Co 0.3 to 5.0%, Ga 0.01 to 0.5%, and Cu 0.01 to 1.0%. The sintered permanent magnet according to claim 1, which is substituted with one or more.
【請求項3】 保磁力iHcの値が13.0kOe以上である請求
項1または2に記載の焼結型永久磁石。
3. The sintered permanent magnet according to claim 1, wherein the value of coercive force iHc is 13.0 kOe or more.
JP11959896A 1996-04-17 1996-04-17 Sintered permanent magnet Expired - Lifetime JP3255344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11959896A JP3255344B2 (en) 1996-04-17 1996-04-17 Sintered permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11959896A JP3255344B2 (en) 1996-04-17 1996-04-17 Sintered permanent magnet

Publications (2)

Publication Number Publication Date
JPH09283313A true JPH09283313A (en) 1997-10-31
JP3255344B2 JP3255344B2 (en) 2002-02-12

Family

ID=14765359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11959896A Expired - Lifetime JP3255344B2 (en) 1996-04-17 1996-04-17 Sintered permanent magnet

Country Status (1)

Country Link
JP (1) JP3255344B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100592471B1 (en) * 1998-10-14 2006-06-23 히다찌긴조꾸가부시끼가이사 R-T-B type sintered permanent magnet
US7534311B2 (en) 2003-08-12 2009-05-19 Hitachi Metals, Ltd. R-t-b sintered magnet and rare earth alloy
CN104112560A (en) * 2014-07-31 2014-10-22 江苏晨朗电子集团有限公司 Low-cost 42H-grade and 35SH-grade sintered Nd-Fe-B permanent magnet and preparation method thereof
JP2016184737A (en) * 2015-03-25 2016-10-20 Tdk株式会社 Rare earth magnet
JP2016184735A (en) * 2015-03-25 2016-10-20 Tdk株式会社 Rare earth magnet
JP2016184736A (en) * 2015-03-25 2016-10-20 Tdk株式会社 Rare earth magnet
CN104112560B (en) * 2014-07-31 2017-01-04 江苏晨朗电子集团有限公司 Low cost 42H and 35SH sintered Nd-Fe-B permanent magnet and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100592471B1 (en) * 1998-10-14 2006-06-23 히다찌긴조꾸가부시끼가이사 R-T-B type sintered permanent magnet
US7534311B2 (en) 2003-08-12 2009-05-19 Hitachi Metals, Ltd. R-t-b sintered magnet and rare earth alloy
CN104112560A (en) * 2014-07-31 2014-10-22 江苏晨朗电子集团有限公司 Low-cost 42H-grade and 35SH-grade sintered Nd-Fe-B permanent magnet and preparation method thereof
CN104112560B (en) * 2014-07-31 2017-01-04 江苏晨朗电子集团有限公司 Low cost 42H and 35SH sintered Nd-Fe-B permanent magnet and preparation method thereof
JP2016184737A (en) * 2015-03-25 2016-10-20 Tdk株式会社 Rare earth magnet
JP2016184735A (en) * 2015-03-25 2016-10-20 Tdk株式会社 Rare earth magnet
JP2016184736A (en) * 2015-03-25 2016-10-20 Tdk株式会社 Rare earth magnet

Also Published As

Publication number Publication date
JP3255344B2 (en) 2002-02-12

Similar Documents

Publication Publication Date Title
EP0304054B1 (en) Rare earth-iron-boron magnet powder and process of producing same
US5338371A (en) Rare earth permanent magnet powder, method for producing same and bonded magnet
EP0557103A1 (en) Master alloy for magnet production and its production, as well as magnet production
US20040118484A1 (en) R-T-B system rare earth permanent magnet and compound for magnet
JPWO2003001541A1 (en) Rare earth magnet and method of manufacturing the same
US8157927B2 (en) Raw material alloy for R-T-B system sintered magnet, R-T-B system sintered magnet and production method thereof
JP2791470B2 (en) RB-Fe sintered magnet
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JP4076178B2 (en) R-T-B rare earth permanent magnet
JP3255344B2 (en) Sintered permanent magnet
JP3413789B2 (en) R-Fe-B sintered permanent magnet
JP2004256877A (en) Dehydrogenation method, hydrogen atomizing method, and method for manufacturing rare-earth permanent magnet
JP2005015886A (en) Rare earth permanent magnet
JPH08181009A (en) Permanent magnet and its manufacturing method
JP2966342B2 (en) Sintered permanent magnet
JP3586577B2 (en) Sintered permanent magnet
JP4618437B2 (en) Method for producing rare earth permanent magnet and raw material alloy thereof
JP2708578B2 (en) Bonded magnet
JP3813543B2 (en) Method for processing magnet powder
JP3053344B2 (en) Rare earth magnet manufacturing method
JP2753430B2 (en) Bonded magnet
JP3209291B2 (en) Magnetic material and its manufacturing method
JPS61139638A (en) Manufacture of sintered permanent magnet material
JPH0745412A (en) R-fe-b permanent magnet material

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071130

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 12

EXPY Cancellation because of completion of term