JPH09263869A - Aluminum alloy sheet excellent in impact characteristic and its production - Google Patents

Aluminum alloy sheet excellent in impact characteristic and its production

Info

Publication number
JPH09263869A
JPH09263869A JP7345396A JP7345396A JPH09263869A JP H09263869 A JPH09263869 A JP H09263869A JP 7345396 A JP7345396 A JP 7345396A JP 7345396 A JP7345396 A JP 7345396A JP H09263869 A JPH09263869 A JP H09263869A
Authority
JP
Japan
Prior art keywords
aluminum alloy
less
crystallized
alloy sheet
alloy plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7345396A
Other languages
Japanese (ja)
Inventor
Kaoru Kawasaki
薫 川崎
Makoto Saga
誠 佐賀
Masao Kikuchi
正夫 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7345396A priority Critical patent/JPH09263869A/en
Publication of JPH09263869A publication Critical patent/JPH09263869A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an aluminum alloy sheet excellent in impact characteristic and its production, to enable the contribution, in terms of material, to the safety of automobile against collision. SOLUTION: In an aluminum alloy sheet having a composition consisting of, by weight, 0.4-2% Mg, 0.4-2% Si, and the balance Al with inevitable impurities, the average size, in the cross section in a rolling direction, of the crystallized substances crystallized in the alloy sheet is regulated so that it satisfies inequalities (Dl+Dc)/2<=5μm and Dl/Dc<=1.25, where Dl and Dc represent the length of the crystallized substances in a rolling direction and the length of the crystallized substances in a sheet-thickness direction, respectively. By this method, the aluminum alloy sheet excellent in impact characteristic can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車用材料の用
途に好適な衝撃特性の優れたアルミニウム合金板及びそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy plate having excellent impact characteristics suitable for use as a material for automobiles and a method for producing the same.

【0002】[0002]

【従来の技術】アルミニウム合金は鉄に比べて衝撃特性
が劣ることが知られている(例えば、自動車技術、30
(No.2)(1976)、P.117)。すなわち、
ひずみ速度が100/s以上に大きくても、その強度は
ほとんど変化しないとされてきた。ところで、最近で
は、アルミニウム合金板の自動車用材料としての適用が
拡大しつつある。このアルミニウム合金板を適用する目
的は、自動車の車体軽量化にあるが、自動車を取り巻く
環境も厳しくなり、特に衝突時の乗員の安全性を確保す
るために種々の対策が講じられている。そのため、自動
車の部品を構成するアルミニウム合金板においても、衝
突安全性の観点から衝突特性の向上が求められる。アル
ミニウム合金の押出形材では、衝撃吸収性を向上させる
方法として、特開平7−54090号公報記載のよう
に、粒界析出物の大きさを所定の大きさに制御する方法
が明示されている。これは、溶体化処理を施してから押
出成形を行った後の冷却速度を規定し、特に粒界析出物
の大きさを制御するものである。
BACKGROUND OF THE INVENTION Aluminum alloys are known to have inferior impact properties compared to iron (see, for example, Automotive Technology, 30
(No. 2) (1976), P. 117). That is,
It has been considered that even if the strain rate is higher than 100 / s, its strength hardly changes. By the way, recently, the application of aluminum alloy sheets as a material for automobiles has been expanding. The purpose of applying this aluminum alloy plate is to reduce the weight of the automobile body, but the environment surrounding the automobile becomes severe, and various measures have been taken to ensure the safety of passengers in the event of a collision. Therefore, in the case of an aluminum alloy plate that constitutes an automobile part, it is required to improve the collision characteristics from the viewpoint of collision safety. For extruded aluminum alloy profiles, a method of controlling the size of grain boundary precipitates to a predetermined size is disclosed as a method for improving impact absorption, as described in JP-A-7-54090. . This regulates the cooling rate after performing solution treatment and then extrusion molding, and particularly controls the size of grain boundary precipitates.

【0003】[0003]

【発明が解決しようとする課題】本発明は、自動車の衝
突安全性に対する材料面からの寄与を可能とするため
に、衝撃特性に優れたアルミニウム合金板及びその製造
方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an aluminum alloy sheet having excellent impact characteristics and a method for producing the same, in order to allow the material to contribute to the collision safety of an automobile. To do.

【0004】[0004]

【課題を解決するための手段】本発明者らは、アルミニ
ウム合金における晶出物の形態が衝撃特性に及ぼす影響
について検討した結果、(1)上記晶出物の形態は、衝
撃特性に影響を与え、できるだけ等方的な形態であるほ
ど、衝撃特性が向上すること、及び、(2)晶出物を等
方的な形態とするためには、アルミニウム合金を凝固さ
せるときの凝固時の冷却速度を速くすることが効果的で
あること、を知見した。本発明は、上記知見に基づくも
のであって、重量%で、Mg:0.4〜2%、Si:
0.4〜2%を含み、残部はAl及び不可避的不純物か
らなるアルミニウム合金板において、前記合金板中に晶
出した晶出物の圧延方向断面における平均サイズが
(1)及び(2)式を満足することを特徴とする衝撃特
性の優れたアルミニウム合金板。 (D1+DC )/2≦5μm ・・・・・・・・・(1) D1/DC ≦1.25 ・・・・・・・・・(2) (ここで、D1:晶出物の圧延方向の長さ、DC :晶出
物の板厚方向の長さ)
DISCLOSURE OF THE INVENTION As a result of studies on the influence of the morphology of crystallized substances in an aluminum alloy on the impact characteristics, the present inventors have found that (1) the morphology of the crystallized substances influences the impact properties. Given that the more isotropic the shape, the better the impact properties, and (2) In order to make the crystallized substance isotropic, to cool the aluminum alloy when solidifying it. It was found that increasing the speed is effective. The present invention is based on the above-mentioned findings, and in weight%, Mg: 0.4 to 2%, Si:
In an aluminum alloy plate containing 0.4 to 2%, the balance being Al and unavoidable impurities, the average size of the crystallized product crystallized in the alloy plate in the rolling direction cross section is expressed by formulas (1) and (2). An aluminum alloy plate with excellent impact characteristics, which satisfies the following requirements. (D1 + D C ) / 2 ≦ 5 μm (1) D1 / D C ≦ 1.25 (2) (where D1: crystallized product (Length in rolling direction, D C : length in thickness direction of crystallized product)

【0005】上記アルミニウム合金板には、必要に応じ
てCu:1%以下、Fe:0.5%以下のうち1種以
上、または/及びTi:0.2%以下、B:0.01%
以下、Be:0.005%以下のうち1種以上を含有さ
せることが好適である。また、本発明は、上記アルミニ
ウム合金板の製造方法において、凝固時の冷却速度を5
℃/s以上として鋳造し、再加熱後、所定の熱間圧延及
び冷間圧延を実施し、再結晶焼鈍を施すことを特徴とす
る衝撃特性に優れたアルミニウム合金板の製造方法であ
る。
In the above aluminum alloy plate, if necessary, one or more of Cu: 1% or less, Fe: 0.5% or less, or / and Ti: 0.2% or less, B: 0.01%.
Hereinafter, it is preferable to contain one or more of Be: 0.005% or less. Moreover, in the present invention, in the method for producing an aluminum alloy plate, the cooling rate during solidification is 5
It is a method for producing an aluminum alloy sheet having excellent impact characteristics, which comprises casting at a temperature of ℃ / s or more, reheating, performing predetermined hot rolling and cold rolling, and performing recrystallization annealing.

【0006】[0006]

【発明の実施の形態】まず、本発明における成分組成の
限定理由について述べる。Mgは、Siとともに微細な
析出物を形成して、高い塗装焼付硬化性を得るために添
加される必要不可欠な元素である。その含有量として
は、0.4%未満では、強度が不十分である。一方、2
%を超えて添加されてもその効果は飽和してくる。そこ
で、Mgは0.4〜2%とする。
BEST MODE FOR CARRYING OUT THE INVENTION First, the reasons for limiting the component composition in the present invention will be described. Mg is an indispensable element that is added in order to form fine precipitates together with Si and obtain high paint bake hardenability. If its content is less than 0.4%, the strength is insufficient. Meanwhile, 2
Even if added in excess of%, the effect will be saturated. Therefore, Mg is set to 0.4 to 2%.

【0007】Siは、前述のMgとともに微細な析出物
を形成して、高い焼付硬化性を得るために必要不可欠な
元素である。その添加量が0.4%未満では強度が不十
分であり、一方、2%より多く添加されると晶出物を多
量に形成し、サイズを制御しても衝撃特性の向上を抑制
することになるばかりでなく、焼付硬化量も飽和するた
め、2%を上限とする。上記のようにMgとSiの含有
量を規定した本発明鋼の基本成分系には、必要によりC
u、Feの1種以上を添加する。
Si is an essential element for forming fine precipitates together with the above-mentioned Mg and obtaining high bake hardenability. If the added amount is less than 0.4%, the strength is insufficient, while if added more than 2%, a large amount of crystallized substances are formed, and even if the size is controlled, the improvement of impact properties is suppressed. In addition to the above, the bake hardening amount is saturated, so the upper limit is 2%. If necessary, the basic composition system of the steel according to the present invention in which the contents of Mg and Si are specified as described above is C
At least one of u and Fe is added.

【0008】Cuは、主として析出硬化により、塗装焼
付硬化によって強度を上げることを目的に添加される元
素である。添加量が0.1%未満では、その効果がな
く、また、1%を超えて添加されると、極端に耐食性が
悪くなるばかりでなく、析出が促進され、室温放置中の
経時変化が大きく、成形性が劣化する。そのためCuの
添加量は0.1〜1%とする。Feは、アルミニウム合
金においては本来不可避的不純物元素であり、凝固時に
晶出物を形成し、成形加工性を低下させる。したがっ
て、極力その含有量は低い方が良いため、0.5%以下
とする。一方、0.05%より低くするには、製造コス
トを増加させるため、好ましくは0.05%を下限とす
る。
Cu is an element added mainly for the purpose of increasing the strength by precipitation hardening and coating bake hardening. If the added amount is less than 0.1%, it has no effect, and if the added amount exceeds 1%, not only the corrosion resistance is extremely deteriorated, but also precipitation is promoted and the change with time during standing at room temperature is large. , Moldability deteriorates. Therefore, the addition amount of Cu is set to 0.1 to 1%. Fe is an unavoidable impurity element in an aluminum alloy, and forms a crystallized substance at the time of solidification to reduce the formability. Therefore, the content should be as low as possible, and therefore it should be 0.5% or less. On the other hand, if it is lower than 0.05%, the manufacturing cost is increased. Therefore, the lower limit is preferably 0.05%.

【0009】本発明におけるアルミニウム合金板には、
必要に応じて、さらにTi、B及びBeのうち1種以上
を添加する。熱間加工性をより良好とするためには、T
iまたはBの添加が有効である。Ti、Bは、鋳塊にお
ける結晶粒を微細化し、熱間加工性を改善する。ただ
し、初晶Al3 Ti粒子の晶出は、成形加工性を大きく
劣化させるため、その晶出を防止しなくてはならない。
そのため、Ti量は0.2%を上限とする。また、Bも
過度に添加されるとTiとの化合物TiB2 を形成し、
加工性を劣化させるため、0.01%を上限とする。
The aluminum alloy plate according to the present invention includes:
If necessary, one or more of Ti, B and Be are further added. To improve hot workability, T
The addition of i or B is effective. Ti and B refine the crystal grains in the ingot and improve the hot workability. However, crystallization of primary crystal Al 3 Ti particles significantly deteriorates moldability, so that crystallization must be prevented.
Therefore, the upper limit of the Ti content is 0.2%. Also, when B is added excessively, a compound TiB 2 with Ti is formed,
In order to deteriorate the workability, the upper limit is 0.01%.

【0010】また、Beについては、特にMgが1.5
%を超えるような合金成分の時に、溶湯の酸化防止のた
めに添加される。そのため、過度の添加はその効果が飽
和するため、0.005%を上限とする。本発明のアル
ミニウム合金板は、上記の成分からなることを特徴とす
るが、それ以外の成分についても通常のアルミニウム合
金板に含まれる成分を含有しても何らかまわない。特
に、CrやZnについては、成形加工性や耐食性を劣化
させる元素であるため、その添加は極力少ない方が良
く、合計で0.1%以下とする。
Regarding Be, in particular, Mg is 1.5
When the content of alloying component exceeds%, it is added to prevent oxidation of the molten metal. Therefore, the effect is saturated by excessive addition, so 0.005% is made the upper limit. The aluminum alloy plate of the present invention is characterized by comprising the above-mentioned components, but other components may be contained in the components contained in a normal aluminum alloy plate. In particular, since Cr and Zn are elements that deteriorate the formability and corrosion resistance, it is better to add Cr as little as possible, and the total content is 0.1% or less.

【0011】次に、本発明において最も重要な晶出物の
形態について述べる。本発明者らは、アルミニウム合金
板の衝撃特性を向上させるために晶出物の形態について
検討した結果、平均サイズで晶出物の圧延方向断面の大
きさが下記の2式を満たすと、衝撃特性が飛躍的に向上
することが見いだされた。 (D1+DC )/2≦5μm D1/DC ≦1.25 (ここで、D1:晶出物の圧延方向の長さ、DC :晶出
物の板厚方向の長さ)
Next, the form of the crystallized substance which is the most important in the present invention will be described. As a result of studying the morphology of crystallized substances in order to improve the impact properties of the aluminum alloy sheet, the present inventors found that when the size of the crystallized substance in the rolling direction cross section satisfies the following two equations in terms of average size, It has been found that the characteristics are dramatically improved. (D1 + D C ) / 2 ≦ 5 μm D1 / D C ≦ 1.25 (where D1: length of crystallized product in rolling direction, D C : length of crystallized product in plate thickness direction)

【0012】上記知見を得た実験結果を図1に示す。実
験は、Al−0.7%Si−0.7%Mgの6000系
合金において、凝固時における冷却速度を変化させ、晶
出物の大きさ及び形状を変えた材料を準備し、ひずみ速
度が10-3-1と10s-1の引張試験における引張強度
の上昇量を調査した。図1の結果より、(D1+DC
/2≦5μmかつD1/DC ≦1.25の条件下におい
て、高ひずみ速度による引張強度の上昇が認められ、衝
撃特性の向上効果が得られた。
FIG. 1 shows the experimental results obtained from the above findings. In the experiment, in a 6000 series alloy of Al-0.7% Si-0.7% Mg, the cooling rate at the time of solidification was changed to prepare a material in which the size and shape of the crystallized substance were changed, and the strain rate was the amount of increase in tensile strength in a tensile test of 10 -3 s -1 and 10s -1 was investigated. From the result of Figure 1, (D1 + D C )
Under the conditions of 1/2 ≦ 5 μm and D1 / D C ≦ 1.25, an increase in tensile strength due to a high strain rate was observed, and an effect of improving impact properties was obtained.

【0013】次に、本発明におけるアルミニウム合金板
の製造方法について説明する。本発明の成分組成の合金
は、DC鋳造法その他の鋳造法で鋳造する。また、薄ス
ラブ連鋳法や双ロール鋳造法を用いてもかまわない。本
発明においては、凝固時の冷却速度が最も重要な因子で
ある。図2及び3は、図1の実験における凝固時の冷却
速度と晶出物の形態(等方性)との関係を示した結果で
ある。ここで、晶出物のサイズの測定は、任意のL断面
(圧延方向と平行な断面)において実施し、500倍の
光学顕微鏡組織で1000個分の晶出物の圧延方向及び
板厚方向のサイズの平均値より求めた。晶出物の形態が
上記の2式を満たすようにするには、凝固時の冷却速度
を5℃/s以上にすればよいことが判明した。そこで、
凝固時の冷却速度が5℃/s以上とする。凝固時の冷却
速度は、速ければ速いほど晶出物の大きさが小さく、等
方的になるため好ましいが、500℃/sを超えると、
固溶元素が多量に残存することになり、硬質化すると同
時に延性が低下する。そのため、好ましくは5000℃
/s以下の冷却速度がよい。
Next, a method for manufacturing the aluminum alloy sheet according to the present invention will be described. The alloy having the composition of the present invention is cast by a DC casting method or another casting method. Further, a thin slab continuous casting method or a twin roll casting method may be used. In the present invention, the cooling rate during solidification is the most important factor. 2 and 3 are results showing the relationship between the cooling rate during solidification and the morphology (isotropic) of the crystallized substance in the experiment of FIG. Here, the size of the crystallized substance is measured in an arbitrary L cross section (cross section parallel to the rolling direction), and the crystallized amount of 1000 crystallized substances in the rolling direction and the plate thickness direction are measured with an optical microscope structure of 500 times. It was calculated from the average size. It was found that the cooling rate at the time of solidification should be 5 ° C./s or more in order that the morphology of the crystallized substance should satisfy the above two expressions. Therefore,
The cooling rate during solidification is 5 ° C / s or more. The higher the cooling rate during solidification, the smaller the size of the crystallized substance and the more isotropic it is. However, when it exceeds 500 ° C / s,
A large amount of the solid solution element remains, which hardens and simultaneously reduces ductility. Therefore, preferably 5000 ℃
A cooling rate of / s or less is good.

【0014】あとに続く熱間圧延は通常の方法でよく、
特に規定されるものではない。すなわち、450〜58
0℃の範囲内で均質化処理を施した後、熱間圧延を行
う。この時、薄スラブ連鋳法や双ロール鋳造法を用いた
場合には、室温まで冷却することなく熱間圧延を実施す
ることができる。次に、冷間圧延を行った後、溶体化再
結晶処理を実施する。その際の熱処理条件についても特
に規定されるものではなく、通常の連続焼鈍あるいは箱
焼鈍で実施すれば良い。さらに、続いて調質圧延を実施
することも本発明の効果を損なうものではない。
Subsequent hot rolling may be a conventional method,
It is not specified in particular. That is, 450 to 58
After performing homogenization treatment within the range of 0 ° C., hot rolling is performed. At this time, when the thin slab continuous casting method or the twin roll casting method is used, hot rolling can be performed without cooling to room temperature. Next, after cold rolling, solution treatment recrystallization treatment is performed. The heat treatment conditions at that time are not particularly specified, and normal continuous annealing or box annealing may be performed. Further, subsequent temper rolling does not impair the effects of the present invention.

【0015】[0015]

【実施例】【Example】

実施例1 Mg:1.31%、Si:1.30%を含む6000系
アルミニウム合金を溶製し、表1に示すような種々の冷
却速度で凝固させ、鋳造材とした。その後、通常の方法
にしたがって熱間圧延、冷間圧延を実施し、板厚1mm
の冷延板とした。この冷延板を連続焼鈍で520℃×1
0秒の溶体化処理後、室温まで冷却した。材質評価につ
いては、まず、引張試験は供試材をJIS Z 220
1にしたがい5号試験片に加工し、JIS Z 224
1の試験方法にしたがって実施した。さらに、衝撃特性
を評価するために、引張速度をひずみ速度100/sと
して引張試験を行った。また、焼付硬化量(BH)は2
%の予ひずみを付与した後、170℃で20分の熱処理
を実施し、再度引張試験による降伏点の上昇量で評価し
た。表1に示すように、本発明例のNo.3,4,5で
は、晶出物の形態が微細均一化(等方化)したことに起
因して、ひずみ速度100/sでの引張試験において強
度が増加している。また、局部伸び(1−El)も改善
されている。一方、比較例のNo.1及び2では、凝固
時の冷却速度が本発明の規定範囲から低くはずれたた
め、晶出物の大きさが大きくなりすぎたことにより、ひ
ずみ速度100/sでの引張試験において強度が増加し
ない。
Example 1 A 6000 series aluminum alloy containing Mg: 1.31% and Si: 1.30% was melted and solidified at various cooling rates as shown in Table 1 to obtain a cast material. After that, hot rolling and cold rolling are performed according to the usual method, and the plate thickness is 1 mm.
Cold rolled sheet. This cold rolled sheet is continuously annealed at 520 ° C x 1
After the solution treatment for 0 seconds, it was cooled to room temperature. Regarding the material evaluation, first, the tensile test was performed using JIS Z 220
Processed into No. 5 test piece according to No. 1, JIS Z 224
It carried out according to the test method of 1. Further, in order to evaluate the impact properties, a tensile test was conducted with a tensile speed of 100 / s as a strain rate. The bake hardening amount (BH) is 2
%, A heat treatment was carried out at 170 ° C. for 20 minutes, and the yield point was evaluated again by the tensile test. As shown in Table 1, No. 1 of the present invention example. In Nos. 3, 4, and 5, the strength increased in the tensile test at a strain rate of 100 / s due to the finely uniformed (isotropic) morphology of the crystallized substance. Further, the local elongation (1-El) is also improved. On the other hand, in Comparative Example No. In Nos. 1 and 2, the cooling rate at the time of solidification was out of the specified range of the present invention, and the size of the crystallized substance was too large, so that the strength did not increase in the tensile test at the strain rate of 100 / s.

【0016】[0016]

【表1】 [Table 1]

【0017】実施例2 表2に示すような種々のアルミニウム合金を溶製し、本
発明の範囲内における冷却速度で凝固させ、鋳片を作製
した。その後、通常の方法で熱間圧延、冷間圧延を行
い、1mmの冷延板とした。なお、薄スラブ連鋳法で鋳
造したものは直送で熱間圧延を行った後、冷間圧延を実
施した。また、双ロール法では3mmに鋳造し、熱間圧
延を実施することなく冷間圧延を行った。こうして得ら
れた冷延板を、連続焼鈍あるいは箱焼鈍によって再結晶
処理を行った後、実施例1と同様の方法で材質評価し
た。さらには耐食性の評価試験も行った。その評価は、
りん酸亜鉛処理を施した各合金に、市販の電着塗装と中
塗り、上塗りを行い、塗装面にL方向とC方向にカッタ
ーで切れ目を入れ、ASTM D2083法に準拠して
行った。膨れ幅が2mm以下を〇、2mmを超える場合
を×とした。
Example 2 Various aluminum alloys as shown in Table 2 were melted and solidified at a cooling rate within the range of the present invention to produce cast pieces. Then, hot rolling and cold rolling were performed by a usual method to obtain a 1 mm cold rolled sheet. In addition, what was cast by the thin slab continuous casting method was hot-rolled directly and then cold-rolled. Further, in the twin roll method, it was cast to 3 mm and cold-rolled without hot-rolling. The cold-rolled sheet thus obtained was subjected to recrystallization treatment by continuous annealing or box annealing, and then the material quality was evaluated in the same manner as in Example 1. Furthermore, an evaluation test of corrosion resistance was also conducted. The evaluation is
Each of the zinc phosphate-treated alloys was subjected to commercial electrodeposition coating, intermediate coating and top coating, and the coated surface was cut with a cutter in the L direction and the C direction, and the coating was performed according to ASTM D2083 method. When the swollen width was 2 mm or less, it was evaluated as ◯, and when it was more than 2 mm, it was evaluated as x.

【0018】[0018]

【表2】 [Table 2]

【0019】結果を表3に示す。本発明例(No.6〜
12)では、100/sのひずみ速度の速い領域で強度
の上昇が認められ、衝撃特性に優れる。一方、本発明の
範囲からMgが低くはずれたNo.13では、6000
系合金に要求される高い焼付硬化性が得られない。Si
が本発明の範囲から高くはずれたNo.14は、粗大S
i相の析出により延性の劣化を招くと同時に、ひずみ速
度=100/sで強度が高くならないため、衝撃特性が
悪い。Cuが本発明の範囲を超えて添加されると、N
o.15のように耐食性が悪い。さらに、Feが高くは
ずれたNo.16では、形成される晶出物の量が多くな
り、延性を低下させ、ひずみ速度=100/sで強度が
高くならず、衝撃特性が悪い。また、No.17では、
Cuが本発明の範囲から低くはずれたため、自動車用板
材に要求される、6000系合金の特徴である焼付硬化
性が得られない。
The results are shown in Table 3. Examples of the present invention (No. 6 to
In 12), an increase in strength was observed in a region where the strain rate was high at 100 / s, and the impact characteristics were excellent. On the other hand, in the case of No. 13 is 6000
The high bake hardenability required for alloys cannot be obtained. Si
Which deviates from the scope of the present invention. 14 is a coarse S
At the same time as causing the deterioration of ductility due to the precipitation of the i phase, the strength does not increase at the strain rate of 100 / s, and the impact characteristics are poor. If Cu is added beyond the scope of the invention, N
o. No. 15 has poor corrosion resistance. Furthermore, the Fe. In No. 16, the amount of crystallized substances formed is large, the ductility is reduced, the strength is not high at a strain rate of 100 / s, and the impact properties are poor. In addition, No. In 17,
Since Cu deviates from the range of the present invention to a low level, the bake hardenability, which is a characteristic of the 6000 series alloy, required for automobile plate materials cannot be obtained.

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【発明の効果】本発明のアルミニウム合金板は、晶出物
の形態を等方的に調整するので、従来のアルミニウム合
金に比べて衝撃特性が優れ、自動車ボディ用等として好
適なアルミニウム合金板の提供が可能となる。
EFFECT OF THE INVENTION The aluminum alloy sheet of the present invention isotropically adjusts the morphology of crystallized substances, so that it has excellent impact characteristics as compared with conventional aluminum alloys and is suitable for automobile bodies. It becomes possible to provide.

【図面の簡単な説明】[Brief description of drawings]

【図1】晶出物の形態とひずみ速度の変化による引張強
度の上昇量との関係を示す図、
FIG. 1 is a diagram showing the relationship between the morphology of crystallized substances and the amount of increase in tensile strength due to changes in strain rate,

【図2】凝固時冷却速度と(D1+DC )/2の関係を
示す図、
FIG. 2 is a diagram showing a relationship between a cooling rate during solidification and (D1 + D C ) / 2,

【図3】凝固時冷却速度とD1/DC の関係を示す図で
ある。
FIG. 3 is a diagram showing a relationship between a cooling rate during solidification and D1 / D C.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、Mg:0.4〜2%、Si:
0.4〜2%を含み、残部はAl及び不可避的不純物か
らなるアルミニウム合金板において、前記合金板中に晶
出した晶出物の圧延方向断面における平均サイズが
(1)及び(2)式を満足することを特徴とする衝撃特
性の優れたアルミニウム合金板。 (D1+DC )/2≦5μm ・・・・・・・・・(1) D1/DC ≦1.25 ・・・・・・・・・(2) (ここで、D1:晶出物の圧延方向の長さ、DC :晶出
物の板厚方向の長さ)
1. By weight%, Mg: 0.4-2%, Si:
In an aluminum alloy plate containing 0.4 to 2%, the balance being Al and unavoidable impurities, the average size of the crystallized product crystallized in the alloy plate in the rolling direction cross section is expressed by formulas (1) and (2). An aluminum alloy plate with excellent impact characteristics, which satisfies the following requirements. (D1 + D C ) / 2 ≦ 5 μm (1) D1 / D C ≦ 1.25 (2) (where D1: crystallized product (Length in rolling direction, D C : length in thickness direction of crystallized product)
【請求項2】 重量%で、Mg:0.4〜2%、Si:
0.4〜2%を含み、残部はAl及び不可避的不純物
に、さらにCu:1%以下、Fe:0.5%以下のうち
1種以上含むことを特徴とする請求項1記載のアルミニ
ウム合金板。
2. By weight%, Mg: 0.4-2%, Si:
2. The aluminum alloy according to claim 1, wherein the aluminum alloy contains 0.4 to 2%, and the balance contains Al and unavoidable impurities and one or more of Cu: 1% or less and Fe: 0.5% or less. Board.
【請求項3】 重量%で、Mg:0.4〜2%、Si:
0.4〜2%を含み、残部はAl及び不可避的不純物
に、さらにTi:0.2%以下、B:0.01%以下、
Be:0.005%以下のうち1種以上を含むことを特
徴とする請求項1または2のいずれか1項に記載のアル
ミニウム合金板。
3. By weight%, Mg: 0.4-2%, Si:
0.4 to 2%, the balance to Al and unavoidable impurities, Ti: 0.2% or less, B: 0.01% or less,
Be: 0.005% or less is included, and 1 or more types are included, The aluminum alloy plate of any one of Claim 1 or 2 characterized by the above-mentioned.
【請求項4】 請求項1、2または3記載のアルミニウ
ム合金板の製造方法において、凝固時の冷却速度を5℃
/s以上として鋳造し、再加熱後、所定の熱間圧延及び
冷間圧延を実施し、再結晶焼鈍を施すことを特徴とする
衝撃特性に優れたアルミニウム合金板の製造方法。
4. The method for producing an aluminum alloy plate according to claim 1, 2 or 3, wherein the cooling rate during solidification is 5 ° C.
A method for producing an aluminum alloy sheet having excellent impact characteristics, which comprises casting at a rate of not less than 1 s / s, reheating, performing predetermined hot rolling and cold rolling, and performing recrystallization annealing.
JP7345396A 1996-03-28 1996-03-28 Aluminum alloy sheet excellent in impact characteristic and its production Withdrawn JPH09263869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7345396A JPH09263869A (en) 1996-03-28 1996-03-28 Aluminum alloy sheet excellent in impact characteristic and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7345396A JPH09263869A (en) 1996-03-28 1996-03-28 Aluminum alloy sheet excellent in impact characteristic and its production

Publications (1)

Publication Number Publication Date
JPH09263869A true JPH09263869A (en) 1997-10-07

Family

ID=13518680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7345396A Withdrawn JPH09263869A (en) 1996-03-28 1996-03-28 Aluminum alloy sheet excellent in impact characteristic and its production

Country Status (1)

Country Link
JP (1) JPH09263869A (en)

Similar Documents

Publication Publication Date Title
KR101950595B1 (en) Aluminium alloy and methods of fabricating the same
EP0480402A1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
WO2015155911A1 (en) High-strength aluminum alloy plate having exceptional bendability and shape fixability, and method for manufacturing same
JP2997145B2 (en) Method for producing aluminum alloy sheet having delayed aging at room temperature
US20090159160A1 (en) Method for making high strength aluminum alloy sheet and products made by same
JPH1161311A (en) Aluminum alloy sheet for car body panel and its production
JPH07252571A (en) Automobile aluminum alloy sheet and its production
JPS62207851A (en) Rolled aluminum alloy sheet for forming and its production
JPH06145926A (en) Production of aluminum alloy sheet for body sheet and aluminum alloy sheet obtained by the same
JPH07252574A (en) Al-cu-mg alloy excellent in toughness and its production
JP4001059B2 (en) Method for producing aluminum alloy sheet with excellent bake resistance
WO2005061744A1 (en) Aluminum alloy sheet excellent in resistance to softening by baking
US20030005984A1 (en) Aluminum alloy sheet material and method for producing the same
JP2595836B2 (en) Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same
JP3749627B2 (en) Al alloy plate with excellent press formability
JP2001262263A (en) Al-Mg SERIES Al ALLOY SHEET EXCELLENT IN FORMABILITY
JP3351087B2 (en) Manufacturing method of Al-Mg-Si alloy plate
JPH0543974A (en) Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its production
JP2856936B2 (en) Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same
JPH05331588A (en) Aluminum alloy sheet for forming excellent in flange formability and its production
JP6857535B2 (en) High-strength aluminum alloy plate with excellent formability, bendability and dent resistance and its manufacturing method
JP2003034835A (en) Aluminum alloy sheet and manufacturing method therefor
JPH05345963A (en) Manufacture of high formability aluminum alloy sheet
JPH09287042A (en) Aluminum alloy sheet excellent in impact characteristic and its production
JPH0547616B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030603