JPH07252574A - Al-cu-mg alloy excellent in toughness and its production - Google Patents

Al-cu-mg alloy excellent in toughness and its production

Info

Publication number
JPH07252574A
JPH07252574A JP4725494A JP4725494A JPH07252574A JP H07252574 A JPH07252574 A JP H07252574A JP 4725494 A JP4725494 A JP 4725494A JP 4725494 A JP4725494 A JP 4725494A JP H07252574 A JPH07252574 A JP H07252574A
Authority
JP
Japan
Prior art keywords
alloy
hot rolling
toughness
less
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4725494A
Other languages
Japanese (ja)
Inventor
Masahiro Yanagawa
政洋 柳川
Katsushi Matsumoto
克史 松本
Hiroyuki Morimoto
啓之 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4725494A priority Critical patent/JPH07252574A/en
Publication of JPH07252574A publication Critical patent/JPH07252574A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To produce an Al-Cu-Mg alloy excellent in toughness, contg. specified amounts of Cu, Mg, Fe, Si Cr or the like, by executing hot rolling or the like after continuous casting and specifying the cooling rate at the time of solidification. CONSTITUTION:An Al alloy having a compsn. contg., by weight, 2 to 7% Cu, 0.2 to 2.5% Mg, 0<Fe<=1.0% and 0<Si<=1.0%, contg. one or more kinds among 0.05 to 0.3% Cr, 0.05 to 0.8% Mn, 0.05 to 0.3% Zr and 0.03 to 0.3% Ti, and the balance Al is used. This alloy is subjected to hot rolling after continuous casting or is subjected to heat treatment together with hot rolling and cold rolling to control the maximum length of insoluble compound grains contg. Fe and Si to <=2mum and the volume fractional rate to <=2.0%. For control in such manner, the continuous casting is executed under the conditions in which the cooling rate R ( deg.C/sec) at the time of solidification satisfies R>=5 and R>=7.5 ([Fe]+[Si])+2, where [Fe] and [Si] denote the contents (%) of Fe and Si in the Al alloy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、靭性に優れたAl−C
u−Mg系合金及びその製造方法に関し、詳細には航空
機,鉄道車両,スポーツ用品などにおいて高強度が要求
される構造部材用として好適な高強度Al合金であっ
て、しかも靭性に優れたAl合金及びその製造方法に関
するものである。
The present invention relates to Al-C having excellent toughness.
More specifically, the present invention relates to a u-Mg alloy and a method for producing the same, which is a high-strength Al alloy suitable for structural members that require high strength in aircraft, railway vehicles, sports equipment, etc. And a manufacturing method thereof.

【0002】[0002]

【従来の技術】代表的な高強度Al合金としては、Al
−Cu−Mg系合金がジュラルミンの名で知られてお
り、JIS規格の2014合金,2017合金,202
4合金等が開発されている。尚上記Al−Cu−Mg系
合金の高強度特性は、時効硬化によって得られるもので
あり、これを製造するにあたっては、まずインゴットを
鋳造し、必要に応じて均質化処理を行ない、高温で充分
鍛造して鋳造組織を取り除き、更に溶体化処理の後焼き
入れをして時効処理を施すという方法が一般的である。
2. Description of the Related Art Al is a typical high strength Al alloy.
-Cu-Mg-based alloy is known under the name of duralumin, and JIS alloy 2014 alloy, 2017 alloy, 202
4 alloys have been developed. The high-strength characteristics of the Al-Cu-Mg-based alloy are obtained by age hardening, and in producing this, first, an ingot is cast, and if necessary, homogenization treatment is carried out, and high temperature is sufficient. A general method is to forge and remove the cast structure, and then perform solution treatment, quenching, and aging treatment.

【0003】しかしながら前記Al−Cu−Mg系合金
は靭性が低く、特に熱間・冷間加工終了後の板厚方向
(ST方向)の靭性が、加工方向(L方向)や幅方向
(LL方向)に比べて、大幅に低いという問題を有して
いる。これは合金中の不溶性化合物が加工方向に伸延さ
れて連なり、鋭い切欠きとして働くことに起因してい
る。尚上記不溶性化合物とは、Al精練時に残存するF
eやSiなどの不純物を含有する化合物であって、均質
化処理や溶体化処理における処理温度を高くしても合金
中に固溶せず粒状に晶出する化合物である。
However, the Al-Cu-Mg-based alloy has low toughness, and in particular, the toughness in the sheet thickness direction (ST direction) after hot / cold working is the same in the working direction (L direction) and width direction (LL direction). ) Has a problem that it is significantly lower than This is due to the fact that the insoluble compound in the alloy extends in the working direction and becomes continuous, and acts as a sharp notch. The above-mentioned insoluble compound means F which remains during Al refining.
It is a compound containing impurities such as e and Si, and is a compound that does not form a solid solution in the alloy and crystallizes into particles even if the treatment temperature in the homogenization treatment or the solution treatment is increased.

【0004】この様なAl−Cu−Mg系合金の靭性を
改善する手段としては、前記不溶性化合物の原因となる
FeやSiなどの不純物元素の含有量を極力制限する方
法が考えられる。例えばJIS規格では前記2014合
金のFe量が0.7%以下、Si量は0.5〜1.2%
に規定されているが、特開昭55−47371号公報に
は不純物であるFeを0.15%以下、Siを0.1%
以下に限定する方法が開示されている。しかしながら不
可避不純物であるFe及びSiの含有量を極力制限する
ことは、即ち極めて純度の高いAl地金を必要とするも
のであり、コスト高となって実用性に乏しい。
As a means for improving the toughness of such an Al--Cu--Mg type alloy, a method of limiting the content of impurity elements such as Fe and Si, which cause the insoluble compound, as much as possible is considered. For example, according to the JIS standard, the amount of Fe in the 2014 alloy is 0.7% or less, and the amount of Si is 0.5 to 1.2%.
However, in JP-A-55-47371, Fe, which is an impurity, is 0.15% or less, and Si is 0.1%.
The methods limited below are disclosed. However, limiting the contents of Fe and Si, which are inevitable impurities, as much as possible requires Al ingot with extremely high purity, resulting in high cost and poor practicability.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記事情に着
目してなされたものであって、不可避不純物であるFe
やSiの含有量は従来と同程度であっても、製造方法を
改善することにより圧延加工後のST方向においても靭
性に優れたAl−Cu−Mg系合金及びその製造方法を
提供しようとするものである。
The present invention has been made in view of the above circumstances, and is an unavoidable impurity Fe.
The present invention aims to provide an Al-Cu-Mg-based alloy excellent in toughness in the ST direction after rolling and a method for producing the same by improving the production method even if the content of Si and Si is about the same as conventional ones. It is a thing.

【0006】[0006]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係るAl−Cu−Mg系合金とは、 Cu:2〜7% Mg:0.2〜2.5% Fe:1.0%以下(0%を含まない) Si:1.0%以下(0%を含まない) の要件を満たし、かつCr,Mn,ZrおよびTiより
なる群から選択された1種以上を夫々 Cr:0.05〜0.3% Mn:0.05〜0.8% Zr:0.05〜0.3% Ti:0.03〜0.3% の範囲内で含有し、残部がAlと不可避不純物からなる
Al合金において、連続鋳造後熱間圧延を行うか、また
は熱間圧延及び冷間圧延を行うと共に熱処理を施して、
Fe及びSiを含む不溶性化合物粒の最大長さを2μm
以下、かつ体積分率を2.0%以下に制御してなること
を要旨とするものである。
The Al-Cu-Mg alloy according to the present invention, which has been able to solve the above-mentioned problems, includes Cu: 2 to 7% Mg: 0.2 to 2.5% Fe: 1 0.0% or less (not including 0%) Si: 1.0% or less (not including 0%), and one or more selected from the group consisting of Cr, Mn, Zr and Ti, respectively. Cr: 0.05 to 0.3% Mn: 0.05 to 0.8% Zr: 0.05 to 0.3% Ti: 0.03 to 0.3%, with the balance being Al In an Al alloy consisting of and unavoidable impurities, hot rolling is performed after continuous casting, or hot rolling and cold rolling are performed together with heat treatment,
The maximum length of insoluble compound particles containing Fe and Si is 2 μm
The gist of the invention is to control the volume fraction to 2.0% or less.

【0007】そして上記Al−Cu−Mg系合金を製造
する為の好適手段の一つとして、本発明は凝固時の冷却
速度Rが R≧5……(1) R≧7.5([Fe]+[Si])+2……(2) 但し、R:凝固時の冷却速度(℃/sec) [Fe],[Si]:Al合金中のFe、Siの含有率
(%) を満足する条件で連続鋳造した後、該鋳片を熱間圧延温
度以上に保持された状態で直ちに、あるいは熱間圧延温
度に調整してから熱間圧延する方法を提供するものであ
る。尚上記条件式(1),(2)で示される推奨範囲は
図1に示される如く、[Fe]+[Si]の値が0.4
%以下のときは(1)式によって、また[Fe]+[S
i]の値が0.4%超のときは(2)式によって規定さ
れることを意味する。
As one of the preferred means for producing the above Al-Cu-Mg alloy, the present invention has a cooling rate R during solidification of R ≧ 5 (1) R ≧ 7.5 ([Fe ] + [Si]) + 2 (2) However, R: cooling rate during solidification (° C / sec) [Fe], [Si]: Fe and Si contents (%) in the Al alloy are satisfied. It is intended to provide a method of hot-rolling immediately after the continuous casting under the conditions and holding the slab at a temperature higher than the hot-rolling temperature or after adjusting the hot-rolling temperature. The recommended range represented by the conditional expressions (1) and (2) is such that the value of [Fe] + [Si] is 0.4 as shown in FIG.
% Or less, according to the equation (1), [Fe] + [S
When the value of i] exceeds 0.4%, it means that it is defined by the equation (2).

【0008】[0008]

【作用】本発明者らはAl−Cu−Mg系合金の靭性を
向上させるという課題について鋭意研究を重ねた結果、
たとえFe及びSiをある程度含有したAl−Cu−M
g系合金であっても、連続鋳造によりFe及びSiを合
金中に強制固溶させ、Fe及びSiを含む不溶性化合物
粒の最大長さを2μm以下で、しかもその体積分率を2
%以下に制御したものでは、強度を損なうことなく圧延
加工後のST方向の靭性も向上させることができるとの
知見を得た。さらに上記不溶性化合物粒の最大長さ及び
体積分率を制御するには、連続鋳造過程における凝固時
の冷却速度を一定条件内に制御してFe及びSiを合金
中に強制固溶することが最良の方法であることをつきと
め、本発明を完成させた。まず本発明に係る成分組成の
限定理由を以下に述べる。
The present inventors have conducted intensive studies on the problem of improving the toughness of Al-Cu-Mg alloys, and as a result,
Al-Cu-M containing some Fe and Si
Even in the case of a g-based alloy, Fe and Si are forcibly solid-solved in the alloy by continuous casting, the maximum length of insoluble compound particles containing Fe and Si is 2 μm or less, and the volume fraction thereof is 2
It was found that when the content is controlled to be not more than%, the toughness in the ST direction after rolling can be improved without impairing the strength. Furthermore, in order to control the maximum length and volume fraction of the insoluble compound particles, it is best to control the cooling rate during solidification in the continuous casting process within a certain condition to force Fe and Si to form a solid solution in the alloy. The present invention has been completed by identifying the above method. First, the reasons for limiting the component composition according to the present invention will be described below.

【0009】Cu:2〜7% Mg:0.2〜2.5% Cu及びMgは、Al2 CuMgという1μm以下の微
細な析出物を形成し、強度の向上に大きく寄与する元素
である。Cu量が2%未満またはMg量が0.2%未満
では充分な強度が得られず、一方Cu量が7%を超える
か又はMg量が2.5%を超えると、Fe及びSiを含
有する不溶性化合物粒の最大長さが2μmを超えて粗大
な晶出物となり、靭性を低下させる。従ってCu量は2
〜7%かつMg量は0.2〜2.5%であることが必要
である。
Cu: 2 to 7% Mg: 0.2 to 2.5% Cu and Mg are elements that form fine precipitates of 1 μm or less called Al 2 CuMg and greatly contribute to the improvement of strength. If the Cu content is less than 2% or the Mg content is less than 0.2%, sufficient strength cannot be obtained, while if the Cu content exceeds 7% or the Mg content exceeds 2.5%, Fe and Si are contained. The maximum length of the insoluble compound particles exceeds 2 μm to form coarse crystallized substances, which lowers the toughness. Therefore, the amount of Cu is 2
.About.7% and the amount of Mg is required to be 0.2 to 2.5%.

【0010】尚Cuの下限としては、より好ましくは
2.5%以上、更に好ましくは3.5%以上、一方上限
は好ましくは6.5%以下、更に好ましくは5.5%以
下である。またMgの下限としては、より好ましくは
0.5%以上、更に好ましくは1.0%以上、一方上限
は好ましくは2.0%以下、更に好ましくは1.7%以
下である。
The lower limit of Cu is more preferably 2.5% or more, still more preferably 3.5% or more, while the upper limit is preferably 6.5% or less, more preferably 5.5% or less. Further, the lower limit of Mg is more preferably 0.5% or more, still more preferably 1.0% or more, while the upper limit is preferably 2.0% or less, more preferably 1.7% or less.

【0011】Cr:0.05〜0.3% Mn:0.05〜0.8% Zr:0.05〜0.3% Ti:0.03〜0.3% 本発明のAl合金においては、上記4種の金属元素のう
ち1種以上を上記の範囲内で含有させることにより、A
l合金の結晶粒を微細化し靭性を向上させることができ
る。しかも上記4種の金属元素はAlと化合して0.1
〜0.5μm程度の微細な析出物を形成することにより
強度の向上にも寄与する。但し含有量が少な過ぎると靭
性及び強度に対する向上効果が充分でなく、含有量が多
過ぎると粗大な晶出物を形成し、靭性を低下させてしま
う。従ってCr量は0.05〜0.3%,Mn量は0.
05〜0.8%,Zr量は0.05〜0.3%,Ti量
は0.03〜0.3%の範囲内とすることが必要であ
る。
Cr: 0.05 to 0.3% Mn: 0.05 to 0.8% Zr: 0.05 to 0.3% Ti: 0.03 to 0.3% In the Al alloy of the present invention, By containing at least one of the above four metal elements within the above range, A
It is possible to refine the crystal grains of the 1-alloy and improve the toughness. Moreover, the above four kinds of metal elements are combined with Al to form 0.1
The formation of fine precipitates of about 0.5 μm also contributes to the improvement of strength. However, if the content is too small, the effect of improving toughness and strength is not sufficient, and if the content is too large, coarse crystallized substances are formed and the toughness is reduced. Therefore, the Cr content is 0.05 to 0.3% and the Mn content is 0.1%.
05-0.8%, Zr amount is 0.05-0.3%, and Ti amount is 0.03-0.3%.

【0012】尚Crの下限としては、より好ましくは
0.08%以上、更に好ましくは0.1%以上、一方上
限は好ましくは0.25%以下、更に好ましくは0.2
%以下である。Mnの下限としては、より好ましくは
0.1%以上、更に好ましくは0.2%以上、一方上限
は好ましくは0.6%以下、更に好ましくは0.5%以
下である。
The lower limit of Cr is more preferably 0.08% or more, further preferably 0.1% or more, while the upper limit is preferably 0.25% or less, more preferably 0.2.
% Or less. The lower limit of Mn is more preferably 0.1% or more, still more preferably 0.2% or more, while the upper limit is preferably 0.6% or less, more preferably 0.5% or less.

【0013】Zrの下限としては、より好ましくは0.
08%以上、更に好ましくは0.1%以上、一方上限は
好ましくは0.25%以下、更に好ましくは0.2%以
下である。またTiの下限としては、より好ましくは
0.05%以上、更に好ましくは0.07%以上、一方
上限は好ましくは0.2%以下、更に好ましくは0.1
5%以下である。
The lower limit of Zr is more preferably 0.
08% or more, more preferably 0.1% or more, while the upper limit is preferably 0.25% or less, more preferably 0.2% or less. Further, the lower limit of Ti is more preferably 0.05% or more, still more preferably 0.07% or more, while the upper limit is preferably 0.2% or less, further preferably 0.1%.
It is 5% or less.

【0014】Fe:1.0%以下(0%を含まない) Si:1.0%以下(0%を含まない) Fe及びSiはAl精練時に残存する不可避不純物であ
り、不溶性化合物を形成することから、一般的に言って
Al合金にとって望ましくない元素であり、通常は極力
制限される。本発明ではFe量及びSi量ともに1.0
%まで許容できるものの、1.0%を超えると不溶性化
合物が粗大かつ多量に形成され、靭性が著しく低下す
る。
Fe: 1.0% or less (not including 0%) Si: 1.0% or less (not including 0%) Fe and Si are inevitable impurities remaining during Al refining and form an insoluble compound. Therefore, it is generally an undesirable element for Al alloys and is usually limited as much as possible. In the present invention, both the amount of Fe and the amount of Si are 1.0
%, But if it exceeds 1.0%, coarse and large amounts of insoluble compounds are formed, and the toughness is significantly reduced.

【0015】本発明に係るAl−Cu−Mg系合金にお
いては、Fe及びSiを含む不溶性化合物粒の最大長さ
及びその体積分率を制御することが高い靭性を得る上で
非常に重要である。上記不溶性化合物粒の最大長さが2
μm以下、かつその体積分率が2.0%以下である場合
には、圧延加工後のST方向にも優れた靭性を発揮す
る。上記不溶性化合物粒の最大長さは、高靭性を得る上
で1.5μm以下が望ましく、1.0μm以下がより好
ましい。一方不溶性化合物の体積分率は1.5%以下が
好ましく、1.0%以下であればより望ましい。
In the Al-Cu-Mg alloy according to the present invention, it is very important to control the maximum length of insoluble compound particles containing Fe and Si and the volume fraction thereof in order to obtain high toughness. . The maximum length of the insoluble compound particles is 2
When it is not more than μm and its volume fraction is not more than 2.0%, it exhibits excellent toughness in the ST direction after rolling. The maximum length of the insoluble compound particles is preferably 1.5 μm or less, and more preferably 1.0 μm or less in order to obtain high toughness. On the other hand, the volume fraction of the insoluble compound is preferably 1.5% or less, more preferably 1.0% or less.

【0016】上記不溶性化合物粒の最大長さとは、例え
ば球状や円盤状の結晶であれば最大直径を与える様な切
断面を形成した時の最大直径であり、また略立方体や略
直方体の結晶であれば最も長い対角線の長さを指し、不
特定な形状の結晶であれば最も離れた表面上の2点間の
長さを言う。尚上記不溶性化合物粒の最大長さを測定す
るにあたっては、電子顕微鏡を用い顕微鏡視野で算出す
ればよい。
The maximum length of the insoluble compound grains is, for example, a maximum diameter when a cut surface is formed so as to give a maximum diameter in the case of spherical or disc-shaped crystals, and is a substantially cubic or rectangular parallelepiped crystal. If there is a crystal with an unspecified shape, it means the length of the longest diagonal, if any, and the length between two points on the most distant surface. When measuring the maximum length of the insoluble compound particles, it may be calculated from the microscope field using an electron microscope.

【0017】上記不溶性化合物粒の最大長さ及び体積分
率を制御するには、上記成分組成の要件を満足するAl
合金を用いると共に、凝固時の冷却速度Rが下記
(1),(2)式 R≧5……(1)で且つ R≧7.5([Fe]+[Si])+2……(2) 但し、R:凝固時の冷却速度(℃/sec) [Fe],[Si]:Al合金中のFe、Siの含有率
(%) を満足する条件で連続鋳造を行なうことが重要である。
In order to control the maximum length and volume fraction of the above-mentioned insoluble compound particles, Al which satisfies the above-mentioned component composition requirements.
The alloy is used, and the cooling rate R during solidification is the following equations (1) and (2) R ≧ 5 ... (1) and R ≧ 7.5 ([Fe] + [Si]) + 2. However, R: cooling rate during solidification (° C./sec) [Fe], [Si]: It is important to carry out continuous casting under conditions satisfying Fe and Si contents (%) in the Al alloy. .

【0018】即ち本発明のAl合金では、連続鋳造法に
より凝固時に速やかに冷却してFeやSiなどの不可避
不純物元素を強制固溶させ、靭性に悪影響を及ぼす不溶
性化合物の大きさ及び量を制限しようというものであ
り、上記条件を満足すればFe及びSiを含有する不溶
性化合物粒の最大長さ2μm以下、体積分率を2%以下
に制御できる。一方凝固時の冷却速度が前記条件を満足
しない場合には、FeやSiという不純物元素を十分に
強制固溶させることができずに、Fe及びSiを含む不
溶性化合物粒の最大長さ及びその体積分率を本発明範囲
内に制御できず、十分な靭性を得ることはできない。
That is, in the Al alloy of the present invention, the size and amount of the insoluble compound which adversely affects the toughness are limited by rapidly cooling during solidification by the continuous casting method to forcibly dissolve inevitable impurity elements such as Fe and Si. If the above conditions are satisfied, the maximum length of insoluble compound particles containing Fe and Si can be controlled to 2 μm or less and the volume fraction can be controlled to 2% or less. On the other hand, when the cooling rate at the time of solidification does not satisfy the above conditions, the impurity elements such as Fe and Si cannot be sufficiently forced to form a solid solution, and the maximum length and volume of the insoluble compound particles containing Fe and Si are The fraction cannot be controlled within the range of the present invention, and sufficient toughness cannot be obtained.

【0019】前述の通り上記条件式(1),(2)で示
される推奨範囲は、[Fe]+[Si]の値が0.4%
以下のときは(1)式によって、また[Fe]+[S
i]の値が0.4%超のときは(2)式によって規定さ
れることを意味する。この様に本発明に係るAl合金を
製造するにあたりFeやSiなどの不可避不純物元素の
含有量が多い場合には、その含有量に応じて連続鋳造過
程における凝固時の冷却速度を増加させ、不溶性化合物
粒の最大長さ及び体積分率を制御することが望ましい。
As described above, the recommended range represented by the conditional expressions (1) and (2) is such that the value of [Fe] + [Si] is 0.4%.
In the following cases, according to equation (1), [Fe] + [S
When the value of i] exceeds 0.4%, it means that it is defined by the equation (2). Thus, when the content of unavoidable impurity elements such as Fe and Si in producing the Al alloy according to the present invention is high, the cooling rate during solidification in the continuous casting process is increased according to the content, and It is desirable to control the maximum length and volume fraction of the compound grains.

【0020】尚本発明のAl合金は、前記成分組成成の
Al合金を用いて特定条件による冷却速度で連続鋳造を
行い、Fe及びSiを含有する不溶性化合物粒の最大長
さ及び体積分率を制御することにより優れた靭性を得ら
れるものであり、その他の製造条件については特に制限
されるものではないが、以下の製造方法が例示できる。
The Al alloy of the present invention is continuously cast at a cooling rate under a specific condition using the Al alloy having the above-mentioned composition, and the maximum length and volume fraction of insoluble compound particles containing Fe and Si are determined. Excellent toughness can be obtained by controlling, and other production conditions are not particularly limited, but the following production methods can be exemplified.

【0021】まず本発明に係る合金組成を有するAl合
金を溶融体とし、この溶融体を連続鋳造する。連続鋳造
法としては、水冷式連続鋳造法、双ロール式連続鋳造
法、ベルト式連続鋳造法、ブロック式連続鋳造法などを
採用することができるが、連続鋳造から熱間圧延工程へ
の移行時期は、鋳片内部が固相線温度以下にまで低下し
て完全に凝固した後にタイミングを合わせるのが好まし
い。
First, an Al alloy having the alloy composition according to the present invention is used as a melt, and this melt is continuously cast. As the continuous casting method, a water-cooled continuous casting method, a twin roll type continuous casting method, a belt type continuous casting method, a block type continuous casting method, etc. can be adopted, but the transition time from the continuous casting to the hot rolling step It is preferable to adjust the timing after the inside of the slab has fallen below the solidus temperature and has completely solidified.

【0022】本発明は、連続鋳造して得られる移動帯板
の温度を熱間圧延温度以上に保持して直ちに熱間圧延
し、引き続いて、若しくは一旦巻き取ってから冷間圧延
工程へ送る所謂連鋳・直送圧延方法に有利に適用される
が、この他連続鋳造の後、一旦保持し、鋳片温度が実質
的に降下しないうちに熱間圧延へ送り、更に冷間圧延を
行なう方法にも適用することができる。
In the present invention, the temperature of the moving strip obtained by continuous casting is maintained at the hot rolling temperature or higher and hot rolling is immediately performed, and subsequently or once wound, it is sent to the cold rolling process. It is advantageously applied to continuous casting and direct-feed rolling, but in addition to this method, after continuous casting, it is temporarily held and sent to hot rolling before the slab temperature drops substantially, and further cold rolling is performed. Can also be applied.

【0023】尚熱間圧延を施す場合、開始温度は450
〜500℃の範囲が好ましく、300〜350℃の仕上
げ温度で終了することが望ましい。連続鋳造法では通常
4〜30mm程度の肉厚の移動帯板が連続的に製造さ
れ、これを熱間圧延し、更に必要に応じて冷間圧延を行
うことによって、0.7〜20mm程度の肉厚のAl合
金板に圧延される。圧下率としては30%以上が好まし
い。
When hot rolling is performed, the starting temperature is 450.
It is preferable to finish at a finishing temperature of 300 to 350 ° C. In the continuous casting method, a moving strip having a wall thickness of about 4 to 30 mm is usually continuously manufactured, and hot rolling is performed, and if necessary, cold rolling is performed to obtain a thickness of about 0.7 to 20 mm. It is rolled into a thick Al alloy plate. The rolling reduction is preferably 30% or more.

【0024】熱間圧延または熱間圧延及び冷間圧延を施
したAl合金板は、溶体化処理の後水焼き入れし、さら
に時効処理を施す。上記溶体化処理の条件としては処理
温度が450〜520℃、処理時間は1〜6時間が望ま
しい。時効処理の条件としては160〜200℃の時効
温度で8〜24時間が好ましい。
The hot-rolled or hot-rolled and cold-rolled Al alloy sheet is subjected to solution treatment, water-quenched, and then subjected to an aging treatment. As the conditions for the solution treatment, it is desirable that the treatment temperature is 450 to 520 ° C. and the treatment time is 1 to 6 hours. As the condition of the aging treatment, an aging temperature of 160 to 200 ° C. and 8 to 24 hours are preferable.

【0025】[0025]

【実施例】【Example】

実施例1〜15 表1に示す組成のAl合金を溶融体とし、連続鋳造法に
より肉厚20mmの移動帯板を作製し、直ちに熱間圧延
を施し肉厚5mmの板材とした。尚連続鋳造時の冷却速
度は12℃/secであり、上記熱間圧延の圧延開始温
度は450℃、、終了温度は350℃であった。上記板
材に500℃で4時間の溶体化処理を施して水焼き入れ
を行ない、180℃で24時間の時効処理を行なった。
Examples 1 to 15 Using an Al alloy having the composition shown in Table 1 as a melt, a moving strip having a thickness of 20 mm was prepared by a continuous casting method, and immediately hot-rolled to obtain a plate having a thickness of 5 mm. The cooling rate during continuous casting was 12 ° C./sec, the rolling start temperature of the hot rolling was 450 ° C., and the finishing temperature was 350 ° C. The plate material was subjected to solution treatment at 500 ° C. for 4 hours, water quenching, and aging treatment at 180 ° C. for 24 hours.

【0026】この様にして得たAl合金板について、走
査型電子顕微鏡観察と画像解析を行なうことによって不
溶性化合物粒の最大長さ及び体積分率を求めると共に、
ST方向の破壊靭性試験を行なった。さらに引張試験で
耐力を測定して強度の評価を行なった。結果は表1に併
記する。
With respect to the Al alloy plate thus obtained, the maximum length and volume fraction of the insoluble compound particles are obtained by observing with a scanning electron microscope and performing image analysis.
A fracture toughness test in the ST direction was performed. Further, the yield strength was measured by a tensile test to evaluate the strength. The results are also shown in Table 1.

【0027】比較例1〜15 表2に示す組成のAl合金溶湯を用いて、後述の条件以
外は実施例と同様にしてAl合金板を得た。走査型電子
顕微鏡観察と画像解析を行なうことによって不溶性化合
物粒の最大長さ及び体積分率を求めると共に、ST方向
の破壊靭性試験を行なった。さらに引張試験で耐力を測
定して強度の評価を行なった。結果は表2に併記する。
Comparative Examples 1 to 15 Using Al alloy melts having the compositions shown in Table 2, Al alloy plates were obtained in the same manner as in Examples except for the conditions described below. The maximum length and volume fraction of the insoluble compound grains were determined by observing with a scanning electron microscope and image analysis, and a fracture toughness test in the ST direction was performed. Further, the yield strength was measured by a tensile test to evaluate the strength. The results are also shown in Table 2.

【0028】尚比較例1,2のAl合金板は、連続鋳造
時の冷却速度を3℃/secとした以外は実施例と同様
にして得たものであり、比較例3〜13のAl合金板
は、本発明に係る合金組成のうち少なくとも1種の元素
において条件を満足しておらず、比較例14,15は従
来合金を用い通常の鋳造法(冷却速度1℃/sec)で
作製したものである。
The Al alloy sheets of Comparative Examples 1 and 2 were obtained in the same manner as in the Example except that the cooling rate during continuous casting was 3 ° C./sec. The plate did not satisfy the conditions in at least one element of the alloy composition according to the present invention, and Comparative Examples 14 and 15 were produced by a conventional casting method (cooling rate 1 ° C./sec) using a conventional alloy. It is a thing.

【0029】これら比較用のAl合金板について、走査
型電子顕微鏡観察と画像解析を行なうことによって不溶
性化合物粒の最大長さ及び体積分率を求めると共に、S
T方向の破壊靭性試験を行なった。さらに引張試験で耐
力を測定して強度の評価を行なった。結果は表2に併記
する。
With respect to these Al alloy plates for comparison, the maximum length and volume fraction of the insoluble compound particles were obtained by observing with a scanning electron microscope and image analysis.
A fracture toughness test in the T direction was performed. Further, the yield strength was measured by a tensile test to evaluate the strength. The results are also shown in Table 2.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】表1から明らかな様に本発明に係るAl合
金は、不溶性化合物粒の最大長さが2μm以下で、しか
も体積分率が2%以下であることから圧延加工後のST
方向の靭性も高く、かつ高強度であることが分かる。ま
た表2に明らかな通り、本発明に係る条件のいずれかを
満たさない比較例は、靭性または強度において充分では
ない。
As is clear from Table 1, in the Al alloy according to the present invention, the maximum length of the insoluble compound grains is 2 μm or less and the volume fraction is 2% or less.
It can be seen that the toughness in the direction is also high and the strength is high. Further, as is clear from Table 2, the comparative examples that do not satisfy any of the conditions according to the present invention are not sufficient in toughness or strength.

【0033】比較例においてNo.1,2は連続鋳造条件
が異なるもので、No.1は不溶性化合物粒の最大長さが
2μmを超え、No.2は不溶性化合物の体積分率が2%
を超えることから、夫々破壊靭性が低い。No.3はCu
量が少な過ぎる場合の比較例、No.5はMg量が少な過
ぎる場合の比較例であり、共に強度が著しく低い。No.
4はCu量が多過ぎる場合の比較例、No.6はMg量が
多過ぎる場合の比較例であり、不溶性化合物粒の最大長
さが2μmを超えて粗大であり、靭性が著しく低い。N
o.7はCr,Mn,Zr及びTiの量がいずれも少な過
ぎる場合の比較例であり、靭性に劣る。No.8〜11は
Cr,Mn,Zr及びTiのうち、いずれかの量が多過
ぎる場合の比較例であり、不溶性化合物粒の最大長さが
2μmを超えると共に体積分率も2%を超えており、靭
性が著しく低い。No.12,13は不可避不純物である
FeまたはSiの量が多過ぎる場合の比較例であり、靭
性に乏しい。No.14,15は従来のAl合金であり、
不溶性化合物粒の最大長さ及び体積分率が本発明の範囲
を超えており、靭性に劣り、しかもNo.15は強度も乏
しい。
In the comparative example, No. 1 and No. 2 are different in continuous casting conditions, No. 1 has a maximum length of insoluble compound particles exceeding 2 μm, and No. 2 has a volume fraction of insoluble compound of 2%.
Therefore, the fracture toughness is low. No.3 is Cu
No. 5 is a comparative example when the amount is too small, and No. 5 is a comparative example when the amount of Mg is too small, and both have extremely low strength. No.
No. 4 is a comparative example when the amount of Cu is too large, and No. 6 is a comparative example when the amount of Mg is too large. The maximum length of the insoluble compound grains exceeds 2 μm and is coarse, and the toughness is extremely low. N
o.7 is a comparative example in which the amounts of Cr, Mn, Zr, and Ti are all too small, and the toughness is poor. Nos. 8 to 11 are comparative examples when the amount of any one of Cr, Mn, Zr and Ti is too large, and the maximum length of the insoluble compound particles exceeds 2 μm and the volume fraction exceeds 2%. The toughness is extremely low. Nos. 12 and 13 are comparative examples when the amount of inevitable impurities Fe or Si is too large, and the toughness is poor. Nos. 14 and 15 are conventional Al alloys,
The maximum length and volume fraction of the insoluble compound particles are beyond the range of the present invention, the toughness is poor, and No. 15 is also poor in strength.

【0034】[0034]

【発明の効果】本発明は以上の様に構成されており、連
続鋳造法によりAl−Cu−Mg系合金中における不溶
性化合物粒の最大長さを2μm以下とし、しかもその体
積分率を2%以下に制御しているので、Al−Cu−M
g系合金の高強度という特性に加えて、その靭性も向上
させることができ、靭性に優れたAl−Cu−Mg系合
金及びその製造方法が提供できることとなった。
The present invention is constituted as described above, and the maximum length of the insoluble compound particles in the Al-Cu-Mg alloy is set to 2 μm or less by the continuous casting method, and the volume fraction thereof is 2%. Since it is controlled below, Al-Cu-M
In addition to the high strength property of the g-based alloy, its toughness can be improved, and an Al-Cu-Mg-based alloy excellent in toughness and a method for producing the same can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法において用いられる連続鋳造
時の好ましい冷却速度条件を示すグラフである。
FIG. 1 is a graph showing a preferable cooling rate condition during continuous casting used in the manufacturing method of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】Cu:2〜7%(重量%を意味する、特記
しない限り以下同じ) Mg:0.2〜2.5% Fe:1.0%以下(0%を含まない) Si:1.0%以下(0%を含まない) の要件を満たし、かつCr,Mn,ZrおよびTiより
なる群から選択された1種以上を夫々 Cr:0.05〜0.3% Mn:0.05〜0.8% Zr:0.05〜0.3% Ti:0.03〜0.3% の範囲内で含有し、残部がAlと不可避不純物からなる
Al合金において、連続鋳造後熱間圧延を行うか、また
は熱間圧延及び冷間圧延を行うと共に熱処理を施して、
Fe及びSiを含む不溶性化合物粒の最大長さを2μm
以下、かつ体積分率を2.0%以下に制御してなること
を特徴とする靭性に優れたAl−Cu−Mg系合金。
1. Cu: 2 to 7% (meaning% by weight, the same hereinafter unless otherwise specified) Mg: 0.2 to 2.5% Fe: 1.0% or less (not including 0%) Si: One or more selected from the group consisting of Cr, Mn, Zr and Ti satisfying the requirement of 1.0% or less (not including 0%) Cr: 0.05-0.3% Mn: 0 0.05 to 0.8% Zr: 0.05 to 0.3% Ti: 0.03 to 0.3% contained in the range with the balance being Al and inevitable impurities. Hot rolling or hot rolling and cold rolling and heat treatment,
The maximum length of insoluble compound particles containing Fe and Si is 2 μm
An Al-Cu-Mg-based alloy excellent in toughness, characterized in that the volume fraction is controlled to 2.0% or less.
【請求項2】 請求項1記載のAl−Cu−Mg系合金
を製造するにあたり、凝固時の冷却速度Rが R≧5で且つ R≧7.5([Fe]+[Si])+2 但し、R:凝固時の冷却速度(℃/sec) [Fe],[Si]:Al合金中のFe、Siの含有率
(%) を満足する条件で連続鋳造した後、該鋳片温度を熱間圧
延温度以上に保持して熱間圧延することを特徴とする靭
性に優れたAl−Cu−Mg系合金の製造方法。
2. In producing the Al—Cu—Mg alloy according to claim 1, the cooling rate R during solidification is R ≧ 5 and R ≧ 7.5 ([Fe] + [Si]) + 2. , R: cooling rate during solidification (° C./sec) [Fe], [Si]: Fe and Si content ratio (%) in the Al alloy are continuously cast under conditions that satisfy the following conditions, A method for producing an Al-Cu-Mg-based alloy having excellent toughness, which is characterized by holding at a hot rolling temperature or higher and hot rolling.
【請求項3】 連続鋳造された移動帯板を直ちに熱間圧
延工程へ送る請求項2記載の製造方法。
3. The method according to claim 2, wherein the continuously cast moving strip is immediately sent to the hot rolling step.
【請求項4】 連続鋳造された鋳片を、熱間圧延温度に
調整して熱間圧延工程へ送る請求項2に記載の製造方
法。
4. The manufacturing method according to claim 2, wherein the continuously cast slab is adjusted to a hot rolling temperature and sent to a hot rolling step.
JP4725494A 1994-03-17 1994-03-17 Al-cu-mg alloy excellent in toughness and its production Withdrawn JPH07252574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4725494A JPH07252574A (en) 1994-03-17 1994-03-17 Al-cu-mg alloy excellent in toughness and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4725494A JPH07252574A (en) 1994-03-17 1994-03-17 Al-cu-mg alloy excellent in toughness and its production

Publications (1)

Publication Number Publication Date
JPH07252574A true JPH07252574A (en) 1995-10-03

Family

ID=12770144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4725494A Withdrawn JPH07252574A (en) 1994-03-17 1994-03-17 Al-cu-mg alloy excellent in toughness and its production

Country Status (1)

Country Link
JP (1) JPH07252574A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2843754A1 (en) * 2002-08-20 2004-02-27 Corus Aluminium Walzprod Gmbh Balanced aluminum-copper-magnesium-silicon alloy product for fuselage sheet or lower-wing sheet of aircraft, contains copper, silicon, magnesium, manganese, zirconium, chromium, iron, and aluminum and incidental elements and impurities
US7323068B2 (en) 2002-08-20 2008-01-29 Aleris Aluminum Koblenz Gmbh High damage tolerant Al-Cu alloy
US7494552B2 (en) * 2002-08-20 2009-02-24 Aleris Aluminum Koblenz Gmbh Al-Cu alloy with high toughness
JP2011042857A (en) * 2009-08-24 2011-03-03 Nippon Light Metal Co Ltd Aluminum alloy having excellent fatigue strength, toughness and brightness, and method for producing the same
CN103290282A (en) * 2013-04-28 2013-09-11 西南铝业(集团)有限责任公司 Aluminium alloy sheet material for labour protection leather shoes head and preparation method thereof
JP2014058701A (en) * 2012-09-14 2014-04-03 Taiho Kogyo Co Ltd Aluminum alloy and side plate for gear pump
WO2017201403A1 (en) * 2016-05-20 2017-11-23 Ut-Battelle, Llc Aluminum alloy compositions and methods of making and using the same
CN109825731A (en) * 2019-03-20 2019-05-31 安庆市博安工程有限责任公司 A kind of building doors and windows processing preparation method of high-strength aluminum alloy material
WO2020089007A1 (en) 2018-10-31 2020-05-07 Aleris Rolled Products Germany Gmbh Method of manufacturing a 2xxx-series aluminium alloy plate product having improved fatigue failure resistance
JP2020521885A (en) * 2017-06-06 2020-07-27 ノベリス・インコーポレイテッドNovelis Inc. Aluminum alloy article with less texture and method of making the same
US11180839B2 (en) 2017-10-26 2021-11-23 Ut-Battelle, Llc Heat treatments for high temperature cast aluminum alloys
US11242587B2 (en) 2017-05-12 2022-02-08 Ut-Battelle, Llc Aluminum alloy compositions and methods of making and using the same
CN115558828A (en) * 2022-11-30 2023-01-03 中南大学 Heat-resistant low-vanadium Al-Cu-Mg-Ag alloy and application thereof
CN115698356A (en) * 2020-06-04 2023-02-03 伊苏瓦尔肯联铝业 Application of aluminum-copper-magnesium alloy product with good performance at high temperature

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2843754A1 (en) * 2002-08-20 2004-02-27 Corus Aluminium Walzprod Gmbh Balanced aluminum-copper-magnesium-silicon alloy product for fuselage sheet or lower-wing sheet of aircraft, contains copper, silicon, magnesium, manganese, zirconium, chromium, iron, and aluminum and incidental elements and impurities
WO2004018722A1 (en) * 2002-08-20 2004-03-04 Corus Aluminium Walzprodukte Gmbh Al-Cu-Mg-Si ALLOY AND METHOD FOR PRODUCING THE SAME
GB2406577A (en) * 2002-08-20 2005-04-06 Corus Aluminium Walzprod Gmbh Al-Cu-Mg-Si alloy and method for producing the same
GB2406577B (en) * 2002-08-20 2006-03-22 Corus Aluminium Walzprod Gmbh Al-Cu-Mg-Si alloy product
US7323068B2 (en) 2002-08-20 2008-01-29 Aleris Aluminum Koblenz Gmbh High damage tolerant Al-Cu alloy
US7494552B2 (en) * 2002-08-20 2009-02-24 Aleris Aluminum Koblenz Gmbh Al-Cu alloy with high toughness
US7604704B2 (en) 2002-08-20 2009-10-20 Aleris Aluminum Koblenz Gmbh Balanced Al-Cu-Mg-Si alloy product
US7815758B2 (en) 2002-08-20 2010-10-19 Aleris Aluminum Koblenz Gmbh High damage tolerant Al-Cu alloy
JP2011042857A (en) * 2009-08-24 2011-03-03 Nippon Light Metal Co Ltd Aluminum alloy having excellent fatigue strength, toughness and brightness, and method for producing the same
JP2014058701A (en) * 2012-09-14 2014-04-03 Taiho Kogyo Co Ltd Aluminum alloy and side plate for gear pump
CN103290282A (en) * 2013-04-28 2013-09-11 西南铝业(集团)有限责任公司 Aluminium alloy sheet material for labour protection leather shoes head and preparation method thereof
WO2017201403A1 (en) * 2016-05-20 2017-11-23 Ut-Battelle, Llc Aluminum alloy compositions and methods of making and using the same
US11220729B2 (en) 2016-05-20 2022-01-11 Ut-Battelle, Llc Aluminum alloy compositions and methods of making and using the same
US11242587B2 (en) 2017-05-12 2022-02-08 Ut-Battelle, Llc Aluminum alloy compositions and methods of making and using the same
JP2020521885A (en) * 2017-06-06 2020-07-27 ノベリス・インコーポレイテッドNovelis Inc. Aluminum alloy article with less texture and method of making the same
US11180839B2 (en) 2017-10-26 2021-11-23 Ut-Battelle, Llc Heat treatments for high temperature cast aluminum alloys
WO2020089007A1 (en) 2018-10-31 2020-05-07 Aleris Rolled Products Germany Gmbh Method of manufacturing a 2xxx-series aluminium alloy plate product having improved fatigue failure resistance
US12065721B2 (en) 2018-10-31 2024-08-20 Novelis Koblenz Gmbh Method of manufacturing a 2xxx-series aluminium alloy plate product having improved fatigue failure resistance
CN109825731A (en) * 2019-03-20 2019-05-31 安庆市博安工程有限责任公司 A kind of building doors and windows processing preparation method of high-strength aluminum alloy material
CN115698356A (en) * 2020-06-04 2023-02-03 伊苏瓦尔肯联铝业 Application of aluminum-copper-magnesium alloy product with good performance at high temperature
CN115558828A (en) * 2022-11-30 2023-01-03 中南大学 Heat-resistant low-vanadium Al-Cu-Mg-Ag alloy and application thereof

Similar Documents

Publication Publication Date Title
JPH07252573A (en) Al-zn-mg-cu alloy excellent in toughness and its production
JP3194742B2 (en) Improved lithium aluminum alloy system
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
JPH07252574A (en) Al-cu-mg alloy excellent in toughness and its production
EP0480402A1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JP2001262264A (en) Al-Mg-Si SERIES Al ALLOY SHEET EXCELLENT IN TOUGHNESS AND BENDABILITY
US4483719A (en) Process for preparing fine-grained rolled aluminum products
JP7318274B2 (en) Al-Mg-Si-based aluminum alloy cold-rolled sheet and its manufacturing method, and Al-Mg-Si-based aluminum alloy cold-rolled sheet for forming and its manufacturing method
US5318642A (en) High-strength rolled sheet of aluminum alloy and process for producing the same
JPH07252571A (en) Automobile aluminum alloy sheet and its production
EP0846781B1 (en) Process of forming an aluminium sheet with excellent high speed superplastic formability
WO2008078399A1 (en) Method of producing aluminum alloy sheet
JP3161141B2 (en) Manufacturing method of aluminum alloy sheet
JP2000160272A (en) Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
JP3286119B2 (en) Aluminum alloy foil and method for producing the same
JPH0820833A (en) Aluminum-magnesium alloy for liquid hydrogen storage, excellent in toughness, and its production
JPH0718389A (en) Production of al-mg series alloy sheet for forming
JPH05345963A (en) Manufacture of high formability aluminum alloy sheet
JPH05279820A (en) Production of aluminum alloy sheet excellent in formability
JPH04160131A (en) Al-mg-si alloy plate excellent in strength and formability, and its manufacture
CN110129633A (en) Furniture Aluminum alloy rivet line and preparation method thereof
JPH1112676A (en) Hard aluminum alloy sheet for forming, can lid using the hard sheet, and production of the hard sheet
JP7318275B2 (en) Al-Mg-Si-based aluminum alloy cold-rolled sheet and its manufacturing method, and Al-Mg-Si-based aluminum alloy cold-rolled sheet for forming and its manufacturing method
JP3983454B2 (en) Method for producing high-strength, high-formability aluminum alloy plate and aluminum alloy plate obtained by the production method
JPH06136497A (en) Production of aluminum alloy sheet with high formability

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605