JPH09231884A - 真空バルブ - Google Patents

真空バルブ

Info

Publication number
JPH09231884A
JPH09231884A JP3254196A JP3254196A JPH09231884A JP H09231884 A JPH09231884 A JP H09231884A JP 3254196 A JP3254196 A JP 3254196A JP 3254196 A JP3254196 A JP 3254196A JP H09231884 A JPH09231884 A JP H09231884A
Authority
JP
Japan
Prior art keywords
thickness
plate
sealing member
foil
agcu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3254196A
Other languages
English (en)
Inventor
Isao Okutomi
功 奥富
Takashi Kusano
貴史 草野
Masako Nakabashi
昌子 中橋
Miho Maruyama
美保 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIBAFU ENG KK
Toshiba Corp
Original Assignee
SHIBAFU ENG KK
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIBAFU ENG KK, Toshiba Corp filed Critical SHIBAFU ENG KK
Priority to JP3254196A priority Critical patent/JPH09231884A/ja
Publication of JPH09231884A publication Critical patent/JPH09231884A/ja
Pending legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

(57)【要約】 【課題】 セラミックス容器と金属製蓋体とを気密封着
接合させるための密封部材を改良し、耐環境性に優れ、
接合強度及び気密接合性を向上させた真空バルブを得
る。 【解決手段】 セラミック製容器の開口端面と前記金属
製蓋体との間に、Cuが50〜90WT%、Agが10〜50W
T%、Tiが 0.1〜 2.0WT%のCu、Ag及びTiの
複合体でなる密封部材を介挿配置し、この密封部材の一
部を溶融させながら気密封着接合する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、真空バルブに関す
る。
【0002】
【従来の技術】一般に、真空バルブは次のように構成さ
れる。すなわち、絶縁容器としてセラミックス容器(例
えばアルミナ容器)を使用し、この両端の開口部を金属
製蓋体にて真空気密に封着接合して真空容器とする。真
空容器の内部には、固定通電棒及び可動通電棒にそれぞ
れ固着された固定接点電極及び可動接点電極が対向配置
されており、操作機構からの駆動力により一方の金属製
蓋体に取付けられたベローズを介して可動接点電極が動
作する。更に、これら接点電極の開極時に発生しうる金
属粒子がセラミックス容器の内面に付着するのを防ぐた
め、必要に応じてアークシールドが設けられる。
【0003】ところで、セラミックスは、優れた耐熱
性、絶縁性、気密性を有する為、その特性を生かして種
々の電気部品材料として用いられている。特に、真空バ
ルブの場合、内部を真空に維持する為に、厳密に気密性
を保ち得るものでなければならない。
【0004】従来、セラミックス製絶縁容器と封着金属
とを、銀ロウ材を介して接合するに際して、一般にはセ
ラミックス部材の端面に予めメタライズ層(例えば、M
o−Mn)を付与させ、このメタライズ層を介して銀ロ
ウ付け接合を行っている。すなわち、セラミックスの接
合の方法としては、まずセラミックス部材にメタライジ
ングを施した後、金属とロウ付け接合する方法が行われ
ている。メタライジング方法としては、例えば下記に示
す方法が知られている。
【0005】(1)セラミックス母材表面にMo又はW
を主成分とする粉末を塗布し、還元雰囲気中で、例えば
1400〜1700℃に加熱してセラミックス母材と反応させメ
タライズする方法。必要によりメタライズ層の上にNi
などをメッキ処理する。 (2)セラミックス母材表面にAu又はPtを配置し、
それらに圧力を加えながら加熱してメタライジングする
方法。 (3)セラミックス母材上に、Ti,Zrなどの活性金
属と、Ni、Cuなどの遷移金属を配置し、それらの合
金の融点より高い温度で熱処理してメタライジングする
方法(特開昭 56-163093号)。
【0006】
【発明が解決しようとする課題】しかしながら、上記
(1)の方法では、メタライジング時に高温度での処理
を必要とするなど、繁雑な工程に問題がある。処理条件
の僅かな変動でも十分な接合強度が得難く、強度的にも
ばらつきが発生する。特に、ばらつきの問題は気密性の
低下に関わり、真空バルブの信頼性長期保証(遮断性
能、耐圧性能)に悪影響を及ぼす。
【0007】また、上記(2)の方法では、高価な貴金
属を使用するため、経済性に問題がある上密着性を高め
る目的で高い圧力を必要とし好ましくない。また、生産
性(圧力を得る為の加圧部品がロウ付け炉中である空間
を占める)にも問題がある。
【0008】一方、上記(3)の方法では、活性金属セ
ラミックス母材上を濡らす為、特別な加圧を殆ど必要と
せず、かつ活性金属の効果によりセラミックス母材に対
し強い密着力でメタライジングする事ができる。しか
し、金属部材とセラミックス部材とが十分に重なり合っ
た所では、銀ロウは良好な接合を示すが、金属部材とセ
ラミックス部材との間に、極く僅かにでも隙間があった
り、十分に重なり合っていない部分が存在すると、良好
なメタライジングされない場合があり、気密接合性に問
題がある。
【0009】以上のように、上記(1)(2)(3)の
いずれに於いても、メタライジングを施した後、セラミ
ックス製絶縁容器と封着金属とをロウ接合するので、工
程が複雑となったり、接合強度、気密接合性のいずれか
又は両者が問題となっている。この様に上記の技術で
は、メタライジングの工程と、セラミックス製絶縁容器
と封着金属とをロウ接合する工程が別々に行われること
から、工程が複雑となる欠点がある。そこで、予め上記
の様なメタライジングを施すことなく、金属をセラミッ
クスにロウ付けする技術が検討されるようになってき
た。
【0010】予めメタライジングを施すことなく、金属
部材とセラミックス部材とを接合する方法が、例えば特
開昭59-32628に開示されている。すなわち、一段階接合
法といわれるこの方法は、活性金属としてTi又は/及
びZrを含むAgロウ材料を用い、これを金属部材とセ
ラミックス部材との間に挿入して接合する。或いは、上
記活性金属の薄板と上記Agロウ材とを積層したAgロ
ウ材料を用い、これを金属部材とセラミックス部材との
間に挿入して接合する。
【0011】この一段階接合法は、メタライジングを必
要としないから、工程を簡略化する事が出来る。しかし
ながら、この一段階接合法の場合でも、上記(3)で見
られたことと同様の現象、すなわちAgロウ材料が金属
部材やセラミックス部材、特にセラミックス部材と十分
密着していないと、良好な接合強度と気密接合性が得ら
れない場合がある。また、十分な密着を得る為には、加
圧力の不均一性を是正する必要がある。
【0012】この点を改良した技術として、例えば特開
昭63-49758に開示されているものでは、加圧力の不均一
性を得る手段として、活性金属Ti又は/及びZr粉末
を使用し、これをセラミックス部材面に塗布している。
この様に、活性金属を粉末化した事によって、Ti又は
/及びZrが均一にセミックス部材に分布し、かつ密着
している為、接合強度と気密接合性とを兼備した接合状
態を得ている。
【0013】しかし、ポリビニルアルコール、エチルセ
ルローズなどのバインダを塗布したセラミックス部材面
に前記活性金属Ti又は/及びZr粉末を塗布する際、
エタノール、テトラリンなどの有機溶剤によって前記活
性金属粉末をペースト状態とするので、これらバインダ
や有機溶剤による環境問題の軽減化対策が課題となって
いる。本発明の目的は、耐環境性に優れ、接合強度及び
気密接合性を向上させた真空バルブを提供することにあ
る。
【0014】
【課題を解決するための手段】上記目的を達成するため
に本発明は、セラミックス製容器を金属製蓋体で真空気
密に封着して真空容器を形成し、この真空容器内に接離
可能な一対の接点電極が配置された真空バルブにおい
て、セラミック製容器の開口端面と前記金属製蓋体との
間に、Cuが50〜90WT(重量)%、Agが10〜50WT
%、Tiが 0.1〜2.0WT%のCu、Ag及びTiの複
合体でなる密封部材を介挿配置し、この密封部材の一部
を溶融させながら気密封着接合したことを要旨とする。
【0015】このような構成において、Cuは密封部材
としての強度、AgはCuと協働して気密封着部の溶融
温度維持及び制御、Tiは気密封着性に対してそれぞれ
良好に関与し、メタライジングを施さなくても接合強度
及び気密接合性を向上させることができる。
【0016】
【発明の実施の形態】以下、本発明の一実施例を詳細に
説明する。真空バルブを製造するにあたり、真空バルブ
用セラミックス製絶縁容器(セラミックス部材)は、大
きさ(外径,内径)がまちまちである上に容器高さも不
定の為、品質管理上技術的問題が多い。真空バルブで
は、例えば厚さ5mm以下程度の微少厚さ、高さ30〜1000
mmのセラミックス製絶縁容器端面へのロウ付けが行われ
ている。この為、活性金属層を大きさ、形状のまちまち
のセラミックス部材に被着する場合、不利益が多い。T
i、Zr、Cr粉を使用する場合には、セラミックス製
絶縁容器端面の被接合面への被着時の作業性、メタライ
ジング層の不均一性が課題となっている。
【0017】(イ) これらの課題に対して、前記セラ
ミックス製容器開口端面と前記金属蓋体との間に、Cu
が50〜90重量%(以下WT%),Agが10〜50WT%,
Tiが 0.1〜 2.0WT%で構成されたCu,Ag,Ti
より成る本密封部材を介挿配置し、更にこの密封部材の
一部分のみを溶融させながら気密封着接合する事によっ
て、前記ばらつき、不均一性を回避し、良好な接合強度
を持った真空バルブとする事ができる。
【0018】すなわち、Cuは密封部材としての強度
を、AgはCuと協働して気密封着部の溶融温度維持及
び制御を、Tiは気密封着性を左右する。特に、Cu
(構成要素)は密封部材中に十分な量を存在させてあ
り、構成要素、構成要素(または+)などが気
密封着温度に於いて溶融状態となっても、Cu(構成要
素)は未だ固体状態にあることを狙っているものであ
る。Cu(構成要素)の一部分が固体状態であれば、
Tiを含有したAgCuTi板箔(構成要素A)また
はTi箔(構成要素B)に対して、気密封着作業中に
終始荷重を与えていることになる。それによって、気密
封着工程中Tiを含有したAgCuTi板箔(構成要素
A)またはTi箔(構成要素B)をセラミックス製
絶縁容器端面へしっかりと接触させる効果を発揮する。
この場合、Cu板(構成要素)が液体状態となってし
まっては、気密封着部分から流出し、Ti箔(構成要素
B)などに対して荷重を与える効果が減じ、接合性の
向上にはならない。
【0019】各構成要素同志が予め一体化してあれば、
Ti箔(構成要素B)などの活性金属成分の雰囲気に
よる酸化進行が抑制され、セラミックス製絶縁容器端面
へしっかりと接合される。
【0020】これに対し、一体化が不十分で酸化が進行
したTi箔(構成要素B)などでは、Ti酸化物が形
成され、Ti酸化物は高融点の為、与える気密封着作業
温度では、これらTi酸化物は溶融せず封着性を妨害す
る。
【0021】(ロ) 本密封部材では、使用する各構成
要素は、厚さが30〜 500μmのCu板(構成要素)
と、Tiを含有した厚さが5〜 300μmのAgCuTi
板箔(構成要素A)または厚さが 0.1〜10μmのTi
箔(構成要素B)とを必須の要素とし、さらに好まし
くは厚さが5〜 300μmのAgCu板箔(構成要素
)、厚さが5〜 300μmのAgCu板箔(構成要素
)を配置した、、の様な組合わせ
で使用する必要がある。しかもこれら各構成要素同志は
一体化した状態にある事が好ましい。
【0022】すなわち、構成要素の厚さが30μm以下
の時には、密封部材として製造する場合の生産工場での
作業性が極めて悪く、経済性を著しく害する。一方、厚
さが500μm以上の時には、密封部材として複合一体化
する時の加工経費の点で不利となる。
【0023】構成要素Aの厚さが5μm以下の時に
は、構成要素Bと同様に密封部材中に占める活性金属
の量が不足し、十分な接合強度と十分な気密性とが得ら
れない。一方、厚さが 300μm以上の時にも、構成要素
Bと同様気密封着部に亀裂の発生がみられ、十分な接
合強度と十分な気密性とが得られない。これらは、いず
れも真空バルブとして不良品となる。
【0024】構成要素Bの厚さが 0.1μm以下の時に
は、密封部材中に占める活性金属の量が不足し、十分な
接合強度と十分な気密性とが得られない。一方、厚さが
10μm以上の時には、気密封着部に亀裂の発生がみら
れ、十分な接合強度と十分な気密性とが得られない。こ
れらは、いずれも真空バルブとして不良品となる。
【0025】構成要素の厚さが5μm以下の時には、
密封部材中に占めるAgの量が不足し、気密封着作業温
度の過度の上昇をもたらし、接点材料成分の過度の蒸発
損失を招き、接点材料表面荒れによる真空バルブの耐電
圧性の低下を招く。これを防ぐ為に気密封着作業温度を
制限して設定すると、十分な気密性得られない。一方、
厚さが 300μm以上の時には、気密封着部の溶融部分が
必要以上に拡大し、真空バルブ内への液滴の流出、飛散
を招き耐電圧性の低下を招く。これらは、いずれも真空
バルブとして不良品となる。
【0026】構成要素の厚さが5μm以下の時には、
密封部材中に占めるAgの量が不足するため、気密封着
作業温度の過度の上昇をもたらし、接点材料成分の過度
の蒸発損失を招き、接点材料表面荒れによる真空バルブ
の耐電圧性の低下を招く。一方、厚さが 300μm上の時
には、気密封着部の溶融部分が必要以上に拡大し、真空
バルブ内への液滴の流出、飛散を招き耐電圧性の低下を
招くと共に気密封着部中に占める活性金属の量が相対的
に不足することとなり、十分な接合強度と十分な気密性
とが得られない。これらは、いずれも真空バルブとして
不良品となる。
【0027】さらに、本密封部材では、これら各構成要
素同志は一体化した状態にある事が好ましい。すなわ
ち、構成要素同志が一体化してない場合には、活性金属
若しくは活性金属を含む構成要素の保管上、工程上での
過度の酸化の進行を抑制する上で好ましく、更に金属蓋
体側からセラミック製容器開口端面側に向かって介挿配
置する順番に気を配らなくてはならず、作業上のミスの
発生の可能性と共に作業性を低下させる。これに対しこ
れらが予め一体化されている場合には、これらの懸念は
排除される。
【0028】(ハ) セラミックス製容器開口端面(セ
ラミックス部材)の被接合面へTi、Zr、Cr粉等の
活性金属を被着させる従来法の場合では、セラミックス
部材の被接合面へ行うバインダ塗布作業時に、バインダ
が所定接合部分以外にも付着しやすく、必要箇所以外に
活性金属粉が被着する結果となる。更に、活性金属粉は
有機溶剤によってペースト状態としているため、有機溶
剤の濃度によっては、セラミックス部材の被接合面の所
定接合部分以外にも流出する場合があり、同様に、必要
箇所以外に活性金属粉が被着する結果となる。この様な
必要箇所以外への付着は、真空バルブの耐電圧不良、再
点弧現象の発生等の原因となる。これらを防止する方法
として、従来法では、接合不必要部分には、繁雑なマス
キングを施している。しかしながら、本密封部材構造で
は、接合必要部分にのみ密封部材を配置させる事が可能
なので、マスキング不要など工程の簡略化、信頼性向上
が得られる。更に、セラミック部材の被接合面へTi、
Zr、Cr粉等の活性金属を被着させる従来法の場合で
は、前記の様に、ペースト、有機溶剤を使用しているの
で、加熱炉、排気装置の内部、被接合物の表面の汚染、
人体への影響などが避けられないが、本密封部材では、
ペースト、有機溶剤を使用していない為、これらの心配
は生じない。
【0029】(ニ) 金属箔への活性金属の付着強度
は、ロウ材料としての安定性に影響を与える為、ロウ付
け接合後の接合強さ、気密性に重要である。この活性金
属の付着強度に及ぼす要因の1つとして、活性金属の清
浄度、被付着面の清浄度が挙げられる。しかし、一般に
セラミックス表面を完全に清浄化する事は困難である上
通常セラミックスは金属との濡れ性が著しく劣る。この
為、被付着面が従来法の場合に用いているセラミックス
部材では、付着強度が劣る。一方、被付着面として、本
密封部材構造では、良い濡れ性を示す事から、前記セラ
ミックス部材に対するより高い付着強度を持つので、安
定した結合結果が得られる。
【0030】(ホ) 代表的なロウ材料として、 779℃
の溶融温度を持つ共晶銀銅(72WT%Ag−Cu合金)
が知られている。本構成要素、構成要素では、例え
ば、厚さが5〜 300μmのAgCu板状、板箔状が代表
的である。しかし、この比率若しくはAgCu系材料に
限ることはなく、本密封部材構造をとることによって、
Au系ロウ材,Pd系ロウ材,Pt系ロウ材,Cu系ロ
ウ材,Ni系ロウ材であってもよい。
【0031】更に、本真空バルブの製造方法について説
明する。本製造方法の要旨は、セラミックス製容器開口
端面と前記金属製蓋体との間に、一体化した上記各構成
要素よりなる密封部材を介挿配置させて真空バルブを気
密封着する事にある。
【0032】したがって、どのような条件の構成要素を
どのような手段で気密封着作業を行うかがポイントであ
る。密封部材を形成している各構成要素を適切
な方法で製造し、適宜必要とする構成要素を組合わせた
状態で、例えばNiメッキを施した金属製蓋体とアルミ
ナ製セラミックス容器開口端面との間に介挿配置する。
【0033】例えば、Ag,AgCuよりなる構成要素
は、Cu板よりなる構成要素の両面にメッキ法、
圧延クラッド法、蒸着法等によって形成させて得る。又
Ti膜、箔などよりなる構成要素は、Tiの酸化に対
して効果的な配慮が為される成らば、予め圧延等で製造
されたTi板箔を単独で前記金属製蓋体とセラミックス
容器開口端面との間に介挿配置しても良い。或いは、高
エネルギー密度のビーム例えばエレクトロン加熱、レー
ザ加熱によって、直接に構成要素、の表面に形成さ
せて得ても良い。活性金属を蒸気状とする手段は、上記
高エネルギー密度のビーム、例えばエレクトロンビーム
加熱、レーザ加熱の他にアーク加熱、抵抗加熱などのよ
うに、所定の蒸気温度を得る事が出来れば良く、加熱の
手段は問題としない。加熱の雰囲気は、活性金属が酸化
燃焼するのを防止するために、真空中、高純度ガス中な
ど不活性雰囲気中で行う。
【0034】次に、本実施例について、具体的に説明す
る。外直径 6.7cm,内直径 5.6cm,高さ10cmのセラミッ
クス製容器(主成分:AL23 )を用意し、その端面
の表面粗さを約 0.2μmに研磨した。
【0035】表1に示したような構成要素,
またはから成る密封部材を用意する。板箔は平
板状であっても、また波板状であっても問題ないが、厚
さが50μm以下の板箔については、メッキ,イオンプレ
ーティング,スパッタリング法,熱拡散法等を適宜選択
し、また厚さが50μm以上の板箔については圧延法、ク
ラッド法を単独若しくはこれらを適宜組合わせて、全体
または部分的一体化した密封部材を作製した。
【0036】次いで、表面に厚さ約1μmのNi被覆を
施した板厚さ2mmの42%Ni−Fe合金製の金属製蓋体
とアルミナ製セラミック製容器開口端面との間に金属製
蓋体側から,またはの順に介挿配置
し、真空雰囲気で 840℃の温度で気密封着接合を行っ
た。
【0037】気密封着接合後のセラミックス製絶縁容器
をインストロン式万能試験機で金属/セラミックス接合
部分の引き外し力を測定した。上記寸法のセラミックス
製絶縁容器を使用した時の引外し力が700kg 以上を合格
の目安とした。
【0038】また、気密性の評価は、Heリークディテ
クターを使用して、リーク量が5×10-10 (Torr ・L
/sec )以下を合格の目安とした。また遮断性能の評価
は、接点直径42mmの真空バルブで 7.2kV,12kAを1000回
遮断し、その時の再点弧発生率が 0.1%以下を合格の目
安とした。
【0039】また、耐電圧特性評価は、前記気密封着接
合後のセラミックス製絶縁容器の両端に、0〜 120KVの
インパルス電圧を10回印加した時の耐電圧特性を測定
し、絶縁破壊を示したときの電圧値、絶縁破壊回数を示
した。絶縁破壊電圧値が95KVで絶縁破壊回数がゼロの場
合を合格の目安とした。各特性評価については5本ずつ
実施し、これらの評価結果を表2に示した。
【0040】
【表1】
【0041】
【表2】
【0042】(実施例1〜4,比較例1〜2)密封部材
の構成要素として外直径 6.7cm,内直径 5.6cm,厚さ
10μm(比較例1、実施例1、2)、 100μm(実施例
3、4、比較例2)のAg−28%Cu板箔(Wt%),
構成要素として板厚さ10〜1000μmのCu板,構成要
素としてTiを含有した板厚さ10μm(比較例1、実
施例1、2)、 100μm(実施例3、4、比較例2)の
Ag−27%Cu−1%Ti板箔(Wt%)を使用した
(表−1参照)。
【0043】表2から明らかな様に、構成要素(Cu
板)の厚さが10μm(比較例1)の例では、接合強度
(引外し力)がやや低く問題を生じ易いのみならず、接
合が十分でない事に起因する内部真空度の低下が見られ
ている。特にリークテストに供した5本の試作バルブの
内2本に10-9〜10-10 (Torr .L/Sec)程度のリー
クが発生していた(比較例1)。したがって実用困難と
判断し評価テスト中止とした。
【0044】また構成要素(Cu板)の厚さが1000μ
m(比較例2)では、接合強度は1000(kgf )を越し見
掛け上では十分であるが、接合界面の顕微鏡的調査によ
れば、機械的外力で亀裂が発生しやすかった。気密性に
ばらつきを生じかつ接合強度にもばらつきが見られた。
したガって実用化困難と判断し評価テスト中止とした。
【0045】これに対して構成要素(Cu板)の厚さ
が30μm(実施例1)、50μm(実施例2) 300μm
(実施例3) 500μm(実施例4)は,いずれも接合強
度が1000(kgf )以上,気密接合性が10-10 (Torr .
L/Sec)以下の範囲を維持した。さらに、所定の耐電
圧特性、遮断特性を維持した。したがって、密封部材の
構成要素としてのCu板の板厚さは、30〜 500μmの
範囲が好ましい。
【0046】(実施例5〜7,比較例3〜4)密封部材
の構成要素として厚さ2μm,5μm,50μm, 300
μm,1000μmのAg−Cu板箔,構成要素として厚
さ 300μmのCu板,構成要素としてTiを含有した
厚さ50μmのAg−Cu−Ti板箔を使用した。
【0047】表2から明らかな様に、構成要素(Ag
Cu板箔)の厚さが2μm(比較例3)の時には、接合
強度(引外し力)に著しいばらつき( 500〜1200kgf 以
上)が見られている。しかも接合が十分でない事に起因
する内部真空度の低下が見られている。特にリークテス
トに供した5本の試作バルブの内1本に10-9〜10
-10(Torr .L/Sec)程度の小リークが発生してい
た。
【0048】また構成要素(AgCu板箔)の厚さを
1000μm(比較例4)とした時は、接合強度(引外し
力)が 250〜480kgfを示し著しく低く、特にリークテス
トに供した5本の試作バルブの内1本に10-9〜10-10
(Torr .L/Sec)程度の小リークと10-8(Torr .
L/Sec)以上の大リークが発生した。この2本の試作
バルブを除外して、遮断テスト及び耐電圧テストに供し
たが、14〜28%の再点弧発生率を示すと共に、残りの3
本の試作バルブとも破壊電圧が95kv以下で不合格の判定
となった。しかもテスト後接合が十分でない事に起因す
る内部真空度の低下が見られている。
【0049】これに対して構成要素(AgCu板箔)
の厚さが5μm(実施例5)、5μm(実施例6)、 3
00μm(実施例7)は,いずれも接合強度が1000(kgf
)以上,気密接合性が10-10 (Torr .L/Sec)以
下の範囲を維持した。さらに、前記条件による所定の耐
電圧特性、遮断特性を維持した。従って、密封部材の構
成要素としてのAgCu板箔の厚さは、5〜 300μm
の範囲が好ましい。
【0050】(実施例8〜10,比較例5〜6)密封部材
の構成要素として厚さ50μmAg−Cu板箔,構成要
素として厚さ 300μmのCu板,構成要素としてT
iを含有した厚さ2μm,5μm,50μm, 300μm,
1000μmのAg−Cu−Ti板箔を使用した。
【0051】表2から明らかな様に、構成要素(Ag
CuTi板箔)の厚さが2μm(比例5)の時には、接
合強度が著しく( 200〜 500kgf )、しかも接合が十分
でない事に起因する内部真空度の低下が見られている。
特にリークテストに供した5本の試作バルブの内1本に
10-9〜10-10 (Torr .L/Sec)程度の小リークが発
生していた。
【0052】また構成要素(AgCuTi板箔)の厚
さを1000μm(比較例6)の時には、接合部へのTiの
供給量が多すぎ接合界面に大きな応力が残存する傾向に
あり、接合強度は1000(kgf )を越し見掛け上では十分
であるが、特にリークテストに供した5本の試作バルブ
の内2本に10-8〜10-10 (Torr .L/Sec)程度の小
リークが発生し気密性にばらつきが見られている。従っ
て実用化困難と判断し評価テスト中止とした。
【0053】これに対して構成要素(AgCuTi板
箔)の厚さが5μm(実施例8)、5μm(実施例
9)、 300μm(実施例10)は,いずれも接合強度が10
00(kgf)以上,気密接合性が10-10 (Torr .L/Se
c)以下の範囲を維持した。さらに、前記条件による所
定の耐電圧特性、遮断特性を維持した。従って、密封部
材の構成要素としてのAgCuTi板箔の厚さは、5
〜 300μmの範囲が好ましい。
【0054】(実施例11〜14,比較例7〜8)密封部材
の中身を前記実施例1〜10,比較例1〜6では、構成要
素〜とで構成した。本発明技術に於いてはこれに限
る事なく、実用が可能である。
【0055】すなわち、密封部材の中身を例えば72%A
gCuのAgCu板箔より成る構成要素と板厚さ 150
μmのCu板箔より成る構成要素と例えば72%AgC
uのAgCu板箔(例えば構成要素と同じものを用い
ても良い)より成る構成要素と所定の厚さのTi箔よ
り成る構成要素とで構成しても良い。
【0056】ここで、所定の厚さのTi箔(構成要素
;100WT%Ti)は、その厚さが 0.03 μm(比
較例7)とした時は、接合強度が 660〜 850kgf にばら
ついた上、リークテストに供した5本の試作バルブの内
4本が、10-8(Torr .L/Sec)以上の大リークが発
生し、残りの1本も10-9〜10-10 (Torr .L/Sec)
程度の小リークが発生した(比較例6)。その為実用化
困難と判断し評価テスト中止とした。
【0057】また、Ti箔(構成要素)の厚さを30μ
m(比較例8)とした時は、接合強度が 340〜960kgfと
更にばらついた上、リークテストに供した5本の試作バ
ルブの内3本に、10-8(Torr .L/Sec)以上の大リ
ークが発生した。残りの2本について遮断性能の調査を
実施したところ、25〜40%の再点弧発生率を示すと共
に、破壊電圧も95kv以下で不合格の判定となった。しか
もテスト後接合が十分でない事に起因する内部真空度の
低下が見られている。
【0058】これに対して、Ti板箔(構成要素)の
厚さを 0.1μm(実施例11)、 0.5μm(実施例12)、
2μm(実施例13)、10μm(実施例14)とした時は、
接合強度が1000〜1200kgf 以上を示し、特にリークテス
トに供した5本の試作バルブの全部が10-10 (Torr .
L/Sec)以下気密接合性を有していた。各試作バルブ
について、遮断テスト及び耐電圧テストに供したが、い
ずれのバルブとも低い再点弧発生率を示すと共に、破壊
電圧が95kv以上を示し合格の判定となった。従って、密
封部材としての構成要素としてのTi箔の厚さは、
0.1〜10μmの範囲が好ましい。
【0059】(実施例15〜18,比較例9〜10)密封部材
の中身を構成要素〜で構成し、構成要素,は前
記実施例11〜14,比較例7〜8と同様に、構成要素と
してAgCu板箔,構成要素としてCu板を使用し
た。また構成要素にはTi板箔( 100%Ti),構成
要素には、AgCu板箔を使用し、前記実施例11〜1
4,比較例7〜8と構成要素と構成要素を逆にし
た。
【0060】評価結果は、前記実施例11〜14,比較例7
〜8とほぼ同様になった。すなわち、Ti箔(構成要素
)の厚さが 0.03 μm(比較例9)とした時は、接合
強度がばらついた上、リークテストに供した5本の試作
バルブの内4本が、大リークが発生し、残りの1本も小
リークが発生したので、実用困難と判断し評価テスト中
止とした。
【0061】Ti箔(構成要素)の厚さを30μm(比
較例10)とした時は、接合強度が更にばらついた上、リ
ークテストに供した5本の試作バルブの内3本に、大リ
ークが発生した。残りの2本について遮断性能の調査を
実施したところ、25〜40%の再点弧発生率を示すと共
に、破壊電圧も95kv以下で不合格の判定となり、テスト
後接合が十分でない事に起因する内部真空度の低下が見
られた。
【0062】これに対して、Ti箔(構成要素)の厚
さを 0.1μm(実施例15)、 0.5μm(実施例16)、2
μm(実施例17)、10μm(実施例18)とした時は、接
合強度が1000〜1200kgf 以上を示し、特にリークテスト
に供した5本の試作バルブの全部が10-10 (Torr .L
/Sec)以下気密接合性を有していた。各試作バルブに
ついて、遮断テスト及び耐電圧テストに供したが、いず
れのバルブとも再点弧発生率を示すと共に、破壊電圧が
95kv以上を示した合格の判定となった。従って、密封部
材としての構成要素としてのTi箔の厚さは、 0.1〜
10μmの範囲が好ましい。
【0063】(実施例19〜21)前記実施例1〜10,比較
例1〜6で使用する構成要素及びとしては、所定の
厚さを持つAgCuおよびAgCuTiを使用した事例
について述べたが、本発明の主旨はこれに限ることな
い。
【0064】構成要素及びについて、AgとAgC
uTiを使用した場合(実施例19)、AgCuとAgT
iを使用した場合(実施例20)、AgとAgTiを使用
した場合(実施例21)の評価結果について、接合強度は
1000〜1200kgf 以上を示し、特にリークテストに供した
5本の試作バルブの全部が10-10 (Torr .L/Sec)
以下気密接合性を有していた。各試作バルブについて、
遮断テスト及び耐電圧テストに供したが、いずれのバル
ブとも低い再点弧発生率を示すと共に、破壊電圧が95kv
以上を示し合格の判定となった。従って、密閉部材の構
成要素としてAgを、構成要素としてAgTiを使
用可能である。
【0065】(実施例22〜24)前記実施例11〜14,比較
例7〜8で使用する構成要素及びとしては、所定の
厚さを持つAgCuまたはAgを使用した事例について
述べたが、本発明の主旨はこれに限ることない。
【0066】構成要素及びについて、AgとAgC
uを使用した場合(実施例22)、AgCuとAgを使用
した場合(実施例23)、構成要素共Agを使用した
場合(実施例24)についても、接合強度、気密性、電気
的特性の全てに於いて有効な結果を得ている。
【0067】(実施例25〜27)前記実施例15〜18,比較
例9〜10で使用する構成要素及びとしては、所定の
厚さを持つAgCuを使用した事例について述べたが、
本発明の主旨はこれに限ることない。
【0068】構成要素及びについて、AgとAgC
uを使用した場合(実施例25)、AgCuとAgを使用
した場合(実施例26)、構成要素共Agを使用した
場合(実施例27)についても、有効な結果を得ている。
【0069】(実施例28〜29)前記実施例1〜27,比較
例1〜10で使用する構成要素としては、所定の厚さを
持つAgCuまたはAgを使用した事例について述べた
が、本発明の主旨はこれに限ることなく、封着金具表面
にAgCu層を電気メッキで形成させた場合(実施例2
8)、または封着金具表面にAg層をインオプレーティ
ングで形成させた場合(実施例29)についても、有効な
結果を得ている。
【0070】(実施例30)前記実施例11〜14,22〜24,
比較例7〜8で使用する構成要素としては、所定の厚
さを持つTiを使用した事例について述べたが、本発明
の主旨はこれに限ることなく、セラミック表面にTi層
を形成させた場合(実施例30)であっても同様の効果を
得ている。
【0071】(実施例31)前記実施例1〜31,比較例1
〜10で使用する構成要素としては、所定の厚さを持つ
100%Cu板を使用した事例について述べたが、本発明
の主旨はこれに限ることなく、構成要素はCuCr
(実施例31)等のCu合金であっても同様の効果を得て
いる。
【0072】
【発明の効果】以上のように本発明によれば、セラミッ
クス製容器を金属製蓋体で真空気密に封着して真空容器
を形成し、この真空容器内に接離可能な一対の接点電極
が配置された真空バルブにおいて、セラミック製容器の
開口端面と前記金属製蓋体との間に、Cuが50〜90WT
%、Agが10〜50WT%、Tiが 0.1〜 2.0WT%のC
u、Ag及びTiの複合体でなる密封部材を介挿配置
し、この密封部材の一部を溶融させながら気密封着接合
したので、耐環境性に優れ、接合強度及び気密接合性を
向上させた真空バルブを得ることができる。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中橋 昌子 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 丸山 美保 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内

Claims (8)

    【特許請求の範囲】
  1. 【請求項1】 セラミックス製容器を金属製蓋体で真空
    気密に封着して真空容器を形成し、この真空容器内に接
    離可能な一対の接点電極が配置された真空バルブにおい
    て、前記セラミック製容器の開口端面と前記金属製蓋体
    との間に、Cuが50〜90WT%、Agが10〜50WT%、
    Tiが 0.1〜 2.0WT%のCu、Ag及びTiの複合体
    でなる密封部材を介挿配置し、この密封部材の一部を溶
    融させながら気密封着接合したことを特徴とする真空バ
    ルブ。
  2. 【請求項2】 前記密封部材は、厚さが5〜 300μmの
    AgCu板箔又はAg板箔のいずれか1つの部材と、厚
    さが30〜 500μmのCu板と、厚さが5〜 300μmのA
    gCuTi板箔又はAgCu板箔のいずれかの1つの部
    材の順で前記金属製蓋体からセラミック製容器の開口端
    面に向かって介挿配置されることを特徴とする請求項1
    記載の真空バルブ。
  3. 【請求項3】 前記密封部材は、厚さが5〜 300μmの
    AgCu板箔又はAg板箔のいずれか1つの部材と、厚
    さが30〜 500μmのCu板と、厚さが 0.1〜10μmTi
    箔と、厚さが5〜 300μmのAgCu板箔又はAg板箔
    のいずれかの1つの部材の順で前記金属製蓋体からセラ
    ミック製容器の開口端面に向かって介挿配置されること
    を特徴とする請求項1記載の真空バルブ。
  4. 【請求項4】 前記密封部材は、厚さが30〜 500μmの
    Cu板と、厚さが 0.1〜10μmTi箔と、厚さが5〜 3
    00μmのAgCu板箔又はAg板箔のいずれかの1つの
    部材の順で前記金属蓋体からセラミック製容器の開口端
    面に向かって介挿配置させると共に、前記金属蓋体の表
    面にAgCu層又はAg層を形成させたことを特徴とす
    る請求項1記載の真空バルブ。
  5. 【請求項5】 前記密封部材は、厚さが5〜 300μmの
    AgCu板箔又はAg板箔のいずれか1つの部材と、厚
    さが30〜 500μmのCu板と、厚さが5〜 300μmのA
    gCu板箔又はAg板箔のいずれかの1つの部材と、厚
    さが 0.1〜10μmTi箔の順で前記金属製蓋体からセラ
    ミック製容器の開口端面に向かって介挿配置されること
    を特徴とする請求項1記載の真空バルブ。
  6. 【請求項6】 前記密封部材は、厚さが5〜 300μmの
    AgCu板箔又はAg板箔のいずれか1つの部材と、厚
    さが30〜 500μmのCu板と、厚さが5〜 300μmのA
    gCu板箔又はAg板箔のいずれかの1つの部材の順で
    前記金属蓋体からセラミック製容器の開口端面に向かっ
    て介挿配置させると共に、前記セラミック容器の開口端
    面にTi層を形成させたことを特徴とする請求項1記載
    の真空バルブ。
  7. 【請求項7】 前記密封部材のCu板は、気密封着接合
    時の加熱温度より高い融解温度を持つCu又はCu合金
    であって、気密封着接合加熱中に一部固体状態にあるこ
    とを特徴とする請求項2〜請求項6記載の真空バルブ。
  8. 【請求項8】 前記密封部材として構成する部材の全て
    又は一部を一体化させたことを特徴とする請求項2〜請
    求項7のいずれかに記載の真空バルブ。
JP3254196A 1996-02-21 1996-02-21 真空バルブ Pending JPH09231884A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3254196A JPH09231884A (ja) 1996-02-21 1996-02-21 真空バルブ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3254196A JPH09231884A (ja) 1996-02-21 1996-02-21 真空バルブ

Publications (1)

Publication Number Publication Date
JPH09231884A true JPH09231884A (ja) 1997-09-05

Family

ID=12361804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3254196A Pending JPH09231884A (ja) 1996-02-21 1996-02-21 真空バルブ

Country Status (1)

Country Link
JP (1) JPH09231884A (ja)

Similar Documents

Publication Publication Date Title
US4917642A (en) Air-tight ceramic container
JPH0831279A (ja) 真空バルブ及びその製造方法
JPH09231884A (ja) 真空バルブ
JP2752079B2 (ja) 気密性セラミック容器の製造方法
JP3302121B2 (ja) 真空バルブの製造方法
JP3607552B2 (ja) 金属−セラミック接合体及びその製造方法
JP2017105682A (ja) 金属部材とセラミックス部材の接合方法
JPH08245275A (ja) 複合ロウ材料の製造方法および接合方法
JP2851881B2 (ja) アルミナセラミックスと鉄・ニッケル系合金との接合体およびその接合方法
JP2002167286A (ja) 金属−セラミック接合体及びそれを用いた真空スイッチユニット
JPH1173859A (ja) 真空バルブ
JPH10255606A (ja) 真空バルブの製造方法
JP2642386B2 (ja) 真空バルブおよびその製造方法
JP3607553B2 (ja) 金属−セラミック接合体及びその製造方法
JP2818210B2 (ja) アルミナセラミックスと鉄・ニッケル系合金との接合体およびその接合方法
JPS59175521A (ja) 真空バルブの製造方法
JP2755659B2 (ja) 真空バルブ
JPH0779014B2 (ja) 真空バルブの製造方法
JPH08171839A (ja) 真空バルブの製造方法
JPH0631167B2 (ja) ろう材の濡れ性が異なる部材の接合方法、該接合体および該接合用ろう材
JP2848867B2 (ja) アルミナセラミックスと鉄・ニッケル系合金との接合体およびその接合方法
JP2695951B2 (ja) 真空気密装置の製造方法
JPH08245274A (ja) セラミックスと金属の接合方法
JPH09106743A (ja) 真空バルブ
JPH01236533A (ja) 真空バルブ用接点