JPH09230236A - 手ぶれ補正機能を有する光学系及びズームレンズ - Google Patents

手ぶれ補正機能を有する光学系及びズームレンズ

Info

Publication number
JPH09230236A
JPH09230236A JP8040041A JP4004196A JPH09230236A JP H09230236 A JPH09230236 A JP H09230236A JP 8040041 A JP8040041 A JP 8040041A JP 4004196 A JP4004196 A JP 4004196A JP H09230236 A JPH09230236 A JP H09230236A
Authority
JP
Japan
Prior art keywords
lens
camera shake
group
shake correction
aberration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8040041A
Other languages
English (en)
Other versions
JP3417192B2 (ja
Inventor
Kenji Konno
賢治 金野
Kotaro Hayashi
宏太郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP04004196A priority Critical patent/JP3417192B2/ja
Priority to US08/805,083 priority patent/US6046852A/en
Publication of JPH09230236A publication Critical patent/JPH09230236A/ja
Application granted granted Critical
Publication of JP3417192B2 publication Critical patent/JP3417192B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144105Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-+-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

(57)【要約】 【課題】通常状態,補正状態のいずれにおいても諸収差
を良好に補正することができる手ぶれ補正機能を有する
光学系を提供する。 【解決手段】レンズ群間隔を変化させることによりズー
ミングを行うズームレンズであって、第3群Gr3中
に、手ぶれ補正のために光軸AXに対して垂直方向に偏
心する手ぶれ補正群GrAと、手ぶれ補正群GrAより
も像側に位置し手ぶれ時には固定のレンズ群GrBと、
を有する。手ぶれ補正群GrAを構成するレンズのうち
最も像側に位置するレンズPFと、レンズPFの像側に
隣り合って位置し手ぶれ時には固定のレンズPRとに関
し、レンズPF,PRのシェイプファクターと屈折力を
規定する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、手ぶれ補正機能を
有する光学系及びズームレンズに関するものであり、更
に詳しくは、手ぶれ(例えば、カメラの手持ち撮影時の
振動)による像のぶれを防ぐことができる光学系(例え
ば、ズームレンズ,単焦点レンズ)に関するものであ
る。
【0002】
【従来の技術】従来、写真撮影の失敗の原因は、そのほ
とんどが手ぶれとピンボケであった。ところが、近年、
カメラのほとんどにオートフォーカス機構が採用される
ようになり、また、オートフォーカス機構のピント精度
が向上するに従って、ピンボケによる写真撮影の失敗は
ほとんど解消されている。一方、カメラに標準装備され
ているレンズは、単焦点レンズからズームレンズへと移
行してきており、それと共に高倍率化,望遠化が図ら
れ、手ぶれの可能性が非常に高くなっている。この結
果、写真撮影の失敗は手ぶれによるものといっても過言
ではなく、そのため撮影光学系には手ぶれ補正機能が不
可欠となってきている。
【0003】手ぶれ補正機能を有する光学系としては、
一部のレンズ群を偏心させることによって手ぶれ補正を
行うものが提案されている。例えば、特開平6-123836号
公報には、正・負・負・正・負の望遠ズームレンズにお
いて、第3群を光軸に対して垂直方向に偏心させること
によって、手ぶれ補正を行う光学系が提案されている。
【0004】
【発明が解決しようとする課題】上記手ぶれ補正機能を
有する光学系は、通常状態(以下「偏心前状態」ともい
う。)で光学性能が良好であることは勿論、補正状態(以
下「偏心後状態」ともいう。)においてもレンズの偏心
による収差(以下「偏心収差」ともいう。)の発生を抑え
て、光学性能が良好に保持される必要がある。ところ
が、上記特開平6-123836号の5群ズームレンズには、手
ぶれ角が大きい場合、手ぶれ補正後(すなわち、偏心後)
の収差性能が悪いという問題がある。特開平6-123836号
公報では手ぶれ補正角:0.15°程度で性能を評価してい
るが、夜景等を手持ち撮影可能とするには、より大きな
手ぶれの発生に対応することができなければならないに
もかかわらず、手ぶれ補正角が更に大きくなると収差劣
化が許容できなくなるのである。
【0005】本発明はこれらの点に鑑みてなされたもの
であって、その目的は、通常状態,補正状態のいずれに
おいても諸収差を良好に補正することができる手ぶれ補
正機能を有する光学系を提供することにある。
【0006】
【課題を解決するための手段】上記目的を達成するた
め、第1の発明の手ぶれ補正機能を有する光学系は、手
ぶれ補正のために光軸に対して垂直方向に偏心する手ぶ
れ補正群と、この手ぶれ補正群よりも像側に位置し手ぶ
れ時には固定のレンズ群と、を有する光学系であって、
前記手ぶれ補正群を構成するレンズのうち最も像側に位
置するレンズをレンズPFとし、レンズPFの像側に隣
り合って位置し手ぶれ時には固定のレンズをレンズPR
としたとき、以下の条件式(1),(2)及び(4)、又は条件
式(1),(3)及び(4)を満たすことを特徴とする。 -5<S(PR)/S(PF)<0 …(1) 1.0<S(PF) …(2) S(PF)<0 …(3) P(PR)/P(PF)<0 …(4) ただし、 S(PF):レンズPFのシェイプファクター、 S(PR):レンズPRのシェイプファクター、 P(PF):レンズPFの屈折力、 P(PR):レンズPRの屈折力 であり、シェイプファクターは以下の式(A)で定義され
るものとする; SF=(CRR+CRF)/(CRR-CRF) …(A) ここで、 SF:レンズのシェイプファクター、 CRF:レンズの物体側面の曲率半径、 CRR:レンズの像側面の曲率半径 である。
【0007】第2の発明の手ぶれ補正機能を有するズー
ムレンズは、複数のズーム群から成り、ズーム群間隔を
変化させることによってズーミングを行い、いずれかの
ズーム群中に、手ぶれ補正のために光軸に対して垂直方
向に偏心する手ぶれ補正群と、この手ぶれ補正群よりも
像側に位置し手ぶれ時には固定のレンズ群と、を有する
ズームレンズであって、前記手ぶれ補正群を構成するレ
ンズのうち最も像側に位置するレンズをレンズPFと
し、レンズPFの像側に隣り合って位置し手ぶれ時には
固定のレンズをレンズPRとしたとき、前記条件式
(1),(2)及び(4)、又は条件式(1),(3)及び(4)を満たす
ことを特徴とする。
【0008】上記のように、手ぶれ補正群は、手ぶれ補
正のために光軸に対して垂直方向に偏心する(すなわ
ち、平行偏心を行う)。後述する手ぶれ補正機能を有す
る光学系の収差係数から分かるように、この手ぶれ補正
群の球面収差係数をコントロールすれば、手ぶれ補正時
に生じる収差(すなわち、偏心収差)の一つである軸上コ
マ収差を補正することが可能である。従って、適当な球
面収差係数を有するレンズを手ぶれ補正群中に配置すれ
ば、手ぶれ補正時の軸上コマ収差を良好に補正すること
ができる。しかし、そのようなレンズを手ぶれ補正群中
に配置すると、そのレンズによって通常状態における収
差のバランスが崩れ、特に球面収差が非常に大きくなっ
てしまう。
【0009】そこで、上記第1,第2の発明では、上記
適当な球面収差係数を有するレンズとして、手ぶれ補正
群を構成するレンズのうち最も像側に位置するレンズP
Fを採用し、さらに、手ぶれ時には固定のレンズPRを
レンズPFの像側に隣り合うように配置することによっ
て、通常状態においてレンズPFとレンズPRとが収差
に及ぼす効果を互いに打ち消すようにしている。偏心す
る手ぶれ補正群よりも像側に位置するレンズPRは、手
ぶれ補正時の収差には影響を及ぼさないので、通常状態
における全系の収差を良好に保ちつつ、手ぶれ補正時の
偏心収差を良好に補正することができる。
【0010】図19及び図20は、単レンズに無限光が
入射した場合のシェイプファクターSFと収差係数I,II,I
II,P,Vとの関係を示している。これらの図から、正レン
ズは正の球面収差係数Iを、負レンズは負の球面収差係
数Iをとり、その値はシェイプファクター(SHAPE FACTO
R)によって大きく変化することが分かる。また、コマ収
差係数IIも変化し、特に符号も変化することが分かる。
従って、レンズPFとレンズPRとで球面収差等を打ち
消すようにするため、レンズPFとレンズPRとが互い
に逆の屈折力を有し、前記条件式(1),(2)及び(4)、又
は条件式(1),(3)及び(4)を満足する構成となっている
のである。
【0011】前記条件式(1)は、シェイプファクターの
比を規定している。条件式(1)の上限又は下限を超える
と、レンズPFとレンズPRとで発生する球面収差係数
Iとコマ収差係数IIが大きく異なるために、お互いを打
ち消し合うことが不可能になり、通常状態における収
差、特に球面収差とコマ収差を抑えることが困難にな
る。
【0012】さらに、以下の条件式(1a)を満たすことが
望ましい。この条件式(1a)を満たすことによって、通常
状態での性能をより良好にすることができる。 -1.5<S(PR)/S(PF)<-0.2 …(1a)
【0013】条件式(2),条件式(3)は、レンズPFのシ
ェイプファクターを規定している。条件式(2)の下限を
超えたり条件式(3)の上限を超えたりすると、図19や
図20からも明らかなように、レンズPFで発生する球
面収差係数Iの絶対値が小さくなるために、手ぶれ時の
軸上コマ収差を抑えることが困難になる。
【0014】さらに、以下の条件式(2a)又は条件式(3a)
を満たことが望ましい。この条件式(2a)又は条件式(3a)
を満たすことによって、手ぶれ時の収差をより良好にす
ることができる。 2.2<S(PF) …(2a) S(PF)<-0.7 …(3a)
【0015】条件式(4)は、屈折力の比を規定してい
る。条件式(1)と同様に、条件式(4)の上限を超えると、
レンズPFとレンズPRとで発生する球面収差係数Iが
大きく異なるために、お互いを打ち消し合うことが不可
能になる。
【0016】また、レンズPRは、以下の条件式(5)及
び条件式(7)、又は条件式(6)及び条件式(7)を満足する
ことが望ましい。 1.0<S(PR) …(5) S(PR)<0 …(6) 0.1<|P(PR)|/P<2.5 …(7) ただし、 P:全系の屈折力 である。
【0017】条件式(5),条件式(6)は、レンズPRのシ
ェイプファクターを規定している。条件式(5)の下限又
は条件式(6)の上限を超えると、レンズPRで発生する
球面収差係数Iが小さくなるために、手ぶれ時の軸上コ
マ収差を抑えることが困難になる。
【0018】さらに、以下の条件式(5a)又は条件式(6a)
を満たことが望ましい。この条件式(5a)又は条件式(6a)
を満たすことによって、手ぶれ時の収差をより良好にす
ることができる。 2.2<S(PR) …(5a) S(PR)<-0.7 …(6a)
【0019】条件式(7)は、レンズPRの屈折力を規定
している。条件式(7)の下限を超えると、レンズPRの
屈折力が小さくなりすぎるため、大きな球面収差係数I
を発生するためには非常に大きなシェイプファクターを
とる必要が生じる。そのためには、レンズの曲率半径を
非常に小さくする必要があるが、そのようなレンズは、
実際の加工・製作上、実現不可能である。また、条件式
(7)の上限を超えると、レンズPRの屈折力が大きくな
りすぎるため、レンズPRで発生する大きな諸収差を抑
えることが困難になる。
【0020】さらに、以下の条件式(7a)を満たすことが
望ましい。この条件式(7a)を満たすことによって、より
良好な光学性能を得ることができる。 0.1<|P(PR)|/P<1.0 …(7a)
【0021】条件式(7)と同様の理由で、レンズPFも
以下の条件式(8)を満足することが望ましく、以下の条
件式(8a)を満足することが更に望ましい。この条件式(8
a)を満たせば、より良好な光学性能を得ることができ
る。 0.1<|P(PF)|/P<2.5 …(8) 0.1<|P(PF)|/P<1.0 …(8a)
【0022】レンズPFとレンズPRとは、ほぼ同等の
球面収差を出し合って、打ち消し合っていることが好ま
しいが、そのためには以下の条件式(9)を満足すること
が望ましい。 0.003<d(PF,PR)・P<0.1 …(9) ただし、 d(PF,PR):レンズPFとレンズPRとの軸上間隔 である。
【0023】条件式(9)はレンズPFとレンズPRとの
軸上間隔(つまり、レンズPFの像側面とレンズPRの
物体側面との軸上面間隔)を規定している。条件式(9)の
上限を超えると、レンズPFとレンズPRとの間隔が大
きくなりすぎるため、光線の通過位置が大きく異なって
しまい、球面収差とコマ収差とを同時に打ち消し合うこ
とが困難になる。条件式(9)の下限を超えると、レンズ
PFとレンズPRとが接近しすぎるため、手ぶれ時に手
ぶれ補正群が偏心駆動する際に、レンズPFとレンズP
Rとが干渉してしまう。
【0024】一般に、一眼レフカメラ用のズーム撮影光
学系は、第1群が最も大型のレンズ群であり、レンズの
重量も相当大きいものとなっている。このため、第1群
のレンズを光軸に対して垂直方向に移動させること(す
なわち、平行偏心させること)によって手ぶれ補正を行
うことは、手ぶれ駆動系を大型化することになるので好
ましくない。従って、第1群以外のズーム群中に手ぶれ
補正群を有するのが好ましい。
【0025】前記レンズPFは手ぶれ補正時に移動する
レンズであるため、手ぶれ駆動系に負荷とならないよう
に軽量であることが望まれる。そのためには、レンズP
Fはプラスチックレンズであることが望ましい。プラス
チックレンズは、軽量であるため手ぶれ駆動系にかかる
負担が少なくて済み、また、コスト面でも有利だからで
ある。さらに、前記レンズPRもコスト面で有利なプラ
スチックレンズであることが望ましい。
【0026】手ぶれ時の手ぶれ補正群の移動量(以下
「手ぶれ補正移動量」という。)は、ズームの広角端と
望遠端とであまり変化しないことが好ましい。この点
で、前記第1,第2の発明において、更に以下の条件式
(10)を満足することが望ましい。 0.4<MT/MW<2.5 …(10) ただし、 MT:望遠端での手ぶれ補正移動量、 MW:広角端での手ぶれ補正移動量 である。
【0027】条件式(10)の上限又は下限を超えると、手
ぶれ補正移動量がズームの広角端と望遠端とで大きく異
なることになり、任意の焦点距離で手ぶれ補正量を演算
する際に、計算誤差が生じやすくなる。
【0028】手ぶれ時に手ぶれ補正群を平行偏心させる
と、偏心収差の一つである軸上横色収差が発生するが、
これを抑えるためには、手ぶれ補正群が色補正されてい
ることが望ましい。そのためには、例えば、以下の条件
式(11)を満足することが望ましい。 νp>νn …(11) ただし、 νp:手ぶれ補正群中の正レンズのアッベ数、 νn:手ぶれ補正群中の負レンズのアッベ数 である。
【0029】手ぶれ補正のためにレンズ群を光軸に対し
て垂直方向に移動させると、通常状態(偏心前状態)では
光線の通らない所を、手ぶれ補正状態(偏心後状態)では
光線が通ることになる。この光線が有害光線となって結
像性能を低下させてしまうおそれがある。そのため、手
ぶれ補正群の物体側、手ぶれ補正群中、又は手ぶれ補正
群の像側に固定絞りを設けることによって、手ぶれ補正
時の有害光線を遮断するのが望ましく、これにより、手
ぶれ補正状態においても良好な結像性能を得ることがで
きる。
【0030】《偏心収差及び偏心収差係数》次に、本発
明に係るズームレンズのような手ぶれ補正機能を有する
光学系(以下「手ぶれ補正光学系」という。)の収差劣化
の定義を、図21に基づいて説明する。同図に示す偏心
収差(軸外像点移動誤差,片ボケ,軸上コマ及び軸上横
色収差)は、手ぶれ補正光学系の像劣化の要因となる。
【0031】[軸外像点移動誤差]{図21(A)} 偏心した光学系では、通常の歪曲収差に加えて偏心によ
る歪曲誤差が発生する。このため、手ぶれ補正光学系に
おいては、軸上(つまり、画面中心)の像点が完全に止ま
るように補正したとき、軸外の像点が完全に止まらずに
像ぶれが発生する。図21(A)中、1はフィルム面、2
は補正状態(偏心後状態)の像点、3は通常状態(偏心前
状態)の像点、4は手ぶれ補正方向を表す。
【0032】ここで、光軸をx軸方向、手ぶれ方向をy軸
方向(すなわち、手ぶれ補正方向4もy軸方向)とし、Y
(y',z',θ)を近軸像点が(y',z')である光線の手ぶれ補
正角θでの実際の像点のY座標{軸上の像点が完全に止ま
るように補正するので、常にY(0,0,θ)=0である。}とす
ると、次の式(a)が成り立つ。 ΔY(y',z',θ)=Y(y',z',θ)-Y(y',z',0) ……(a)
【0033】特に指定しない限り、y軸上の像点につい
ての軸外像点移動誤差ΔYY'及びz軸上の像点についての
軸外像点移動誤差ΔYZ'は、それぞれ以下の式(b)及び式
(c)で表される。なお、0.7fieldは新規格の24mmフィル
ムでは約12mmである。 ΔYY'={ΔY(0.7field,0,0.7゜)+ΔY(-0.7field,0,0.7゜)}/2 ……(b) ΔYZ'=ΔY(0,0.7field,0.7゜) ……(c)
【0034】[片ボケ]{図21(B)} 図21(B)中、5は光軸AXに非対称な像面を表し、6
は光軸に対称な像面を表す。光学系の非対称性によっ
て、像面5は光軸AXに対し非対称となる。これによ
り、生じるメリディオナル片ボケΔM'及びサジタル片ボ
ケΔS'は、それぞれ以下の式(d)及び式(e)で表される。 ΔM'={メリテ゛ィオナル値(y'=0.7field,z=0,θ=0.7゜)-メリテ゛ィオナル値(y'=-0.7field,z =0,θ=0.7゜)}/2 ……(d) ΔS'={サシ゛タル値(y'=0.7field, z=0,θ=0.7゜)-サシ゛タル値(y'=-0.7field,z=0,θ =0.7゜)}/2 ……(e)
【0035】[軸上コマ]{図21(C)} 図21(C)中、7は軸上光束を表し、8は軸上主光線を
表す。図示のように、軸上の光束7が軸上主光線8に対
して対称とならずにコマ収差が発生する。軸上光束7に
おいて生じる軸上コマAXCMは、次の式(f)で表される。 AXCM={Y(Upper Zornal,θ=0.7゜)+Y(Lower Zornal,θ=0.7゜)}/2 ……(f)
【0036】[軸上横色収差]{図21(D)} 像点は波長の違いによってずれるため、光学系が非対称
のとき軸上光でもずれが生じる。軸上主光線において生
じる軸上横色収差は、次の式(g)で表される。 (軸上横色収差)={Y(g線,θ=0.7゜)-Y(d線,θ=0.7゜)} ……(g)
【0037】上記偏心収差については、松居吉哉氏の論
文「偏心の存在する光学系の3次の収差論」(1990年6月
JOEM)に、その応用方法が示されている。その方法は通
常の撮影レンズが取付誤差により偏心した場合等には適
しているが、物体平面と撮影レンズ及び像平面との共軸
関係がずれる手ぶれ補正光学系には、これを直接適用す
ることができない。そこで、上記論文の方法を手ぶれ補
正光学系に直接適用できるようにするため、以下に説明
する式の変換等を行うことによって、実際の手ぶれ補正
光学系の収差を通常の3次の収差係数で表現する。
【0038】[手ぶれ補正光学系への偏心収差係数の応
用]光学系と座標との関係を示す図22に基づいて、以
下に偏心収差係数の求め方を説明する。まず、次のよう
に式を定義する。 tanω・cosφω=Y/g$ tanω・sinφω=Z/g$ R・cosφR=(g$/g)・Y* R・sinφR=(g$/g)・Z* g,g$はそれぞれ入射瞳面,物体側主平面から物体平面
(物面)OSまでの距離、ωは物点と物体側主点Hとを結ぶ
直線が基準軸となす角で、φωがそのazimuth、また、R
は物体側主平面上に換算した入射瞳半径でφRがそのazi
muthである。
【0039】物体側からν番目の面が基準軸に対してY
方向に微小量Eνだけ平行偏心したときの像平面(像面)I
S上での像点移動量ΔY,ΔZは、次の式(1A),(1B)で表
される。 ΔY=-(Eν/2αk')・[(ΔE)ν+(N・tanω)2・{(2+cos2φω)・(VE1)ν-(VE2)ν} +2R・(N・tanω)・{(2cos(φR-φω)+cos(φR+φω))・(IIIE)ν+cosφR・cosφω・(P E)ν}+R2・(2+cos2φR)・(IIE)ν] ……(1A) ΔZ=-(Eν/2αk')・[(N・tanω)2・sin2φω・(VE1)ν+2R・(N・tanω)・{sin(φR +φω)・(IIIE)ν+sinφR・sinφω・(PE)ν}+R2・sin2φR・(IIE)ν] ……(1B)
【0040】ここに、 (ΔE)ν:プリズム作用(像の横ずれ) (VE1)ν,(VE2)ν:回転非対称な歪曲 (IIIE)ν,(PE)ν:回転非対称な非点収差,像面の傾き (IIE)ν:軸上にも表れる回転非対称なコマ収差 とすると、偏心による影響を表す各偏心収差係数も、ν
番目の面から像面までのレンズ面の収差係数により、以
下の式(1C)〜(1H)で表される(#:物面上を示す添え
字。)。なお、回転偏心の場合も式(1A)〜(1H)と同様の
形の式で表現される。 (ΔE)ν=-2(αν'-αν) ……(1C) (VE1)ν=[{αν'・(μ=ν+1→k)ΣVμ}-{αν・(μ=ν→k)ΣVμ}]-[{αν'#・ (μ=ν+1→k)ΣIIIμ}-{αν#・(μ=ν→k)ΣIIIμ}] ……(1D) (VE2)ν={αν'#・(μ=ν+1→k)ΣPμ}-{αν#・(μ=ν→k)ΣPμ} ……(1E ) (IIIE)ν=[{αν'・(μ=ν+1→k)ΣIIIμ}-{αν・(μ=ν→k)ΣIIIμ}]-[{ αν'#・(μ=ν+1→k)ΣIIμ}-{αν#・(μ=ν→k)ΣIIμ}] ……(1F) (PE)ν={αν'・(μ=ν+1→k)ΣPμ}-{αν・(μ=ν→k)ΣPμ} ……(1G) (IIE)ν=[{αν'・(μ=ν+1→k)ΣIIμ}-{αν・(μ=ν→k)ΣIIμ}]-[{αν '#・(μ=ν+1→k)ΣIμ}-{αν#・(μ=ν→k)ΣIμ}] ……(1H)
【0041】ところが、手ぶれ補正光学系に偏心収差係
数を応用するには、光学系の反転により像面ISを物面OS
に置き換えて、像面ISからの収差係数を用いる必要があ
る。つまり、像点移動量を物面OS上のものに変換しなけ
ればならない。その理由を以下に説明する。
【0042】第1の理由は、偏心によって光線通過位置
に違いが生じることにある。図23(A)に示すように(L
1:偏心前の光線,L2:偏心後の光線)、上述の松居吉哉
氏の論文の方法においては、偏心レンズLSより像面IS側
の光線の通過位置が偏心レンズLSによって変わってしま
う。従って、偏心レンズLSと偏心レンズLS〜像面ISの収
差係数が偏心収差係数に関係することになる。これに対
し、図23(B)に示すように(M1:手ぶれ補正前の光
線,M2:手ぶれ補正後の光線)、手ぶれ補正光学系では
(理想的には)、偏心レンズLSより物体側の光線の通過位
置が手ぶれ補正前と手ぶれ補正後とで変わってしまう。
従って、偏心レンズLSと偏心レンズLSより物体側の収差
係数が偏心収差係数に関係することになる。
【0043】第2の理由は、物面の回転変換に起因して
収差劣化が生じることにある。上述の松居吉哉氏の論文
の方法においては、物面OS1,像面ISは共に動かない
が、手ぶれ補正光学系では、物面OS1が図24に示すよ
うに回転する。そのため、軸外像点移動誤差や片ボケ
は、回転がない場合と比べて大きく異なってしまう。図
24中、OS1は手ぶれ補正前の物面を表し、OS2は手ぶれ
補正後の物面を表す。
【0044】[反転系の収差係数と非反転系の収差係
数]上記した理由から、像点移動量を物面上のものに変
換しなければならないので、式(1A)〜(1H)の各係数を、
図25(非反転系)に基づいて表される以下の式(2A)〜(2
J)に従って変換する。なお、R( )は反転系の記号、N
は屈折率を表すものとする。R α=RN/Rg$=-α' ……(2A)R α#=α'# ……(2B)R αμ'=-αν ……(2C)R αμ'#=αν# ……(2D)R Pμ=Pν ……(2E) …同R φμ=φν ……(2F) …同R Iμ=Iν ……(2G) …同R IIμ=-IIν ……(2H) …逆R IIIμ=IIIν ……(2I) …同R Vμ=-Vν ……(2J) …逆
【0045】[手ぶれ補正群が平行偏心するときの偏心
収差係数と手ぶれ収差係数]前述の式(1A)〜(1H)は、た
だ1つの面νだけが偏心した場合を示している。そこで
さらに、式(1A)〜(1H)を複数の面i〜jが偏心した場合の
式に変形する。なお、手ぶれ補正群が平行偏心すると
き、偏心する各面i〜jの偏心量Ei〜Ejは等しいので、
式: (ΔE)i〜j=(ν=i→j)Σ{-2・(αν'-αν)} で示すように、収差係数を和として扱うことができる。
そして、αν'=αν+1より、式: (ΔE)i〜j=-2・(αj'-αi) が得られる。
【0046】その他の収差係数についても、同様にΣの
途中の項が消える。例えば、 (PE)i〜j=(μ=i→j)Σ{αν'・(μ=ν+1→k)ΣPμ-αν・(μ=ν→k)ΣPμ} =αj'・(μ=j+1→k)ΣPμ-αi・(μ=i→k)ΣPμ 更に変形して、 (PE)i〜j=(αj'-αi)・(μ=j+1→k)ΣPμ-αi・(μ=i→
j)ΣPμ ここで、 (μ=j+1→k)ΣPμ:手ぶれ補正群より後のPの和(ペッツ
バール和) (μ=i→j)ΣPμ:手ぶれ補正群のPの和 である。 (PE)i〜j=(αj'-αi)PR-αi・PD ただし、 ( )R:手ぶれ補正群より後の収差係数の和 ( )D:手ぶれ補正群の収差係数の和 である。
【0047】上記のように、像点移動量の物面上のもの
への変換と、複数の面i〜jが偏心した場合の式への変形
とによって、次の式(3A)〜(3F)で表される偏心収差係数
が得られる。そして、各偏心収差係数を式(3A)〜(3F)の
通りに定義し直すと、式(1A)〜(1H)を物面上の像点移動
量を表す式として、そのまま用いることができる。 (ΔE)i〜j=-2・(αj'-αi) ……(3A) (VE1)i〜j=(αj'-αi)・VR-(αj'#-αi#)・IIIR-(αi・VD-αi#・IIID) ……( 3B) (VE2)i〜j=(αj#-αi#)・PR-αi#・PD …(3C) (IIIE)i〜j=(αj'-αi)・IIIR-(αj'#-αi#)・IIR-(αi・IIID-αi#・IID) … …(3D) (PE)i〜j=(αj'-αi)・PR-αi・PD ……(3E) (IIE)i〜j=(αj'-αi)・IIR-(αj'#-αi#)・IR-(αi・IID-αi#・ID) ……(3F )
【0048】[軸外像点移動誤差]次に、軸外像点移動
誤差を説明する。(反転した系の)偏心収差係数をΔE,V
E1,VE2,IIIE,PE,IIEとする。物面上での偏心による
像点移動(物面上回転変換前)は{主光線(R=0)において
は}、次の式(4A),(4B)で表される。なお、式(4A),(4
B)は、式(1A),(1B)のRをR=0としたものである。 ΔY#=-(E/2α'k)・[ΔE+(N・tanω)2・{(2+cos2φω)VE1-VE2}] ……(4A) ΔZ#=-(E/2α')・{(N・tanω)2・sin2φω)・VE1} ……(4B)
【0049】上記式(4A),(4B)に基づいて、次の式(4
C),(4D)が得られる(軸上光、tanω=0)。 ΔY0#=-(E/2α'k)・ΔE ……(4C) ΔZ0#=0 ……(4D)
【0050】次に、図26に基づいて回転変換を説明す
る。図26(A)から式: Y#=g$k・tanω が成り立つ。正弦定理により、 Y'#/{sin(π/2-ω')}=(Y#+ΔY#-ΔY0#)/{sin(π/2+ω'
-θ)} となり、回転変換後のΔY'#は、次の式: ΔY'#=(Y'#)-(Y#) =[Y#・cosω'+{(ΔY#)-(ΔY0#)}・cosω'-Y#・cos(ω'-θ)]/cos(ω'-θ ) で表される。この式の分子のみを変形する。 [Y#・cosω'+{(ΔY#)-(ΔY0#)}・cosω'-Y#・cos(ω'-θ)] =Y#・cosω'+{(ΔY#)-(ΔY0#)}・cosω'-Y#・cosθ・cosω'-Y#・sinθ・si nω' =(1-cosθ)・Y#・cosω'+{(ΔY#)-(ΔY0#)}・cosω'-Y#・sinθ・sinω' ここで、θは小さく他の2項に比べて無視できるので、
(1-cosθ)≒θ2/2,sinθ≒θである。また、cosω'/{c
os(ω'-θ)}≒1,sinω'/{cos(ω'-θ)}≒tanωであ
る。
【0051】従って、式: ΔY'#≒(ΔY#-ΔY0#)-Y#・θ・tanω が得られる。(ΔY#-ΔY0#)は平行偏心の軸外像点移動誤
差を表し、Y#・θ・tanωは回転による付加項(収差係数と
は関係ない)を表す。ただし、このときのωはXY断面上
なので、 ΔY'#≒(ΔY#-ΔY0#)-Y#・θ・tanω・cosφω ……(5A) となる。
【0052】ついで、図27に基づいて像面ISへの変換
を説明する。倍率βは、式: β=g$1/g$k=αk'/α1 で表される。ここで、α1=1/g$1である。一方、像面IS
と物面OSとには、式: Y=β・Y# の関係があり、また、Y#やΔY#は1/αk'×( )の形とな
っているので、次のように変形する。 Y=β・Y# =(αk'/α1)・(1/αk')×( ) =g$1×( ) ここで、g$k'→∞とすると、g$1=-Flとなる。従って、
式: Y=-Fl×( ) =-Fl×αk'×Y# が成り立つ。
【0053】次に、像面上の軸外像点移動誤差を説明す
る。偏心量Eは、式(4C)及びαk'=1/gk'$より、以下の
式: θ=ΔY0#/g$k'=E・ΔE/2 E=2・θ/ΔE で表される。この手ぶれ補正角θが一定となるように規
格化する(0.7deg=0.0122173rad)。
【0054】平行偏心(回転変換しない)により、ΔY=
(ΔY#-ΔY0#)を像面変換すると(ここで、N・tanω=Φ/F
l,Φ2=Y2+Z2)、以下の式(6A)〜(6D)が得られる。 ΔY=(θ・Φ2/Fl)・[{(2+cos2・φω)・VE1-VE2}/ΔE] ……(6A) ΔZ=(θ・Φ2/Fl)・[{(sin2・φω)・VE1-VE2}/ΔE] ……(6B) Y+像点,Y-像点{式(6A),(6B)のφω=0,π}: ΔYY=(θ・Y2/Fl)・{(3・VE1-VE2)/ΔE} ……(6C) Z像点{式(6A),(6B)のφω=π/2}: ΔYZ=(θ・Z2/Fl)・{(VE1-VE2)/ΔE} ……(6D)
【0055】次に、回転変換を行う。Y#=-Y/(Fl×
αk')であるので、式(5A)中の-Y#・θ・tanω・cosφωに
関し、式: -Y#・θ・tanω・cosφω=Y/(Fl×αk')・θ・tanω・cosφ
ω が成り立つ。Y+像点,Y-像点では、φω=0,π、また、
tanω/αk'=Yであるので、像面での-Y#・θ・tanω・cosφ
ω=Y2・θ/Flである。これを式(6C)に加えると、次の式
(6E)が得られる。一方、Z像点では、φω=π/2である
ので、像面での-Y#・θ・tanω・cosφω=0である。これ
を式(6D)に加えると、次の式(6F)が得られる。 ΔYY'=(θ・Y2/Fl)・{(3・VE1-VE2-ΔE)/ΔE} ……(6E) ΔYZ'=ΔYZ ……(6F)
【0056】[片ボケ]次に、片ボケを説明する。式(1
A),(1B)から、ΔMは{ΔYの(Rの1次の項)φR=0}×g$k'
であり、ΔSは{ΔZの(Rの1次の項)φR=π/2}×g$k'で
ある。まず、回転前の物面OS上では(ここで、αk'=Nk'/
g$k',E/2=θ/ΔEを用いる。)、式: ΔM#=(-g$k'2・θ/Nk')×2・R・(N・tanω)・cosφω・{(3・I
IIE+PE)/ΔE} が成り立つ。そして、回転後は式: ΔM'#≒ΔM#+θY# が成り立つ。
【0057】像面上に変換すると共に、Nk'=1,N=1とす
ると、式: ΔM'=β2・ΔM'# =-g$1 2・θ×2・R・tanω・cosφω・{(3・IIIE+PE)/ΔE}+β・Y・θ が得られ、物面OSを∞とすると(ここで、g$1=-Fl,β→
0,tanω=Y/Fl,φω=0とする。)、メリディオナル片ボ
ケΔM'を表す式(7A)が得られる。同様にして、サジタル
片ボケΔS'を表す式(7B)が得られる。 ΔM'=-2・Fl・Y・θ・R・{(3・IIIE+PE)/ΔE} ……(7A) ΔS'=-2・Fl・Y・θ・R・{(IIIE+PE)/ΔE} ……(7B)
【0058】[軸上コマ]次に、軸上コマを説明する。
式(1A)に基づき、ω=0,Upperの偏心によるコマは、
式: ΔYUpper#=ΔY#(ω=0,φR=0)−ΔY#(ω=0,R=0) =-E/(2・α')×R2×3・IIE で表され、ω=0、Lowerの偏心によるコマ(ΔYUpper#と
符号を含めて同じである。)は、式: ΔYLower#=ΔY#(ω=0,φR=π)−ΔY#(ω=0,R=0) =-E/(2・α')×R2×3・IIE で表される。
【0059】ω=0なので、軸上コマは回転変換に対して
ほとんど変化しない。物面OSから像面ISへの変換により
(ΔY=β・ΔY#,E/2=θ/ΔE)、式: ΔYUpper=Fl×θ×R2×(3・IIE/ΔE)=ΔYLower が得られ、軸上コマAXCMは、次の式(8A)で表される。 AXCM=(ΔYUpper+ΔYLower)/2 =ΔYUpper ……(8A)
【0060】以上のようにして得られた式(6E),(6F),
(7A),(7B),(8A)中の一部を、新たに以下の式(9A)〜(9
E)で表す手ぶれ収差係数として定義する。 y軸上像点の軸外像点移動誤差… VEY={(3・VE1-VE2-ΔE)/ΔE} …(9A) z軸上像点の軸外像点移動誤差… VEZ={(VE1-VE2)/ΔE} …(9B) メリディオナル片ボケ…………… IIIEM={(3・IIIE+PE)/ΔE} …(9C) サジタル片ボケ…………………… IIIES={(IIIE+PE)/ΔE} …(9D) 軸上コマ…………………………… IIEA={(3・IIE)/ΔE} …(9E)
【0061】上記手ぶれ収差係数を表す式(9A)〜(9E)に
式(3A)〜(3F)を代入して整理すると、手ぶれ収差係数を
表す以下の式(10A)〜(10E)が得られる。 VEY=-1/2・{3VR-3VD・A+2-(3・IIIR+PR)・H#+(3・IIID+PD)・A#} ……(10A) VEZ=-1/2・{VR-VD・A-(IIIR+PR)・H#+(IIID+PD)・A#} ……(10B) IIIEM=-1/2・{(3・IIIR+PR)-(3・IIID+PD)・A-3・IIR・H#+3・IID・A#} ……(10C) IIIES=-1/2・{(IIIR+PR)-(IIID+PD)・A-IIR・H#+IID・A#} ……(10D) IIEA=-3/2・(IIR+IID・A-IR・H#+ID・A#) ……(1
0E) ただし、 ( )D:手ぶれ補正群の収差係数の和 ( )R:手ぶれ補正群より後(物体側)の収差係数の和 A=αi/(αj'-αi) (ここで、手ぶれ補正群をi〜jとす
る。) A#=αi#/(αj'-αi) H#=(αi'#-αi#)/(αj'-αi) である。
【0062】ΔE=-2・(αj'-αi)は{ここで、(αj'-αi)
は0.7°/mmのとき±0.0122173である。}、(手ぶれ補正
角)/(レンズ偏心量)の係数なので、ほぼ所定の値を目指
す(ただし、手ぶれ補正群が正か負かで符号が異な
る。)。従って、Aは(像側から見た)手ぶれ補正群へのマ
ージナル光線の入射角であり、A#は主光線の入射角に比
例する。手ぶれ補正群中でh#やhがあまり変化しない場
合、H#は主光線のh#とマージナル光線のhとの比を表
す。
【0063】上記式(10A)〜(10E)内の各偏心収差係数は
反転系で定義されているので、これらを再度、非反転系
に戻さなければならない。そこで、式(10A)〜(10E)内の
各係数を上述の式(2A)〜(2J)を使って非反転系に戻す
と、以下の式(11A)〜(11E)が得られる。 VEY=+1/2・{3VF-3VD・A-2+(3・IIIF+PF)H#-(3・IIID+PD)・A#} ……(11A) VEZ=+1/2・{VF-VD・A+(IIIF+PF)H#-(IIID+PD)・A#} ……(11B) IIIEM=-1/2・{(3・IIIF+PF)-(3・IIID+PD)・A+3・IIF・H#-3・IID・A#} ……(11C) IIIES=-1/2・{(IIIF+PF)-(IIID+PD)・A+IIF・H#-IID・A#} ……(11D) IIEA=+3/2・(IIF-IID・A+IF・H#-ID・A#) ……(11E) ただし、 ( )D:手ぶれ補正群、非反転系の収差係数の和 ( )F:手ぶれ補正群より前の収差係数の和 A=-αn'/(αn'-αm) A#=αn'#/(αn'-αm) H=-(αn'#-αm#)/(αn'-αm)=-(Σhμ#・φμ)/(Σhμ
・φμ) ΔE=-2(αn'-αm) である(手ぶれ補正群をm→n,反転j←i)。
【0064】上記式(11A)〜(11E)から以下のことが分か
る。第1に、前述したように、松居吉哉氏の上記論文の
方法では手ぶれ補正群(すなわち、偏心レンズLS)とそれ
より後の光学系とが光学性能に関係するが、式(11A)〜
(11E)では手ぶれ補正群とそれより前の光学系とが光学
性能に関係する。第2に、軸外像点移動誤差は広角系
(手ぶれ補正群の焦点距離Flが分母)で大きくなり、片ボ
ケ,軸上コマは望遠系で大きくなる傾向がある。
【0065】第3に、手ぶれ補正群とそれより前の群の
収差係数を小さくすれば、偏心時の収差劣化は小さくな
るが、軸外像点移動誤差ΔYY’の係数VEYには、定数(式
(11A)中の{ }内の-2)が残る。これは、物面OSと像面IS
とが、回転ブレによって傾いた関係になるため発生する
項である。この定数項(-2)による軸外像点移動誤差は、
広角系で非常に大きくなる。例えば、焦点距離Fl=38mm
では、軸外像点移動誤差ΔYY'=-72μmになり、無視で
きない。また、この定数項(-2)による軸外像点移動誤差
は、各収差係数を"0"にしても残ってしまう。従って、
定数項(-2)を相殺するように各収差係数を設定すること
が望ましい。
【0066】第4に、偏心時の収差劣化を小さくするた
めには、各収差係数を小さくするとともに、収差係数に
かかる係数A,A#,H#等を小さくする必要がある。A,A#
については、分母のαn'-αmを大きくすればよいが、こ
れはΔE=-2(αn'-αm)に直結するため、大きすぎるとブ
レ補正感度(何mmレンズを偏心させると光束を何度曲げ
るか)が高くなりすぎ、メカ的な駆動精度が必要にな
る。H#については、手ぶれ補正群が絞りに近い方が、各
面のh#が小さくなり、H#も小さくなる。
【0067】
【発明の実施の形態】以下、本発明を実施した手ぶれ補
正機能を有する光学系を、図面を参照しつつ説明する。
図1,図5,図8,図11,図15は、第1〜第5の実
施の形態にそれぞれ対応する通常状態(偏心前状態)での
レンズ構成図であり、広角端[W]でのレンズ配置を示し
ている。また、各レンズ構成図中、ri(i=1,2,3,...)は
物体側から数えてi番目の面の曲率半径、di(i=1,2,
3,...)は物体側から数えてi番目の軸上面間隔を示して
いる。図1,図11及び図15中の矢印m1,m2,m
3,m4は、第1群Gr1,第2群Gr2,絞りS及び
第3群Gr3,並びに第4群Gr4の広角端[W]から望
遠端[T]にかけてのズーム移動をそれぞれ模式的に示し
ている。
【0068】第1の実施の形態は、物体側から順に、正
の屈折力を有する第1群Gr1と、負の屈折力を有する
第2群Gr2と、正の屈折力を有する第3群Gr3と、
正の屈折力を有する第4群Gr4と、から成り、各群の
間隔を変化させることによってズーミングを行うズーム
レンズである。第1の実施の形態では、第3群Gr3を
物体側から順に前群GrAと後群GrBとに分けて、前
群GrAを手ぶれ補正群として平行偏心させること(つ
まり、手ぶれ補正のために光軸AXに対して垂直方向に
偏心させること)によって手ぶれ補正が行われる。
【0069】第2,第3の実施の形態は、物体側から順
に、正の屈折力を有する第1群Gr1と、負の屈折力を
有する第2群Gr2と、正の屈折力を有する第3群Gr
3と、から成り、第2群Gr2でフォーカシングを行う
単焦点レンズである。第2,第3の実施の形態では、第
2群Gr2を物体側から順に固定群GrLと手ぶれ補正
群GrMと固定群GrNとの3つに分けて、手ぶれ補正
群GrMを平行偏心させることによって手ぶれ補正が行
われる。なお、最も像側には保護ガラスが配置されてい
る。
【0070】第4,第5の実施の形態は、物体側から順
に、正の屈折力を有する第1群Gr1と、負の屈折力を
有する第2群Gr2と、正の屈折力を有する第3群Gr
3と、負の屈折力を有する第4群Gr4と、から成り、
各群の間隔を変化させることによってズーミングを行う
ズームレンズである。第4,第5の実施の形態では、第
2群Gr2を物体側から順に前群GrAと後群GrBと
に分けて、前群GrAを手ぶれ補正群として平行偏心さ
せることによって手ぶれ補正が行われる。
【0071】各実施の形態において、手ぶれ補正群を構
成するレンズのうち最も像側に位置するレンズPFと、
レンズPFの像側に隣り合って位置し手ぶれ時には固定
のレンズPRとが、前述した条件式(1),(2)及び(4)、
又は条件式(1),(3)及び(4)を満たしている。このた
め、通常状態,補正状態のいずれにおいても諸収差を良
好に補正することができる。
【0072】
【実施例】以下、本発明を実施した手ぶれ補正機能を有
する光学系の構成を、コンストラクションデータ,収差
性能等を挙げて更に具体的に説明する。ここで例として
挙げる実施例1〜実施例5は、前述した第1〜第5の実
施の形態(図1,図5,図8,図11,図15)にそれぞ
れ対応する実施例である。そして、各実施例のコンスト
ラクションデータにおいて、ri(i=1,2,3,...)は物体側
から数えてi番目の面の曲率半径、di(i=1,2,3,...)は物
体側から数えてi番目の軸上面間隔(ここでは、偏心前状
態について示す。)を示しており、Ni(i=1,2,3,...),νi
(i=1,2,3,...)は物体側から数えてi番目のレンズのd線
に対する屈折率(Nd),アッベ数(νd)を示している。
また、コンストラクションデータ中、ズーミングにより
変化する軸上面間隔は、広角端[W]〜ミドル(中間焦点
距離状態)[M]〜望遠端[T]での各群間の実際の面間隔
であり、各状態に対応する全系の焦点距離f及びFナン
バーFNOを併せて示す。
【0073】また、実施例1中の曲率半径r28*の面は、
非球面で構成された面であり、非球面の面形状を表わす
次の式(AS)で定義されるものとする。 X=C・Y2/{1+(1-ε・C2・Y2)1/2}+A4・Y4+A6・Y6+A8・Y8+A10・Y10+A12・Y12 …(AS ) ただし、 X :光軸方向の基準面からの変位量、 Y :光軸に対して垂直な方向の高さ、 C :近軸曲率、 ε:2次曲面パラメータ、 A4,A6,A8,A10,A12:4次,6次,8次,10次,12次
の非球面係数である。
【0074】さらに、表1〜表4に、各実施例における
条件式の対応値及び関連データを示す。
【0075】《実施例1》 f=22.6〜50.5〜78.0 FNO=4.24〜6.22〜7.28 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] 〈第1群Gr1 …正〉 r1 971.931 d1 1.300 N1 1.83350 ν1 21.00 r2 88.101 d2 6.550 N2 1.58913 ν2 61.11 r3 -137.987 d3 0.100 r4 36.312 d4 4.250 N3 1.71300 ν3 53.93 r5 99.372 d5 1.845〜12.505〜19.997 〈第2群Gr2 …負〉 r6 39.377 d6 1.100 N4 1.80420 ν4 46.50 r7 10.701 d7 4.400 r8 -32.341 d8 0.950 N5 1.75450 ν5 51.57 r9 21.282 d9 0.300 r10 17.036 d10 3.700 N6 1.75000 ν6 25.14 r11 -40.855 d11 0.940 r12 -16.652 d12 1.300 N7 1.69680 ν7 56.47 r13 -66.585 d13 11.379〜4.400〜2.000 〈絞りS,第3群Gr3 …正〉 r14 ∞(絞りS) d14 0.500 {前群GrA …手ぶれ補正群} r15 75.184 d15 1.500 N8 1.62041 ν8 60.29 r16 -61.919 d16 0.500 r17 33.676 d17 1.215 N9 1.51728 ν9 69.43 …PF r18 26.682 d18 1.000 {後群GrB} r19 16.915 d19 1.215 N10 1.51728 ν10 69.43 …PR r20 24.253 d20 1.500 r21 -61.919 d21 1.310 N11 1.62041 ν11 60.29 r22 -32.276 d22 0.110 r23 18.287 d23 4.710 N12 1.51742 ν12 52.15 r24 -14.950 d24 1.360 N13 1.80741 ν13 31.59 r25 126.060 d25 5.300〜1.623〜1.000 〈第4群Gr4 …正〉 r26 34.239 d26 4.820 N14 1.51823 ν14 58.96 r27 -19.452 d27 1.470 r28* -106.937 d28 0.100 N15 1.51790 ν15 52.31 r29 -45.739 d29 1.400 N16 1.80500 ν16 40.97 r30 42.176 Σd= 66.125〜66.128〜70.598
【0076】[非球面係数] r28:ε= 1.0000 A4=-0.10470×10-3 A6=-0.34147×10-6 A8=-0.51713×10-9 A10=-0.14464×10-10 A12=-0.10659×10−16
【0077】《実施例2》 f=470.0 FNO=4.10 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] 〈第1群Gr1 …正〉 r1 252.985 d1 12.855 N1 1.49520 ν1 79.74 r2 -412.809 d2 0.402 r3 145.653 d3 14.863 N2 1.49520 ν2 79.74 r4 -2674.154 d4 2.410 r5 -903.130 d5 5.463 N3 1.65100 ν3 39.55 r6 216.707 d6 134.974 〈第2群Gr2 …負〉 {固定群GrL} r7 -145.734 d7 2.812 N4 1.65446 ν4 33.86 r8 -424.067 d8 1.607 r9 160.143 d9 4.178 N5 1.69680 ν5 56.47 r10 1028.521 d10 3.214 r11 -874.378 d11 4.820 N6 1.67339 ν6 29.25 r12 -88.133 d12 2.491 N7 1.58913 ν7 61.11 r13 ∞ d13 2.812 {手ぶれ補正群GrM} r14 -1716.385 d14 2.410 N8 1.78100 ν8 44.55 r15 84.092 d15 1.500 r16 56.872 d16 5.000 N9 1.49140 ν9 57.82 …PF r17 71.858 d17 3.500 {固定群GrN} r18 93.140 d18 2.000 N10 1.49140 ν10 57.82 …PR r19 70.119 d19 11.085 〈第3群Gr3 …正,絞りS,保護ガラス〉 r20 -856.898 d20 4.017 N11 1.61800 ν11 63.39 r21 -101.065 d21 19.282 r22 ∞(絞りS) d22 44.212 r23 ∞ d23 1.446 N12 1.51680 ν12 64.20 r24 ∞ Σd=287.353
【0078】《実施例3》 f=236.0 FNO=2.89 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] 〈第1群Gr1 …正〉 r1 118.597 d1 12.800 N1 1.49520 ν1 79.74 r2 -317.987 d2 0.336 r3 91.844 d3 11.600 N2 1.49520 ν2 79.74 r4 -637.093 d4 2.016 r5 -391.734 d5 2.960 N3 1.68150 ν3 36.64 r6 132.684 d6 62.400 〈第2群Gr2 …負〉 {固定群GrL} r7 -104.212 d7 2.000 N4 1.65446 ν4 33.86 r8 -163.145 d8 1.080 r9 85.118 d9 3.200 N5 1.60311 ν5 60.74 r10 474.044 d10 2.400 {手ぶれ補正群GrM} r11 -1363.419 d11 5.200 N6 1.71736 ν6 29.42 r12 -53.358 d12 1.480 N7 1.60311 ν7 60.74 r13 338.866 d13 2.520 r14 -173.400 d14 1.360 N8 1.67000 ν8 57.07 r15 52.435 d15 2.000 r16 40.163 d16 1.500 N9 1.58340 ν9 30.23 …PF r17 50.774 d17 2.000 {固定群GrN} r18 70.431 d18 2.000 N10 1.58340 ν10 30.23 …PR r19 47.223 d19 9.000 〈絞りS,第3群Gr3 …正,保護ガラス〉 r20 ∞(絞りS) d20 1.200 r21 521.110 d21 5.600 N11 1.60311 ν11 60.74 r22 -33.634 d22 1.280 N12 1.65446 ν12 33.86 r23 -63.807 d23 24.640 r24 ∞ d24 1.440 N13 1.51680 ν13 64.20 r25 ∞ Σd= 162.012
【0079】《実施例4》 f=82.2〜160.0〜233.6 FNO=4.60〜5.81〜6.19 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] 〈第1群Gr1 …正〉 r1 100.722 d1 1.700 N1 1.61293 ν1 36.96 r2 49.221 d2 6.460 N2 1.49310 ν2 83.58 r3 -1678.106 d3 0.100 r4 56.111 d4 3.820 N3 1.49310 ν3 83.58 r5 859.262 d5 3.300〜27.890〜41.425 〈第2群Gr2 …負〉 {前群GrA …手ぶれ補正群} r6 -69.399 d6 1.830 N4 1.71300 ν4 53.93 r7 34.412 d7 3.000 r8 38.193 d8 2.750 N5 1.67339 ν5 29.25 r9 1893.115 d9 2.000 r10 -35.714 d10 1.215 N6 1.51728 ν6 69.43 …PF r11 -29.097 d11 2.000 {後群GrB} r12 -24.999 d12 1.215 N7 1.51728 ν7 69.43 …PR r13 -30.588 d13 20.004〜4.713〜1.036 〈絞りS,第3群Gr3 …正〉 r14 ∞(絞りS) d14 1.380 r15 60.855 d15 1.300 N8 1.84666 ν8 23.82 r16 26.095 d16 2.460 r17 41.450 d17 2.840 N9 1.51680 ν9 64.20 r18 -111.975 d18 0.400 r19 35.623 d19 4.550 N10 1.51680 ν10 64.20 r20 -42.960 d20 20.260〜9.024〜0.874 〈第4群Gr4 …負〉 r21 206.481 d21 1.080 N11 1.71300 ν11 53.93 r22 24.106 d22 1.540 r23 -195.003 d23 3.480 N12 1.67339 ν12 29.25 r24 -18.789 d24 1.130 N13 1.75450 ν13 51.57 r25 ∞ Σd= 89.815〜87.878〜89.586
【0080】《実施例5》 f=82.2〜160.0〜233.6 FNO=4.60〜5.81〜6.60 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] 〈第1群Gr1 …正〉 r1 103.105 d1 1.700 N1 1.61293 ν1 36.96 r2 47.562 d2 6.460 N2 1.49310 ν2 83.58 r3 -214.862 d3 0.100 r4 50.735 d4 3.820 N3 1.49310 ν3 83.58 r5 247.066 d5 3.300〜25.679〜34.769 〈第2群Gr2 …負〉 {前群GrA …手ぶれ補正群} r6 -70.232 d6 1.830 N4 1.71300 ν4 53.93 r7 33.675 d7 1.000 r8 20.095 d8 2.000 N5 1.51728 ν5 69.43 …PF r9 24.008 d9 2.000 {後群GrB} r10 30.117 d10 1.215 N6 1.51728 ν6 69.43 …PR r11 19.468 d11 1.000 r12 27.326 d12 2.750 N7 1.67339 ν7 29.25 r13 157.462 d13 22.913〜7.665〜1.036 〈絞りS,第3群Gr3 …正〉 r14 ∞(絞りS) d14 1.380 r15 86.768 d15 1.300 N8 1.84666 ν8 23.82 r16 28.577 d16 2.460 r17 46.617 d17 2.840 N9 1.51680 ν9 64.20 r18 -58.745 d18 0.400 r19 34.744 d19 4.550 N10 1.51680 ν10 64.20 r20 -42.470 d20 18.566〜7.464〜0.874 〈第4群Gr4 …負〉 r21 488.716 d21 1.080 N11 1.71300 ν11 53.93 r22 24.791 d22 1.540 r23 -153.247 d23 3.480 N12 1.67339 ν12 29.25 r24 -17.314 d24 1.130 N13 1.75450 ν13 51.57 r25 ∞ Σd= 88.815〜84.843〜80.715
【0081】
【表1】
【0082】
【表2】
【0083】
【表3】
【0084】
【表4】
【0085】図2,図6,図9,図12,図16は、そ
れぞれ実施例1〜実施例5に対応する通常状態(偏心前
状態)での縦収差図である。図2,図12,図16中、
[W]は広角端,[M]は中間焦点距離状態(ミドル),[T]
は望遠端における収差を示している。また、各図中、実
線(d)はd線に対する収差を表わし、破線(SC)は正弦
条件を表わす。さらに、破線(DM)と実線(DS)はメリ
ディオナル面とサジタル面での非点収差をそれぞれ表わ
している。
【0086】図3及び図4,図7,図10,図13及び
図14,図17及び図18は、実施例1〜実施例5の広
角端[W]及び望遠端[T]に対応する横収差図であり、そ
れぞれ手ぶれ補正群の偏心前[A]と偏心後[B]のメリデ
ィオナル面の光束についての横収差を示している。各偏
心後の収差図[B]は、手ぶれ補正群の手ぶれ補正角θ=
0.7°(=0.0122173rad)の補正状態での収差を示してい
る。
【0087】
【発明の効果】以上説明したように本発明によれば、通
常状態,補正状態のいずれにおいても諸収差を良好に補
正することができる。
【図面の簡単な説明】
【図1】第1の実施の形態(実施例1)のレンズ構成図。
【図2】実施例1の偏心前の縦収差図。
【図3】実施例1の広角端における偏心前後のメリディ
オナル横収差を示す収差図。
【図4】実施例1の望遠端における偏心前後のメリディ
オナル横収差を示す収差図。
【図5】第2の実施の形態(実施例2)のレンズ構成図。
【図6】実施例2の偏心前の縦収差図。
【図7】実施例2の偏心前後のメリディオナル横収差を
示す収差図。
【図8】第3の実施の形態(実施例3)のレンズ構成図。
【図9】実施例3の偏心前の縦収差図。
【図10】実施例3の偏心前後のメリディオナル横収差
を示す収差図。
【図11】第4の実施の形態(実施例4)のレンズ構成
図。
【図12】実施例4の偏心前の縦収差図。
【図13】実施例4の広角端における偏心前後のメリデ
ィオナル横収差を示す収差図。
【図14】実施例4の望遠端における偏心前後のメリデ
ィオナル横収差を示す収差図。
【図15】第5の実施の形態(実施例5)のレンズ構成
図。
【図16】実施例5の偏心前の縦収差図。
【図17】実施例5の広角端における偏心前後のメリデ
ィオナル横収差を示す収差図。
【図18】実施例5の望遠端における偏心前後のメリデ
ィオナル横収差を示す収差図。
【図19】負レンズのシェイプファクターと収差係数と
の関係を示すグラフ。
【図20】正レンズのシェイプファクターと収差係数と
の関係を示すグラフ。
【図21】手ぶれ補正光学系の像劣化の要因を説明する
ための図。
【図22】光学系と座標との関係を説明するための図。
【図23】偏心による光線通過位置の違いを説明するた
めの図。
【図24】物面の回転変換を説明するための図。
【図25】反転系・非反転系の収差係数を説明するため
の図。
【図26】回転変換を説明するための図。
【図27】像面への変換を説明するための図。
【符号の説明】
Gr1 …第1群 Gr2 …第2群 Gr3 …第3群 Gr4 …第4群 GrA …前群 GrB …後群 GrL …固定群 GrM …手ぶれ補正群 GrN …固定群 S …絞り AX …光軸

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 手ぶれ補正のために光軸に対して垂直方
    向に偏心する手ぶれ補正群と、この手ぶれ補正群よりも
    像側に位置し手ぶれ時には固定のレンズ群と、を有する
    光学系であって、 前記手ぶれ補正群を構成するレンズのうち最も像側に位
    置するレンズをレンズPFとし、レンズPFの像側に隣
    り合って位置し手ぶれ時には固定のレンズをレンズPR
    としたとき、以下の条件式(1),(2)及び(4)、又は条件
    式(1),(3)及び(4)を満たすことを特徴とする手ぶれ補
    正機能を有する光学系; -5<S(PR)/S(PF)<0 …(1) 1.0<S(PF) …(2) S(PF)<0 …(3) P(PR)/P(PF)<0 …(4) ただし、 S(PF):レンズPFのシェイプファクター、 S(PR):レンズPRのシェイプファクター、 P(PF):レンズPFの屈折力、 P(PR):レンズPRの屈折力 であり、シェイプファクターは以下の式(A)で定義され
    るものとする; SF=(CRR+CRF)/(CRR-CRF) …(A) ここで、 SF:レンズのシェイプファクター、 CRF:レンズの物体側面の曲率半径、 CRR:レンズの像側面の曲率半径 である。
  2. 【請求項2】 複数のズーム群から成り、ズーム群間隔
    を変化させることによってズーミングを行い、いずれか
    のズーム群中に、手ぶれ補正のために光軸に対して垂直
    方向に偏心する手ぶれ補正群と、この手ぶれ補正群より
    も像側に位置し手ぶれ時には固定のレンズ群と、を有す
    るズームレンズであって、 前記手ぶれ補正群を構成するレンズのうち最も像側に位
    置するレンズをレンズPFとし、レンズPFの像側に隣
    り合って位置し手ぶれ時には固定のレンズをレンズPR
    としたとき、以下の条件式(1),(2)及び(4)、又は条件
    式(1),(3)及び(4)を満たすことを特徴とする手ぶれ補
    正機能を有するズームレンズ; -5<S(PR)/S(PF)<0 …(1) 1.0<S(PF) …(2) S(PF)<0 …(3) P(PR)/P(PF)<0 …(4) ただし、 S(PF):レンズPFのシェイプファクター、 S(PR):レンズPRのシェイプファクター、 P(PF):レンズPFの屈折力、 P(PR):レンズPRの屈折力 であり、シェイプファクターは以下の式(A)で定義され
    るものとする; SF=(CRR+CRF)/(CRR-CRF) …(A) ここで、 SF:レンズのシェイプファクター、 CRF:レンズの物体側面の曲率半径、 CRR:レンズの像側面の曲率半径 である。
JP04004196A 1996-02-27 1996-02-27 手ぶれ補正機能を有する光学系及びズームレンズ Expired - Fee Related JP3417192B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP04004196A JP3417192B2 (ja) 1996-02-27 1996-02-27 手ぶれ補正機能を有する光学系及びズームレンズ
US08/805,083 US6046852A (en) 1996-02-27 1997-02-24 Lens system with image blur correction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04004196A JP3417192B2 (ja) 1996-02-27 1996-02-27 手ぶれ補正機能を有する光学系及びズームレンズ

Publications (2)

Publication Number Publication Date
JPH09230236A true JPH09230236A (ja) 1997-09-05
JP3417192B2 JP3417192B2 (ja) 2003-06-16

Family

ID=12569836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04004196A Expired - Fee Related JP3417192B2 (ja) 1996-02-27 1996-02-27 手ぶれ補正機能を有する光学系及びズームレンズ

Country Status (2)

Country Link
US (1) US6046852A (ja)
JP (1) JP3417192B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066500A (ja) * 1999-08-27 2001-03-16 Canon Inc 防振機能を有した変倍光学系
US6462885B2 (en) 1999-12-10 2002-10-08 Canon Kabushiki Kaisha Zoom lens and photographing apparatus having the same
JP2006178193A (ja) * 2004-12-22 2006-07-06 Canon Inc ズームレンズ及びそれを有する撮像装置
WO2006103855A1 (ja) 2005-03-29 2006-10-05 Sony Corporation ズームレンズ及び撮像装置
WO2007010862A1 (ja) * 2005-07-19 2007-01-25 Matsushita Electric Industrial Co., Ltd. ズームレンズ系及びそれを備えた撮像光学機器
US7196853B2 (en) 2004-08-19 2007-03-27 Canon Kabushiki Kaisha Zoom lens system and image pickup apparatus having the same
JP2013044795A (ja) * 2011-08-22 2013-03-04 Tamron Co Ltd 大口径ズームレンズ
JP2015227979A (ja) * 2014-06-02 2015-12-17 コニカミノルタ株式会社 ズームレンズ,撮像光学装置及びデジタル機器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7307801B1 (en) * 2006-06-07 2007-12-11 The Boeing Company Dual field of view lens system
JP5064837B2 (ja) * 2007-03-01 2012-10-31 キヤノン株式会社 防振機能を有するズームレンズ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69316510T2 (de) * 1992-10-14 1998-05-28 Nikon Corp Zoomobjektiv mit Vibrationsdämpfung
US5579171A (en) * 1993-03-30 1996-11-26 Nikon Corporation Zoom lens equipped with the image stabilizing function

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066500A (ja) * 1999-08-27 2001-03-16 Canon Inc 防振機能を有した変倍光学系
JP4545849B2 (ja) * 1999-08-27 2010-09-15 キヤノン株式会社 変倍光学系
US6462885B2 (en) 1999-12-10 2002-10-08 Canon Kabushiki Kaisha Zoom lens and photographing apparatus having the same
US7196853B2 (en) 2004-08-19 2007-03-27 Canon Kabushiki Kaisha Zoom lens system and image pickup apparatus having the same
JP2006178193A (ja) * 2004-12-22 2006-07-06 Canon Inc ズームレンズ及びそれを有する撮像装置
WO2006103855A1 (ja) 2005-03-29 2006-10-05 Sony Corporation ズームレンズ及び撮像装置
US7990623B2 (en) 2005-03-29 2011-08-02 Sony Corporation Zoom lens and imaging capturing device
WO2007010862A1 (ja) * 2005-07-19 2007-01-25 Matsushita Electric Industrial Co., Ltd. ズームレンズ系及びそれを備えた撮像光学機器
JPWO2007010862A1 (ja) * 2005-07-19 2009-01-29 パナソニック株式会社 ズームレンズ系及びそれを備えた撮像光学機器
US7724447B2 (en) 2005-07-19 2010-05-25 Panasonic Corporation Zoom lens system and imaging optical device employing the same
JP2013044795A (ja) * 2011-08-22 2013-03-04 Tamron Co Ltd 大口径ズームレンズ
JP2015227979A (ja) * 2014-06-02 2015-12-17 コニカミノルタ株式会社 ズームレンズ,撮像光学装置及びデジタル機器

Also Published As

Publication number Publication date
US6046852A (en) 2000-04-04
JP3417192B2 (ja) 2003-06-16

Similar Documents

Publication Publication Date Title
EP2000839B1 (en) Zoom lens and image projection apparatus having the same
JP3570253B2 (ja) ズームレンズ
JP4978119B2 (ja) 高変倍ズームレンズ
US6266189B1 (en) Zoom lens system having an image blur compensating function
US7227699B2 (en) Zoom lens system and image pick-up apparatus including same
JP2008129076A (ja) ズームレンズ及びそれを有する撮像装置
JP3387305B2 (ja) 手ぶれ補正機能を有するズームレンズ
JP6433194B2 (ja) ズームレンズ及びそれを有する撮像装置
JPH09265042A (ja) 手ぶれ補正機能付き撮影光学系
JPH1164728A (ja) 手ぶれ補正機能を有するズームレンズ
US7075730B2 (en) Zoom lens system and image pickup apparatus including the same
JP3365087B2 (ja) 手ぶれ補正機能を有する光学系
JPH0882769A (ja) 手ぶれ補正機能を有するズームレンズ
JP2007072291A (ja) ズームレンズ及びそれを有する撮像装置
JP3417192B2 (ja) 手ぶれ補正機能を有する光学系及びズームレンズ
US20090310226A1 (en) Zoom lens and optical apparatus equipped therewith
JP3387307B2 (ja) 手ぶれ補正機能を有するズームレンズ
JP3335302B2 (ja) 観察光学機器の防振光学系
JPH09230241A (ja) 手ぶれ補正機能を有するズームレンズ
JP6164894B2 (ja) ズームレンズ及びそれを有する撮像装置
JPH09230240A (ja) 手ぶれ補正機能を有するズームレンズ
JP2021179551A (ja) ズームレンズ系、撮像装置、カメラシステム
JPH09230235A (ja) 手ぶれ補正機能を有するズームレンズ
JPH1152242A (ja) 手ぶれ補正機能を有するズームレンズ
JPH1164729A (ja) 手ぶれ補正機能を有するズームレンズ

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees