JPH09206769A - Downward injecting type ozone treating device - Google Patents

Downward injecting type ozone treating device

Info

Publication number
JPH09206769A
JPH09206769A JP1857596A JP1857596A JPH09206769A JP H09206769 A JPH09206769 A JP H09206769A JP 1857596 A JP1857596 A JP 1857596A JP 1857596 A JP1857596 A JP 1857596A JP H09206769 A JPH09206769 A JP H09206769A
Authority
JP
Japan
Prior art keywords
water
flow
treated
ozone
flow passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1857596A
Other languages
Japanese (ja)
Other versions
JP3526362B2 (en
Inventor
Yasuhiro Kato
康弘 加藤
Takayuki Morioka
崇行 森岡
Ryutaro Takahashi
龍太郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP01857596A priority Critical patent/JP3526362B2/en
Publication of JPH09206769A publication Critical patent/JPH09206769A/en
Application granted granted Critical
Publication of JP3526362B2 publication Critical patent/JP3526362B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To keep a flow rate of a water to be treated subjected to gas-liq. mixing within a fixed range and secure stable ozone treatment by allowing the water to be treated less than a specified flow rate to flow downward in the first flow passage under a constant head difference and allowing the water to be treated above the specified flow rate to flow downward in the second flow passage. SOLUTION: The minimum flow rate of the water to be treated is allowed to flow downward in the first flow passage 8, and the water to be treated above the minimum flow rate is allowed to flow into the second flow passage 11 by interposing the first overflow part 10 and allowed to flow downward. Then the water to be treated which is subjected to gas-liq. mixing by diffusing a gaseous ozone from an ozone diffuser 3 to the water to be treated flowing in the flow passage 9 and the water to be treated flowing in the second flow passage 11 are joined at a joining point 2, and after allowing the jointed water to flow upward in the third flow passage 5, the jointed water is allowed to flow in a residence tank 14 having a partition plate 15 through the second overflow part 13 and discharged from a discharge port 6. And the unreacted ozone out of the gaseous ozone injected in the water to be treated at that time is subjected to the gas-liq. separation at the upper part of the first flow passage 5, and after decomposing at a waste ozone treating device, discharged out of system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、オゾンの持つ酸
化作用を利用して被処理水の殺菌、脱臭、有機物などの
酸化を行うオゾン処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ozone treatment device that sterilizes water to be treated, deodorizes, and oxidizes organic substances, etc. by utilizing the oxidizing effect of ozone.

【0002】[0002]

【従来の技術】近年、オゾンがフッ素に次いで強力な酸
化力を有するという特長を利用して、オゾンを水中に散
気することにより殺菌、脱色、脱臭、有機物もしくは無
機物の酸化除去等を行う水処理が広く行われている。特
に都市近郊の水道では、取水源に起因する異臭味の被害
が広がっており、先に述べたオゾンの持つ強力な酸化力
はこの異臭味除去に大きな効果を発揮することから、オ
ゾン及び活性炭を用いた高度処理の導入が進められてい
る。
2. Description of the Related Art In recent years, water is used for sterilization, decolorization, deodorization, oxidation removal of organic substances or inorganic substances, etc. by diffusing ozone into water by utilizing the feature that ozone has a strong oxidizing power next to fluorine. The process is widely used. Especially in the water supply in the suburbs of cities, the offensive odor caused by the intake source is widespread, and the strong oxidizing power of ozone described above exerts a great effect in removing the offensive odor. The advanced treatment used is being introduced.

【0003】このようなオゾンとオゾンによって処理さ
れる被処理水とを反応させるオゾン処理装置は、電気エ
ネルギーからオゾンを発生させるオゾン発生装置、被処
理水を供給する送水ポンプ、反応を進行させる反応槽、
反応槽から未反応のまま排出される排オゾンを分解する
排オゾン処理設備から構成されており、接触方式として
は一般的に反応槽下部からオゾンを気泡として吹出させ
る気泡塔方式がよく用いられている。最近では殆どの処
理装置が気泡塔内において、被処理水を頂部から供給し
オゾンガスと対向させる向流接触方式を用いており、大
規模な浄水場等では、向流接触池を複数直列に接続し
た、横流式向流多段接触池が用いられている。
An ozone treatment apparatus for reacting ozone with water to be treated by ozone is an ozone generator for generating ozone from electric energy, a water supply pump for supplying water to be treated, and a reaction for advancing a reaction. Tank,
It consists of waste ozone treatment equipment that decomposes waste ozone discharged unreacted from the reaction tank.As a contact method, a bubble column method in which ozone is blown out as bubbles from the bottom of the reaction tank is generally used. There is. Recently, most of the treatment equipment uses a countercurrent contact method in which the water to be treated is supplied from the top and faces ozone gas in the bubble column.In large-scale water purification plants, etc., multiple countercurrent contact ponds are connected in series. A cross-current countercurrent multi-stage contact pond is used.

【0004】これらのオゾン処理装置は、被処理水に対
して酸化反応を十分に行うだけの接触時間を必要とす
る。そのために処理水量が大きい場合には容積の大きな
オゾン接触池が必要になり、多くの給水人口を抱える都
市近郊部の浄水場等に導入する場合には、より大規模な
設備が必要になってしまう。大規模な設備は、経済性の
観点から好ましくなく、オゾンによる処理装置の導入を
阻む大きな要因となってしまうので、オゾン反応槽には
高いオゾン吸収率および十分な除去効率が求められる。
[0004] These ozone treatment devices require a contact time for sufficiently performing an oxidation reaction on the water to be treated. Therefore, when the amount of treated water is large, a large-capacity ozone contact basin is required, and when it is introduced into a water treatment plant in the suburbs of a city with a large water supply population, larger-scale equipment is required. I will end up. A large-scale facility is not preferable from the economical point of view and becomes a major factor that hinders the introduction of a treatment apparatus using ozone. Therefore, the ozone reaction tank is required to have a high ozone absorption rate and sufficient removal efficiency.

【0005】ここでオゾン吸収率とは注入したオゾンガ
スのうち、反応槽内で被処理水に溶解、あるいは分解・
消費されたオゾンの割合であり下式で表される。 オゾン吸収率(%)=( 注入オゾンガス濃度−排オゾンガ
ス濃度) ÷注入オゾンガス濃度×100 また除去効率とは反応槽内で分解除去される被処理水中
の水質汚濁物質の割合であって下式で表される。代表的
な水質汚濁物質として臭気物質などが挙げられる。 除去効率(%)=( 流入汚濁物質濃度−流出汚濁物質濃度)
÷流入汚濁物質濃度×100 一般的にこのオゾン吸収率及び除去効率が高い程、オゾ
ン反応槽の処理効率は良いとされる。
Here, the ozone absorption rate means that of the injected ozone gas, it is dissolved or decomposed in the water to be treated in the reaction tank.
It is the ratio of ozone consumed and is expressed by the following formula. Ozone absorption rate (%) = (Injected ozone gas concentration-Exhaust ozone gas concentration) / Injected ozone gas concentration x 100 In addition, the removal efficiency is the ratio of water pollutants in the water to be decomposed and removed in the reaction tank. expressed. Typical water pollutants include odorous substances. Removal efficiency (%) = (concentration of inflowing pollutants-concentration of outflowing pollutants)
÷ Influent pollutant concentration × 100 Generally, the higher the ozone absorption rate and removal efficiency, the better the treatment efficiency of the ozone reaction tank.

【0006】またオゾンが水中に溶解する際のオゾン移
動量は、総括物質移動容量係数 (KLaと表記される)
と、水中の飽和オゾン濃度および溶存しているオゾン濃
度の差( 濃度勾配) が主な要因となる。この飽和オゾン
濃度はガス中のオゾン濃度とオゾン分配係数に依存する
ことがわかっている。そこで反応槽の水深圧を利用して
オゾン溶解効率を高めるという観点から反応槽水深はで
きるだけ深く取るのが望ましいが、先述の向流接触方式
では反応槽水深圧に対抗してガスを吹き込まなくてはな
らないことから実際の反応槽水深は6m が限界であっ
た。
The amount of ozone transferred when ozone is dissolved in water is the overall mass transfer capacity coefficient (expressed as KLa).
And the difference between the saturated ozone concentration in water and the dissolved ozone concentration (concentration gradient) is the main factor. It is known that this saturated ozone concentration depends on the ozone concentration in the gas and the ozone distribution coefficient. Therefore, it is desirable to make the water depth of the reaction tank as deep as possible from the viewpoint of increasing the ozone dissolution efficiency by utilizing the water depth pressure of the reaction tank, but in the above-mentioned countercurrent contact method, gas is not blown against the water pressure of the reaction tank. Therefore, the actual reactor water depth was 6 m.

【0007】そこで考え出されたのが下方注入式オゾン
処理装置である。図3は従来の下方注入式オゾン処理装
置を示す模式図である。この下方注入式オゾン処理装置
は反応槽上部の導入口1より被処理水を導入し同時にオ
ゾン発生装置2で発生させたオゾンガスをオゾン散気装
置3を介して導入する。被処理水はオゾンガスとの混合
流となり下降溶解部4を流下する。次に底部で接続され
た上昇部5Aを経て排出口6より反応槽外に送水され
る。注入されたオゾンガスのうち未反応のものは排オゾ
ン処理設備7により分解されて大気中に放出される。
Then, a downward injection type ozone treatment apparatus was conceived. FIG. 3 is a schematic view showing a conventional downward injection type ozone treatment device. This downward injection type ozone treatment apparatus introduces the water to be treated from the inlet 1 at the upper part of the reaction tank and at the same time introduces the ozone gas generated by the ozone generator 2 through the ozone diffuser 3. The water to be treated becomes a mixed flow with ozone gas and flows down through the descending dissolution section 4. Next, water is sent from the outlet 6 to the outside of the reaction tank through the ascending section 5A connected at the bottom. The unreacted one of the injected ozone gas is decomposed by the exhaust ozone treatment facility 7 and released into the atmosphere.

【0008】この下方注入式オゾン処理装置では、被処
理水とオゾンガスが頂部より同時に導入されるため水深
圧に対抗してガスを吹込む必要がなく向流式接触方式よ
りも深い水深をもつ反応槽の設計が可能である。またオ
ゾンの溶解速度が速いためオゾン吸収率は95%以上、有
機物除去効率は75% 以上を示し向流式反応槽の性能を大
きく上回っている。
In this downward injection type ozone treatment apparatus, since the water to be treated and the ozone gas are introduced from the top at the same time, there is no need to blow the gas against the water depth pressure, and the reaction has a deeper water depth than the countercurrent contact method. The tank can be designed. In addition, since the ozone dissolution rate is fast, the ozone absorption rate is 95% or more, and the organic matter removal efficiency is 75% or more, far exceeding the performance of the countercurrent reactor.

【0009】[0009]

【発明が解決しようとする課題】しかしながら下方注入
式オゾン処理装置はその構造上、気液混合の下降流を安
定的に保つ必要がありその運転条件、特に被処理水流量
及びオゾンガス流量には制約が生ずる。具体的には下降
管内の被処理水流速(=下降管断面積方向の被処理水線
速度)は45cm/s以上に保つ必要があり、また被処理水流
量とオゾンガス流量の比( 被処理水流量÷オゾンガス流
量) は20以上に保つ必要がある。この範囲を外れると下
降管内で気泡の塊が生じ期待通りの処理性能が得られな
い。
However, due to the structure of the downward injection type ozone treatment apparatus, it is necessary to keep the downward flow of gas-liquid mixture stable, and its operating conditions, particularly the flow rate of water to be treated and the flow rate of ozone gas, are restricted. Occurs. Specifically, the flow velocity of the treated water in the downcomer (= the linear velocity of the treated water in the cross sectional area direction of the downcomer) must be kept at 45 cm / s or more, and the ratio of the treated water flow rate to the ozone gas flow rate (the treated water (Flow rate / flow rate of ozone gas) must be maintained at 20 or more. If it is out of this range, lumps of bubbles will occur in the downcomer and the expected processing performance cannot be obtained.

【0010】日本国内の浄水場では一般的に季節的な被
処理水流量の変動が激しいのが実情である。そのために
下方注入式オゾン処理装置を国内の浄水場等に適用する
には、被処理水の流量変動に対応し常に安定して下降管
内の被処理水流速を一定範囲内に維持する手法を確立す
る必要がある。また一般に下降溶解部は管径を細く設計
するため損失水頭の増加を招きやすい。そのため下降流
速確保のための補助動力として被処理水供給ポンプを設
置する場合もある。これは現在自然流下によって運転し
ている横流式接触池に比べて動力費増となりやすい。
[0010] In water treatment plants in Japan, it is the actual situation that the flow rate of water to be treated generally fluctuates greatly. Therefore, in order to apply the downward injection type ozone treatment equipment to domestic water purification plants, etc., we established a method to respond to fluctuations in the flow rate of treated water and maintain a stable and constant flow velocity of the treated water in the downcomer pipe. There is a need to. Further, in general, the descending melting portion is designed to have a small pipe diameter, which tends to increase the head loss. Therefore, a treated water supply pump may be installed as an auxiliary power for securing the downward flow velocity. This tends to increase the power cost compared to the cross-flow type contact pond which is currently operated by natural flow.

【0011】この発明は上述の点に鑑みてなされその目
的は被処理水の流量変動に係わらず気液混合された被処
理水流速を一定範囲内に維持して処理性能の安定した下
方注入式オゾン処理装置を提供することにある。また他
の目的は被処理水供給ポンプを下方注入式オゾン処理装
置に設置する場合にポンプ動力費を軽減することが可能
な下方注入式オゾン処理装置を提供することにある。
The present invention has been made in view of the above points, and an object thereof is a downward injection type in which the flow velocity of the treated water mixed with gas and liquid is maintained within a certain range regardless of the fluctuation of the flow rate of the treated water and the treatment performance is stable. It is to provide an ozone treatment device. Another object of the present invention is to provide a down-injection type ozone treatment device which can reduce pump power cost when the treated water supply pump is installed in the down-injection type ozone treatment device.

【0012】[0012]

【課題を解決するための手段】上述の目的は第一の発明
によれば第一の流路と、第二の流路と、第三の流路と、
第一の溢流部と、第二の溢流部を有し、第一の流路は所
定流量以下の被処理水が内部を下降通流するもので、下
降通流の途次でオゾンガスが被処理水中に散気され、第
二の流路は所定流量を越えた被処理水が内部を下降通流
するものであり、第一の流路と第二の流路はそれぞれの
底部において相互に結合され、第三の流路は第一の流路
と第二の流路をそれぞれ下降通流した被処理水が合流し
て内部を上昇通流するものであり、第一の溢流部は第一
の流路の頂部から第二の流路の頂部に被処理水が溢流す
るものであり、第二の溢流部は第三の流路を通流した被
処理水が溢流するもので、第二の溢流部の水頭は第一の
溢流部の水頭に比し小さいものであるとすることにより
達成される。
According to the first aspect of the present invention, there is provided a first flow path, a second flow path, a third flow path, and
It has a first overflow portion and a second overflow portion, and the first flow path is one in which the water to be treated at a predetermined flow rate or less flows downward in the inside, and ozone gas is generated during the downward flow. The water to be treated is diffused, and the second flow passage is one in which the water to be treated, which has exceeded a predetermined flow rate, flows downward in the inside, and the first flow passage and the second flow passage are mutually connected at the bottom. And the third flow path is a flow path through which the treated water descending through the first flow path and the second flow path merges and flows upward through the inside of the first flow path. Means that the water to be treated overflows from the top of the first flow path to the top of the second flow path, and the second overflow overflows the water to be processed flowing through the third flow path. However, the head of the second overflow is smaller than that of the first overflow.

【0013】第二の発明によれは第一の発明において、
第一と第二の流路は頂部が被処理水の流入渠であり、第
一の流路の流入渠の底部には被処理水の通流管が接続さ
れるとすることが有効である。第三の発明によれば第二
の発明において通流管上にポンプが配置されるとするこ
とが有効である。
According to the second invention, in the first invention,
It is effective that the tops of the first and second flow paths are the inflow conduits for the water to be treated, and the flow paths for the water to be processed are connected to the bottoms of the inflow conduits for the first flow channel. . According to the third invention, it is effective that the pump is arranged on the flow pipe in the second invention.

【0014】被処理水の最小流量が前記所定流量を上回
るときは、第一の溢流部の水頭は第二の溢流部の水頭よ
り大きく且つその差は一定であるから第一の流路には常
に前記所定流量の被処理水が下降通流する。下降通流の
途次で被処理水中に散気されたオゾンガスは第一の流路
を下降通流して最も水圧の大きな第一の流路の底部に到
達したときに被処理水中への溶解度が最大になる。
When the minimum flow rate of the water to be treated exceeds the predetermined flow rate, the head of the first overflow portion is larger than the head of the second overflow portion and the difference is constant, so that the first flow path. In this case, the water to be treated at the predetermined flow rate always flows downward. The ozone gas diffused into the water to be treated during the downward flow has a solubility in the water to be treated when it flows down the first channel and reaches the bottom of the first channel with the highest water pressure. It will be maximum.

【0015】第一の溢流部を溢流した被処理水は第三の
流路を上昇通流する際に第一の流路を下降通流した被処
理水と混合して第一の被処理水中の溶解オゾンガスと反
応する。
The water to be treated which has overflowed from the first overflow portion is mixed with the water to be treated which has been allowed to flow downwardly through the first channel when flowing upwardly through the third channel. Reacts with dissolved ozone gas in treated water.

【0016】[0016]

【発明の実施の形態】図1はこの発明の実施例に係る下
方注入式オゾン処理装置を示す配置図である。被処理水
は導入口1より系内に導入され、このうち被処理水の最
小流量は第一の流路である頂部の流入渠と、同じく第一
の流路である流入口8と、さらに同じく第一の流路であ
る通流管9を下降通流する。最小流量を越える被処理水
は第一の溢流部10を介して第二の流路11に流入し下
降通流する。第二の流路の頂部は被処理水の流入渠とな
っている。第一の流路である通流管9内を流れる被処理
水にはオゾン散気装置3からのオゾンガスが散気され
る。第一の流路である通流管9内を流れる気液混合され
た被処理水と第二の流路11を流れる被処理水は合流点
12で合流し、第三の流路5を上昇通流して第二の溢流
部13を経由して仕切り板15のある滞留槽14内を通
流し排出口6より排出される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a layout diagram showing a downward injection type ozone treatment apparatus according to an embodiment of the present invention. The water to be treated is introduced into the system through the inlet 1, of which the minimum flow rate of the water to be treated is the inlet channel at the top which is the first channel, and the inlet port 8 which is also the first channel. The flow pipe 9 which is also the first flow path is allowed to flow downward. The water to be treated that exceeds the minimum flow rate flows into the second flow path 11 through the first overflow portion 10 and flows downward. The top of the second flow path serves as an inflow conduit for the water to be treated. Ozone gas from the ozone diffuser 3 is diffused into the water to be treated flowing in the flow pipe 9 which is the first flow path. The water-gas-mixed water to be treated flowing in the flow pipe 9 which is the first flow passage and the water to be treated flowing in the second flow passage 11 merge at a confluence point 12 and rise in the third flow passage 5. After passing through the second overflow portion 13, it flows through the retention tank 14 having the partition plate 15 and is discharged from the discharge port 6.

【0017】第一の流路である通流管9内の被処理水の
流速は、第一の溢流部の水頭と第二の溢流部の水頭の差
により一定に維持される。従って予め想定される最小処
理水量に基いて、第一の溢流部と第二の溢流部の水頭
差、通流管9の管径、第二の流路11への配分流量を設
計しておけば、被処理水量が増加してもその増加分は全
て第二の流路へ流れ、通流管9内の流量は一定に維持さ
れる。
The flow velocity of the water to be treated in the flow pipe 9 which is the first flow path is kept constant by the difference between the head of the first overflow portion and the head of the second overflow portion. Therefore, the head difference between the first overflow portion and the second overflow portion, the pipe diameter of the flow pipe 9, and the flow rate distributed to the second flow passage 11 are designed based on the minimum treated water amount assumed in advance. If it is set, even if the amount of water to be treated increases, the increase will all flow to the second flow path, and the flow rate in the flow pipe 9 will be maintained constant.

【0018】滞留槽14内には図に示したように、仕切
り板15を設置し、上下迂流構造にすれば滞留槽14内
の水の流れが均一になり、短絡流の発生が抑止される。
また滞留槽14の滞留時間は、有機物等の分解反応を進
行させるだけの時間が必要であり例えば臭気物質等の除
去を目的とした場合は、約10〜20分に設定される。被処
理水に注入されたオゾンガスのうち未反応のものは第一
の流路5の上部において気液分離され、排オゾン処理設
備7により分解されて系外に放出される。
As shown in the figure, a partition plate 15 is installed in the retention tank 14 to form a vertical bypass structure so that the flow of water in the retention tank 14 becomes uniform and the occurrence of a short circuit flow is suppressed. It
Further, the residence time in the retention tank 14 is required to allow the decomposition reaction of organic substances and the like to proceed, and is set to about 10 to 20 minutes for the purpose of removing odorous substances and the like. Unreacted ozone gas injected into the water to be treated is gas-liquid separated in the upper part of the first flow path 5, decomposed by the exhaust ozone treatment equipment 7, and discharged to the outside of the system.

【0019】通流管9内の流量が水頭差のみで維持でき
ない場合は補助動力として被処理水供給ポンプ16が設
置される。第一と第二の流路は頂部が被処理水の流入渠
であり、第一の流路の流入渠の底部に被処理水の通流管
が接続されると、被処理水の通流管内にオゾンガスを散
気することができて第一の溢流部における被処理水の溢
流と、第一の流路内でのオゾンガスの被処理水への溶解
が効率良く進む。
When the flow rate in the flow pipe 9 cannot be maintained only due to the head difference, a treated water supply pump 16 is installed as an auxiliary power. The tops of the first and second flow passages are treated water inlets, and when the treated water flow pipe is connected to the bottom of the inlet of the first flow passage, the treated water flows. Ozone gas can be diffused into the pipe, and the overflow of the water to be treated in the first overflow portion and the dissolution of the ozone gas in the water to be treated in the first flow path proceed efficiently.

【0020】図2はこの発明の異なる実施例に係る下方
注入式オゾン処理装置を示す配置図である。被処理水供
給ポンプ16が通流管9上に設置される。通流管上にポ
ンプが配置されると被処理水の下降通流方向に補助動力
が加わるので動力費の増加が少なくなる。
FIG. 2 is a layout view showing a downward injection type ozone treatment apparatus according to another embodiment of the present invention. The untreated water supply pump 16 is installed on the flow pipe 9. When the pump is arranged on the flow pipe, auxiliary power is applied in the downward flow direction of the water to be treated, so that the increase in power cost is reduced.

【0021】[0021]

【発明の効果】この発明によれば所定流量以下の被処理
水を一定の水頭差の下で第一の流路を下降通流させ、所
定流量を越えた被処理水は第二の流路を下降通流させる
ので、最小の被処理水流量が前記所定流量を上回るとき
は、被処理水に流量変動があっても第一の流路には常に
前記所定流量の被処理水が流れ、気液混合された被処理
水流速を一定範囲内に維持してオゾン処理の安定した下
方注入式オゾン処理装置が得られる。
According to the present invention, the water to be treated having a predetermined flow rate or less is caused to flow downward through the first flow path under a constant head difference, and the water to be treated exceeding the predetermined flow rate is supplied to the second flow path. Therefore, when the minimum treated water flow rate exceeds the predetermined flow rate, the predetermined flow rate of the treated water always flows through the first flow path even if the flow rate of the treated water changes. It is possible to obtain a downward injection type ozone treatment apparatus in which ozone treatment is stable by maintaining the flow velocity of water to be treated mixed with gas and liquid within a certain range.

【0022】通流管上にポンプが配置されると被処理水
の下降通流方向に補助動力が加わるために補助動力が低
減され従来にない高効率のオゾン処理システムが得られ
る。
When the pump is arranged on the flow pipe, the auxiliary power is applied in the downward flow direction of the water to be treated, so that the auxiliary power is reduced and a highly efficient ozone treatment system which has never been obtained can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例に係る下方注入式オゾン処理
装置を示す配置図
FIG. 1 is a layout view showing a downward injection type ozone treatment apparatus according to an embodiment of the present invention.

【図2】この発明の異なる実施例に係る下方注入式オゾ
ン処理装置を示す配置図
FIG. 2 is a layout view showing a downward injection type ozone treatment apparatus according to another embodiment of the present invention.

【図3】従来の下方注入式オゾン処理装置を示す模式図FIG. 3 is a schematic view showing a conventional downward injection type ozone treatment device.

【符号の説明】[Explanation of symbols]

1 導入口 2 オゾン発生装置 3 オゾン散気装置 4 下降溶解部 5A 上昇部 5 第三の流路 6 排出口 7 排オゾン処理装置 8 第一の流路(流入口) 9 第一の流路(通流管) 10 第一の溢流部 11 第二の流路 12 合流点 13 第二の溢流部 14 滞留槽 15 仕切り板 16 ポンプ DESCRIPTION OF SYMBOLS 1 introduction port 2 ozone generator 3 ozone diffuser 4 descending dissolution part 5A rising part 5 third flow path 6 discharge port 7 waste ozone treatment device 8 first flow path (inlet) 9 first flow path ( Flow pipe) 10 First overflow part 11 Second flow path 12 Confluence point 13 Second overflow part 14 Retention tank 15 Partition plate 16 Pump

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/50 540 C02F 1/50 540A 550 550H 1/58 1/58 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C02F 1/50 540 C02F 1/50 540A 550 550H 1/58 1/58 A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】第一の流路と、第二の流路と、第三の流路
と、第一の溢流部と、第二の溢流部を有し、 第一の流路は所定流量以下の被処理水が内部を下降通流
するもので、下降通流の途次でオゾンガスが被処理水中
に散気され、 第二の流路は所定流量を越えた被処理水が内部を下降通
流するものであり、 第一の流路と第二の流路はそれぞれの底部において相互
に結合され、 第三の流路は第一の流路と第二の流路をそれぞれ下降通
流した被処理水が合流して内部を上昇通流するものであ
り、 第一の溢流部は第一の流路の頂部から第二の流路の頂部
に被処理水が溢流するものであり、 第二の溢流部は第三の流路を通流した被処理水が溢流す
るもので、第二の溢流部の水頭は第一の溢流部の水頭に
比し小さいものであることを特徴とする下方注入式オゾ
ン処理装置。
1. A first flow path, a second flow path, a third flow path, a first overflow part, and a second overflow part, wherein the first flow path is The water to be treated flows below a prescribed flow rate, and ozone gas is diffused into the water to be treated during the downward flow. The first flow passage and the second flow passage are connected to each other at their bottoms, and the third flow passage descends the first flow passage and the second flow passage, respectively. The treated water that has flowed through merges and flows upward through the inside, and the first overflow portion overflows the treated water from the top of the first channel to the top of the second channel. The second overflow is the water to be treated that has flowed through the third flow path, and the head of the second overflow is higher than that of the first overflow. Downward infusion characterized by being small Ozone processing apparatus.
【請求項2】請求項1に記載の下方注入式オゾン処理装
置において、第一と第二の流路は頂部が被処理水の流入
渠であり、第一の流路の流入渠の底部には被処理水の通
流管が接続されてなることを特徴とする下方注入式オゾ
ン処理装置。
2. The downward pouring type ozone treatment apparatus according to claim 1, wherein the tops of the first and second flow paths are the inflow conduits of the water to be treated, and the bottoms of the inflow conduits of the first flow path. Is a down-injection type ozone treatment device, characterized in that a flow pipe for the water to be treated is connected.
【請求項3】請求項2に記載の下方注入式オゾン処理装
置において、通流管上にポンプが配置されてなることを
特徴とする下方注入式オゾン処理装置。
3. The down-injection ozone treatment device according to claim 2, wherein a pump is arranged on the flow pipe.
JP01857596A 1996-02-05 1996-02-05 Downward injection type ozone treatment equipment Expired - Lifetime JP3526362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01857596A JP3526362B2 (en) 1996-02-05 1996-02-05 Downward injection type ozone treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01857596A JP3526362B2 (en) 1996-02-05 1996-02-05 Downward injection type ozone treatment equipment

Publications (2)

Publication Number Publication Date
JPH09206769A true JPH09206769A (en) 1997-08-12
JP3526362B2 JP3526362B2 (en) 2004-05-10

Family

ID=11975428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01857596A Expired - Lifetime JP3526362B2 (en) 1996-02-05 1996-02-05 Downward injection type ozone treatment equipment

Country Status (1)

Country Link
JP (1) JP3526362B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003094039A (en) * 2001-09-25 2003-04-02 Fuji Clean Kogyo Kk Wastewater treatment equipment and process therefor
KR100760559B1 (en) * 2005-12-13 2007-10-04 주식회사 에스에프에이 Apparatus for making ozone water
JP2014004554A (en) * 2012-06-26 2014-01-16 Shin Nippon Giken Kk Gas dissolution device for liquid
JP2020032377A (en) * 2018-08-30 2020-03-05 内外化学製品株式会社 Water treatment system
JP2020189256A (en) * 2019-05-20 2020-11-26 株式会社環境開発技研 Wastewater treatment method and wastewater treatment apparatus used therefor
CN113173636A (en) * 2021-05-10 2021-07-27 天津市生态环境科学研究院(天津市环境规划院、天津市低碳发展研究中心) Ozone cyclic oxidation reaction treatment system and treatment method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003094039A (en) * 2001-09-25 2003-04-02 Fuji Clean Kogyo Kk Wastewater treatment equipment and process therefor
KR100760559B1 (en) * 2005-12-13 2007-10-04 주식회사 에스에프에이 Apparatus for making ozone water
JP2014004554A (en) * 2012-06-26 2014-01-16 Shin Nippon Giken Kk Gas dissolution device for liquid
JP2020032377A (en) * 2018-08-30 2020-03-05 内外化学製品株式会社 Water treatment system
JP2020189256A (en) * 2019-05-20 2020-11-26 株式会社環境開発技研 Wastewater treatment method and wastewater treatment apparatus used therefor
CN113173636A (en) * 2021-05-10 2021-07-27 天津市生态环境科学研究院(天津市环境规划院、天津市低碳发展研究中心) Ozone cyclic oxidation reaction treatment system and treatment method

Also Published As

Publication number Publication date
JP3526362B2 (en) 2004-05-10

Similar Documents

Publication Publication Date Title
US4954257A (en) Biological purification loop device and method having deflector plate within guide pipe
KR100703890B1 (en) Plant for high concentration wastewater treatment by anaerobic and aerobic digestion
EP2540677B1 (en) Contact reaction tower with internal circulation ozone used in industrial wastewater advanced treatment
KR101697526B1 (en) high efficient ozone-water treatment system
KR101292731B1 (en) The gas captured type gas-liquid reactor and the water treatment apparatus, gas purification apparatus using thereof
KR101682392B1 (en) Wastewater disposal equipment
KR20130032278A (en) Gas dispersion apparatus for improved gas-liquid mass transfer
JP4528828B2 (en) Water treatment process and apparatus by fluid flow
JPH09206769A (en) Downward injecting type ozone treating device
US7335308B2 (en) Method for treatment of liquids, in particular, for purification of contaminated water
JP3731806B2 (en) Organic wastewater treatment method and apparatus
JPH09234479A (en) Ozone reaction tank
JPH08299971A (en) Separating injection type ozone contact method
KR101163097B1 (en) Gas dissolution equipment using gaps for treatment of drinking water and wastewater
JPH08192176A (en) Separate injection type ozone contact method
JP3522010B2 (en) Pressurized downward injection type multi-stage ozone contact tank
KR101215378B1 (en) Purification system having vertical multicompartment reactor for organic waste water
JPH09290280A (en) Ozone contact tank and control method therefor
JPH07299476A (en) Descending dissolution type ozone reactor
JPH07195092A (en) Descending dissolution type ozone reaction chamber
JP3216755B2 (en) Descending ozone reaction tank
RU2214370C1 (en) Plant to saturate water with ozone
JPH06206084A (en) Introduction of ozone gas into downstream dissolving type water treating device
RU2223814C2 (en) Apparatus for bringing gas and liquid in contact
KR20030016344A (en) Ozone Connect and Recycle of Offgas after Ozonation in Water Treatment System

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040213

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term