JP3526362B2 - Downward injection type ozone treatment equipment - Google Patents

Downward injection type ozone treatment equipment

Info

Publication number
JP3526362B2
JP3526362B2 JP01857596A JP1857596A JP3526362B2 JP 3526362 B2 JP3526362 B2 JP 3526362B2 JP 01857596 A JP01857596 A JP 01857596A JP 1857596 A JP1857596 A JP 1857596A JP 3526362 B2 JP3526362 B2 JP 3526362B2
Authority
JP
Japan
Prior art keywords
water
flow
treated
flow path
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01857596A
Other languages
Japanese (ja)
Other versions
JPH09206769A (en
Inventor
康弘 加藤
崇行 森岡
龍太郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP01857596A priority Critical patent/JP3526362B2/en
Publication of JPH09206769A publication Critical patent/JPH09206769A/en
Application granted granted Critical
Publication of JP3526362B2 publication Critical patent/JP3526362B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、オゾンの持つ酸
化作用を利用して被処理水の殺菌、脱臭、有機物などの
酸化を行うオゾン処理装置に関する。 【0002】 【従来の技術】近年、オゾンがフッ素に次いで強力な酸
化力を有するという特長を利用して、オゾンを水中に散
気することにより殺菌、脱色、脱臭、有機物もしくは無
機物の酸化除去等を行う水処理が広く行われている。特
に都市近郊の水道では、取水源に起因する異臭味の被害
が広がっており、先に述べたオゾンの持つ強力な酸化力
はこの異臭味除去に大きな効果を発揮することから、オ
ゾン及び活性炭を用いた高度処理の導入が進められてい
る。 【0003】このようなオゾンとオゾンによって処理さ
れる被処理水とを反応させるオゾン処理装置は、電気エ
ネルギーからオゾンを発生させるオゾン発生装置、被処
理水を供給する送水ポンプ、反応を進行させる反応槽、
反応槽から未反応のまま排出される排オゾンを分解する
排オゾン処理設備から構成されており、接触方式として
は一般的に反応槽下部からオゾンを気泡として吹出させ
る気泡塔方式がよく用いられている。最近では殆どの処
理装置が気泡塔内において、被処理水を頂部から供給し
オゾンガスと対向させる向流接触方式を用いており、大
規模な浄水場等では、向流接触池を複数直列に接続し
た、横流式向流多段接触池が用いられている。 【0004】これらのオゾン処理装置は、被処理水に対
して酸化反応を十分に行うだけの接触時間を必要とす
る。そのために処理水量が大きい場合には容積の大きな
オゾン接触池が必要になり、多くの給水人口を抱える都
市近郊部の浄水場等に導入する場合には、より大規模な
設備が必要になってしまう。大規模な設備は、経済性の
観点から好ましくなく、オゾンによる処理装置の導入を
阻む大きな要因となってしまうので、オゾン反応槽には
高いオゾン吸収率および十分な除去効率が求められる。 【0005】ここでオゾン吸収率とは注入したオゾンガ
スのうち、反応槽内で被処理水に溶解、あるいは分解・
消費されたオゾンの割合であり下式で表される。 オゾン吸収率(%)=( 注入オゾンガス濃度−排オゾンガ
ス濃度) ÷注入オゾンガス濃度×100 また除去効率とは反応槽内で分解除去される被処理水中
の水質汚濁物質の割合であって下式で表される。代表的
な水質汚濁物質として臭気物質などが挙げられる。 除去効率(%)=( 流入汚濁物質濃度−流出汚濁物質濃度)
÷流入汚濁物質濃度×100 一般的にこのオゾン吸収率及び除去効率が高い程、オゾ
ン反応槽の処理効率は良いとされる。 【0006】またオゾンが水中に溶解する際のオゾン移
動量は、総括物質移動容量係数 (KLaと表記される)
と、水中の飽和オゾン濃度および溶存しているオゾン濃
度の差( 濃度勾配) が主な要因となる。この飽和オゾン
濃度はガス中のオゾン濃度とオゾン分配係数に依存する
ことがわかっている。そこで反応槽の水深圧を利用して
オゾン溶解効率を高めるという観点から反応槽水深はで
きるだけ深く取るのが望ましいが、先述の向流接触方式
では反応槽水深圧に対抗してガスを吹き込まなくてはな
らないことから実際の反応槽水深は6m が限界であっ
た。 【0007】そこで考え出されたのが下方注入式オゾン
処理装置である。図3は従来の下方注入式オゾン処理装
置を示す模式図である。この下方注入式オゾン処理装置
は反応槽上部の導入口1より被処理水を導入し同時にオ
ゾン発生装置2で発生させたオゾンガスをオゾン散気装
置3を介して導入する。被処理水はオゾンガスとの混合
流となり下降溶解部4を流下する。次に底部で接続され
た上昇部5Aを経て排出口6より反応槽外に送水され
る。注入されたオゾンガスのうち未反応のものは排オゾ
ン処理設備7により分解されて大気中に放出される。 【0008】この下方注入式オゾン処理装置では、被処
理水とオゾンガスが頂部より同時に導入されるため水深
圧に対抗してガスを吹込む必要がなく向流式接触方式よ
りも深い水深をもつ反応槽の設計が可能である。またオ
ゾンの溶解速度が速いためオゾン吸収率は95%以上、有
機物除去効率は75% 以上を示し向流式反応槽の性能を大
きく上回っている。 【0009】 【発明が解決しようとする課題】しかしながら下方注入
式オゾン処理装置はその構造上、気液混合の下降流を安
定的に保つ必要がありその運転条件、特に被処理水流量
及びオゾンガス流量には制約が生ずる。具体的には下降
管内の被処理水流速(=下降管断面積方向の被処理水線
速度)は45cm/s以上に保つ必要があり、また被処理水流
量とオゾンガス流量の比( 被処理水流量÷オゾンガス流
量) は20以上に保つ必要がある。この範囲を外れると下
降管内で気泡の塊が生じ期待通りの処理性能が得られな
い。 【0010】日本国内の浄水場では一般的に季節的な被
処理水流量の変動が激しいのが実情である。そのために
下方注入式オゾン処理装置を国内の浄水場等に適用する
には、被処理水の流量変動に対応し常に安定して下降管
内の被処理水流速を一定範囲内に維持する手法を確立す
る必要がある。また一般に下降溶解部は管径を細く設計
するため損失水頭の増加を招きやすい。そのため下降流
速確保のための補助動力として被処理水供給ポンプを設
置する場合もある。これは現在自然流下によって運転し
ている横流式接触池に比べて動力費増となりやすい。 【0011】この発明は上述の点に鑑みてなされその目
的は被処理水の流量変動に係わらず気液混合された被処
理水流速を一定範囲内に維持して処理性能の安定した下
方注入式オゾン処理装置を提供することにある。また他
の目的は被処理水供給ポンプを下方注入式オゾン処理装
置に設置する場合にポンプ動力費を軽減することが可能
な下方注入式オゾン処理装置を提供することにある。 【0012】 【課題を解決するための手段】上記課題を解決するため
に、この発明によれば第一の流路と、第二の流路と、第
三の流路と、第一の溢流部と、第二の溢流部を有し、第
一の流路常に一定の所定流量である被処理水が内部
を下降通流、下降通流の途次でオゾンガスが被処理水
中に散気され、第二の流路は所定流量を越えた被処理
水が内部を下降通流、第一の流路と第二の流路はそれ
ぞれの底部において相互に結合され、第三の流路は第
一の流路と第二の流路をそれぞれ下降通流した被処理水
が合流して内部を上昇通流し、第一の溢流部は所定流量
を越えた被処理水を前記第二の流路に溢流させ、第二の
溢流部は第三の流路を通流した被処理水溢流させ、第
二の溢流部の水頭は第一の溢流部の水頭に比し小さいも
のであって、第一の溢流部の水頭と第二の溢流部の水頭
との差によって、第一の流路内部の被処理水を一定の
定流量維持することにより達成される。 【0013】 【0014】被処理水の最小流量が前記所定流量を上回
るときは、第一の溢流部の水頭は第二の溢流部の水頭よ
り大きく且つその差は一定であるから第一の流路には常
に前記所定流量の被処理水が下降通流する。下降通流の
途次で被処理水中に散気されたオゾンガスは第一の流路
を下降通流して最も水圧の大きな第一の流路の底部に到
達したときに被処理水中への溶解度が最大になる。 【0015】第一の溢流部を溢流した被処理水は第三の
流路を上昇通流する際に第一の流路を下降通流した被処
理水と混合して第一の被処理水中の溶解オゾンガスと反
応する。 【0016】 【発明の実施の形態】図1はこの発明の実施例に係る下
方注入式オゾン処理装置を示す配置図である。被処理水
は導入口1より系内に導入され、このうち被処理水の最
小流量は第一の流路である頂部の流入渠と、同じく第一
の流路である流入口8と、さらに同じく第一の流路であ
る通流管9を下降通流する。最小流量を越える被処理水
は第一の溢流部10を介して第二の流路11に流入し下
降通流する。第二の流路の頂部は被処理水の流入渠とな
っている。第一の流路である通流管9内を流れる被処理
水にはオゾン散気装置3からのオゾンガスが散気され
る。第一の流路である通流管9内を流れる気液混合され
た被処理水と第二の流路11を流れる被処理水は合流点
12で合流し、第三の流路5を上昇通流して第二の溢流
部13を経由して仕切り板15のある滞留槽14内を通
流し排出口6より排出される。 【0017】第一の流路である通流管9内の被処理水の
流速は、第一の溢流部の水頭と第二の溢流部の水頭の差
により一定に維持される。従って予め想定される最小処
理水量に基いて、第一の溢流部と第二の溢流部の水頭
差、通流管9の管径、第二の流路11への配分流量を設
計しておけば、被処理水量が増加してもその増加分は全
て第二の流路へ流れ、通流管9内の流量は一定に維持さ
れる。 【0018】滞留槽14内には図に示したように、仕切
り板15を設置し、上下迂流構造にすれば滞留槽14内
の水の流れが均一になり、短絡流の発生が抑止される。
また滞留槽14の滞留時間は、有機物等の分解反応を進
行させるだけの時間が必要であり例えば臭気物質等の除
去を目的とした場合は、約10〜20分に設定される。被処
理水に注入されたオゾンガスのうち未反応のものは第一
の流路5の上部において気液分離され、排オゾン処理設
備7により分解されて系外に放出される。 【0019】通流管9内の流量が水頭差のみで維持でき
ない場合は補助動力として被処理水供給ポンプ16が設
置される。第一と第二の流路は頂部が被処理水の流入渠
であり、第一の流路の流入渠の底部に被処理水の通流管
が接続されると、被処理水の通流管内にオゾンガスを散
気することができて第一の溢流部における被処理水の溢
流と、第一の流路内でのオゾンガスの被処理水への溶解
が効率良く進む。 【0020】図2はこの発明の異なる実施例に係る下方
注入式オゾン処理装置を示す配置図である。被処理水供
給ポンプ16が通流管9上に設置される。通流管上にポ
ンプが配置されると被処理水の下降通流方向に補助動力
が加わるので動力費の増加が少なくなる。 【0021】 【発明の効果】この発明によれば所定流量以下の被処理
水を一定の水頭差の下で第一の流路を下降通流させ、所
定流量を越えた被処理水は第二の流路を下降通流させる
ので、最小の被処理水流量が前記所定流量を上回るとき
は、被処理水に流量変動があっても第一の流路には常に
前記所定流量の被処理水が流れ、気液混合された被処理
水流速を一定範囲内に維持してオゾン処理の安定した下
方注入式オゾン処理装置が得られる。 【0022】通流管上にポンプが配置されると被処理水
の下降通流方向に補助動力が加わるために補助動力が低
減され従来にない高効率のオゾン処理システムが得られ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ozone treatment apparatus for sterilizing, deodorizing, and oxidizing organic substances in water to be treated by utilizing the oxidizing action of ozone. [0002] In recent years, utilizing the feature that ozone has a strong oxidizing power next to fluorine, ozone is diffused into water to sterilize, decolorize, deodorize, oxidize and remove organic or inorganic substances, and the like. Water treatment is widely performed. In particular, in the water supply near the city, the damage of the off-flavor due to the water intake source is widespread, and the strong oxidizing power of ozone described above exerts a great effect on removing this off-flavor. Introduction of advanced processing used is being promoted. [0003] Such an ozone treatment apparatus for reacting ozone with water to be treated by ozone is an ozone generator for generating ozone from electric energy, a water pump for supplying the water to be treated, and a reaction for proceeding the reaction. Tank,
It is composed of waste ozone treatment equipment that decomposes exhausted ozone discharged unreacted from the reaction tank, and as a contact method, a bubble column method in which ozone is blown out as bubbles from the lower part of the reaction tank is generally used. I have. Recently, most treatment equipment uses a countercurrent contact system in which the water to be treated is supplied from the top and faces the ozone gas in the bubble column. In large-scale water purification plants, etc., multiple countercurrent contact ponds are connected in series. A crossflow type countercurrent multistage contact pond is used. [0004] These ozone treatment apparatuses require a contact time sufficient to sufficiently perform an oxidation reaction on the water to be treated. Therefore, large volume ozone contact ponds are required when the treated water volume is large, and larger scale facilities are required when introducing them to water purification plants near urban areas with a large population of water supply. I will. Large-scale equipment is not preferable from the viewpoint of economy, and is a major factor that hinders introduction of a treatment apparatus using ozone. Therefore, an ozone reaction tank is required to have a high ozone absorption rate and a sufficient removal efficiency. [0005] Here, the ozone absorptivity means that the injected ozone gas is dissolved or decomposed in the water to be treated in the reaction tank.
It is the ratio of consumed ozone and is expressed by the following equation. Ozone absorption rate (%) = (injected ozone gas concentration-exhausted ozone gas concentration) ÷ injected ozone gas concentration x 100 The removal efficiency is the ratio of water pollutants in the water to be decomposed and removed in the reaction tank. expressed. Typical water pollutants include odorous substances. Removal efficiency (%) = (Inflow pollutant concentration-Outflow pollutant concentration)
÷ Inflow pollutant concentration x 100 Generally, the higher the ozone absorption rate and removal efficiency, the better the treatment efficiency of the ozone reactor. [0006] The amount of ozone transfer when ozone is dissolved in water is determined by the overall mass transfer capacity coefficient (denoted as KLa).
And the difference (concentration gradient) between the saturated ozone concentration in water and the dissolved ozone concentration. It is known that the saturated ozone concentration depends on the ozone concentration in the gas and the ozone distribution coefficient. Therefore, from the viewpoint of increasing the ozone dissolution efficiency by using the water depth pressure of the reaction tank, it is desirable to set the water depth of the reaction tank as deep as possible, but in the above-described countercurrent contact method, gas is not blown against the reaction tank water depth. The actual depth of the reactor tank was limited to 6m because it was not possible. What has been devised is a downward injection type ozone treatment apparatus. FIG. 3 is a schematic diagram showing a conventional downward injection type ozone treatment apparatus. In this downward injection type ozone treatment apparatus, water to be treated is introduced from an introduction port 1 in the upper part of the reaction tank, and at the same time, ozone gas generated by an ozone generator 2 is introduced through an ozone diffuser 3. The water to be treated becomes a mixed flow with the ozone gas and flows down the descending dissolution unit 4. Next, water is sent from the outlet 6 to the outside of the reaction tank via the rising portion 5A connected at the bottom. The unreacted one of the injected ozone gas is decomposed by the waste ozone treatment equipment 7 and released into the atmosphere. In this downward injection type ozone treatment apparatus, since the water to be treated and the ozone gas are introduced simultaneously from the top, there is no need to blow gas against the water depth pressure, and the reaction has a deeper water depth than the countercurrent contact type. Tank design is possible. In addition, since the dissolution rate of ozone is high, the ozone absorption rate is 95% or more, and the organic matter removal efficiency is 75% or more. However, the down-injection type ozone treatment apparatus needs to maintain a stable downflow of gas-liquid mixture due to its structure, and its operating conditions, particularly the flow rate of the water to be treated and the flow rate of ozone gas Has restrictions. Specifically, the velocity of the water to be treated in the downcomer (= the linear velocity of the treated water in the direction of the cross-sectional area of the downcomer) must be maintained at 45 cm / s or more, and the ratio of the flow rate of the treated water to the flow rate of the ozone gas (the treated water) (Flow rate ozone gas flow rate) needs to be maintained at 20 or more. Outside this range, bubbles may form in the downcomer and the expected processing performance may not be obtained. In a water purification plant in Japan, the flow rate of the water to be treated generally fluctuates drastically. Therefore, in order to apply the downward injection type ozone treatment system to water treatment plants in Japan, etc., a method has been established to constantly and stably maintain the flow rate of the water in the downcomer within a certain range in response to fluctuations in the flow rate of the water to be treated. There is a need to. In addition, since the descending melting part is generally designed to have a small pipe diameter, the head loss tends to increase. Therefore, a treated water supply pump may be installed as an auxiliary power for securing the descending flow velocity. This is likely to result in increased power costs compared to a cross-flow pond currently operating by gravity. SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has as its object to maintain the flow rate of gas-liquid mixed water to be treated within a certain range irrespective of fluctuations in the flow rate of the water to be treated, and to provide a downward injection type with a stable treatment performance. An object of the present invention is to provide an ozone treatment device. It is another object of the present invention to provide a downward injection type ozone treatment apparatus capable of reducing pump power cost when a water supply pump is installed in a downward injection type ozone treatment apparatus. According to the present invention, a first flow path, a second flow path, a third flow path, and a first overflow are provided. the flow section has a second overflow section, the first flow channel always treated water is lowered through flow inside which is a constant predetermined flow rate, the ozone gas is treated in closed descending through flow is aeration in water, treated water in the second flow path exceeds a predetermined flow rate inside lowered through flow, a first flow passage and the second flow path are coupled to each other at respective bottoms, The water to be treated, which has flowed downward through the first flow path and the second flow path, respectively, merges into the third flow path , and flows upward inside the first flow path. the treated water is overflowed to the second channel, the second overflow portion is overflow water to be treated flows through the third flow passage, the water head of the second overflow section first Smaller than the head of the overflow There are, by the difference between the first overflow of water head and a second overflow portion of water head, by maintaining the water to be treated inside the first flow path <br/> constant flow constant at Achieved. When the minimum flow rate of the water to be treated exceeds the predetermined flow rate, the head of the first overflow is larger than the head of the second overflow, and the difference is constant. In the flow path, the water to be treated having the predetermined flow rate always flows downward. The ozone gas diffused into the water to be treated on the way to the downward flow flows downward through the first flow path, and when reaching the bottom of the first flow path with the highest water pressure, the solubility in the water to be processed is reduced. Be the largest. The water to be treated which has overflowed the first overflow portion is mixed with the water to be treated which has flowed downward through the first flow path when flowing upward through the third flow path. Reacts with dissolved ozone gas in treated water. FIG. 1 is a layout diagram showing a downward injection type ozone treatment apparatus according to an embodiment of the present invention. The water to be treated is introduced into the system from the inlet 1, and the minimum flow rate of the water to be treated is the first inflow culvert, which is the first flow path, the inflow port 8, which is also the first flow path, and The flow pipe 9 which is also the first flow path flows downward. The water to be treated exceeding the minimum flow rate flows into the second flow path 11 via the first overflow section 10 and flows downward. The top of the second channel is an inflow channel for the water to be treated. Ozone gas from the ozone diffuser 3 is diffused into the water to be treated flowing through the flow pipe 9 as the first flow path. The gas-liquid mixed water to be processed flowing through the flow pipe 9 as the first flow path and the water to be processed flowing through the second flow path 11 merge at a junction 12 and rise in the third flow path 5. The water flows through the second overflow portion 13, flows through the retention tank 14 having the partition plate 15, and is discharged from the discharge port 6. The flow rate of the water to be treated in the flow pipe 9, which is the first flow path, is kept constant by the difference between the head of the first overflow and the head of the second overflow. Therefore, the head difference between the first overflow portion and the second overflow portion, the pipe diameter of the flow pipe 9, and the distribution flow rate to the second flow path 11 are designed based on the assumed minimum treated water amount. In this case, even if the amount of water to be treated increases, all of the increase flows to the second flow path, and the flow rate in the flow pipe 9 is kept constant. As shown in the figure, if a partition plate 15 is provided in the storage tank 14 to form a vertical detour structure, the flow of water in the storage tank 14 becomes uniform, and the occurrence of short-circuit flow is suppressed. You.
The residence time in the residence tank 14 needs to be long enough to allow the decomposition reaction of organic substances and the like to proceed. For example, when the purpose is to remove odorous substances and the like, the residence time is set to about 10 to 20 minutes. Among the ozone gas injected into the water to be treated, unreacted ozone gas is separated into gas and liquid in the upper part of the first flow path 5, decomposed by the waste ozone treatment equipment 7, and released out of the system. When the flow rate in the flow pipe 9 cannot be maintained only by the head difference, a water supply pump 16 is installed as auxiliary power. The top of each of the first and second flow paths is an inflow channel for the water to be treated. When the flow pipe of the water to be treated is connected to the bottom of the inflow channel of the first flow path, the flow of the water to be treated is The ozone gas can be diffused in the pipe, and the overflow of the water to be treated in the first overflow portion and the dissolution of the ozone gas into the water to be treated in the first flow passage proceed efficiently. FIG. 2 is a layout diagram showing a downward injection type ozone treatment apparatus according to another embodiment of the present invention. A to-be-treated water supply pump 16 is provided on the flow pipe 9. When the pump is arranged on the flow pipe, auxiliary power is applied in the downward flow direction of the water to be treated, so that the increase in power cost is reduced. According to the present invention, the water to be treated having a flow rate equal to or less than a predetermined flow rate is caused to flow down the first flow path with a fixed head difference, and the water to be treated exceeding the predetermined flow rate is reduced to a second flow rate. When the minimum flow rate of the water to be treated exceeds the predetermined flow rate, the first flow path always has the predetermined flow rate of the water to be treated even if the flow rate of the water to be treated fluctuates. Flows, and the flow rate of the gas-liquid mixed water to be treated is maintained within a certain range, whereby a downward injection type ozone treatment apparatus with stable ozone treatment can be obtained. When a pump is arranged on the flow pipe, auxiliary power is applied in the downward flow direction of the water to be treated, so that the auxiliary power is reduced, and an unprecedented high-efficiency ozone treatment system is obtained.

【図面の簡単な説明】 【図1】この発明の実施例に係る下方注入式オゾン処理
装置を示す配置図 【図2】この発明の異なる実施例に係る下方注入式オゾ
ン処理装置を示す配置図 【図3】従来の下方注入式オゾン処理装置を示す模式図 【符号の説明】 1 導入口 2 オゾン発生装置 3 オゾン散気装置 4 下降溶解部 5A 上昇部 5 第三の流路 6 排出口 7 排オゾン処理装置 8 第一の流路(流入口) 9 第一の流路(通流管) 10 第一の溢流部 11 第二の流路 12 合流点 13 第二の溢流部 14 滞留槽 15 仕切り板 16 ポンプ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a layout diagram showing a downward injection type ozone treatment device according to an embodiment of the present invention. FIG. 2 is a layout diagram showing a downward injection ozone treatment device according to a different embodiment of the present invention. FIG. 3 is a schematic view showing a conventional downward injection type ozone treatment apparatus. [Description of References] 1 Inlet 2 Ozone generator 3 Ozone diffuser 4 Down melting part 5A Up part 5 Third flow path 6 Outlet 7 Exhaust ozone treatment device 8 First flow path (inlet) 9 First flow path (flow pipe) 10 First overflow section 11 Second flow path 12 Junction point 13 Second overflow section 14 Retention Vessel 15 Partition plate 16 Pump

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 実開 平6−85096(JP,U) (58)調査した分野(Int.Cl.7,DB名) C02F 1/78 B01F 1/00 C02F 1/50 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-85096 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 1/78 B01F 1/00 C02F 1 / 50

Claims (1)

(57)【特許請求の範囲】 【請求項1】第一の流路と、第二の流路と、第三の流路
と、第一の溢流部と、第二の溢流部を有し、 前記第一の流路、常に一定の所定流量である被処理
水が内部を下降通流、下降通流の途次でオゾンガスが
前記被処理水中に散気され、 前記第二の流路所定流量を越えた前記被処理水が
内部を下降通流、 前記第一の流路と前記第二の流路はそれぞれの底部に
おいて相互に結合され、 前記第三の流路前記第一の流路と前記第二の流路
をそれぞれ下降通流した前記被処理水が合流して内部を
上昇通流、 前記第一の溢流部は所定流量を越えた被処理水を前記
第二の流路に溢流させ、 前記第二の溢流部は前記第三の流路を通流した前記被処
理水溢流させ、 前記第二の溢流部の水頭は前記第一の溢流部の水頭に比
し小さいものであって、前記第一の溢流部の水頭と前記
第二の溢流部の水頭との差によって、前記第一の流路内
部の前記被処理水を一定の所定流量維持することを特
徴とする下方注入式オゾン処理装置。
(57) [Claims 1] A first flow path, a second flow path, a third flow path, a first overflow section, and a second overflow section. a, wherein the first flow path, always treated water is lowered through flow inside which is a constant predetermined flow rate, the air diffuser ozone gas in the water to be treated in closed descending through flow, the first the second flow path, the water to be treated exceeds a predetermined flow rate is lowered through flow therethrough, said second flow path and the first flow path are coupled to each other at respective bottoms, said first the third flow path, an internal increased through-flow said first flow path and the second flow path joins said treatment water flowed respectively lowered through the first overflow portion, the water to be treated exceeds a predetermined flow rate is overflow in the second flow channel, said second overflow section to overflow the water to be treated flows through the third flow passage, the second The head of the overflow area is the first It is those smaller than the water head of the flow unit, the difference between the said and the first overflow portion of the water head second overflow portion of water head, the water to be treated inside the first flow path A downward injection type ozonation apparatus characterized by maintaining a constant predetermined flow rate.
JP01857596A 1996-02-05 1996-02-05 Downward injection type ozone treatment equipment Expired - Lifetime JP3526362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01857596A JP3526362B2 (en) 1996-02-05 1996-02-05 Downward injection type ozone treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01857596A JP3526362B2 (en) 1996-02-05 1996-02-05 Downward injection type ozone treatment equipment

Publications (2)

Publication Number Publication Date
JPH09206769A JPH09206769A (en) 1997-08-12
JP3526362B2 true JP3526362B2 (en) 2004-05-10

Family

ID=11975428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01857596A Expired - Lifetime JP3526362B2 (en) 1996-02-05 1996-02-05 Downward injection type ozone treatment equipment

Country Status (1)

Country Link
JP (1) JP3526362B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5073138B2 (en) * 2001-09-25 2012-11-14 フジクリーン工業株式会社 Waste water treatment apparatus and waste water treatment method
KR100760559B1 (en) * 2005-12-13 2007-10-04 주식회사 에스에프에이 Apparatus for making ozone water
JP5985270B2 (en) * 2012-06-26 2016-09-06 新日本技研株式会社 Gas dissolver for liquid
JP6574035B1 (en) * 2018-08-30 2019-09-11 内外化学製品株式会社 Water treatment system
JP6957044B2 (en) * 2019-05-20 2021-11-02 株式会社環境開発技研 Waste liquid treatment method and waste liquid treatment equipment used for it
CN113173636B (en) * 2021-05-10 2022-06-07 天津市生态环境科学研究院(天津市环境规划院、天津市低碳发展研究中心) Ozone cyclic oxidation reaction treatment system and treatment method

Also Published As

Publication number Publication date
JPH09206769A (en) 1997-08-12

Similar Documents

Publication Publication Date Title
EP2540677B1 (en) Contact reaction tower with internal circulation ozone used in industrial wastewater advanced treatment
JP3831949B2 (en) Biological treatment method and apparatus for organic drainage
EP0541076A2 (en) Cooling water ozonation system
WO2011115335A1 (en) Gas-collection-type gas-liquid reaction device, and water treatment apparatus and gas purification apparatus using same
KR100349214B1 (en) Water treatment apparatus using perforated plates
JP3526362B2 (en) Downward injection type ozone treatment equipment
JP4528828B2 (en) Water treatment process and apparatus by fluid flow
CN100418615C (en) Enhanced biological spraying and bubbling gas absorbing purifier
CN216360442U (en) Ozone nano bubble organic wastewater treatment system
JP3731806B2 (en) Organic wastewater treatment method and apparatus
JPH09234479A (en) Ozone reaction tank
JPH08299971A (en) Separating injection type ozone contact method
JP3263267B2 (en) Septic tank
JPH08192176A (en) Separate injection type ozone contact method
CN214032099U (en) High-efficient ozone treatment reactor
JP3522010B2 (en) Pressurized downward injection type multi-stage ozone contact tank
JP3953127B2 (en) Aeration treatment equipment
JP3087914B2 (en) Aeration treatment equipment
JP3216755B2 (en) Descending ozone reaction tank
JP2004188240A (en) Water treatment apparatus
JP2003334434A (en) Ozone dissolving device for water treatment
JPH07195092A (en) Descending dissolution type ozone reaction chamber
JP3547573B2 (en) Water treatment method
JPH07299476A (en) Descending dissolution type ozone reactor
JPH06206084A (en) Introduction of ozone gas into downstream dissolving type water treating device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term