JPH07299476A - Descending dissolution type ozone reactor - Google Patents

Descending dissolution type ozone reactor

Info

Publication number
JPH07299476A
JPH07299476A JP9598394A JP9598394A JPH07299476A JP H07299476 A JPH07299476 A JP H07299476A JP 9598394 A JP9598394 A JP 9598394A JP 9598394 A JP9598394 A JP 9598394A JP H07299476 A JPH07299476 A JP H07299476A
Authority
JP
Japan
Prior art keywords
descending
ozone
bubbles
reaction tank
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9598394A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kato
康弘 加藤
Takayuki Morioka
崇行 森岡
Ryutaro Takahashi
龍太郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP9598394A priority Critical patent/JPH07299476A/en
Publication of JPH07299476A publication Critical patent/JPH07299476A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To suppress the diameter of bubbles by providing a part of the descending dissolution part of a reactor with a descending mixture device to shear and mix the bubbles. CONSTITUTION:The part of descending dissolution part 1a is provided with the descending mixing device (mixing apparatus) 11. As the mixing apparatus 11, a static mixer can be used as a line mixer for shearing and mixing the bubbles. By the constitution, the bubbles are mixed and sheared to become small by the mixing apparatus. The degree is changed with the flow rate of the water to be treated 4 and the diameter of the descending dissolution part 1a. Then, the characteristic of the reactor may be fixed by the simulation with the overall mass transfer capacity coefficient optionally changed. The ozone adsorption is increased by 86-94% with the decrease of bubbles diameter by about 40%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はオゾンを用いて水中の殺
菌,脱臭,有機物などの酸化を行なう下降溶解型オゾン
反応槽に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a descending dissolution type ozone reaction tank for sterilizing water, deodorizing water, and oxidizing organic substances using ozone.

【0002】[0002]

【従来の技術】近年、オゾンがフッ素に次いで強力な酸
化力を有するという特徴を利用して、オゾンを水中に散
気することにより、殺菌,脱色,脱臭,有機物もしくは
無機物の酸化除去などを行なう水処理が広く行なわれて
いる。とくに、都市近郊の水道では、取水源に起因する
異臭味の被害が広がっており、オゾンの持つ強力な酸化
力は、この異臭味を除去するのに大きな効果を発揮する
ことから、オゾンと活性炭を用いた高度処理の導入が進
められている。
2. Description of the Related Art In recent years, ozone is diffused in water by utilizing the characteristic that ozone has the strongest oxidizing power next to fluorine, thereby performing sterilization, decolorization, deodorization, and oxidation removal of organic or inorganic substances. Water treatment is widely used. In particular, in the water supply in the suburbs of cities, the damage of offensive odor caused by the water intake source is widespread, and the strong oxidizing power of ozone exerts a great effect in removing this offensive odor. The introduction of advanced processing using is being promoted.

【0003】このようなオゾンと、オゾンによって処理
される水(以下、被処理水とする)とを反応させるオゾ
ン処理装置は、主として電気エネルギーからオゾンを発
生させるオゾン発生装置,被処理水を供給する送水ポン
プ,反応を進行させる反応槽,反応槽から未反応のまま
排出される排オゾンを分解する排オゾン処理設備から構
成されており、反応槽の形状は次のものが知られてい
る。
An ozone treatment apparatus for reacting such ozone with water treated with ozone (hereinafter referred to as treated water) supplies an ozone generator for generating ozone mainly from electric energy and treated water. It is composed of a water supply pump, a reaction tank for advancing the reaction, and an exhaust ozone treatment facility for decomposing exhaust ozone discharged from the reaction tank in an unreacted state. The following is known as the shape of the reaction tank.

【0004】まず回分式では、オゾンをエジェクタによ
り反応槽に吹き込むエジェクタ方式,もしくは反応槽下
部からオゾンを気泡として吹き出させる気泡塔方式があ
り、連続式では、気泡塔内において被処理水とオゾンガ
スを下部から連続的に供給する並流接触方式,被処理水
を頂部から供給し、オゾンガスと対向させる向流接触方
式などがある。
First, in the batch system, there are an ejector system in which ozone is blown into the reaction tank by an ejector, or a bubble column system in which ozone is blown out as bubbles from the lower part of the reaction tank. There are a co-current contact method that continuously supplies from the lower part, and a countercurrent contact method that supplies water to be treated from the top and opposes ozone gas.

【0005】これらのオゾン処理装置は、被処理水に対
して酸化反応を十分に行なうだけの接触時間が必要であ
る。そのため、被処理水量が多いときは、容積の大きな
オゾン接触槽が必要になり、多くの給水人口を抱える都
市近郊部の浄水場などに導入する場合には、大規模な設
備が必要となる。このことは、経済性の点から好ましく
なく、オゾンを用いる水処理装置の導入を阻む大きな要
因でり、したがって、オゾン反応槽に高いオゾン吸収
率、および十分な除去効率が求められる。
These ozone treatment devices require a contact time for sufficiently performing an oxidation reaction on the water to be treated. Therefore, when the amount of water to be treated is large, a large-volume ozone contact tank is required, and when it is introduced into a water purification plant in a suburb of a city with a large water supply population, large-scale equipment is required. This is not preferable from the economical point of view, and is a major factor that hinders the introduction of a water treatment device using ozone. Therefore, a high ozone absorption rate and a sufficient removal efficiency are required for the ozone reaction tank.

【0006】ここで、オゾン吸収率とは、注入したオゾ
ンガスのうち、反応槽内で被処理水に溶解もしくは分解
し、消費されたオゾンの割合であり、下記の式で表わさ
れる。 また、除去効率とは、反応槽内で分解除去される被処理
水中の水質汚濁物質の割合であって、下式で表わされ
る。代表的な水質汚濁物質として臭気物質などがある。
Here, the ozone absorption rate is a rate of ozone which is consumed by being dissolved or decomposed in water to be treated in the reaction tank in the injected ozone gas, and is represented by the following formula. The removal efficiency is the ratio of water pollutants in the water to be treated that is decomposed and removed in the reaction tank, and is represented by the following formula. Typical odorants are water pollutants.

【0007】 一般に、このオゾン吸収率および除去効率が高い程、オ
ゾン反応槽の処理効率が良いとされている。
[0007] Generally, the higher the ozone absorption rate and the removal efficiency, the better the processing efficiency of the ozone reaction tank.

【0008】ところで、オゾンが水中に溶解する際のオ
ゾン移動量は、総括物質移動容量係数(KLa)と、水中
の飽和オゾン濃度と溶存しているオゾン濃度の差(濃度
勾配)が主な要因である。この飽和オゾン濃度は、ガス
中のオゾン濃度とオゾン分配係数に依存することが知ら
れている。そこで、反応槽の水深圧を利用してオゾン溶
解効率を高めるという観点から、反応槽の水深は、可能
な限り深くするのが望ましいが、先述の向流接触方式で
は、反応槽の水深圧に対向してガスを吹き込まねばなら
ないから、実際の反応槽水深は6mが限界であった。こ
れに対処するために考えられたのが、下降溶解型オゾン
処理装置である。
By the way, the amount of ozone transfer when ozone is dissolved in water is mainly determined by the overall mass transfer capacity coefficient (K La ) and the difference between the saturated ozone concentration in water and the dissolved ozone concentration (concentration gradient). It is a factor. It is known that the saturated ozone concentration depends on the ozone concentration in the gas and the ozone distribution coefficient. Therefore, it is desirable to make the water depth of the reaction tank as deep as possible from the viewpoint of increasing ozone dissolution efficiency by utilizing the water depth pressure of the reaction tank. Since the gas had to be blown facing each other, the actual depth of the reaction tank was 6 m. A descending dissolution type ozone treatment device was conceived to cope with this.

【0009】図3は下降溶解型オゾン処理装置の要部の
構成を示す模式図である。図3において、この装置はU
字状の反応槽上部の導入口2から、送水ポンプ3によ
り被処理水4を導入し、同時にオゾン発生装置5で発生
させたオゾンガスを、散気装置6を介して気泡7として
反応槽内に注入する。被処理水4は気泡7(オゾンガ
ス)との混合流となり、反応槽の下降溶解部1aを流
下する。この混合流は反応槽の底部を通り上昇部1b
を経て、排出口8から処理水9として反応槽の外部に
配水することができる。被処理水4と気泡7の流れの方
向を矢印で表わす。注入されたオゾンガスのうち、未反
応のものは排オゾン処理設備10により分解されて放出
される。なお、U字状の反応槽は、通常は下降溶解部
1aの方の流速を速くするため上昇部1bより径を小さ
くしてある。
FIG. 3 is a schematic view showing the structure of the main part of the descending dissolution type ozone processing apparatus. In FIG. 3, this device is U
The water to be treated 4 was introduced from the inlet 2 at the upper part of the letter-shaped reaction tank 1 by the water pump 3, and at the same time, the ozone gas generated by the ozone generator 5 was converted into bubbles 7 through the diffuser 6 and formed into the reaction tank 1 Inject into. The water 4 to be treated becomes a mixed flow with bubbles 7 (ozone gas), and flows down the descending dissolution part 1a of the reaction tank 1 . This mixed flow passes through the bottom of the reaction tank 1 and rises 1b.
After that, the treated water 9 can be distributed from the outlet 8 to the outside of the reaction tank 1 . The flow directions of the water to be treated 4 and the bubbles 7 are indicated by arrows. Of the injected ozone gas, unreacted ozone gas is decomposed and discharged by the exhaust ozone treatment facility 10. The U-shaped reaction tank 1 is usually smaller in diameter than the rising portion 1b in order to increase the flow velocity in the descending melting portion 1a.

【0010】このような下降溶解型オゾン処理装置は、
被処理水4とオゾンガスとが反応槽の頂部から同時に
導入されるため、水深圧に対向してガスを吹き込む必要
がなく、向流接触方式より深い水深を持つ反応槽の設計
が可能である。
Such a descending dissolution type ozone treatment apparatus is
Since the water to be treated 4 and the ozone gas are simultaneously introduced from the top of the reaction tank 1 , there is no need to blow the gas against the water depth pressure, and a reaction tank having a deeper water depth than the countercurrent contact method can be designed. .

【0011】[0011]

【発明が解決しようとする課題】オゾン吸収率は反応槽
効率の大きな要素であり、問題は、このオゾン吸収率を
如何に高くするかにある。先述の総括物質移動容量係数
Laで示されるaは、単位容積当たりの気液接触面積を
表わしており、反応槽の形状により異なる。反応槽
に吹き込むオゾンガス量が同じ場合、気泡径が小さい方
が気泡の個数が増し、単位容積当たりの気液接触面積、
即ちaの値が大きくなる。気泡径はオゾンの移動に直接
影響し、気泡径が小さい程、その移動効率は高いことに
なる。
The ozone absorption rate is a major factor in the efficiency of the reaction tank, and the problem is how to increase the ozone absorption rate. The a represented by the above-mentioned overall mass transfer capacity coefficient K La represents a gas-liquid contact area per unit volume, and varies depending on the shape of the reaction tank 1 . Reaction tank 1
When the amount of ozone gas blown into the same is the same, the smaller the bubble diameter, the greater the number of bubbles, and the gas-liquid contact area per unit volume,
That is, the value of a becomes large. The bubble diameter directly affects the movement of ozone, and the smaller the bubble diameter, the higher the movement efficiency.

【0012】これまで実験的に求められた計算式では、
一般に次のように表わされる。 a=87×Va 1.11a :単位体積当たりのガス吹き込み量 しかし、下降溶解型オゾン反応槽は、下降溶解部1a
をオゾンガスと処理水が気液混合流となって流れるた
め、下降溶解部1aの壁面と中心部の微妙な流速分布の
違いにより、処理水4中の気泡7同士が互いに会合する
傾向がある。即ち、気泡径を小さくするようなオゾンガ
スの注入方法を用いても、気泡7は下降溶解部1aを下
降して行く間に、ある程度の大きさに成長してしまうの
である。
According to the calculation formulas experimentally obtained so far,
It is generally expressed as follows. a = 87 × V a 1.11 V a : Amount of gas blown in per unit volume However, the descending dissolution type ozone reaction tank 1 has a descending dissolution part 1a.
Since the ozone gas and the treated water flow as a gas-liquid mixed flow, the bubbles 7 in the treated water 4 tend to associate with each other due to a subtle difference in the flow velocity distribution between the wall surface and the central portion of the descending dissolution portion 1a. That is, even if the ozone gas injection method for reducing the bubble diameter is used, the bubble 7 grows to a certain size while descending through the descending melting portion 1a.

【0013】したがって、下降溶解型オゾン反応槽
おけるオゾン移動効率、換言すれば吸収効率を高めるた
めには、下降部溶解部1aでは、気泡7の径が小さくな
るように、その大きさを制御しなければならない。本発
明は上述の点に鑑みてなされたものであり、その目的
は、下降溶解部における気泡径を抑制することができる
下降溶解型オゾン反応槽を提供することにある。
Therefore, in order to improve the ozone transfer efficiency, that is, the absorption efficiency, in the descending dissolution type ozone reaction tank 1 , the size of the bubbles 7 is controlled in the descending part dissolution part 1a so as to be small. Must. The present invention has been made in view of the above points, and an object thereof is to provide a descending dissolution type ozone reaction tank capable of suppressing the bubble diameter in the descending dissolution section.

【0014】[0014]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の下降溶解型オゾン反応槽は、下降溶解型
オゾン反応槽の下降溶解部の一部にスタティックミキサ
ーのようなラインミキサーを設けたものである。
In order to solve the above problems, the descending dissolution type ozone reaction tank of the present invention is a line mixer such as a static mixer in a part of the descending dissolution part of the descending dissolution type ozone reaction tank. Is provided.

【0015】[0015]

【作用】上記のように構成した本発明の下降溶解型オゾ
ン反応槽は、下降溶解部内を通る気泡がせん断、混合さ
れ、気泡径を小さくすることができるので、オゾン吸収
効率が向上する。
In the down-melting type ozone reaction tank of the present invention constructed as described above, the bubbles passing through the inside of the down-melting section are sheared and mixed, and the bubble diameter can be reduced, so that the ozone absorption efficiency is improved.

【0016】[0016]

【実施例】以下、本発明を実施例に基づき説明する。図
1は、本発明による下降溶解型オゾン反応槽を有するオ
ゾン処理装置の要部構成を示す模式図であり、図3と共
通部分に同一符号を用い、図3と同じく被処理水4と気
泡7の流れ方向を矢印で示してある。ただし、ここでは
反応槽は一体のU字状ではなく、上昇部1bの下部の一
側面に、下降溶解部1aを別個のものとして取り付けた
形状のものを示したが、その他の構成は図2と基本的に
同じであり、動作上もU字型反応槽の場合と同じであ
る。
EXAMPLES The present invention will be described below based on examples. FIG. 1 is a schematic diagram showing a configuration of an essential part of an ozone processing apparatus having a descending dissolution type ozone reaction tank according to the present invention. The same reference numerals are used for the same parts as in FIG. 3, and the treated water 4 and bubbles are the same as in FIG. The flow direction of 7 is indicated by an arrow. However, here, the reaction tank is not an integrally U-shaped one, but a shape in which the descending melting part 1a is separately attached to one side surface of the lower part of the ascending part 1b is shown, but other configurations are shown in FIG. Is basically the same as that of the U-shaped reaction tank.

【0017】本発明に関して、図1が図3と異なる点
は、下降溶解部1aの一部に、下降部混合装置11を設
けたことにある。この下降部混合装置11は、例えば気
泡をせん断、混合するラインミキサーとしてのスタティ
ックミキサーを用いることができる。図2はスタティッ
クミキサーを示す模式断面図であり、フランジ12に固
定した管13内に、逆方向に捩じれた乱流板14aと1
4bを交互に複数枚配置してある。
Regarding the present invention, FIG. 1 differs from FIG. 3 in that a descending section mixing device 11 is provided in a part of the descending melting section 1a. As the descending section mixing device 11, for example, a static mixer as a line mixer for shearing and mixing bubbles can be used. FIG. 2 is a schematic cross-sectional view showing a static mixer, in which a turbulent flow plate 14a and a turbulent flow plate 14a twisted in opposite directions are provided in a pipe 13 fixed to a flange 12.
A plurality of 4b are arranged alternately.

【0018】このようにすると、気泡7の大きさは、下
降混合装置11による混合とせん断で、確実に小さくな
るが、その程度は、被処理水4の流量や下降溶解部1a
の径により異なる。そこで、計算機により、先に示した
総括物質移動容量係数KLaのaを任意に変化させて、そ
のときの反応槽特性をシミュレートした。計算は上水処
理に相当する一般的なオゾン処理を仮定し、実験から得
られた定数を用いて行なった。その結果を表1に示す。
表1は 通常時、即ち気泡のせん断がない場合を1とし
た相対気泡径とオゾン吸収率の関係を示すものである。
In this way, the size of the bubble 7 is surely reduced by the mixing and shearing by the descending mixing device 11, but the extent thereof depends on the flow rate of the water to be treated 4 and the descending dissolution part 1a.
It depends on the diameter of. Therefore, a computer was used to arbitrarily change the a of the overall mass transfer capacity coefficient K La shown above to simulate the reaction tank characteristics at that time. The calculation was carried out by using the constants obtained from the experiment, assuming a general ozone treatment corresponding to the water treatment. The results are shown in Table 1.
Table 1 shows the relationship between the relative bubble diameter and the ozone absorptivity, which is set to 1 under normal conditions, that is, when the bubbles are not sheared.

【0019】[0019]

【表1】 表1のシミュレート結果から、気泡径が約4割小さくな
ると、オゾン吸収率は86%から94%まで上昇するこ
とが予想される。このことは、極めて大きな効率の向上
であり、オゾン処理装置全体の効率の向上に大きく寄与
するものである。
[Table 1] From the simulation results in Table 1, it is expected that the ozone absorption rate will increase from 86% to 94% when the bubble diameter is reduced by about 40%. This is an extremely large improvement in efficiency and contributes greatly to the improvement in the efficiency of the entire ozone treatment apparatus.

【0020】[0020]

【発明の効果】下降溶解部の一部にスタティックミキサ
ーのような下降部混合装置を備えた本発明の下降溶解型
オゾン反応槽は、この下降部混合装置により、気泡がせ
ん断、混合されて気泡径が小さくなるので、オゾン吸収
率が著しく向上し、高い反応槽特性を得ることができ
る。
EFFECT OF THE INVENTION In the descending dissolution type ozone reaction tank of the present invention having a descending part mixing device such as a static mixer in a part of the descending melting part, bubbles are sheared and mixed by the descending part mixing device. Since the diameter is small, the ozone absorption rate is remarkably improved, and high reactor characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】下降部混合装置を設けた本発明の下降溶解型オ
ゾン反応槽を持つオゾン処理装置の要部構成を示す模式
FIG. 1 is a schematic diagram showing a main configuration of an ozone processing apparatus having a descending dissolution type ozone reaction tank of the present invention provided with a descending section mixing device.

【図2】本発明に用いるスタティックミキサーを示す模
式断面図
FIG. 2 is a schematic cross-sectional view showing a static mixer used in the present invention.

【図3】従来の下降溶解型オゾン処理装置の要部構成を
示す模式図
FIG. 3 is a schematic diagram showing a configuration of a main part of a conventional descending dissolution type ozone processing apparatus.

【符号の説明】 反応槽 1a 下降溶解部 1b 上昇部 2 導入口 3 送水ポンプ 4 被処理水 5 オゾン発生装置 6 散気装置 7 気泡 8 排出口 9 処理水 10 排オゾン処理設備 11 下降部混合装置 12 フランジ 13 管 14a 乱流板 14b 乱流板[Explanation of symbols] 1 reaction tank 1a descending dissolution section 1b rising section 2 inlet 3 water pump 4 water to be treated 5 ozone generator 6 diffuser 7 bubbles 8 outlet 9 treated water 10 ozone discharge equipment 11 descending mixture Device 12 Flange 13 Tube 14a Turbulent flow plate 14b Turbulent flow plate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/50 520 B 531 R 540 A 550 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C02F 1/50 520 B 531 R 540 A 550 B

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被処理水とオゾンガスの気泡とを上方から
導入しこれらの混合流が下方に向かって流れる下降溶解
部と、前記混合流が底部を経て上方へ向かって流れる上
昇部とを有する下降溶解型オゾン反応槽であって、前記
下降溶解部の一部に下降部混合装置を設けたことを特徴
とする下降溶解型オゾン反応槽。
1. A descending melting part in which water to be treated and bubbles of ozone gas are introduced from above and a mixed flow of these flows downward, and an ascending part in which the mixed flow flows upward through a bottom part. A descending dissolution type ozone reaction tank, wherein a descending part mixing device is provided in a part of the descending dissolution part.
【請求項2】請求項1記載の下降溶解型オゾン反応槽に
おいて、下降部混合装置として気泡をせん断、混合する
ラインミキサーを用いることを特徴とする下降溶解型オ
ゾン反応槽。
2. The descending dissolution type ozone reaction tank according to claim 1, wherein a line mixer for shearing and mixing bubbles is used as a descending section mixing device.
JP9598394A 1994-05-10 1994-05-10 Descending dissolution type ozone reactor Pending JPH07299476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9598394A JPH07299476A (en) 1994-05-10 1994-05-10 Descending dissolution type ozone reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9598394A JPH07299476A (en) 1994-05-10 1994-05-10 Descending dissolution type ozone reactor

Publications (1)

Publication Number Publication Date
JPH07299476A true JPH07299476A (en) 1995-11-14

Family

ID=14152390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9598394A Pending JPH07299476A (en) 1994-05-10 1994-05-10 Descending dissolution type ozone reactor

Country Status (1)

Country Link
JP (1) JPH07299476A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2751319A1 (en) * 1996-07-18 1998-01-23 Trailigaz Purification of greenhouse irrigation water
KR101128948B1 (en) * 2011-09-30 2012-03-27 성종현 The oxygen melting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2751319A1 (en) * 1996-07-18 1998-01-23 Trailigaz Purification of greenhouse irrigation water
KR101128948B1 (en) * 2011-09-30 2012-03-27 성종현 The oxygen melting device

Similar Documents

Publication Publication Date Title
US8382075B2 (en) Air stripper
US4954257A (en) Biological purification loop device and method having deflector plate within guide pipe
US3650950A (en) Material shearing mixer and aerator
KR101292731B1 (en) The gas captured type gas-liquid reactor and the water treatment apparatus, gas purification apparatus using thereof
TWI503289B (en) Gas dispersion apparatus for improved gas-liquid mass transfer
KR100686191B1 (en) Plant for wastewater treatment
JPH09234479A (en) Ozone reaction tank
JPH07299476A (en) Descending dissolution type ozone reactor
JP3526362B2 (en) Downward injection type ozone treatment equipment
US4990316A (en) Apparatus for the disolution of ozone in a fluid
JP3731806B2 (en) Organic wastewater treatment method and apparatus
JPH08299971A (en) Separating injection type ozone contact method
JP2006281180A (en) Air diffusion treatment device
JPH07195092A (en) Descending dissolution type ozone reaction chamber
JP3522010B2 (en) Pressurized downward injection type multi-stage ozone contact tank
JP3216755B2 (en) Descending ozone reaction tank
JP3953127B2 (en) Aeration treatment equipment
JPH08192176A (en) Separate injection type ozone contact method
JPH06206084A (en) Introduction of ozone gas into downstream dissolving type water treating device
JPH05185075A (en) Ozone contact equipment
JPH0515753A (en) Gas-liquid contact apparatus
JP2000167366A (en) Ozone water production apparatus and ozone treating apparatus
CN210855427U (en) Novel high-concentration pharmaceutical chemical wastewater wet oxidation device
KR100626180B1 (en) Method and Apparatus for the Biological Wastewater Treatment
EP3564190A1 (en) A system for ozonation of liquids and a method for ozonation of liquids