JPH08299971A - Separating injection type ozone contact method - Google Patents

Separating injection type ozone contact method

Info

Publication number
JPH08299971A
JPH08299971A JP23059095A JP23059095A JPH08299971A JP H08299971 A JPH08299971 A JP H08299971A JP 23059095 A JP23059095 A JP 23059095A JP 23059095 A JP23059095 A JP 23059095A JP H08299971 A JPH08299971 A JP H08299971A
Authority
JP
Japan
Prior art keywords
ozone
raw water
flow
water
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23059095A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kato
康弘 加藤
Takayuki Morioka
崇行 森岡
Ryutaro Takahashi
龍太郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP23059095A priority Critical patent/JPH08299971A/en
Publication of JPH08299971A publication Critical patent/JPH08299971A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To increase ozone dissolution efficiency and to reduce equipment cost and operation cost. CONSTITUTION: A feed water is branched into two passages, ozone is injected and dissolved only to the feed water 3 flowing in one of the passages, the feed water is joined to the feed water 3 flowing in another passage again and the mixed flow is fed to a residence tank 12. The mixed flow is retained therein for a fixed time and discharged as a treated water. A inexpensive high efficiency water treatment with a simple device is enabled by using a feed water supply pump 19 to inject zone to the suction side and for example, imparting vibration to the pipeline by the addition of a ultrasonic vibration generator to easily obtain the gas-liquid mixed flow of high concn. ozone.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はオゾンを用いて水中の殺
菌,脱臭,有機物などの酸化を行なう水処理の分離注入
式オゾン接触方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separate injection type ozone contact method for water treatment in which ozone is used for sterilization, deodorization, and oxidation of organic substances in water.

【0002】[0002]

【従来の技術】近年、オゾンがフッ素に次いで強力な酸
化力を有するという特徴を利用して、オゾンを水中に散
気することにより、殺菌,脱色,脱臭,有機物もしくは
無機物の酸化除去などを行なう水処理が広く行なわれて
いる。とくに、都市近郊の水道では、取水源に起因する
異臭味の被害が広がっており、オゾンの持つ強力な酸化
力は、この異臭味を除去するのに大きな効果を発揮する
ことから、オゾンと活性炭を用いた高度処理の導入が進
められている。
2. Description of the Related Art In recent years, ozone is diffused in water by utilizing the characteristic that ozone has a strong oxidizing power next to fluorine, so that sterilization, decolorization, deodorization, and removal of organic or inorganic substances by oxidation are performed. Water treatment is widely used. In particular, in the water supply in the suburbs of cities, the damage of offensive odor caused by the water intake source is widespread, and the strong oxidizing power of ozone exerts a great effect in removing this offensive odor. The introduction of advanced processing using is being promoted.

【0003】このようなオゾンと、オゾンによって処理
される水(以下、原水とする)中の有機物とを反応させ
るオゾン処理装置は、主として電気エネルギーからオゾ
ンを発生させるオゾン発生装置,原水を供給する送水ポ
ンプ,反応を進行させる反応槽,反応槽から未反応のま
ま排出される排オゾンを分解する排オゾン処理設備から
構成されており、原水とオゾンの接触方式は、一般に反
応槽下部からオゾンを気泡として吹き出す気泡塔方式が
用いられている。最近は殆どが気泡塔内で原水を反応槽
頂部から供給し、オゾンガスと対向させる向流接触方式
を用いており、大規模な浄水場などでは、複数の向流接
触池を直列に接続した横流式向流多段接触池が用いられ
ている。
An ozone treatment apparatus for reacting such ozone with organic matter in water treated by ozone (hereinafter referred to as raw water) supplies an ozone generator for generating ozone mainly from electric energy and raw water. It is composed of a water pump, a reaction tank for proceeding the reaction, and an exhaust ozone treatment facility for decomposing the exhaust ozone discharged unreacted from the reaction tank. Generally, the contact method of raw water and ozone is to remove ozone from the lower part of the reaction tank. A bubble column method that blows out as bubbles is used. In recent years, most of them have used a countercurrent contact method in which raw water is supplied from the top of the reaction tank in the bubble column to face ozone gas.In large-scale water purification plants, etc., a crossflow with multiple countercurrent contact ponds connected in series is used. A countercurrent multi-stage contact pond is used.

【0004】図3は 横流式向流多段接触池を、これに
付属する諸装置を含めて、その要部構成を示した模式図
である。図3において、オゾン接触池1内に、数個の仕
切り板2が設けられており、図3には水の流れを矢印で
示しているが、原水3はオゾン接触池1の一端の導入口
4から流入し、オゾン接触池1内を流下し仕切り板2の
間を上昇して、再び流下するという流れを繰り返し、最
後にオゾン接触池1の他端の排出口5から、処理水6と
して取り出される。
FIG. 3 is a schematic diagram showing the structure of a cross-flow countercurrent multistage contact basin, including the various devices attached thereto. In FIG. 3, several partition plates 2 are provided in the ozone contact pond 1, and the flow of water is shown by the arrows in FIG. 3, but the raw water 3 is an inlet port at one end of the ozone contact pond 1. 4 flowed in, flowed down in the ozone contact pond 1, moved up between the partition plates 2 and flowed down again, and finally, from the discharge port 5 at the other end of the ozone contact pond 1 as treated water 6 Taken out.

【0005】そして、オゾン接触池1外部のオゾン発生
装置7で生成したオゾンガスを、オゾン接触池1の底部
から導入し、散気装置8により微細な気泡9として原水
3と接触させる。こりとき注入したオゾンのうち、未反
応のオゾンは排オゾン処理設備10により分解し、大気
中に放出される。これらのオゾン処理装置は、原水に対
して酸化反応を十分に行なうだけの接触時間が必要であ
る。そのため、処理水量が多いときは、容積の大きなオ
ゾン接触池が必要になり、多くの給水人口を抱える都市
近郊部の浄水場などに導入する場合には、大規模な設備
が必要となる。大規模な設備が必要になるというのは、
経済性の点から好ましいことではなく、オゾンを用いる
水処理装置の導入を阻む大きな要因となるので、オゾン
処理装置には、高いオゾン吸収率、および十分な有機物
の除去効率が求められる。
Then, the ozone gas generated by the ozone generator 7 outside the ozone contact pond 1 is introduced from the bottom of the ozone contact pond 1 and brought into contact with the raw water 3 as fine bubbles 9 by the air diffuser 8. Of the ozone injected at this time, unreacted ozone is decomposed by the exhaust ozone treatment facility 10 and released into the atmosphere. These ozone treatment devices require contact time for sufficiently performing an oxidation reaction on raw water. Therefore, when the amount of treated water is large, a large-volume ozone contact pond is required, and when it is introduced into a water purification plant in the suburbs of a city with a large water supply population, large-scale equipment is required. The need for large-scale equipment means
It is not preferable from the economical point of view and becomes a major factor that hinders the introduction of a water treatment apparatus using ozone. Therefore, the ozone treatment apparatus is required to have a high ozone absorption rate and a sufficient organic substance removal efficiency.

【0006】ここで、オゾン吸収率とは、注入したオゾ
ンガスのうち、反応槽内で原水に溶解もしくは分解し、
消費されたオゾンの割合であり、下記の式で表わされ
る。
[0006] Here, the ozone absorption rate means that of the injected ozone gas, it is dissolved or decomposed in raw water in the reaction tank,
It is the ratio of ozone consumed and is expressed by the following formula.

【0007】[0007]

【数1】 また、除去効率とは、反応槽内で分解除去される原水中
の水質汚濁物質の割合であって、下式で表わされる。代
表的な水質汚濁物質として臭気物質などが挙げられる。
[Equation 1] The removal efficiency is the ratio of water pollutants in the raw water decomposed and removed in the reaction tank, and is represented by the following formula. Typical odorants are water pollutants.

【0008】[0008]

【数2】 一般に、このオゾン吸収率および除去効率が高い程、オ
ゾン反応槽の処理効率が良いとされている。
[Equation 2] Generally, the higher the ozone absorption rate and the removal efficiency, the better the processing efficiency of the ozone reaction tank.

【0009】また、オゾンが水中に溶解する際のオゾン
移動量は、総括物質移動容量係数(KL ・a)と、水中
の飽和オゾン濃度と、溶存しているオゾン濃度の差(濃
度勾配)とが主な要因である。この飽和オゾン濃度は、
ガス中のオゾン濃度とオゾン分配係数に依存することが
知られている。近年、このオゾン溶解効率を高めるとい
う観点から、高濃度オゾンの有効性が注目されており、
その検討が各方面で進められている。
The amount of ozone transferred when ozone is dissolved in water is the difference between the overall mass transfer capacity coefficient (K L · a), the saturated ozone concentration in water, and the dissolved ozone concentration (concentration gradient). Is the main factor. This saturated ozone concentration is
It is known to depend on the ozone concentration in the gas and the ozone distribution coefficient. In recent years, from the viewpoint of increasing the ozone dissolution efficiency, the effectiveness of high-concentration ozone has attracted attention,
The examination is progressing in various fields.

【0010】しかし、一般の浄水場などでオゾンを用い
た水処理を行なう場合、そのオゾン注入量は原水1L当
たり1〜3mgに設定される。また、通常は、空気を原
料とするオゾン発生器を用いているので、発生オゾンガ
ス濃度は約20mg/Lとなり、原水流量に対するオゾ
ンガス流量は、1/20〜3/20の値を示す。一方、
オゾン発生器に関して、最近は酸素を原料とする高濃度
オゾン発生器の開発が進み、従来の空気原料と同程度に
オゾン発生コストが低減されている。また、先述のよう
に、気相中から液相中へのオゾン移動効率は、注入する
オゾンガス濃度に大きく依存するため、物質移動の観点
からは、オゾンガス濃度が高くなるのは大変望ましいこ
とである。
However, when water treatment using ozone is carried out in a general water purification plant, the ozone injection amount is set to 1 to 3 mg per liter of raw water. Further, since an ozone generator using air as a raw material is usually used, the generated ozone gas concentration is about 20 mg / L, and the ozone gas flow rate with respect to the raw water flow rate shows a value of 1/20 to 3/20. on the other hand,
Regarding ozone generators, recently, development of high-concentration ozone generators using oxygen as a raw material has progressed, and ozone generation costs have been reduced to the same level as conventional air raw materials. In addition, as described above, since the efficiency of ozone transfer from the gas phase to the liquid phase greatly depends on the concentration of injected ozone gas, it is highly desirable from the viewpoint of mass transfer that the ozone gas concentration be high. .

【0011】ただ、オゾン接触池の水理特性(気液流動
様式)から見ると、高濃度化したオゾンの注入率が一定
のとき、オゾン風量が減少するのは好ましくないことで
ある。それは、前述の横流式向流多段接触池の場合、オ
ゾン接触池内は、元来完全混合という水理特性を持って
いるが、オゾンガス濃度が高くなり、オゾンガス風量が
少なくなると、気泡の上昇による混合および攪拌効果が
低下し、短絡流や死水域が発生するようになるからであ
り、このことに関しては、本発明者らも実験的に確認し
ており、原水流量に対するオゾンガス流量が1/100
以下(気液比≧100)になると、混合不良が発生する
ことがわかった。
However, in view of the hydraulic characteristics (gas-liquid flow mode) of the ozone contact pond, it is not preferable that the ozone air flow rate decreases when the injection rate of highly concentrated ozone is constant. In the case of the above-mentioned cross-flow countercurrent multi-stage contact basin, the ozone contact basin originally has the hydraulic characteristic of complete mixing, but when the ozone gas concentration becomes high and the ozone gas flow rate becomes small, mixing due to the rise of bubbles occurs. This is because the stirring effect is reduced and a short-circuit flow and a dead water region are generated. This has been confirmed experimentally by the present inventors that the ozone gas flow rate is 1/100 of the raw water flow rate.
It was found that in the following cases (gas-liquid ratio ≧ 100), poor mixing occurred.

【0012】そこで、本発明者らは、大規模なオゾン浄
水処理設備を用いるに当たり、高濃度オゾンガスに適し
たオゾン接触方法を見出し、これを特願平7−6795
号により出願中である。図4は本発明らが出願中の分離
注入式オゾン接触方法が適用される水処理装置の要部構
成を示した模式図であり、図3と共通する部分を同一符
号で表わしてある。以下、図4を参照して、この装置の
構成とともに、オゾンを用いた浄水処理過程について説
明する。
[0012] Therefore, the present inventors found an ozone contact method suitable for high-concentration ozone gas when using a large-scale ozone water purification treatment facility, and found it in Japanese Patent Application No. 7-6795.
Pending. FIG. 4 is a schematic diagram showing a main configuration of a water treatment apparatus to which the separation injection type ozone contact method applied by the present invention is applied, and portions common to FIG. 3 are represented by the same reference numerals. Hereinafter, with reference to FIG. 4, a water purification process using ozone will be described together with the configuration of this apparatus.

【0013】図4において、この装置は系内にいずれも
点線で囲ったオゾン溶解部11と滞留部12とを有し、
これら二つの部分に配管流路を分岐して、原水3を流す
ようにしてある。まず原水3は導入口13から系内に流
れ込み、例えばバルブを用いた分岐点14でオゾン溶解
11側へ分流され、オゾン溶解装置15に達し、ここ
でオゾン発生装置7から送られるオゾンガスが注入さ
れ、混合される。このオゾン溶解装置15には、通常の
気泡塔またはエゼクタなどの混合装置が用いられる。ま
た、オゾン溶解部11側への分岐水量は、その原水3の
水質や、設備全体の処理規模を勘案して任意に定めるこ
とができるが、オゾン溶解部11側への分岐水量を少な
くすることが可能であれば、その分オゾン溶解装置15
に対する負荷が少なくなり、設備コストの低減に寄与す
る。
In FIG. 4, this apparatus has an ozone dissolution section 11 and a retention section 12 surrounded by a dotted line in the system,
The pipe flow path is branched into these two parts to allow the raw water 3 to flow. First, the raw water 3 flows into the system from the introduction port 13, is branched to the ozone dissolving portion 11 side at a branch point 14 using a valve, for example, reaches the ozone dissolving device 15, and the ozone gas sent from the ozone generating device 7 is injected therein. Mixed and mixed. As the ozone dissolving device 15, an ordinary bubble column or a mixing device such as an ejector is used. The amount of branched water to the ozone dissolving part 11 side can be arbitrarily determined in consideration of the water quality of the raw water 3 and the treatment scale of the entire equipment, but the amount of branching water to the ozone dissolving part 11 side should be reduced. If possible, the ozone dissolving device 15
This reduces the load on the equipment and contributes to a reduction in equipment costs.

【0014】次に、オゾン溶解装置15から出た原水3
(オゾン混合原水)は、導入口13から入って分岐点1
4でオゾン溶解部11側へ進まずに配管内を直進する原
水3と合流点16で合流混合し、邪魔板やラインミキサ
ーなどの混合装置17に到り、混合性を確保するが、こ
の混合装置17は状況に応じ必ずしも必要としない。次
いで、合流混合した原水3は、滞留部12に流入する
が、滞留部12は図3に示したオゾン接触池1とほぼ同
様の構造を持つ滞留槽からなっており、この槽内に複数
個の仕切り板2を設置して、上下迂流構造とすることに
より、滞留部12における水の流れを均一にし、短絡流
の発生を抑制している。
Next, the raw water 3 discharged from the ozone dissolving device 15
(Ozone-mixed raw water) enters from the inlet 13 and branches off 1
In 4 the raw water 3 which goes straight in the pipe without advancing to the ozone dissolving part 11 side is mixed and mixed at the confluence point 16 and reaches the mixing device 17 such as a baffle plate or a line mixer to secure the mixing property. The device 17 is not always necessary depending on the situation. Then, merging mixed raw water 3 is flows into the retention portion 12, retaining portion 12 is made of retention vessel having almost the same structure as the ozone contact basin 1 shown in FIG. 3, a plurality in the tank The partition plate 2 is installed to provide a vertical bypass structure, so that the flow of water in the retention section 12 is made uniform and the occurrence of a short-circuit flow is suppressed.

【0015】かくして、オゾンを混合した原水3は、滞
留部12で一定時間滞留した後、排出口18から処理水
6として系外に送り出すことができる。排オゾン処理設
備10に関しては、既に述べたのと同様である。滞留部
12(滞留槽)の滞留時間は、有機物などの分解反応を
進行させるだけの時間が必要であり、例えば臭気物質な
どを除去する場合は、約10〜20分に設定される。し
たがって、滞留部12は処理水量に応じてその容積も大
きくなるが、図3に示す横流式向流多段接触池の場合と
異なり、オゾン散気装置8を設置することなく、極めて
簡素な構造であり製作コストを低く、しかも原水3とオ
ゾンの混合不良を起こすことなく、常に気液比を大きく
保ち、高い有機物の除去率を得ることができる。
In this way, the raw water 3 mixed with ozone can be sent out of the system as treated water 6 from the discharge port 18 after staying for a certain time in the staying section 12 . The exhaust ozone treatment facility 10 is the same as that described above. Retention area
The retention time of 12 (retention tank) is required to allow the decomposition reaction of organic substances to proceed, and is set to about 10 to 20 minutes when removing odorous substances, for example. Therefore, although the volume of the retention section 12 increases according to the amount of treated water, unlike the case of the cross-flow countercurrent multistage contact basin shown in FIG. Yes, the manufacturing cost is low, and the gas-liquid ratio is always kept high without causing a poor mixing of the raw water 3 and ozone, and a high removal rate of organic substances can be obtained.

【0016】[0016]

【発明が解決しようとする課題】上記のように、分離注
入式オゾン接触方法は、オゾンを用いる大規模な浄水処
理設備に対して、高濃度オゾンガスに適した方法である
が、本発明者らのその後の研究により、なお改善すべき
余地のあることがわかった。それは、分離注入式オゾン
接触方法に用いられるオゾン溶解装置には、さらに高い
オゾン溶解効率が求められ、同時に、従来の横流式オゾ
ン接触池などに比べて、設備コストや運転コストを低減
させることも必要となるからである。
As described above, the separation injection type ozone contact method is a method suitable for high-concentration ozone gas in a large-scale water purification treatment facility using ozone. Subsequent research at the Institute revealed that there is still room for improvement. This is because the ozone dissolving device used for the separation injection type ozone contacting method is required to have a higher ozone dissolving efficiency, and at the same time, it can reduce the equipment cost and the operating cost as compared with the conventional cross flow type ozone contacting pond. It is necessary.

【0017】種々のオゾン接触方法を比較してみると、
気泡塔式はオゾン注入動力は少なくて済むが、十分な溶
解効率を得るためには、ある程度の接触時間、および反
応塔水深が必要であり、設備コストが高く、設置面積や
高さに関して利点が少なく、また、加圧ポンプやエゼク
タなどを用いる方法では、反応塔などの設備コストを低
く抑えることはできるが、原水にある程度の流速および
圧力を与える必要があるので、経常運転時の動力費がか
かり、大規模な処理設備には適していない。
Comparing various ozone contacting methods,
The bubble column type requires less ozone injection power, but requires a certain amount of contact time and the water depth of the reaction column to obtain sufficient dissolution efficiency, resulting in high equipment costs and advantages in terms of installation area and height. In addition, the method using a pressure pump or an ejector can keep the equipment cost of the reaction tower and the like low, but since it is necessary to give a certain flow velocity and pressure to the raw water, the power cost for ordinary operation is low. Therefore, it is not suitable for large-scale processing equipment.

【0018】したがって、種々のオゾン処理設備に適用
し、設備コストや運転コストを低減させるには、分離注
入式オゾン接触方法に期待する所が大きい。本発明は上
述の点に鑑みてなされたものであり、その目的は、分離
注入式オゾン接触方法に原水供給ポンプを用い、オゾン
溶解効率を高めるとともに、設備コスト、運転コストを
低減させるオゾン接触方法を提供することにある。
Therefore, in order to apply it to various ozone treatment equipments and reduce equipment cost and operation cost, there are great expectations for the separation injection type ozone contacting method. The present invention has been made in view of the above points, and an object thereof is to use a raw water supply pump in a separation injection type ozone contact method to increase ozone dissolution efficiency and reduce equipment cost and operation cost. To provide.

【0019】[0019]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明は、本発明者らが特願平7−6795号に
より出願中の分離注入式オゾン接触方法を一部変更した
ものであり、原水を二つの流路に分岐し、原水供給ポン
プを用いて原水を流すオゾン溶解部を形成した一方の流
路にオゾンを注入して溶解させ、この水を他方の流路を
流れる原水と再び合流させて混合し、この混合流を複数
個の仕切り板を有する槽からなる滞留部に送り、ここで
上下迂回流として一定時間滞留させた後、処理水を取り
出す一連の工程を行なう際に、原水供給ポンプの吸い込
み側にオゾンを注入することにし、また原水供給ポンプ
の吐出側と原水合流点の間の配管に、超音波発振装置を
付加して、オゾンガス気泡が会合するのを抑制するもの
である。
In order to solve the above-mentioned problems, the present invention is a partial modification of the separation injection type ozone contact method which the present inventors applied for in Japanese Patent Application No. 7-6795. That is, the raw water is branched into two flow paths, and ozone is injected into one flow path in which the ozone dissolving section for flowing the raw water is formed by using the raw water supply pump to dissolve the raw water, and the water is flowed through the other flow path. The raw water is re-merged and mixed, and this mixed flow is sent to a retention part consisting of a tank having a plurality of partition plates, where it is retained as an upper and lower bypass flow for a certain period of time, and then a series of steps for extracting the treated water is performed. At this time, ozone is injected into the suction side of the raw water supply pump, and an ultrasonic oscillator is added to the pipe between the discharge side of the raw water supply pump and the raw water confluence to prevent ozone gas bubbles from assembling. It suppresses.

【0020】[0020]

【作用】上記のように、本発明ではオゾン溶解部に原水
供給ポンプを用い、オゾンガスを原水供給ポンプの吸い
込み側から注入しており、高濃度オゾンは原水への溶解
速度が速く、注入風量も少なくなるので気液比が大きく
なり、気液混合流が得やすく、注入されたオゾンガスが
配管内を気液混合流として流れて行く間に、オゾンの溶
解(気相から液相への移行)が完了する。
As described above, in the present invention, the raw water supply pump is used in the ozone dissolving section, and the ozone gas is injected from the suction side of the raw water supply pump. The high-concentration ozone has a high dissolution rate in the raw water and the injection air volume is also high. The gas-liquid ratio becomes large because it decreases, and it is easy to obtain a gas-liquid mixed flow. While the injected ozone gas flows in the pipe as a gas-liquid mixed flow, ozone is dissolved (transition from gas phase to liquid phase). Is completed.

【0021】[0021]

【実施例】以下、本発明の方法を実施例に基づき説明す
る。図1は本発明による分離注入式オゾン接触方法が適
用される水処理装置の要部構成を示す模式図であり、図
4と共通する部分を同一符号で表わしてある。図1に示
す装置の構成は、基本的に図4に示したものと同じであ
り、異なる点は、オゾン溶解装置15を原水供給ポンプ
19に置き換えたことのみである。したがって、ここで
は本発明に係わる要点のみを述べる。
EXAMPLES The method of the present invention will be described below based on examples. FIG. 1 is a schematic diagram showing a configuration of a main part of a water treatment apparatus to which a separation injection type ozone contacting method according to the present invention is applied, and the same portions as those in FIG. 4 are denoted by the same reference numerals. The configuration of the apparatus shown in FIG. 1 is basically the same as that shown in FIG. 4, and the only difference is that the ozone dissolving apparatus 15 is replaced with a raw water supply pump 19. Therefore, only the essential points of the present invention will be described here.

【0022】原水3は導入口13から装置系内に流入
し、分岐点14でオゾン溶解部11側への流路と滞留部
12側への流路に分岐する。分岐された原水3のうち、
滞留部12側の流れは、図示してない前段の処理工程
(例えば凝集沈殿池)からの自然流下流量により決定さ
れるが、オゾン溶解部11側の流れは、原水供給ポンプ
19により維持される。
Raw water 3 flows into the system through the inlet 13, and flows at the branch point 14 to the ozone dissolving section 11 side and the retention section.
It branches into the flow path to the 12 side. Of the branched raw water 3,
The flow on the side of the retention unit 12 is determined by the natural flow rate from a treatment process (for example, a coagulation sedimentation tank) in the preceding stage (not shown), while the flow on the side of the ozone dissolution unit 11 is maintained by the raw water supply pump 19. .

【0023】オゾン発生装置7から発生したオゾンガス
は、原水供給ポンプ19の吸い込み側で、オゾン注入点
20から原水3に供給する。通常、オゾン発生装置7か
ら発生したオゾンガスは、約1.6Kg/cm2 の排圧
を持っており、原水供給ポンプ19の吸い込み側は若干
負圧になっていることから、オゾンガスは原水3の流れ
に逆らうことなく注入が行なわれる。原水供給ポンプ1
9の吸い込み側にオゾンガスを供給すると、ポンプ流
量,吐出圧が低下するが、用いるオゾンガス濃度を高く
し、オゾンガス風量を少なくすることにより、オゾン溶
解部11側の流れを安定にすることができる。また、オ
ゾンガス風量を少なくすることにより、オゾンガスは原
水3と気液混合流となって、原水供給ポンプ19および
配管内を流れ、オゾンの溶解、即ち気相から液相への移
行が進む。
The ozone gas generated from the ozone generator 7 is supplied to the raw water 3 from the ozone injection point 20 on the suction side of the raw water supply pump 19. Normally, the ozone gas generated from the ozone generator 7 has a discharge pressure of about 1.6 Kg / cm 2 , and the suction side of the raw water supply pump 19 has a slight negative pressure. The injection is done without going against the flow. Raw water supply pump 1
When ozone gas is supplied to the suction side of 9, the pump flow rate and discharge pressure decrease, but the flow on the ozone dissolving section 11 side can be stabilized by increasing the ozone gas concentration to be used and reducing the ozone gas flow rate. Further, by reducing the flow rate of ozone gas, the ozone gas becomes the raw water 3 and a gas-liquid mixed flow, flows through the raw water supply pump 19 and the pipe, and the ozone is dissolved, that is, the transition from the gas phase to the liquid phase proceeds.

【0024】その後は、図4で説明したと同様の経過を
辿り、オゾン溶解部11側を流れた原水3は、合流点1
6で再び滞留部12側の原水3と混合し、滞留部12
滞留槽で一定時間滞留した後、排出口18から系外に排
出され、未反応の排オゾンは、排オゾン処理設備10に
より分解される。以上、本発明の方法によれば、オゾン
は元来空気に比べて水への溶解が速く、オゾンの高濃度
化によりさらに溶解速度が大きくなる効果とも相まっ
て、原水供給ポンプ19の出口側に溶解タンクなどを設
けることなく、十分な溶解効率が得られる。また、ここ
で用いる原水供給ポンプ19は、従来のような加圧ポン
プやエゼクタポンプのような動力は必要とせず、自然流
下流速があるから、設備コスト,運転コストともに小さ
くて済ますことができる。
After that, the same process as described with reference to FIG. 4 is followed, and the raw water 3 flowing on the ozone dissolving section 11 side merges at the confluence point 1.
In step 6, the raw water 3 on the side of the retention section 12 is mixed again, and after being retained in the retention tank of the retention section 12 for a certain period of time, the unreacted exhaust ozone is discharged to the outside of the system by the exhaust ozone treatment facility 10. Be disassembled. As described above, according to the method of the present invention, ozone is originally dissolved in water faster than air, and is dissolved in the outlet side of the raw water supply pump 19 together with the effect that the dissolution rate is further increased due to the high concentration of ozone. Sufficient dissolution efficiency can be obtained without providing a tank or the like. In addition, the raw water supply pump 19 used here does not require the power required by the conventional pressurizing pump or ejector pump, and has a natural flow velocity, so that both the equipment cost and the operating cost can be reduced.

【0025】ところで、前述のように分離注入式オゾン
接触池で用いられるオゾン溶解装置には、高いオゾン溶
解効率が求められるが、このオゾン溶解効率を向上させ
るには、先に述べた総括物質移動容量係数(KL ・a)
が重要となる。このうちaは原水中に気泡として混合さ
れたオゾンガスの気液接触面積(単位断面積当たり)を
表わしている。そしてaの値は注入されるオゾンガス流
量が一定であれば、そのオゾンガスの一つ一つの気泡が
小さいほど、即ち、オゾンガス気泡の個数が多いほど値
が大きくなり、結果としてのオゾン溶解効率は向上す
る。
By the way, as described above, the ozone dissolving apparatus used in the separate injection type ozone contact pond is required to have a high ozone dissolving efficiency. To improve the ozone dissolving efficiency, the general mass transfer described above is required. capacity coefficient (K L · a)
Is important. Among these, a represents the gas-liquid contact area (per unit cross-sectional area) of ozone gas mixed as bubbles in raw water. When the flow rate of injected ozone gas is constant, the value of a becomes larger as each bubble of the ozone gas is smaller, that is, the number of bubbles of ozone gas is larger, resulting in improvement of ozone dissolution efficiency. To do.

【0026】図1に示した分離注入式オゾン接触池のオ
ゾン注入方法では、オゾン溶解装置として原水供給ポン
プ19の吸い込み側にオゾンガスを注入するため、注入
されたオゾンガス気泡は、ポンプ内で強力にせん断・混
合されることにより、気泡は小さくなり、一時的にaの
値は高くなるが、その後ポンプと吐出側から気液混合流
として吐出され、配管内を流れて行く間に、気泡は配管
内の中央部に集約されて会合し、最終的な気泡径は大き
くなってしまう。これは配管内部の流速分布によるもの
であり、管壁部分よりも配管中央部の流速の方が速いた
め、気泡が配管中央部に引き寄せられ、会合してしまう
ためと考えられる。
In the ozone injection method for the separate injection type ozone contact pond shown in FIG. 1, since ozone gas is injected into the suction side of the raw water supply pump 19 as an ozone dissolving device, the injected ozone gas bubbles are strongly discharged in the pump. By shearing and mixing, the bubbles become smaller and the value of a temporarily rises, but after that, the bubbles are discharged from the pump and the discharge side as a gas-liquid mixed flow, and while flowing in the pipe, the bubbles are In the center of the inside, they are aggregated and associated, and the final bubble diameter becomes large. This is due to the flow velocity distribution inside the pipe, and it is considered that the flow velocity in the central portion of the pipe is higher than that in the wall portion of the pipe, so that the bubbles are attracted to the central portion of the pipe and aggregate.

【0027】気泡径が大きくなると、前述のaの値は小
さくなり、結果的に接触池のオゾン溶解効率は低下す
る。そこで、分離注入式オゾン接触池におけるオゾン移
動効率を高く保つためには、配管内で気泡が会合、合一
するのを防止する方法が必要となる。図2は上述の点を
考慮してなされた水処理装置の要部構成を示す模式図で
あり、図1と共通する部分を同一符号で表わしてある。
When the bubble diameter becomes large, the value of a becomes small, and as a result, the ozone dissolution efficiency of the contact pond decreases. Therefore, in order to keep the ozone transfer efficiency in the separate injection type ozone contact pond high, a method for preventing bubbles from associating and coalescing in the pipe is required. FIG. 2 is a schematic diagram showing a configuration of a main part of a water treatment device made in consideration of the above points, and portions common to FIG. 1 are denoted by the same reference numerals.

【0028】図2に示す装置の構成は、基本的に図1に
示したものと同じであるが、オゾン接触方法として異な
る点は、オゾン溶解部11の近傍で、原水供給ポンプ1
9の吐出側と合流点16との間に設置した超音波発振装
置21を用いて、オゾンガス気泡を含む気液混合流に、
常に超音波による振動を与えていることである。ここで
使用する超音波発振装置21の振動子には、比較的安価
なチタン酸バリウム系の磁気振動子などを用い、形状も
円筒形とすることにより、配管内に均一な振動を与える
ことができる。このようにすると、気泡は分散して会合
するのを抑制され、オゾンの気相から液相への移行を効
率よく進行させることができる。
The configuration of the apparatus shown in FIG. 2 is basically the same as that shown in FIG. 1, but the difference in the ozone contacting method is in the vicinity of the ozone dissolving section 11 in the raw water supply pump 1.
Using an ultrasonic oscillator 21 installed between the discharge side of 9 and the confluence 16 to a gas-liquid mixed flow containing ozone gas bubbles,
It means that the ultrasonic vibration is always applied. As the vibrator of the ultrasonic oscillator 21 used here, a relatively inexpensive barium titanate-based magnetic vibrator or the like is used, and the shape thereof is also cylindrical, so that uniform vibration can be given to the inside of the pipe. it can. By doing so, it is possible to prevent the bubbles from being dispersed and associated with each other, and it is possible to efficiently proceed the transfer of ozone from the gas phase to the liquid phase.

【0029】また、副次的な効果として、液体に超音波
を加えると、気泡の発生と圧壊が生じて局部的に高温と
なり、過酸化水素(H2 2 )を生ずる化学反応を起こ
すと言われており、オゾンと汚濁物質の反応で過酸化水
素を添加すると、酸化分解反応が促進されるということ
もあるので、通常のオゾン単独処理よりも反応性が向上
することも期待することができる。
As a secondary effect, when ultrasonic waves are applied to a liquid, bubbles are generated and crushed to locally raise the temperature to cause a chemical reaction to generate hydrogen peroxide (H 2 O 2 ). It is said that the addition of hydrogen peroxide in the reaction of ozone and pollutants may accelerate the oxidative decomposition reaction, so it is expected that the reactivity will be improved as compared with ordinary ozone treatment alone. it can.

【0030】[0030]

【発明の効果】近年、オゾン発生器の性能が向上し、水
処理にも高濃度オゾンが用いられるようになってきた
が、高濃度オゾンを用いたとき、横流式向流多段接触池
は原水とオゾンの混合状態が悪く、下降溶解型水処理装
置は設備費が高いなどの点から、従来の方法をそのまま
利用するのは好ましくないので、高濃度オゾンに対応可
能な新規なオゾン注入方法を開発する必要があった。
EFFECTS OF THE INVENTION In recent years, the performance of ozone generators has improved, and high concentration ozone has come to be used for water treatment. When high concentration ozone is used, a cross flow countercurrent multi-stage contact pond is used for raw water. Since it is not preferable to use the conventional method as it is because the mixing state of ozone and ozone is bad and the equipment cost of the down dissolution type water treatment equipment is high, a new ozone injection method compatible with high concentration ozone is recommended. Had to develop.

【0031】これに対して本発明者らは分離注入式オゾ
ン接触方法を、特願平7−6795号により出願中であ
るが、本発明ではその一部を改善し、オゾン溶解装置と
して原水供給ポンプを設け、オゾンガスを原水供給ポン
プの吸い込み側から注入することにし、さらにオゾン溶
解部と二つの流路の合流点の間に付加した超音波発振装
置により振動を与え、オゾンガス気泡が会合するのを抑
制するなど、高濃度オゾンの溶解速度が大きいことが活
用され、十分な溶解効率とともに装置も簡素化された上
に、ポンプの動力も小さくなるので設備費,運転費とも
に低減し、オゾンを用いる種々の水処理装置への適用範
囲を拡大するのみならず、オゾンによる水処理設備を新
規に導入する場合にも、極めて有効なオゾン接触方法と
して採用が期待される。
On the other hand, the present inventors have applied for a separate injection type ozone contacting method according to Japanese Patent Application No. 7-6795. In the present invention, a part of the method is improved to supply raw water as an ozone dissolving device. A pump is provided to inject ozone gas from the suction side of the raw water supply pump, and vibration is applied by an ultrasonic oscillation device added between the ozone dissolution part and the confluence of the two flow paths to allow ozone gas bubbles to associate with each other. The high dissolution rate of high-concentration ozone, such as the suppression of ozone, is utilized, and the equipment is simplified and the power of the pump is reduced as well as the sufficient dissolution efficiency. It is expected to be adopted as an extremely effective ozone contact method not only when expanding the range of application to various water treatment equipment used but also when newly introducing water treatment equipment using ozone. That.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法が適用される水処理装置の要部構
成を示す模式図
FIG. 1 is a schematic diagram showing a main configuration of a water treatment device to which the method of the present invention is applied.

【図2】図1に超音波発振装置を付加した本発明の方法
が適用される水処理装置の要部構成を示す模式図
FIG. 2 is a schematic diagram showing a configuration of a main part of a water treatment device to which the method of the present invention, to which an ultrasonic oscillator is added, is applied in FIG.

【図3】横流式向流多段接触池を用いた水処理装置の要
部構成を示す模式図
FIG. 3 is a schematic diagram showing a main configuration of a water treatment device using a cross-flow countercurrent multistage contact basin.

【図4】本発明者らが出願中の分離注入式オゾン接触方
法が適用される水処理装置の要部構成を示す模式図
FIG. 4 is a schematic diagram showing a configuration of a main part of a water treatment apparatus to which a separation injection type ozone contact method applied by the present inventors is applied.

【符号の説明】[Explanation of symbols]

1 オゾン接触池 2 仕切り板 3 原水 4 導入口 5 排出口 6 処理水 7 オゾン発生装置 8 散気装置 9 気泡 10 排オゾン処理設備11 オゾン溶解部12 滞留部 13 導入口 14 分岐点 15 オゾン溶解装置 16 合流点 17 混合装置 18 排出口 19 原水供給ポンプ 20 オゾン注入点 21 超音波発振装置1 Ozone Contact Pond 2 Partition Plate 3 Raw Water 4 Inlet 5 Outlet 6 Treated Water 7 Ozone Generator 8 Diffuser 9 Bubble 10 Waste Ozone Treatment Facility 11 Ozone Dissolving Part 12 Retention 13 Inlet 14 Branch Point 15 Ozone Dissolving Device 16 Confluence point 17 Mixing device 18 Discharge port 19 Raw water supply pump 20 Ozone injection point 21 Ultrasonic oscillator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】配管系に導入した原水を二つの流路に分岐
し、原水供給ポンプを用いて原水を流すオゾン溶解部を
形成した一方の流路にオゾンを注入して溶解させ、この
水を他方の流路を流れる原水と再び合流させて混合し、
この混合流を複数個の仕切り板を有する槽からなる滞留
部に送り、ここで上下迂回流として一定時間滞留させた
後、処理水を取り出す分離注入式オゾン接触方法を行な
うに当たり、原水供給ポンプの吸い込み側にオゾンを注
入することを特徴とする分離注入式オゾン接触方法。
1. Raw water introduced into a pipe system is branched into two flow passages, and ozone is injected into one flow passage formed with an ozone dissolving portion for flowing the raw water using a raw water supply pump to dissolve the raw water. Is mixed again with the raw water flowing through the other flow path,
This mixed flow is sent to a retention part consisting of a tank having a plurality of partition plates, and after it is retained as an upper and lower bypass flow for a certain period of time, a separated injection type ozone contact method for extracting treated water is performed. A separate injection type ozone contact method characterized by injecting ozone into the suction side.
【請求項2】請求項1記載の方法を行なうに当たり、オ
ゾン溶解部近傍で、原水供給ポンプ吐出側と原水の合流
点の間の配管に取り付けた超音波発振装置を用いて、オ
ゾンガスの気泡が会合するのを抑制することを特徴とす
る分離注入式オゾン接触方法。
2. When carrying out the method according to claim 1, bubbles of ozone gas are generated by using an ultrasonic oscillator installed in a pipe between the discharge side of the raw water supply pump and the confluence of the raw water in the vicinity of the ozone dissolving section. A separate injection type ozone contact method characterized by suppressing association.
JP23059095A 1995-03-06 1995-09-08 Separating injection type ozone contact method Withdrawn JPH08299971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23059095A JPH08299971A (en) 1995-03-06 1995-09-08 Separating injection type ozone contact method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4514095 1995-03-06
JP7-45140 1995-03-06
JP23059095A JPH08299971A (en) 1995-03-06 1995-09-08 Separating injection type ozone contact method

Publications (1)

Publication Number Publication Date
JPH08299971A true JPH08299971A (en) 1996-11-19

Family

ID=26385099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23059095A Withdrawn JPH08299971A (en) 1995-03-06 1995-09-08 Separating injection type ozone contact method

Country Status (1)

Country Link
JP (1) JPH08299971A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100326451B1 (en) * 1999-08-31 2002-03-06 지영호 High Density Plasma Method and its Device Coupled with Ultrasonic Wave for Waste Water Treatment
JP2006198472A (en) * 2005-01-18 2006-08-03 Miura Co Ltd Waste water treatment apparatus
KR100956017B1 (en) * 2008-01-29 2010-05-14 (주)국 제 앤 텍 Dissolved Ozone acceleration amplification photocatalyst practical fou wastewater the quality of water improvement Water
KR101015536B1 (en) * 2005-05-11 2011-02-17 샤단호징 니혼카이난보시쿄카이 Apparatus for treating ship ballast water
EP3385231A4 (en) * 2015-12-24 2019-06-12 Paor Co., Ltd. Ozone water treatment system using low energy
JP2020189256A (en) * 2019-05-20 2020-11-26 株式会社環境開発技研 Wastewater treatment method and wastewater treatment apparatus used therefor
WO2023082818A1 (en) * 2021-11-11 2023-05-19 南京延长反应技术研究院有限公司 Micro-interface enhanced ultra-efficient wastewater ozone treatment device and processing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100326451B1 (en) * 1999-08-31 2002-03-06 지영호 High Density Plasma Method and its Device Coupled with Ultrasonic Wave for Waste Water Treatment
JP2006198472A (en) * 2005-01-18 2006-08-03 Miura Co Ltd Waste water treatment apparatus
KR101015536B1 (en) * 2005-05-11 2011-02-17 샤단호징 니혼카이난보시쿄카이 Apparatus for treating ship ballast water
KR100956017B1 (en) * 2008-01-29 2010-05-14 (주)국 제 앤 텍 Dissolved Ozone acceleration amplification photocatalyst practical fou wastewater the quality of water improvement Water
EP3385231A4 (en) * 2015-12-24 2019-06-12 Paor Co., Ltd. Ozone water treatment system using low energy
JP2020189256A (en) * 2019-05-20 2020-11-26 株式会社環境開発技研 Wastewater treatment method and wastewater treatment apparatus used therefor
WO2023082818A1 (en) * 2021-11-11 2023-05-19 南京延长反应技术研究院有限公司 Micro-interface enhanced ultra-efficient wastewater ozone treatment device and processing method

Similar Documents

Publication Publication Date Title
JP5469594B2 (en) Method and device for purifying liquid effluent
US3650950A (en) Material shearing mixer and aerator
US7695622B2 (en) System and method for eliminating sludge via ozonation
JP5950790B2 (en) Wastewater treatment method and system
JP2007313504A (en) Apparatus for treating waste water and method therefor
KR101292731B1 (en) The gas captured type gas-liquid reactor and the water treatment apparatus, gas purification apparatus using thereof
CN109081499B (en) Wastewater treatment system and wastewater treatment method
JP3397096B2 (en) Apparatus and method for ozone treatment of biological sludge
KR101308686B1 (en) Method and apparatus for treating water containing surfactant
JPH08299971A (en) Separating injection type ozone contact method
JP3731806B2 (en) Organic wastewater treatment method and apparatus
JP2004130185A (en) Wastewater treatment method and apparatus therefor
JP2007330894A (en) Activated sludge treatment apparatus
KR20050093916A (en) Method and devic for manufacturing of gas/liguid mixing ozone solution watar
JPH10230285A (en) High speed ozone reaction system
JP2001524866A (en) Method for recovering exhaust gas from ozonation reactor
JP3526362B2 (en) Downward injection type ozone treatment equipment
JPH08192176A (en) Separate injection type ozone contact method
JP2001121168A (en) Water treating apparatus
JP4910452B2 (en) Contaminated water treatment method using ozone fine bubbles, and contaminated water treatment apparatus using ozone fine bubbles
JP3107857B2 (en) Gas-liquid contact device
KR200354665Y1 (en) Devic for manufacturing of gas/liguid mixing ozone solution watar
JPH10225696A (en) Pressurization type ozone treating device
KR20030090362A (en) A combined process and device of ozone and sonication for water/wastewater treatment
JP2003164861A (en) Ozone water deozonization system

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040105