JPH08192176A - Separate injection type ozone contact method - Google Patents

Separate injection type ozone contact method

Info

Publication number
JPH08192176A
JPH08192176A JP7006795A JP679595A JPH08192176A JP H08192176 A JPH08192176 A JP H08192176A JP 7006795 A JP7006795 A JP 7006795A JP 679595 A JP679595 A JP 679595A JP H08192176 A JPH08192176 A JP H08192176A
Authority
JP
Japan
Prior art keywords
ozone
raw water
water
flow
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7006795A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kato
康弘 加藤
Takayuki Morioka
崇行 森岡
Ryutaro Takahashi
龍太郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7006795A priority Critical patent/JPH08192176A/en
Publication of JPH08192176A publication Critical patent/JPH08192176A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To correspond to the use of highly conc. ozone by branching the passage of raw water into two passages and injecting ozone only into the raw water flowing through one passage to dissolve the same in raw water and allowing this water to meet with the raw water of the other passage to form mixed flow and sending the mixed flow to a stagnation tank to stagnate the same for a definite time before discharging the stagnated water as treated water. CONSTITUTION: Raw water 3 flows in the system from an introducing port 19 to be branched at a branch point 20 to flow toward an ozone dissolving part 17 to reach an ozone dissolving device 21 and the ozone gas sent from an ozone generator 7 is injected into raw water to be mixed therewith. The raw water 3 issued from the ozone dissolving device 21 meets with the raw water 3, which enters from the introducing port 19 to straightly advance through piping without advancing toward the ozone dissolving part 17 at the branch point 20, at a confluent point 22 to be mixed therewith to reach a mixing device 23 such as a barrier plate or a line mixer. Subsequently, the mixed raw water 3 flows in a stagnation part 18 to be stagnated for a definite time and is sent to the outside of the system as treated water from a discharge port 24.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はオゾンを用いて水中の殺
菌,脱臭,有機物などの酸化を行なう下降溶解型オゾン
反応槽に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a descending dissolution type ozone reaction tank for sterilizing water, deodorizing water, and oxidizing organic substances using ozone.

【0002】[0002]

【従来の技術】近年、オゾンがフッ素に次いで強力な酸
化力を有するという特徴を利用して、オゾンを水中に散
気することにより、殺菌,脱色,脱臭,有機物もしくは
無機物の酸化除去などを行なう水処理が広く行なわれて
いる。とくに、都市近郊の水道では、取水源に起因する
異臭味の被害が広がっており、オゾンの持つ強力な酸化
力は、この異臭味を除去するのに大きな効果を発揮する
ことから、オゾンと活性炭を用いた高度処理の導入が進
められている。
2. Description of the Related Art In recent years, ozone is diffused in water by utilizing the characteristic that ozone has a strong oxidizing power next to fluorine, so that sterilization, decolorization, deodorization, and removal of organic or inorganic substances by oxidation are performed. Water treatment is widely used. In particular, in the water supply in the suburbs of cities, the damage of offensive odor caused by the water intake source is widespread, and the strong oxidizing power of ozone exerts a great effect in removing this offensive odor. The introduction of advanced processing using is being promoted.

【0003】このようなオゾンと、オゾンによって処理
される水(以下、原水とする)中の有機物とを反応させ
るオゾン処理装置は、主として電気エネルギーからオゾ
ンを発生させるオゾン発生装置,原水を供給する送水ポ
ンプ,反応を進行させる反応槽,反応槽から未反応のま
ま排出される排オゾンを分解する排オゾン処理設備から
構成されており、原水とオゾンの接触方式は、一般に反
応槽下部からオゾンを気泡として吹き出す気泡塔方式が
用いられている。最近は殆どが気泡塔内で原水を反応槽
頂部から供給し、オゾンガスと対向させる向流接触方式
を用いており、大規模な浄水場などでは、複数の向流接
触池を直列に接続した横流式向流多段接触池が用いられ
ている。
An ozone treatment apparatus for reacting such ozone with organic matter in water treated by ozone (hereinafter referred to as raw water) supplies an ozone generator for generating ozone mainly from electric energy and raw water. It is composed of a water pump, a reaction tank for proceeding the reaction, and an exhaust ozone treatment facility for decomposing the exhaust ozone discharged unreacted from the reaction tank. Generally, the contact method of raw water and ozone is to remove ozone from the lower part of the reaction tank. A bubble column method that blows out as bubbles is used. In recent years, most of them have used a countercurrent contact method in which raw water is supplied from the top of the reaction tank in the bubble column to face ozone gas.In large-scale water purification plants, etc., a crossflow with multiple countercurrent contact ponds connected in series is used. A countercurrent multi-stage contact pond is used.

【0004】図3は 横流式向流多段接触池を、これに
付属する諸装置を含めて、その要部構成を示した模式図
である。図3において、オゾン接触池1内に、数個の仕
切り板2が設けられており、図3には水の流れを矢印で
示しているが、原水3はオゾン接触池1の一端の導入口
4から流入し、オゾン接触池1内を流下し仕切り板2の
間を上昇して、再び流下するという流れを繰り返し、最
後にオゾン接触池1の他端の排出口5から、処理水6と
して取り出される。
FIG. 3 is a schematic diagram showing the structure of a cross-flow countercurrent multistage contact basin, including the various devices attached thereto. In FIG. 3, several partition plates 2 are provided in the ozone contact pond 1, and the flow of water is shown by the arrows in FIG. 3, but the raw water 3 is an inlet port at one end of the ozone contact pond 1. 4 flowed in, flowed down in the ozone contact pond 1, moved up between the partition plates 2 and flowed down again, and finally, from the discharge port 5 at the other end of the ozone contact pond 1 as treated water 6 Taken out.

【0005】そして、オゾン接触池1外部のオゾン発生
装置7で生成したオゾンガスを、オゾン接触池1の底部
から導入し、散気装置8により微細な気泡9として原水
3と接触させる。こりとき注入したオゾンのうち、未反
応のオゾンは排オゾン処理設備10により分解し、大気
中に放出される。これらのオゾン処理装置は、原水に対
して酸化反応を十分に行なうだけの接触時間が必要であ
る。そのため、処理水量が多いときは、容積の大きなオ
ゾン接触池が必要になり、多くの給水人口を抱える都市
近郊部の浄水場などに導入する場合には、大規模な設備
が必要となる。大規模な設備が必要になるというのは、
経済性の点から好ましいことではなく、オゾンを用いる
水処理装置の導入を阻む大きな要因となるので、オゾン
処理装置には、高いオゾン吸収率、および十分な有機物
の除去効率が求められる。
Then, the ozone gas generated by the ozone generator 7 outside the ozone contact pond 1 is introduced from the bottom of the ozone contact pond 1 and brought into contact with the raw water 3 as fine bubbles 9 by the air diffuser 8. Of the ozone injected at this time, unreacted ozone is decomposed by the exhaust ozone treatment facility 10 and released into the atmosphere. These ozone treatment devices require contact time for sufficiently performing an oxidation reaction on raw water. Therefore, when the amount of treated water is large, a large-volume ozone contact pond is required, and when it is introduced into a water purification plant in the suburbs of a city with a large water supply population, large-scale equipment is required. The need for large-scale equipment means
It is not preferable from the economical point of view and becomes a major factor that hinders the introduction of a water treatment apparatus using ozone. Therefore, the ozone treatment apparatus is required to have a high ozone absorption rate and a sufficient organic substance removal efficiency.

【0006】ここで、オゾン吸収率とは、注入したオゾ
ンガスのうち、反応槽内で原水に溶解もしくは分解し、
消費されたオゾンの割合であり、下記の式で表わされ
る。
[0006] Here, the ozone absorption rate means that of the injected ozone gas, it is dissolved or decomposed in raw water in the reaction tank,
It is the ratio of ozone consumed and is expressed by the following formula.

【0007】[0007]

【数1】 また、除去効率とは、反応槽内で分解除去される原水中
の水質汚濁物質の割合であって、下式で表わされる。代
表的な水質汚濁物質として臭気物質などが挙げられる。
[Equation 1] The removal efficiency is the ratio of water pollutants in the raw water decomposed and removed in the reaction tank, and is represented by the following formula. Typical odorants are water pollutants.

【0008】[0008]

【数2】 一般に、このオゾン吸収率および除去効率が高い程、オ
ゾン反応槽の処理効率が良いとされている。
[Equation 2] Generally, the higher the ozone absorption rate and the removal efficiency, the better the processing efficiency of the ozone reaction tank.

【0009】また、オゾンが水中に溶解する際のオゾン
移動量は、総括物質移動容量係数(KL ・a)と、水中
の飽和オゾン濃度と、溶存しているオゾン濃度の差(濃
度勾配)とが主な要因である。この飽和オゾン濃度は、
ガス中のオゾン濃度とオゾン分配係数に依存することが
知られている。そこで、反応槽の水深圧を利用してオゾ
ン溶解効率を高めるという観点から、反応槽の水深は、
可能な限り深くするのが望ましいが、先述の向流接触方
式では、反応槽の水深圧に対向してガスを吹き込まねば
ならないから、実際の反応槽水深は6mが限界であっ
た。これに対処するために考えられたのが、下降溶解型
オゾン処理装置である。
The amount of ozone transferred when ozone is dissolved in water is the difference between the overall mass transfer capacity coefficient (K L · a), the saturated ozone concentration in water, and the dissolved ozone concentration (concentration gradient). Is the main factor. This saturated ozone concentration is
It is known to depend on the ozone concentration in the gas and the ozone distribution coefficient. Therefore, from the viewpoint of increasing ozone dissolution efficiency by utilizing the water depth pressure of the reaction tank, the water depth of the reaction tank is
Although it is desirable to make the depth as deep as possible, in the above-described countercurrent contact method, gas must be blown against the water depth pressure of the reaction tank, so the actual water depth of the reaction tank was 6 m. A descending dissolution type ozone treatment device was conceived to cope with this.

【0010】図4は下降溶解型オゾン処理装置の要部構
成を示す模式図であり、図3と共通する部分に同一符号
を用いてある。図4において、この装置は反応槽11上
部の導入口12から、送水ポンプ13により原水3を導
入し、同時にオゾン発生装置7で発生させたオゾンガス
を、散気装置8を通し微細な気泡9として、反応槽11
内に注入する。原水3は気泡9(オゾンガス)との混合
流となり、反応槽11の下降溶解部14を流下する。こ
の混合流は反応槽11の底部を通り上昇部15を経て、
排出口16から処理水6として反応槽11の外部に配水
することができる。原水3の流れ方向を矢印で表わす。
注入されたオゾンガスのうち、未反応のものは排オゾン
処理設備10により分解されて系外に放出される。
FIG. 4 is a schematic view showing the structure of the main part of the descending dissolution type ozone processing apparatus, and the same reference numerals are used for the same parts as in FIG. In FIG. 4, this apparatus introduces the raw water 3 from the inlet 12 at the upper part of the reaction tank 11 by the water supply pump 13, and at the same time, the ozone gas generated by the ozone generator 7 is passed through the diffuser 8 to form fine bubbles 9. , Reaction tank 11
Inject into. The raw water 3 becomes a mixed flow with bubbles 9 (ozone gas) and flows down the descending dissolution section 14 of the reaction tank 11. This mixed flow passes through the bottom of the reaction tank 11 and the rising section 15,
The treated water 6 can be distributed from the outlet 16 to the outside of the reaction tank 11. The flow direction of the raw water 3 is indicated by an arrow.
Of the injected ozone gas, unreacted ozone gas is decomposed by the exhaust ozone treatment facility 10 and released to the outside of the system.

【0011】このような下降溶解型オゾン処理装置は、
原水3とオゾンガスとが反応槽11の頂部から同時に導
入されるため、水深圧に対向してガスを吹き込む必要が
なく、向流接触方式より深い30m程度の水深を持つ反
応槽の設計が可能である。また、オゾンの溶解速度が速
いため、オゾン吸収率は95%以上、有機物除去効率は
75%以上を示し、向流式反応槽の性能を大きく上回っ
ている。
Such a descending dissolution type ozone treatment apparatus is
Since the raw water 3 and the ozone gas are simultaneously introduced from the top of the reaction tank 11, there is no need to blow the gas against the water depth pressure, and it is possible to design a reaction tank having a depth of about 30 m, which is deeper than the countercurrent contact method. is there. Further, since the dissolution rate of ozone is high, the ozone absorption rate is 95% or more and the organic matter removal efficiency is 75% or more, which is far higher than the performance of the countercurrent reaction tank.

【0012】一般に、浄水場などでオゾンを用いた水処
理を行なう場合、そのオゾン注入量は原水1L当たり1
〜3mgに設定される。また、通常は、空気を原料とす
るオゾン発生器を用いているので、発生オゾンガス濃度
は約20mg/Lとなり、気液比(原水流量÷オゾンガ
ス流量)は、6.6〜20の値を示す。一方、オゾン発
生器に関して、最近は酸素を原料とする高濃度オゾン発
生器の開発が進み、従来の空気原料と同程度にオゾン発
生コストが低減されている。また、先述のように、気相
中から液相中へのオゾン移動率は、注入するオゾンガス
濃度に大きく依存するため、物質移動の観点からは、オ
ゾンガス濃度が高くなるのは大変望ましいことである。
Generally, when water treatment using ozone is performed in a water purification plant or the like, the ozone injection amount is 1 per 1 L of raw water.
Set to ~ 3 mg. Moreover, since an ozone generator using air as a raw material is usually used, the generated ozone gas concentration is about 20 mg / L, and the gas-liquid ratio (raw water flow rate / ozone gas flow rate) shows a value of 6.6 to 20. . On the other hand, regarding an ozone generator, recently, a high-concentration ozone generator using oxygen as a raw material has been developed, and the ozone generation cost has been reduced to the same level as that of a conventional air raw material. Further, as described above, since the ozone transfer rate from the gas phase to the liquid phase largely depends on the injected ozone gas concentration, it is very desirable from the viewpoint of mass transfer that the ozone gas concentration be high. .

【0013】[0013]

【発明が解決しようとする課題】しかしながら、高濃度
オゾンを使用するためには、次のような問題がある。オ
ゾン接触池の水理特性(気液流動様式)から見ると、高
濃度化したオゾンの注入率が一定のとき、オゾン風量が
減少するのは好ましくないことである。それは、前述の
横流式向流多段接触池の場合、オゾン接触池内は、元来
完全混合という水理特性を持っているが、オゾンガス濃
度が高くなり、オゾンガス風量が少なくなると、気泡の
上昇による混合および攪拌効果が低下し、短絡流や死水
域が発生するようになる。このことに関しては、本発明
者らも実験的に確認しており、原水流量に対するオゾン
ガス流量が1/100以下(気液比≧100)になる
と、混合不良が発生する。
However, there are the following problems in using high-concentration ozone. From the viewpoint of hydraulic characteristics (gas-liquid flow mode) of the ozone contact pond, it is not preferable that the amount of ozone air decreases when the injection rate of highly concentrated ozone is constant. In the case of the above-mentioned cross-flow countercurrent multi-stage contact basin, the ozone contact basin originally has the hydraulic characteristic of complete mixing, but when the ozone gas concentration becomes high and the ozone gas flow rate becomes small, mixing due to the rise of bubbles occurs. Also, the stirring effect is reduced, and short-circuit flow and dead water regions are generated. This has been experimentally confirmed by the present inventors, and when the ozone gas flow rate with respect to the raw water flow rate is 1/100 or less (gas-liquid ratio ≧ 100), poor mixing occurs.

【0014】これに対して、前に述べた下降溶解型オゾ
ン処理装置は、気液並流押し出し流れという特性を持っ
ており、オゾンガス風量が少なくなっても、このような
混合不良は発生しない。したがって、高濃度オゾンを用
いるには、下降溶解型オゾン処理装置の方が横流式向流
多段接触池より適した接触方式と言えるが、下方注入式
反応槽は、水深を大きくすることや、向流式に比べて施
工技術を要することから、大規模な浄水処理設備には適
当でない。また、地下利用がかなり進んでいるわが国の
都市近郊に用いるのには、地下深く掘らねばならないと
いう点で不向きである。
On the other hand, the descending dissolution type ozone treatment apparatus described above has a characteristic of gas-liquid co-current extrusion flow, and such a mixing failure does not occur even if the ozone gas air volume decreases. Therefore, in order to use high-concentration ozone, it can be said that the descending dissolution type ozone treatment device is a more suitable contact method than the cross-flow countercurrent multi-stage contact tank. It is not suitable for large-scale water purification facilities because it requires construction technology compared to the flow type. In addition, it is not suitable for use in the suburbs of Japan, where underground use is considerably advanced, in that it requires deep underground digging.

【0015】しかし、今後、オゾン発生器はさらに高効
率なものとなり、発生するオゾンは高濃度化すると予測
されるので、とくにオゾンを用いる大規模な浄水処理設
備に対して、高濃度オゾンガスに適した原水との接触方
法を見出すことが急務である。本発明は上述の点に鑑み
てなされたものであり、その目的は、高濃度のオゾンの
使用に十分対応することが可能であり、設備の製作コス
トもかからない分離注入式オゾン接触方法を提供するこ
とにある。
However, it is expected that the ozone generator will become even more efficient in the future and the concentration of ozone generated will increase, so that it is suitable for high-concentration ozone gas, especially for large-scale water treatment facilities using ozone. There is an urgent need to find a method of contact with raw water. The present invention has been made in view of the above points, and an object thereof is to provide a separation injection ozone contacting method that can sufficiently cope with the use of high-concentration ozone and that does not require facility manufacturing costs. Especially.

【0016】[0016]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の分離注入式オゾン接触方法は、原水を二
つの流路に分岐し、一方の流路を流れる原水にのみオゾ
ンを注入して溶解させ、この水を他方の流路を流れる原
水と再び合流させて混合し、この混合流を滞留槽に送
り、ここで一定時間滞留させた後、処理水として系外に
排出するものであり、オゾンを注入して溶解させる原水
流量に対するオゾン流量の割合を少なくとも0.2(気
液比5以上)とする。
In order to solve the above-mentioned problems, the separation injection ozone contacting method of the present invention divides raw water into two flow passages, and ozone is supplied only to the raw water flowing through one flow passage. It is injected and dissolved, and this water is merged again with the raw water flowing through the other flow path and mixed, and this mixed flow is sent to a retention tank where it is retained for a certain period of time and then discharged out of the system as treated water. The ratio of the ozone flow rate to the raw water flow rate at which ozone is injected and dissolved is at least 0.2 (a gas-liquid ratio of 5 or more).

【0017】[0017]

【作用】上記のように本発明ではオゾンを接触させる原
水の流れを一旦分岐して別流路とし、オゾンを注入溶解
させた後、再び本流の原水と合流混合させるようにした
ため、大規模な浄水処理設備として高濃度オゾンを用い
てオゾン注入率一定の場合も、原水とオゾンの混合不良
を起こすことなく、常に気液比を大きく保って、臭気物
質などの高い除去率を得ることができる。
As described above, according to the present invention, the flow of raw water to be brought into contact with ozone is once branched into a separate flow path, and after ozone is injected and dissolved, the raw water of the main stream is re-merged and mixed again. Even if the ozone injection rate is constant by using high-concentration ozone as the water purification equipment, it is possible to obtain a high removal rate of odorous substances, etc., by always maintaining a large gas-liquid ratio without causing poor mixing of raw water and ozone. .

【0018】[0018]

【実施例】本発明者らは、大規模オゾン浄水処理設備に
おける高濃度オゾンガスの注入方法について、鋭意試
作,実験およびシミュレーションによる検討を重ねた結
果、横流式向流多段接触池におけると同等以上のオゾン
溶解効率および有機物除去効率が得られるオゾン注入方
法を見出すに至った。以下に本発明の方法を一実施例に
基づき説明する。
[Examples] The inventors of the present invention have conducted extensive studies on a method for injecting high-concentration ozone gas in a large-scale ozone water purification treatment facility through trial manufacture, experiments, and simulations. We have found a method for injecting ozone that can obtain ozone dissolution efficiency and organic matter removal efficiency. The method of the present invention will be described below based on an example.

【0019】図1は本発明による分離注入式オゾン接触
方法が適用される水処理装置の要部構成を示した模式図
であり、これまでの図と共通する部分を同一符号で表わ
してある。以下、図1を参照して、装置の構成ととも
に、オゾンを用いた浄水処理過程について述べる。図1
において、この装置の特徴は、系内にいずれも点線で囲
ったオゾン溶解部17と滞留部18とを有し、これら二
つの部分に配管流路を分岐して、原水3を流すようにし
たことである。まず原水3は導入口19から系内に流れ
込み、例えばバルブを用いた分岐点20でオゾン溶解部
17側へ分流され、オゾン溶解装置21に達し、ここで
オゾン発生装置7から送られるオゾンガスが注入され、
混合される。このオゾン溶解装置21には、通常の気泡
塔またはエゼクタなどの混合装置が用いられる。また、
オゾン溶解部17側への分岐水量は、その原水3の水質
や、設備全体の処理規模を勘案して任意に定めることが
できるが、オゾン溶解部17側への分岐水量を少なくす
ることが可能であれば、その分オゾン溶解装置21に対
する負荷が少なくなり、設備コストの低減に寄与する。
FIG. 1 is a schematic view showing the structure of the main part of a water treatment apparatus to which the separation injection type ozone contacting method according to the present invention is applied, and the same parts as those in the previous figures are represented by the same reference numerals. Hereinafter, with reference to FIG. 1, a water purification process using ozone will be described together with the configuration of the apparatus. FIG.
In the above, the feature of this apparatus is that it has an ozone dissolving part 17 and a retaining part 18 both surrounded by a dotted line in the system, and a pipe flow path is branched into these two parts so that the raw water 3 flows. That is. First, the raw water 3 flows into the system through the inlet 19, and at the branch point 20 using, for example, a valve, an ozone dissolving section.
It is branched to the 17 side and reaches the ozone dissolving device 21, where the ozone gas sent from the ozone generating device 7 is injected,
Mixed. As the ozone dissolving device 21, an ordinary mixing device such as a bubble column or an ejector is used. Also,
The amount of branching water to the ozone dissolving part 17 side can be arbitrarily determined in consideration of the water quality of the raw water 3 and the treatment scale of the entire equipment, but the amount of branching water to the ozone dissolving part 17 side can be reduced. In this case, the load on the ozone dissolving device 21 is correspondingly reduced, which contributes to a reduction in equipment cost.

【0020】次に、オゾン溶解装置21から出た原水3
(オゾン混合原水)は、導入口19から入って分岐点2
0でオゾン溶解部17側へ進まずに配管内を直進する原
水3と合流点22で合流混合し、邪魔板やラインミキサ
ーなどの混合装置23に到り、混合性を確保するが、こ
の混合装置23は状況に応じ必ずしも必要としない。次
いで、合流混合した原水3は、滞留部18に流入する
が、滞留部18は図3に示したオゾン接触池1とほぼ同
様の構造を持つ滞留槽からなっており、この槽内に複数
個の仕切り板2を設置して、上下迂流構造とすることに
より、滞留部18における水の流れを均一にし、短絡流
の発生を抑制している。
Next, the raw water 3 discharged from the ozone dissolving device 21
(Ozone-mixed raw water) enters from the inlet 19 and branches off at 2
At 0, the raw water 3 that does not proceed to the ozone dissolution section 17 side goes straight in the pipe and is mixed and mixed at a confluence point 22 and reaches a mixing device 23 such as a baffle plate or a line mixer to ensure the mixing property. The device 23 is not always necessary depending on the situation. Then, merging mixed raw water 3 is flows into the retention portion 18, retaining portion 18 may comprise retention tank having substantially the same structure as the ozone contact basin 1 shown in FIG. 3, a plurality in the tank The partition plate 2 is installed to have a vertical bypass structure, so that the flow of water in the retention section 18 is made uniform and the occurrence of a short circuit flow is suppressed.

【0021】かくして、オゾンを混合した原水3は、滞
留部18で一定時間滞留した後、排出口24から処理水
6として系外に送り出すことができる。排オゾン処理設
備10に関しては、既に述べたのと同様である。滞留部
18(滞留槽)の滞留時間は、有機物などの分解反応を
進行させるだけの時間が必要であり、例えば臭気物質な
どを除去する場合は、約10〜20分に設定される。し
たがって、滞留部18は処理水量に応じてその容積も大
きくなるが、図3に示す横流式向流多段接触池の場合と
異なり、オゾン散気装置8を設置することなく、極めて
簡素な構造となるから、製作コストを低く抑えることが
できる。
In this way, the raw water 3 mixed with ozone can be sent out of the system as treated water 6 from the outlet 24 after staying in the holding section 18 for a certain period of time. The exhaust ozone treatment facility 10 is the same as that described above. Retention area
The residence time in 18 (retention tank) is required to allow the decomposition reaction of organic substances to proceed, and is set to about 10 to 20 minutes when removing odorous substances, for example. Therefore, the volume of the retention section 18 increases according to the amount of treated water, but unlike the case of the cross-flow countercurrent multi-stage contact pond shown in FIG. 3, the ozone diffuser 8 is not installed and the structure is extremely simple. Therefore, the manufacturing cost can be kept low.

【0022】図2は、本発明による分離注入式オゾン接
触方法と、従来の横流式向流多段接触池におけるオゾン
接触方法との比較を、注入オゾンガス濃度と臭気物質除
去率との関係で示した線図である。処理条件はいずれも
同じであり、水深:6m,接触時間:5min,注入
率:1.5mg/Lとしている。オゾン注入率一定の条
件下で、注入するオゾンガス濃度を変化させているの
で、オゾンガス濃度が高いほど、注入するオゾンガス風
量は少なくなり、気液比(原水流量÷オゾンガス流量)
は大きくなる。図2の各曲線は●でプロットした方が本
発明、■でプロットしたのが従来法であり、各プロット
点に気液比を付記してある。
FIG. 2 shows a comparison between the separate injection type ozone contacting method according to the present invention and the conventional ozone contacting method in a cross-flow type countercurrent multistage contact basin in terms of the relationship between injected ozone gas concentration and odorous substance removal rate. It is a diagram. The treatment conditions were the same, and the water depth was 6 m, the contact time was 5 min, and the injection rate was 1.5 mg / L. Since the ozone gas concentration to be injected is changed under the condition that the ozone injection rate is constant, the higher the ozone gas concentration is, the smaller the ozone gas air flow is injected, and the gas-liquid ratio (raw water flow rate / ozone gas flow rate).
Grows. Each curve in FIG. 2 is plotted by ● in the present invention, and plotted by ■ in the conventional method, and the gas-liquid ratio is added to each plotted point.

【0023】また、本発明による分離注入式のオゾン溶
解部17(図1)側への分岐水量は、全原水の1/10
に設定したため、気液比は横流式向流多段接触池の場合
に比べて一桁程度小さい値になる。図2の各曲線が示す
ように、注入オゾンガス濃度80mg/L付近を境にし
て、それ以下では横流式向流多段接触池の方が高い臭気
物質除去率を示しているが、注入オゾンガス濃度80m
g/L以上では、分離注入式オゾン接触方法の臭気物質
除去率が高くなり、優位性が増すことがわかる。これは
分離注入式オゾン接触方法は、オゾン溶解部における気
液比の影響が大きいことを示しており、原水の水質によ
って程度は異なるが、本発明の分離注入式オゾン接触方
法によれば、高濃度オゾンガスを用い、常に気液比を高
く保って注入操作を行なうことにより、従来の横流式向
流多段接触池に比べて高い反応槽効率が得られることが
わかる。図2から本発明の方法における気液比は5以上
に保つのが有効である。
Further, the amount of branched water to the separation injection type ozone dissolving section 17 (FIG. 1) according to the present invention is 1/10 of the total raw water.
As a result, the gas-liquid ratio is about an order of magnitude smaller than in the case of a cross-flow countercurrent multistage contact basin. As shown by the curves in FIG. 2, the cross-flow countercurrent multistage contact basin shows a higher odorous substance removal rate below the injected ozone gas concentration of around 80 mg / L.
It can be seen that, when g / L or more, the odorous substance removal rate of the separation injection type ozone contacting method becomes high and the superiority increases. This indicates that the separation injection type ozone contact method has a large influence of the gas-liquid ratio in the ozone dissolving part, and the degree varies depending on the water quality of the raw water, but according to the separation injection type ozone contact method of the present invention, It can be seen that higher efficiency of the reaction tank can be obtained as compared with the conventional cross-flow countercurrent multi-stage contact tank by performing the injection operation using the ozone gas with a high concentration and keeping the gas-liquid ratio always high. From FIG. 2, it is effective to maintain the gas-liquid ratio in the method of the present invention at 5 or more.

【0024】[0024]

【発明の効果】近年、オゾン発生器の性能が向上し、水
処理にも高濃度オゾンが用いられるようになってきた
が、高濃度オゾンを用いたとき、横流式向流多段接触池
は原水とオゾンの混合状態が悪く、下降溶解型水処理装
置は設備費が高いなどの点から、従来の方法をそのまま
利用するのは好ましくないので、高濃度オゾンに対応可
能な新規なオゾン注入方法を開発する必要があった。
EFFECTS OF THE INVENTION In recent years, the performance of ozone generators has improved, and high concentration ozone has come to be used for water treatment. When high concentration ozone is used, a cross flow countercurrent multi-stage contact pond is used for raw water. Since it is not preferable to use the conventional method as it is because the mixing state of ozone and ozone is bad and the equipment cost of the down dissolution type water treatment equipment is high, a new ozone injection method compatible with high concentration ozone is recommended. Had to develop.

【0025】これに対して本発明者らの見出した分離注
入式オゾン接触方法は、原水を二つの流路に分岐し、一
方の流路を流れる原水にのみオゾンを注入して溶解さ
せ、この水を他方の流路を流れる原水と再び合流させて
混合し、この混合流を滞留槽に送り、ここで一定時間滞
留させた後、処理水として系外に排出するものであり、
大規模な浄水処理設備に高濃度オゾンを用いたとき、オ
ゾン注入率一定の場合も、原水とオゾンの混合不良を起
こすことなく、常に気液比を大きく保って、有機物の高
い除去率を得ることができる。
On the other hand, in the separation injection type ozone contact method found by the present inventors, raw water is branched into two flow paths, and ozone is injected and dissolved only in the raw water flowing through one flow path. Water is re-merged with the raw water flowing through the other flow channel and mixed, and this mixed flow is sent to a retention tank where it is retained for a certain period of time and then discharged out of the system as treated water.
When high-concentration ozone is used in a large-scale water treatment facility, even if the ozone injection rate is constant, a high gas-liquid ratio is always maintained and a high removal rate of organic substances is obtained without causing a poor mixing of raw water and ozone. be able to.

【0026】このように、本発明の方法は、大規模な浄
水処理設備により高濃度オゾンを有効に利用することが
でき、今後予測される高濃度オゾンガス生成のコスト低
減と相まって、低コスト,高効率のオゾンを用いた水処
理システムの実現が可能となり、種々の浄水処理設備へ
の適用が考えられる。
As described above, the method of the present invention can effectively use high-concentration ozone by means of a large-scale water treatment facility, and in combination with the expected cost reduction of high-concentration ozone gas generation in the future, low cost and high cost. It is possible to realize a water treatment system that uses ozone with high efficiency, and it can be applied to various water purification facilities.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法が適用される水処理装置の要部構
成を示す模式図
FIG. 1 is a schematic diagram showing a main configuration of a water treatment device to which the method of the present invention is applied.

【図2】本発明の方法と従来方法との比較で示した注入
オゾンガス濃度と臭気物質除去率との関係線図
FIG. 2 is a diagram showing the relationship between the concentration of injected ozone gas and the removal rate of odorous substances, which is shown by comparing the method of the present invention with the conventional method.

【図3】横流式向流多段接触池を用いた水処理装置の要
部構成を示す模式図
FIG. 3 is a schematic diagram showing a main configuration of a water treatment device using a cross-flow countercurrent multistage contact basin.

【図4】下降溶解型オゾン処理装置の要部構成を示す模
式図
FIG. 4 is a schematic diagram showing a main configuration of a descending dissolution type ozone treatment apparatus.

【符号の説明】[Explanation of symbols]

1 オゾン接触池 2 仕切り板 3 原水 4 導入口 5 排出口 6 処理水 7 オゾン発生装置 8 散気装置 9 気泡 10 排オゾン処理設備 11 反応槽 12 導入口 13 送水ポンプ 14 下降溶解部 15 上昇部 16 排出口17 オゾン溶解部18 滞留部 19 導入口 20 分岐点 21 オゾン溶解装置 22 合流点 23 混合装置 24 排出口1 Ozone Contact Pond 2 Partition Plate 3 Raw Water 4 Inlet 5 Outlet 6 Treated Water 7 Ozone Generator 8 Diffuser 9 Air Bubble 10 Waste Ozone Treatment Facility 11 Reaction Tank 12 Inlet 13 Water Pump 14 Descent Dissolving Part 15 Ascending Part 16 Discharge port 17 Ozone dissolution section 18 Retention section 19 Inlet port 20 Branch point 21 Ozone dissolution device 22 Confluence point 23 Mixing device 24 Discharge port

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】オゾンを注入して原水を浄化する水処理を
行なうに当たり、配管系に導入した原水を二つの流路に
分岐し、一方の流路に形成したオゾン溶解部を流れる原
水にのみオゾンを注入して溶解させ、この水を他方の流
路を流れる原水と再び合流させて混合し、この混合流を
複数個の仕切り板を有する槽からなる滞留部に送り、こ
こで上下迂回流として一定時間滞留させた後、処理水と
して系外に排出することを特徴とする分離注入式オゾン
接触方法。
1. When performing a water treatment for purifying raw water by injecting ozone, the raw water introduced into a pipe system is branched into two flow paths, and only the raw water flowing through an ozone dissolving section formed in one flow path is branched. Ozone is injected and dissolved, and this water is merged again with the raw water flowing through the other flow path and mixed, and this mixed flow is sent to the retention part consisting of a tank with multiple partition plates, where the upper and lower bypass flow As a treated water, the separated contact type ozone contacting method is characterized by discharging the treated water outside the system.
【請求項2】請求項1記載の分離注入式オゾン接触方法
において、オゾンを注入して溶解させる原水流量に対す
るオゾン流量の割合を少なくとも0.2(気液比5以
上)とすることを特徴とする分離注入式オゾン接触方
法。
2. The separation injection ozone contact method according to claim 1, wherein the ratio of the ozone flow rate to the raw water flow rate at which ozone is injected and dissolved is at least 0.2 (gas-liquid ratio of 5 or more). Separate injection type ozone contact method.
JP7006795A 1995-01-20 1995-01-20 Separate injection type ozone contact method Pending JPH08192176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7006795A JPH08192176A (en) 1995-01-20 1995-01-20 Separate injection type ozone contact method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7006795A JPH08192176A (en) 1995-01-20 1995-01-20 Separate injection type ozone contact method

Publications (1)

Publication Number Publication Date
JPH08192176A true JPH08192176A (en) 1996-07-30

Family

ID=11648116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7006795A Pending JPH08192176A (en) 1995-01-20 1995-01-20 Separate injection type ozone contact method

Country Status (1)

Country Link
JP (1) JPH08192176A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005046831A (en) * 2003-07-15 2005-02-24 Yaskawa Electric Corp Ozone water treatment system
WO2007091559A1 (en) 2006-02-09 2007-08-16 Kabushiki Kaisha Toshiba Chemical decontamination apparatus and decontamination method therein
KR20160049396A (en) * 2014-10-27 2016-05-09 박현석 Circulation type gas-liquid mixing device
KR102431449B1 (en) * 2021-10-14 2022-08-11 (주)윈텍글로비스 Wastewater treatment apparatus and method of acitvated carbon regeneration tank using superheated steam

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005046831A (en) * 2003-07-15 2005-02-24 Yaskawa Electric Corp Ozone water treatment system
WO2007091559A1 (en) 2006-02-09 2007-08-16 Kabushiki Kaisha Toshiba Chemical decontamination apparatus and decontamination method therein
KR20160049396A (en) * 2014-10-27 2016-05-09 박현석 Circulation type gas-liquid mixing device
KR102431449B1 (en) * 2021-10-14 2022-08-11 (주)윈텍글로비스 Wastewater treatment apparatus and method of acitvated carbon regeneration tank using superheated steam

Similar Documents

Publication Publication Date Title
CN102115253B (en) Novel multi-technology synergetic catalysis advanced micro-bubble ozone oxidation tower
KR101304087B1 (en) Apparatus and method for dissolution of ozone in water and catalytic oxidation
TWI503289B (en) Gas dispersion apparatus for improved gas-liquid mass transfer
KR101292731B1 (en) The gas captured type gas-liquid reactor and the water treatment apparatus, gas purification apparatus using thereof
CN107473435A (en) A kind of catalysed oxidation processes of low concentration bio-refractory industrial organic waste water processing
KR102293552B1 (en) Water treatment apparatus including vessel for advanced oxidation of plug-flow type
JPH08192176A (en) Separate injection type ozone contact method
JP2004174325A (en) Water treatment apparatus and water treatment method
JPH08299971A (en) Separating injection type ozone contact method
JP3526362B2 (en) Downward injection type ozone treatment equipment
JP3731806B2 (en) Organic wastewater treatment method and apparatus
JP4910452B2 (en) Contaminated water treatment method using ozone fine bubbles, and contaminated water treatment apparatus using ozone fine bubbles
JP3522010B2 (en) Pressurized downward injection type multi-stage ozone contact tank
JP2004188240A (en) Water treatment apparatus
JP2016209800A (en) Excess sludge weight loss device
JP2005052689A (en) Membrane washing method and membrane filtration device
HU221784B1 (en) A reactor for the depuration of polluted waste waters
JP3087914B2 (en) Aeration treatment equipment
JPH0938671A (en) Water treatment and water treating device
JPH06206084A (en) Introduction of ozone gas into downstream dissolving type water treating device
KR100931512B1 (en) Ozone Oxidizer for Wastewater Treatment
KR100898810B1 (en) River-water purifying and recycling system for removal of odor and improvement of water quality using multiple gas-liquid contact apparatus
TWI552966B (en) Excess sludge reduction device
JPH07195092A (en) Descending dissolution type ozone reaction chamber
JPH07299476A (en) Descending dissolution type ozone reactor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees