JP3522010B2 - Pressurized downward injection type multi-stage ozone contact tank - Google Patents

Pressurized downward injection type multi-stage ozone contact tank

Info

Publication number
JP3522010B2
JP3522010B2 JP18992095A JP18992095A JP3522010B2 JP 3522010 B2 JP3522010 B2 JP 3522010B2 JP 18992095 A JP18992095 A JP 18992095A JP 18992095 A JP18992095 A JP 18992095A JP 3522010 B2 JP3522010 B2 JP 3522010B2
Authority
JP
Japan
Prior art keywords
ozone
tank
contact tank
stage
treated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18992095A
Other languages
Japanese (ja)
Other versions
JPH0938672A (en
Inventor
弘志 島崎
正一 鮫島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP18992095A priority Critical patent/JP3522010B2/en
Publication of JPH0938672A publication Critical patent/JPH0938672A/en
Application granted granted Critical
Publication of JP3522010B2 publication Critical patent/JP3522010B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は上下水道の処理方法
としてのオゾン処理装置に適用して有用な下方注入式多
段型オゾン接触槽とその制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a downward injection type multi-stage ozone contact tank useful for application to an ozone processing apparatus as a method for treating water and sewage, and a control method therefor.

【0002】[0002]

【従来の技術】近年における都市部での水環境の悪化に
伴って河川とか湖沼の水質汚濁が進んでおり、従来の凝
集沈澱とか砂濾過処理及び塩素処理との組み合わせだけ
では、水道用原水中の色度,臭気の除去作用に限界点が
生じている現状にある。特に我国の水道水として利用さ
れる水源の約70%は、地表水と呼ばれる湖沼水,ダム
水及び河川水に依存しており、これら湖沼水とかダムに
は富栄養化に伴う生物活動が活発化することによるカビ
臭とか藻臭の発生があり、他方の河川水には各種排水に
含まれている有機物とかアンモニア性窒素が流入され、
河川の自然浄化作用によってこれらの流入物を完全に浄
化することは期待できない状況にある。
2. Description of the Related Art In recent years, water pollution in rivers and lakes is advancing along with the deterioration of the water environment in urban areas, and it is only possible to combine conventional coagulation sedimentation, sand filtration and chlorine treatment into raw water for tap water. The present situation is that there are limits to the chromaticity and odor removal effects of. In particular, about 70% of the water source used as tap water in Japan depends on lake water, dam water, and river water called surface water, and these lake water and dams are actively used for biological activities associated with eutrophication. There is a musty odor or algae odor due to liquefaction. On the other hand, the organic water and ammonia nitrogen contained in various effluents flow into the river water,
It cannot be expected that these influents will be completely purified by the natural purification action of the river.

【0003】このような高度経済成長に伴う水源の水質
悪化に対処するため、前塩素処理が一般的に採用されて
いるが、前塩素処理を採用した浄水過程で発生する有機
塩素化合物であるトリハロメタン(THM)が発ガン性
を有していることが知られている。このような水源のカ
ビ臭とか藻臭の消去、及びトリハロメタン等発ガン物質
対策として、浄水の操作工程中にオゾン処理、又は該オ
ゾン処理と活性炭処理との複合処理を導入する高度浄水
システムが検討されている。
[0003] In order to deal with the deterioration of water quality of the water source due to such rapid economic growth, prechlorination is generally adopted, but trihalomethane which is an organic chlorine compound generated in the water purification process adopting prechlorination. It is known that (THM) has carcinogenicity. In order to eliminate mold odors and algae odors from such water sources, and as a countermeasure against carcinogenic substances such as trihalomethane, an advanced water purification system that introduces ozone treatment or a combined treatment of ozone treatment and activated carbon treatment into the treatment process of water purification is considered. Has been done.

【0004】オゾンガスはそれ自身の持つ強力な酸化力
で水中に溶解している溶存性の有害物質を酸化除去する
作用があり、近時は上水のみならず下水処理にも採用さ
れている。しかしオゾン処理は塩素処理に比して約2倍
のコスト増となるため、オゾンガスの処理効果をより一
層高めることが要求され、そのため無数の微細なオゾン
ガスの気泡を作ることによって水とオゾンガスとの接触
効率を上げて、効率良くオゾンガスを水中に溶解吸収さ
せることが必須の要件となっている。
Ozone gas has an action of oxidizing and removing dissolved harmful substances dissolved in water by its own strong oxidizing power, and is recently used not only for clean water but also for sewage treatment. However, since ozone treatment costs about twice as much as chlorine treatment, it is required to further enhance the treatment effect of ozone gas. Therefore, by creating innumerable minute ozone gas bubbles, the ozone treatment of water and ozone gas is increased. It is an essential requirement to improve contact efficiency and efficiently dissolve and absorb ozone gas in water.

【0005】従来からオゾンガスの接触効率及び吸収効
率を上げるための手段として、散気管型オゾン反応槽と
か下方注入式オゾン反応槽(Uチューブ型オゾン反応
槽)が知られている。上記散気管型オゾン反応槽の一例
として、例えば「オゾン利用水処理技術」(宗宮 功,
公害対策技術同好会,1989年5月)には、図6に示
したように上下対向流式のオゾン反応槽の例が開示され
ている。
Conventionally, as a means for increasing the contact efficiency and absorption efficiency of ozone gas, a diffuser type ozone reaction tank or a downward injection type ozone reaction tank (U-tube type ozone reaction tank) has been known. As an example of the air diffuser type ozone reaction tank, for example, “water treatment technology using ozone” (Soumiya Isao,
The Pollution Control Technology Society, May 1989) discloses an example of an up / down counterflow type ozone reactor as shown in FIG.

【0006】即ち、この例ではオゾン反応槽1の内部に
底面から立ち上がる隔壁2,2と、上面から垂下された
隔壁3,3が配設されていて、この隔壁2,3によって
気相部が分離されているとともに液相部が相互に連通さ
れた越流式の複数の反応室が構成されている。
That is, in this example, partition walls 2 and 2 rising from the bottom surface and partition walls 3 and 3 hanging from the top surface are arranged inside the ozone reaction tank 1, and the partition walls 2 and 3 form the gas phase portion. A plurality of overflow type reaction chambers that are separated and have liquid phase portions communicating with each other are configured.

【0007】そして各室の内方底面近傍に数十μmの微
細孔を持つセラミック等の散気管4.4が配置されてい
て、図外のオゾン発生装置から得られるオゾンガスが該
散気管4.4に送り込まれ、流入口5から流入する被処
理水とオゾンガスとが矢印A,Aに示すように対向流と
して接触することによって該オゾンガスの接触効率が高
められ、オゾン処理水10として流出する。
An air diffuser 4.4 made of ceramic or the like having fine holes of several tens of μm is arranged near the inner bottom surface of each chamber, and ozone gas obtained from an ozone generator (not shown) is supplied to the air diffuser 4. When the water to be treated and the ozone gas, which have been fed into the inlet 4 and come into contact with the ozone gas, come into contact with each other as a counter flow as shown by arrows A and A, the contact efficiency of the ozone gas is increased and the ozone treated water 10 flows out.

【0008】他方の下方注入式オゾン反応槽(Uチュー
ブ型オゾン反応槽)は別名インジェクター型オゾン接触
槽とも呼称され、図7に示したように縦長のオゾン反応
槽1の内方に内管6が配置されていて、オゾン発生装置
7で得られるオゾンガスがガス放出管8を介して内管6
の上部から送り込まれる。そしてオゾンガス反応槽1の
側方の流入口5から流入する被処理水とオゾンガスとが
内管6内で下降流として継続的に接触して所望のオゾン
処理が行われ、そのまま内管6の外壁面に沿って上昇し
てオゾン反応槽1の上方部からオゾン処理水10として
流出する。未反応のオゾンガスは排オゾン処理装置9に
送り込まれて清浄化処理される。
On the other hand, the lower injection type ozone reaction tank (U-tube type ozone reaction tank) is also called as an injector type ozone contact tank, and as shown in FIG. And the ozone gas obtained by the ozone generator 7 is supplied to the inner pipe 6 through the gas discharge pipe 8.
Sent from the top of the. Then, the water to be treated and the ozone gas flowing in from the inlet 5 on the side of the ozone gas reaction tank 1 are continuously brought into contact with each other in the inner pipe 6 as a downward flow to carry out a desired ozone treatment, and the outside of the inner pipe 6 is kept as it is. It rises along the wall surface and flows out as ozone-treated water 10 from the upper part of the ozone reaction tank 1. The unreacted ozone gas is sent to the exhaust ozone treatment device 9 and cleaned.

【0009】上記オゾン反応槽1の縦方向の長さは20
〜30メートルと可成長くなっていて、これによって内
管6内の水圧が2.0〜2.5(kgf/cm2)のレ
ベルに保持される。
The ozone reactor 1 has a length of 20 in the vertical direction.
It grows up to -30 meters, which keeps the water pressure in the inner tube 6 at a level of 2.0 to 2.5 (kgf / cm 2 ).

【0010】このUチューブ型オゾン反応槽は、内管6
で発生する乱流によってオゾンガスと被処理水との気液
接触効果が高められ、オゾンガスが内管6内を流下する
につれて増大する水圧によって該オゾンガスの水中への
溶解が促進されるので、散気管方式に較べてオゾン溶解
効率で5〜10%向上しており、オゾンガスと被処理水
との接触時間を約5倍以上取ることができるとともに反
応槽内での滞留時間は1/5以下に短縮することができ
るという特徴を有している。又、オゾン反応槽が縦長で
あるため、オゾン処理施設の設置スペースが散気管方式
の1/5ですむという利点を有している。
This U-tube type ozone reactor has an inner tube 6
The gas-liquid contact effect between the ozone gas and the water to be treated is enhanced by the turbulent flow generated in the above, and the water pressure that increases as the ozone gas flows down in the inner pipe 6 promotes the dissolution of the ozone gas in water. The ozone dissolution efficiency is improved by 5 to 10% compared to the system, and the contact time between ozone gas and water to be treated can be increased about 5 times or more and the residence time in the reaction tank is shortened to 1/5 or less. It has the feature that it can be done. Further, since the ozone reaction tank is vertically long, it has an advantage that the installation space of the ozone treatment facility can be 1/5 of that of the diffuser tube system.

【0011】かかるオゾン反応槽を用いることにより、
塩素よりもはるかに酸化力の強力なオゾンガスによって
被処理水の異臭味とか色度除去、有害物質の酸化除去が
行われる(上記Uチューブ型オゾン処理装置に関して
は、第2回日本オゾン協会年次研究講演会講演集の第7
6頁〜第77頁,鳥山ら「Uチューブ型オゾン接触槽の
有機物除去特性」を参照)。
By using such an ozone reaction tank,
Ozone gas, which has a much stronger oxidizing power than chlorine, removes the off-flavor and chromaticity of the water to be treated and oxidizes and removes harmful substances. Research Lecture Lecture No. 7
6 to 77, Toriyama et al., "Organic matter removal characteristics of U-tube type ozone contact tank").

【0012】他方でオゾンの酸化力を高めるという目的
で「促進酸化処理法」(AOPと略称)が考えられてい
る。このAOPを大別すると、O3/H22(過酸化水
素)処理とO3+UV(紫外線照射)等の併用処理があ
り、これら併用処理の特徴は処理時間の短縮とか処理装
置の小型化を可能とした点にあり、特にO3/H22
理は欧米で実用化されている。
On the other hand, the "accelerated oxidation treatment method" (abbreviated as AOP) has been considered for the purpose of increasing the oxidizing power of ozone. This AOP is roughly classified into O 3 / H 2 O 2 (hydrogen peroxide) treatment and O 3 + UV (ultraviolet irradiation) combined treatment. These combined treatments are characterized by shortening the treatment time and reducing the size of the treatment equipment. In particular, the O 3 / H 2 O 2 treatment has been put to practical use in Europe and the United States.

【0013】上記の併用処理はいずれもオゾンからOH
ラジカルを生成することで酸化を促進する方法(間接反
応)であるが、有機物質群の中ではOHラジカルよりオ
ゾンとの直接反応(境膜反応)の方が反応性に富む有機
物質群があるとされている(例えばフルボ酸)。従って
オゾンとの併用処理を適用する場合は明確な直接反応を
利用するのか、あるいはOHラジカル生成に伴う間接反
応を利用するのかを意識して処理過程を設定する必要が
ある。
All of the above-mentioned combined treatments use ozone to OH.
Although it is a method of promoting oxidation by generating radicals (indirect reaction), there is a group of organic substances that is more reactive in direct reaction with ozone (film reaction) than in OH radicals. (For example, fulvic acid). Therefore, when the combined treatment with ozone is applied, it is necessary to set the treatment process in consideration of whether a clear direct reaction is used or an indirect reaction accompanied by OH radical generation is used.

【0014】[0014]

【発明が解決しようとする課題】しかしながら上記した
高度浄水システム等に採用されるオゾン反応槽は、被処
理水に対するオゾンガスの吸収効率を上げるための装置
が確立されていないため、経時的な吸収効率低下現象が
発生する惧れがある外、装置の大型化等に起因するコス
トアップを招来してしまうという課題がある。
However, in the ozone reaction tank used in the above-mentioned advanced water purification system and the like, a device for increasing the absorption efficiency of ozone gas with respect to the water to be treated has not been established. There is a possibility that the phenomenon of deterioration may occur, and there is a problem that the cost increases due to the increase in size of the device.

【0015】例えば図6に示した散気管型オゾン反応槽
は、処理が進むにつれて散気管4の表面にオゾンガスに
よって酸化された鉄とかマンガンが付着して、散気管4
の目詰まりに起因する経時的なオゾン吸収効率低下現象
を引き起こす惧れがあり、これに対処して散気管自体の
交換が必要になるという問題がある。更にオゾンガスに
よる反応時間を充分に取るためには、反応槽を大型化し
なければならないので、設備費等に要するコストアップ
を招来するとともに、装置を設置するための大きな敷地
面積を要することになり、都市部における浄水場のよう
に用地確保が困難な地区での採用が難しい。
For example, in the air diffusion tube type ozone reaction tank shown in FIG. 6, iron or manganese oxidized by ozone gas adheres to the surface of the air diffusion tube 4 as the treatment progresses, and the air diffusion tube 4
There is a risk of causing a decrease in ozone absorption efficiency over time due to the clogging of the gas, and there is a problem that it is necessary to replace the air diffusing tube itself in response to this phenomenon. Furthermore, in order to obtain a sufficient reaction time with ozone gas, the reaction tank must be enlarged, which leads to an increase in the cost required for equipment and the like, and a large site area for installing the device is required. It is difficult to use in areas where it is difficult to secure land such as water purification plants in urban areas.

【0016】他方の図7に示したUチューブ型オゾン反
応槽は、散気管型オゾン反応槽に比較してオゾン溶解効
率で5〜10%程度向上しており、且つオゾンガスと被
処理水との接触時間も5倍以上長く取ることができると
ともに反応槽内での滞留時間は1/5以下に短縮するこ
とができるという利点があるが、前記したようにオゾン
反応槽の水深が20〜30メートルと可成長くなってい
るので、散気管方式よりも施設の建設工事が複雑になる
という問題があり、更に反応槽内に貯留される堆積物の
除去とか槽内の清掃が簡便に行えない上、反応槽の底部
近傍で何等かの障害が発生しても直ちに処置することが
できないという難点を有している。
On the other hand, the U-tube type ozone reaction tank shown in FIG. 7 has an ozone dissolution efficiency improved by about 5 to 10% as compared with a diffuser tube type ozone reaction tank, and the ozone gas and the water to be treated are The contact time can be made longer than 5 times, and the residence time in the reaction tank can be shortened to 1/5 or less, but as described above, the water depth of the ozone reaction tank is 20 to 30 meters. Since it is growing rapidly, there is a problem that the construction work of the facility becomes more complicated than that of the air diffuser method, and further, the removal of the deposits stored in the reaction tank and the cleaning of the inside of the tank cannot be performed easily. However, even if some trouble occurs in the vicinity of the bottom of the reaction tank, it cannot be immediately treated.

【0017】ここで別の観点からオゾンの反応過程を考
察してみると、このオゾン反応過程はオゾンの拡散が律
速する初期段階と、オゾン反応が律速する後期段階とに
大別することができる。従って気液反応接触槽もこれら
の特性を踏まえた装置であることが理想的であり、例え
ばオゾン反応の初期時には拡散効率を高めるための大き
な接触面積と強力な撹拌機構を備え、オゾン反応の後期
時には十分な反応を得るための滞留時間が確保される装
置であることが望ましい。
Considering the ozone reaction process from another point of view, the ozone reaction process can be roughly classified into an initial stage in which the diffusion of ozone is rate-controlled and a later stage in which the ozone reaction is rate-controlled. . Therefore, the gas-liquid reaction contact tank should ideally be a device that takes these characteristics into consideration. For example, at the beginning of the ozone reaction, a large contact area and a strong stirring mechanism to increase the diffusion efficiency are provided, and the latter stage of the ozone reaction It is sometimes desirable to have a device that ensures a residence time for obtaining a sufficient reaction.

【0018】前記2種類のオゾン反応槽に当てはめて考
慮すると、初期時にはUチューブ型オゾン反応槽のよう
なインジェクション型オゾン反応槽が適しており、後期
時には散気管型オゾン反応槽が適している。
When applied to the above-mentioned two types of ozone reaction tanks, an injection type ozone reaction tank such as a U-tube type ozone reaction tank is suitable in the initial stage, and a diffusing tube type ozone reaction tank is suitable in the latter period.

【0019】一方、前記「促進酸化処理法」中のO3
22処理を上水に適用する場合には、O3/H22
注入制御が複雑化するとともに飲料水中の過酸化水素濃
度に関する水質基準の確立が必要であり、特に重炭酸イ
オンの影響(ラジカルスカベンジャー)を受けやすいと
いう問題がある。他方のO3+UV処理は浄水規模に対
応したUV照射器が必要であり、かなりコスト高になっ
てしまうという難点がある。
On the other hand, O 3 / in the above-mentioned "promoted oxidation treatment method"
When H 2 O 2 treatment is applied to tap water, the control of O 3 / H 2 O 2 ratio injection becomes complicated, and it is necessary to establish a water quality standard for hydrogen peroxide concentration in drinking water. There is a problem that it is easily affected by ions (radical scavenger). On the other hand, the O 3 + UV treatment requires a UV irradiator corresponding to the scale of purified water, and has a drawback that the cost becomes considerably high.

【0020】そこで本発明は上記に鑑みてなされたもの
であり、装置の大型化を伴わずに被処理水に対するオゾ
ンガスの吸収効率を高めてコストの低廉化がはかれる
上、上記「促進酸化処理法」の併用に伴って難分解性有
機物の分解性を高めることができる加圧型下方注入式多
段型オゾン接触槽を提供することを目的とするものであ
る。
Therefore, the present invention has been made in view of the above, and the efficiency of absorbing ozone gas with respect to the water to be treated can be increased without increasing the size of the apparatus to reduce the cost. It is an object of the present invention to provide a pressure type downward injection type multi-stage ozone contact tank capable of enhancing the decomposability of hardly decomposable organic substances with the combined use of “.

【0021】[0021]

【課題を解決するための手段】本発明は上記の目的を達
成するために、請求項1により、多段オゾン接触槽と反
応槽とを並置し、上記多段オゾン接触槽に挿通された流
入管に対する被処理水の流入口に、該流入管の管径を部
分的に小径に絞ったオゾンガスインジェクター部が形成
されているとともに、このオゾンガスインジェクター部
に臨んで上方からオゾンガスの注入ノズルが配置された
キャピラリー散気部を設け、該流入管の先端開口部を多
段オゾン接触槽内の最下段に位置する接触槽の底壁に対
向する位置にまで導入し、この底壁近傍に位置する流入
管の管径を部分的に小径に絞った急縮部を設け、該急縮
部の上方近傍に位置する流入管の側方から過酸化水素の
供給管を挿通し、多段オゾン接触槽を通過したオゾン処
理水を並置された反応槽に流入させて有機物を除去した
オゾン処理水を得るようにした加圧型下方注入式多段オ
ゾン接触槽を提供する。
In order to achieve the above object, the present invention provides a multi-stage ozone contact tank and a reaction tank juxtaposed to each other according to claim 1, and an inflow pipe inserted into the multi-stage ozone contact tank. A capillary having an ozone gas injector part in which the diameter of the inflow pipe is partially reduced to a small diameter is formed at the inlet of the water to be treated, and an ozone gas injection nozzle is arranged from above to face the ozone gas injector part. An air diffuser is provided, and the tip opening of the inflow pipe is introduced to a position facing the bottom wall of the contact tank located at the lowermost stage in the multi-stage ozone contact tank, and the pipe of the inflow pipe located near this bottom wall is introduced. Ozone treatment with a multi-stage ozone contact tank through a hydrogen peroxide supply pipe from the side of an inflow pipe located near the upper part of the sharp reduction part Water juxtaposed Providing flowed into 応槽 which was to obtain the ozonated water to remove organics pressure type lower injection multistage ozone contact tank.

【0022】請求項2により、上記反応槽の内方に紫外
線照射ランプを配置して、多段オゾン接触槽を通過した
オゾン処理水を並置された反応槽に流入させて紫外線照
射によって水中に溶解しているオゾンから過酸化水素を
生成して有機物を除去するようにしてあり、請求項3に
より、上記反応槽の内方に触媒接触管を収納配置して、
多段オゾン接触槽を通過したオゾン処理水を並置された
反応槽に流入させて触媒接触管と接触する過程で酸化反
応を促進するようにしている。
According to the second aspect, an ultraviolet irradiation lamp is arranged inside the reaction tank, and the ozone-treated water that has passed through the multi-stage ozone contact tank is introduced into the juxtaposed reaction tanks and dissolved in the water by ultraviolet irradiation. Hydrogen peroxide is generated from ozone which is present to remove organic substances. According to claim 3, a catalyst contact tube is housed inside the reaction vessel,
Ozone-treated water that has passed through the multi-stage ozone contact tank is made to flow into a juxtaposed reaction tank to promote the oxidation reaction in the process of contacting the catalyst contact tube.

【0023】更に請求項4により、上記反応槽の内方に
紫外線照射ランプと触媒接触管とを配置して、多段オゾ
ン接触槽を通過したオゾン処理水を並置された反応槽に
流入させて紫外線照射によって水中に溶解しているオゾ
ンから過酸化水素を生成するとともに触媒接触管と接触
する過程で酸化反応を促進するようにした加圧型下方注
入式多段オゾン接触槽の構成にしてある。
Further, according to claim 4, an ultraviolet irradiation lamp and a catalyst contact tube are arranged inside the reaction tank, and the ozone-treated water which has passed through the multi-stage ozone contact tank is caused to flow into the juxtaposed reaction tanks to emit ultraviolet light. A pressurized downward injection type multi-stage ozone contact tank is configured to generate hydrogen peroxide from ozone dissolved in water by irradiation and to accelerate an oxidation reaction in the process of contacting with a catalyst contact tube.

【0024】かかる請求項1記載の下方注入式多段型オ
ゾン接触槽によれば、オゾン処理すべき被処理水が流入
管の中途部に設けられたキャピラリー散気部のオゾンガ
スインジェクター部で注入されたオゾンガスとが効率良
く混合されて高溶存オゾン水となり、溶存オゾンと過酸
化水素とが反応してOHラジカルを生成してから流入管
の先端開口部から多段オゾン接触槽の底壁に当たり、乱
流状態となってオゾンガスと被処理水との接触効率が高
められる。そして被処理水は並置された反応槽内に送り
込まれ、所定の滞留時間を経た後にオゾン処理水として
流出する。
According to the lower injection type multi-stage ozone contact tank according to the first aspect, the water to be treated is injected by the ozone gas injector section of the capillary diffuser provided in the middle of the inflow pipe. Ozone gas is efficiently mixed to form highly dissolved ozone water, and dissolved ozone and hydrogen peroxide react with each other to generate OH radicals, and then hit the bottom wall of the multi-stage ozone contact tank from the tip opening of the inflow pipe, causing turbulent flow. As a result, the contact efficiency between the ozone gas and the water to be treated is increased. Then, the water to be treated is fed into the juxtaposed reaction tanks and, after a predetermined residence time, flows out as ozone treated water.

【0025】請求項2記載のオゾン接触槽によれば、上
記の作用に加えて反応槽内での紫外線照射によって水中
に溶解しているオゾンから過酸化水素が生成して溶存オ
ゾンと反応してOHラジカルを生成してからオゾン処理
が進行する。更に請求項3記載のオゾン接触槽によれ
ば、多段オゾン接触槽を通過したオゾン処理水が反応槽
内で触媒接触管と接触する過程で酸化反応が促進され
る。
According to the ozone contact tank of the second aspect, in addition to the above action, hydrogen peroxide is generated from ozone dissolved in water by the irradiation of ultraviolet rays in the reaction tank and reacts with dissolved ozone. Ozone treatment proceeds after OH radicals are generated. Further, according to the ozone contact tank of the third aspect, the oxidation reaction is promoted in the process in which the ozone-treated water that has passed through the multi-stage ozone contact tank comes into contact with the catalyst contact tube in the reaction tank.

【0026】請求項4記載のオゾン接触槽によれば、多
段オゾン接触槽を通過したオゾン処理水が反応槽内での
紫外線照射によって水中に溶解しているオゾンから過酸
化水素が生成し、溶存オゾンと反応してOHラジカルを
生成するとともに、触媒接触管と接触する過程で酸化反
応が促進される。従ってオゾン接触による後期時の反応
が高められ、反応性の低い物質の除去効果が向上すると
ともに被処理水の酸化反応が促進されて難分解性物質が
分解されるという作用が得られる。
According to the ozone contact tank of claim 4, the ozone-treated water that has passed through the multi-stage ozone contact tank produces hydrogen peroxide from ozone dissolved in the water due to ultraviolet irradiation in the reaction tank, and is dissolved. While reacting with ozone to generate OH radicals, the oxidation reaction is promoted in the process of contacting with the catalyst contact tube. Therefore, the reaction in the latter stage due to ozone contact is enhanced, the effect of removing the substance having low reactivity is improved, and the oxidation reaction of the water to be treated is promoted to decompose the hardly decomposable substance.

【0027】[0027]

【発明の実施の形態】以下図面に基づいて本発明にかか
る加圧型下方注入式多段オゾン接触槽の各種実施例を説
明する。図1,図2は本発明の第1実施例を示す概略図
であって、図中の11はUチューブ式多段オゾン接触
槽、12はこの多段オゾン接触槽11と並置された反応
槽である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Various embodiments of a pressure type downward injection type multi-stage ozone contact tank according to the present invention will be described below with reference to the drawings. 1 and 2 are schematic views showing a first embodiment of the present invention, in which 11 is a U-tube type multi-stage ozone contact tank, and 12 is a reaction tank juxtaposed with the multi-stage ozone contact tank 11. .

【0028】上記多段オゾン接触槽11は、最下段から
上段に向けて複数段に分割されて被処理水が流通可能な
ブロック型の接触槽11a,11b,11c,11dの
重合体で構成されており、最上段の接触槽11dに配備
された処理水タンク13から流出するオゾン処理水10
が反応槽12側へ流入する。14,14は排オゾンガス
の排出管である。
The multi-stage ozone contact tank 11 is composed of a polymer of block-type contact tanks 11a, 11b, 11c and 11d which are divided into a plurality of stages from the bottom to the top and through which water to be treated can flow. And the ozone-treated water 10 flowing out from the treated water tank 13 provided in the uppermost contact tank 11d.
Flows into the reaction tank 12 side. Reference numerals 14 and 14 denote exhaust ozone gas exhaust pipes.

【0029】図2に示したように各単位毎に分割された
ブロック型接触槽11a,11b,11c,11dの側
部には、最下方から夫々サンプリングポート15a,1
5b,15c,15d,15e,15f,15gが配備
されている。16は多段型オゾン接触槽11に送り込ま
れる被処理水17の流入管であり、この流入管16に対
する被処理水17の流入口にはキャピラリー散気部18
が設けられており、該流入管16の先端部は多段オゾン
接触槽11内の最下段に位置する接触槽11aの底壁に
対向する近傍位置にまで導入されていて、この底壁近傍
部位に急縮部19が設けられている。30は図外のオゾ
ン発生装置で得られたオゾンガスを示している。
As shown in FIG. 2, the sampling ports 15a, 1 are respectively provided from the bottom to the side of the block type contact tanks 11a, 11b, 11c, 11d divided into units.
5b, 15c, 15d, 15e, 15f and 15g are provided. Reference numeral 16 is an inflow pipe for the water to be treated 17 fed into the multi-stage ozone contact tank 11, and a capillary air diffuser 18 is provided at the inlet of the water for treatment 17 to the inflow pipe 16.
Is provided, and the tip end portion of the inflow pipe 16 is introduced to a position near the bottom wall of the contact tank 11a located at the lowermost stage in the multi-stage ozone contact tank 11 and located near this bottom wall. A sharp reduction section 19 is provided. Reference numeral 30 denotes ozone gas obtained by an ozone generator (not shown).

【0030】上記キャピラリー散気部18は、図2中に
拡大して示したように被処理水の流入管16の管径を部
分的に小径に絞ったオリフィスによりオゾンガスインジ
ェクター部20が形成されていて、このオゾンガスイン
ジェクター部20に臨んで上方からオゾンガスの注入ノ
ズル21が配置されており、この注入ノズル21に前記
オゾンガス30が送り込まれる。
As shown in the enlarged view of FIG. 2, the capillary air diffuser 18 has an ozone gas injector 20 formed by an orifice in which the diameter of the inflow pipe 16 of the water to be treated is partially reduced. An ozone gas injection nozzle 21 is arranged from above to face the ozone gas injector unit 20, and the ozone gas 30 is fed into the injection nozzle 21.

【0031】このキャピラリー散気部18はステンレス
製の管が用いられ、オリフィスを構成するための管径の
縮小比は実験的に求められる。
A tube made of stainless steel is used for the capillary air diffuser 18, and the reduction ratio of the tube diameter for forming the orifice is experimentally obtained.

【0032】他方の急縮部19は、図2中に拡大して示
したように流入管16の管径を部分的に小径に絞ったオ
リフィスにより縮小部22が形成され、この縮小部22
の上方近傍に位置する流入管16の側方から過酸化水素
の供給管23が挿通されている。尚、図1に示した24
は過酸化水素の流入をコントロールする開閉弁、24a
は同流量計である。
As shown in the enlarged view of FIG. 2, the other rapid contraction portion 19 has a contraction portion 22 formed by an orifice in which the diameter of the inflow pipe 16 is partially reduced to a small diameter.
A hydrogen peroxide supply pipe 23 is inserted from the side of the inflow pipe 16 located in the vicinity of and above. In addition, 24 shown in FIG.
Is an on-off valve that controls the inflow of hydrogen peroxide, 24a
Is the same flow meter.

【0033】上記Uチューブ式多段オゾン接触槽11の
縦方向の長さは約5〜6メートルであり、従来のUチュ
ーブ型オゾン反応槽の同部分の長さである20〜30メ
ートルという長さが大幅に短縮されていて、謂わば通常
の散気管型オゾン反応槽の水深レベルと略同等であるこ
とが本実施例の構造上の特徴ともなっている。
The length of the U-tube type multi-stage ozone contact tank 11 in the vertical direction is about 5 to 6 meters, and the length of the same portion of the conventional U-tube type ozone reaction tank is 20 to 30 meters. Is substantially shortened, which is a structural feature of the present embodiment in that it is substantially equivalent to the water depth level of a normal diffuser type ozone reaction tank.

【0034】かかる第1実施例における加圧型下方注入
式多段オゾン接触槽11の運転時の操作と動作原理を以
下に説明する。先ず基本的な操作としてオゾン処理すべ
き被処理水17を図外のポンプを用いてキャピラリー散
気部18の側部から送り込み、同時にオゾン発生装置を
起動することによって発生したオゾンガス30を注入ノ
ズル21に供給する。すると図2のキャピラリー散気部
18における被処理水17の流速はオゾンガスインジェ
クター部20で高められるとともに圧力は低下する。同
時に注入ノズル21からオゾンガスインジェクター部2
0に注入されたオゾンガスと被処理水17とが効率良く
混合されて高溶存オゾン水となり、気液が接触しながら
流下して急縮部19に到達する。
The operation and operating principle of the pressurized lower injection type multi-stage ozone contact tank 11 in the first embodiment will be described below. First, as a basic operation, the water to be treated 17 to be subjected to ozone treatment is fed from the side of the capillary diffuser 18 using a pump (not shown), and at the same time, the ozone gas 30 generated by activating the ozone generator is injected into the injection nozzle 21. Supply to. Then, the flow velocity of the water to be treated 17 in the capillary air diffuser 18 in FIG. 2 is increased by the ozone gas injector 20 and the pressure is decreased. At the same time, from the injection nozzle 21 to the ozone gas injector 2
The ozone gas injected to 0 and the water to be treated 17 are efficiently mixed to become highly dissolved ozone water, which flows down while contacting gas and liquid and reaches the rapid contraction portion 19.

【0035】この急縮部19内の縮小部22の上方側方
の供給管23から所定流量の過酸化水素(H22)が送
り込まれ、溶存オゾンと過酸化水素とが反応して促進的
にOHラジカルを生成する。又、被処理水17の流速は
縮小部22で高められて流入管16の先端開口部から最
下段の接触槽11aに下降流として送り込まれ、この接
触槽11aの底壁に当たって乱流状態となってから流入
管16の外壁に沿って上昇する。前記OHラジカルは主
として上向流部で生成される。
A predetermined flow rate of hydrogen peroxide (H 2 O 2 ) is fed from a supply pipe 23 above the contraction section 22 in the rapid contraction section 19, and the dissolved ozone and hydrogen peroxide react with each other to promote the reaction. To generate OH radicals. Further, the flow velocity of the water to be treated 17 is increased by the reducing portion 22 and is sent as a descending flow from the tip opening of the inflow pipe 16 to the lowermost contact tank 11a, and hits the bottom wall of the contact tank 11a to be in a turbulent state. And then rises along the outer wall of the inflow pipe 16. The OH radicals are mainly generated in the upflow section.

【0036】上記の動作時に、ポンプで送り込まれる被
処理水17の流速と圧力は、両方とも高い方が望まし
い。その理由はオゾンガス接触後のオゾンの水中への移
動を容易にするためと、キャピラリー散気部18のオリ
フィス部分で発生する圧力損失を補うためである。
During the above operation, it is desirable that both the flow velocity and the pressure of the treated water 17 pumped in are high. The reason is to facilitate the transfer of ozone into water after contact with ozone gas and to supplement the pressure loss generated at the orifice portion of the capillary air diffuser 18.

【0037】このようにしてオゾンガスが混合された被
処理水17は、多段オゾン接触槽11を構成するブロッ
ク単位の各接触槽11a,11b,11c,11dの最
下段から上段に向けて流れ、最上段のブロック型接触槽
11dに配備された処理水タンク13からオゾン処理水
10として流出して反応槽12に流れ込み、この反応槽
12内で所定の滞留時間を経た後に下方から処理水10
aとして流出し、図外のオゾン処理水槽に一時的に貯留
されて次段の工程に備える。
The water to be treated 17 mixed with the ozone gas in this manner flows from the lowermost stage to the upper stage of the contact tanks 11a, 11b, 11c, 11d in block units which constitute the multistage ozone contacting tank 11, The treated water tank 13 provided in the upper block type contact tank 11d flows out as ozone-treated water 10 and flows into the reaction tank 12, and after a predetermined residence time in the reaction tank 12, the treated water 10 is supplied from below.
It flows out as a and is temporarily stored in an ozone-treated water tank (not shown) to prepare for the next step.

【0038】又、未反応のオゾンガスは排出管14,1
4から図外の排オゾン処理装置に送り込まれ、周知の熱
分解,触媒を用いた分解,土壌分解,薬液洗浄処理又は
活性炭処理によって無害なガスに分解されて大気中に放
出される。即ち、オゾンガスはフッ素につぐ強力な酸化
力を有していて人体にも有害な物質であるため、排オゾ
ン処理装置での分解処理が不可欠である。
The unreacted ozone gas is discharged from the exhaust pipes 14 and 1.
4 is sent to an exhaust ozone treatment device (not shown), decomposed into harmless gas by known thermal decomposition, decomposition using a catalyst, soil decomposition, chemical solution cleaning treatment or activated carbon treatment and is released into the atmosphere. That is, since ozone gas has a strong oxidizing power similar to that of fluorine and is harmful to the human body, it is indispensable to decompose the ozone gas with an exhaust ozone treatment device.

【0039】このようなオゾンガスと被処理水との接触
により、脱臭,脱色,鉄マンガン,多環状化合物とか有
機物の酸化除去及び殺菌,殺藻及び異臭味の除去が行わ
れる。 本実施例の多段オゾン接触槽11は、最下段か
ら上段に向けて複数段に分割されたブロック型接触槽1
1a,11b,11c,11dの重合体で構成されてい
るため、必要に応じて単位槽としてのブロック型接触槽
の追加とか削減が自在である。例えばオゾンガス30と
被処理水17の接触時間を長く取りたい場合には、同様
な他のブロック型接触槽を追加重合することによってオ
ゾン接触槽としての全体的な水深を大きくすることが可
能であり、更に運転中に接触槽の一部に不具合が生じた
場合には、その接触槽のみをブロック単位に削減すると
か交換する等の処置を取ればよく、ブロック型接触槽全
体を交換しなくても済むという利点がある。
By contacting such ozone gas with the water to be treated, deodorization, decolorization, oxidation and sterilization of ferro-manganese, polycyclic compounds and organic substances such as algae and off-flavors are carried out. The multi-stage ozone contact tank 11 of this embodiment is a block-type contact tank 1 divided into a plurality of stages from the bottom to the top.
Since it is composed of the polymer of 1a, 11b, 11c, 11d, it is possible to add or reduce a block type contact tank as a unit tank as needed. For example, when it is desired to take a long contact time between the ozone gas 30 and the water to be treated 17, it is possible to increase the overall water depth as an ozone contact tank by additionally polymerizing another similar block type contact tank. In addition, if a problem occurs in a part of the contact tank during operation, it is sufficient to take measures such as reducing the contact tank to a block unit or replacing it, without replacing the entire block contact tank. There is an advantage that it can be done.

【0040】又、上記の各単位に分割されたブロック型
接触槽11a,11b,11c,11dの側部に夫々サ
ンプリングポート15a,15b,15c,15d,1
5e,15f,15gが配備されているので、任意のサ
ンプリングポートの開閉制御を実施することによって被
処理水17を流出させることが可能であり、オゾンガス
との接触時間を容易に変更することが可能である。
Further, sampling ports 15a, 15b, 15c, 15d, 1 are provided on the sides of the block type contact tanks 11a, 11b, 11c, 11d divided into the above-mentioned units, respectively.
Since 5e, 15f, and 15g are provided, the water to be treated 17 can be made to flow out by performing opening / closing control of any sampling port, and the contact time with ozone gas can be easily changed. Is.

【0041】上記の動作説明において、被処理水17中
に含まれる反応性の高いフミン酸等の有機物の除去は下
方注入方式に基づいて行うことによって溶存オゾンの拡
散が律速する初期段階の反応過程で促進され、反応性の
低いマンガンとか多環状化合物等の除去はOHラジカル
反応が律速する後期段階でのオゾン反応で促進される。
このように第1実施例における加圧型下方注入式多段オ
ゾン接触槽11は、有機物の反応性の高低を考慮した接
触槽であることが特徴となっている。
In the above description of the operation, the removal of the highly reactive organic substances such as humic acid contained in the water 17 to be treated is carried out based on the downward injection method, whereby the diffusion process of the dissolved ozone is rate-determined in the initial stage reaction process. The removal of low-reactivity manganese, polycyclic compounds, etc. is promoted by the ozone reaction in the latter stage where the OH radical reaction is rate limiting.
As described above, the pressurizing downward injection type multi-stage ozone contact tank 11 in the first embodiment is characterized in that it is a contact tank in consideration of the reactivity of organic substances.

【0042】次に図3に基づいて本発明の第2実施例を
説明する。本第2実施例ではオゾン反応が律速する後期
段階での反応過程を促進して酸化処理することを主眼と
した加圧型下方注入式多段型オゾン接触槽の例であり、
基本的構成は図1に示した前記第1実施例は同一である
ため、同一の符号を付して表示してある。
Next, a second embodiment of the present invention will be described with reference to FIG. The second embodiment is an example of a pressure-type downward injection type multi-stage ozone contact tank whose main purpose is to accelerate the reaction process in the latter stage where the ozone reaction is rate-controlling and perform the oxidation treatment.
Since the basic configuration is the same as that of the first embodiment shown in FIG. 1, the same reference numerals are given and displayed.

【0043】前記したように反応性の低い物質の除去
は、オゾン反応が律速する後期段階での反応過程を促進
することが要求される。そこで第2実施例では前記第1
実施例における反応槽12の内方に紫外線照射ランプ2
5,25(図面ではUVランプと表示)を配置して、外
部に設置した低圧水銀ランプ電源26から紫外線照射ラ
ンプ25,25に電源電圧を印加する。
As described above, the removal of the substance having low reactivity is required to promote the reaction process in the latter stage where the ozone reaction is rate-determining. Therefore, in the second embodiment, the first
An ultraviolet irradiation lamp 2 is provided inside the reaction tank 12 in the embodiment.
5, 25 (indicated as UV lamp in the drawing) are arranged, and a power supply voltage is applied to the ultraviolet irradiation lamps 25, 25 from a low pressure mercury lamp power supply 26 installed outside.

【0044】かかる第2実施例によれば、オゾン処理す
べき被処理水17が第1実施例で説明したようにオゾン
ガスとともにキャピラリー散気部18に供給され、オゾ
ンガスインジェクター部20に注入されたオゾンガスと
とともに混合されて高溶存オゾン水となって下降し、多
段オゾン接触槽11内で反応性の高いフミン酸等の除去
が行われた後に反応槽12に下降流として流入し、紫外
線照射によって水中に溶解しているオゾンから過酸化水
素(H22)が生成し、この過酸化水素から更に紫外線
によってOHラジカルを生成する。従って前記したO3
/H22処理と略同じ反応過程をとって有機物の除去効
率が高められる。
According to the second embodiment, the treated water 17 to be subjected to ozone treatment is supplied to the capillary diffuser 18 together with the ozone gas as described in the first embodiment, and the ozone gas injected into the ozone gas injector 20 is injected. It is mixed with and descends into highly dissolved ozone water, and after the highly reactive humic acid and the like are removed in the multi-stage ozone contact tank 11, it flows into the reaction tank 12 as a descending flow and is irradiated with ultraviolet light to generate water. Hydrogen peroxide (H 2 O 2 ) is generated from ozone dissolved in the hydrogen peroxide, and OH radicals are further generated from this hydrogen peroxide by ultraviolet rays. Therefore, the above-mentioned O 3
The removal efficiency of organic substances is enhanced by taking the same reaction process as that of the / H 2 O 2 treatment.

【0045】次に図4に基づいて本発明の第3実施例を
説明する。この第3実施例では前記第1実施例における
反応槽12の内方に酸化チタン(TiO2)で成る触媒
接触管27を収納配置した例であり、その他の構成は図
3に示した第2実施例と同一である。
Next, a third embodiment of the present invention will be described with reference to FIG. The third embodiment is an example in which the catalyst contact tube 27 made of titanium oxide (TiO 2 ) is housed and arranged inside the reaction tank 12 in the first embodiment, and the other construction is the same as the second embodiment shown in FIG. Same as the embodiment.

【0046】上記触媒接触管27は、型を用いて成形さ
れたメッシュ状の管で構成され、反応槽12の形状に合
わせて単一の管体もしくはブロック形状の管体の集合体
として構成する例とがある。酸化チタン触媒による促進
酸化反応は、前記により説明したO3/H22とO3+U
V(紫外線照射)処理とは異なった酸化反応過程をと
り、反応メカニズムは触媒における物質吸着と触媒の表
面における酸化とから成るとの報告がある(Paillard,H
ら、“Prospects Concerning Applications of Catalyt
ic Ozonation in Drinking Water Treatment"Proceedin
gs of 10th OzoneWorld Congress,vol1.p313,1991参
照)。
The catalyst contact tube 27 is composed of a mesh-shaped tube formed by using a mold, and is formed as a single tube or an assembly of block-shaped tubes according to the shape of the reaction tank 12. There is an example. The promoted oxidation reaction with the titanium oxide catalyst is performed by the O 3 / H 2 O 2 and O 3 + U explained above.
It is reported that the oxidation reaction process is different from that of V (ultraviolet irradiation) treatment, and the reaction mechanism consists of substance adsorption on the catalyst and oxidation on the surface of the catalyst (Paillard, H.
Et al., “Prospects Concerning Applications of Catalyt
ic Ozonation in Drinking Water Treatment "Proceedin
See gs of 10th Ozone World Congress, vol1.p313, 1991).

【0047】かかる第3実施例によれば、第2実施例と
同様に多段オゾン接触槽11で高圧溶解された溶存オゾ
ン水がオゾン処理水10とともに反応槽12の上部から
導入され、触媒接触管27を構成する酸化チタンと接触
する過程で酸化反応が促進される。酸化チタン触媒によ
る酸化促進はOHラジカル生成のスカベンジャーとなる
重炭酸イオン等の影響を受けにくい処理法である。
According to the third embodiment, as in the second embodiment, the dissolved ozone water dissolved under high pressure in the multi-stage ozone contact tank 11 is introduced together with the ozone-treated water 10 from the upper part of the reaction tank 12, and the catalyst contact tube is used. The oxidation reaction is promoted in the process of contacting with titanium oxide forming 27. Oxidation promotion by the titanium oxide catalyst is a treatment method that is hardly affected by bicarbonate ions or the like, which are scavengers for OH radical generation.

【0048】次に図5に基づいて本発明の第4実施例を
説明する。この第4実施例では反応槽12の内方に前記
第2実施例で用いた紫外線照射ランプ25と、前記第3
実施例で用いた酸化チタン(TiO2)で成る触媒接触
管27とをともに収納配置した例であり、外部に設置し
た低圧水銀ランプ電源26から紫外線照射ランプ25に
電源電圧を印加する。更に多段オゾン接触槽11の最上
段のブロック型接触槽11dに配備された処理水タンク
13から流出するオゾン処理水10を導管28を介して
反応槽12の底壁近傍まで導水し、放散口29,29か
ら上向流として反応槽12に流入させている。
Next, a fourth embodiment of the present invention will be described with reference to FIG. In the fourth embodiment, the ultraviolet irradiation lamp 25 used in the second embodiment and the third lamp are provided inside the reaction tank 12.
This is an example in which the catalyst contact tube 27 made of titanium oxide (TiO 2 ) used in the embodiment is housed and arranged together, and a power supply voltage is applied to the ultraviolet irradiation lamp 25 from a low pressure mercury lamp power supply 26 installed outside. Further, the ozone-treated water 10 flowing out from the treated water tank 13 provided in the uppermost block-type contact tank 11d of the multi-stage ozone contact tank 11 is introduced to the vicinity of the bottom wall of the reaction tank 12 through the conduit 28, and the discharge port 29 is introduced. , 29 into the reaction tank 12 as an upward flow.

【0049】かかる第4実施例によれば、第2実施例と
同様に多段オゾン接触槽11で高圧溶解された溶存オゾ
ン水がオゾン処理水10とともに反応槽12の下方部か
ら導入され、触媒接触管27を構成する酸化チタンと接
触する過程で酸化反応が促進されるのと同時に紫外線照
射ランプ25からの紫外線照射によって水中に溶解して
いるオゾンから過酸化水素(H22)が生成し、この過
酸化水素から更に紫外線によってOHラジカルを生成し
て、前記したO3/H22処理と略同じ反応過程をとっ
て有機物の除去効率が高められ、反応槽12の上方から
処理水10aとして流出する。
According to the fourth embodiment, as in the second embodiment, the dissolved ozone water which has been dissolved under high pressure in the multi-stage ozone contact tank 11 is introduced together with the ozone-treated water 10 from the lower part of the reaction tank 12 to contact the catalyst. The oxidation reaction is promoted in the process of contacting the titanium oxide forming the tube 27, and at the same time hydrogen peroxide (H 2 O 2 ) is generated from ozone dissolved in water by the ultraviolet irradiation from the ultraviolet irradiation lamp 25. OH radicals are further generated from this hydrogen peroxide by ultraviolet rays, and the removal efficiency of organic substances is enhanced by following the same reaction process as the O 3 / H 2 O 2 treatment described above. It flows out as 10a.

【0050】この第4実施例では、第1段階として被処
理水17中の難分解性有機物が多段オゾン接触槽11下
方部でのオゾン直接反応、即ち、溶存オゾンによる境膜
反応により分解されやすい成分(色度成分)に分解さ
れ、次に第2段階として溶存オゾン+UV処理によりO
Hラジカルを生成して分解されやすい生成を分解すると
同時に溶存オゾンと触媒との接触に伴う触媒酸化反応に
よって有機物を分解し、更に第3段階として触媒+UV
処理により光触媒酸化反応が生じるという作用がある。
つまり難分解性有機物に対して「直接反応」「OHラジ
カル反応」「触媒酸化反応」「光触媒酸化反応」という
各種反応を生じることにより、難分解性有機物の分解作
用を高めている。
In the fourth embodiment, as the first step, the hardly decomposable organic matter in the water to be treated 17 is easily decomposed by the direct ozone reaction in the lower part of the multi-stage ozone contact tank 11, that is, the boundary film reaction by the dissolved ozone. Is decomposed into components (chromaticity components), and then the second step is dissolved ozone + UV treatment
H radicals are generated to decompose easily decomposed products, and at the same time, organic substances are decomposed by catalytic oxidation reaction caused by contact between dissolved ozone and the catalyst, and as a third step, catalyst + UV
The treatment has an effect of causing a photocatalytic oxidation reaction.
In other words, various reactions such as "direct reaction", "OH radical reaction", "catalytic oxidation reaction", and "photocatalytic oxidation reaction" are caused on the hardly decomposable organic substance to enhance the decomposition action of the hardly decomposable organic substance.

【0051】[0051]

【発明の効果】以上詳細に説明したように、本発明にか
かる加圧型下方注入式多段型オゾン接触槽によれば、被
処理水が流入管の中途部に設けたキャピラリー散気部中
のオゾンガスインジェクター部で注入されたオゾンガス
と混合して高溶存オゾン水となり、多段オゾン接触槽内
に送り込まれて接触効率を高め、この被処理水をオゾン
接触槽と並置された反応槽に送り込んで所定の滞留時間
を経てからオゾン処理水として流出することができる。
請求項2,3,4記載のオゾン接触槽では、反応槽内で
の紫外線照射と触媒接触管と接触する過程で酸化反応が
促進され、特にオゾン接触による後期時の反応を高め
て、反応性の低い物質の除去効果の向上と被処理水の酸
化反応を促進して難分解性物質の分解を行うことができ
る。
As described in detail above, according to the pressurization type downward injection type multi-stage ozone contact tank according to the present invention, the ozone gas in the capillary diffuser provided with the water to be treated in the middle of the inflow pipe. It becomes highly dissolved ozone water by mixing with the ozone gas injected in the injector part, and it is sent into the multi-stage ozone contact tank to improve the contact efficiency, and this treated water is sent into the reaction tank juxtaposed with the ozone contact tank and the predetermined It can be discharged as ozone-treated water after a residence time.
In the ozone contact tank according to claim 2, 3 or 4, the oxidation reaction is promoted during the process of contacting with the catalyst contact tube and ultraviolet irradiation in the reaction tank, and particularly the reaction in the latter stage due to ozone contact is enhanced to improve the reactivity. It is possible to decompose the hardly decomposable substance by improving the effect of removing a substance having a low content and promoting the oxidation reaction of water to be treated.

【0052】従って被処理水に対するオゾン反応の初期
時には、加圧下方注入方式に基づいて拡散効率を充分に
高めて反応性の高い物質の除去を行うことができるとと
もに、オゾン反応の後期時には反応槽で十分な反応が得
られてオゾン処理効果を高めることができる。更に難分
解性有機物に対して「直接反応」「OHラジカル反応」
「触媒酸化反応」「光触媒酸化反応」という各種反応を
生じさせることによって難分解性有機物の分解作用を高
めることができる。
Therefore, at the initial stage of the ozone reaction with respect to the water to be treated, it is possible to sufficiently enhance the diffusion efficiency based on the pressurized downward injection method to remove highly reactive substances, and at the latter stage of the ozone reaction, the reaction tank is used. Can obtain a sufficient reaction to enhance the ozone treatment effect. Furthermore, "direct reaction" and "OH radical reaction" for persistent organic substances
By causing various reactions such as “catalytic oxidation reaction” and “photocatalytic oxidation reaction”, the decomposition action of the hardly decomposable organic substance can be enhanced.

【0053】本発明の多段オゾン接触槽は従来のUチュ
ーブ反応槽のように20〜30メートルの長さに形成し
なくてもよいので、装置の大型化を伴わずに被処理水に
対するオゾンガスの吸収効率を高めることができる。更
に散気管方式のようにオゾンガスによって酸化された鉄
とかマンガンの付着による目詰まり等に伴う経時的な吸
収効率低下現象がない。
Unlike the conventional U-tube reaction tank, the multi-stage ozone contact tank of the present invention does not have to be formed to a length of 20 to 30 meters. The absorption efficiency can be increased. Further, unlike the air diffuser system, there is no phenomenon of deterioration in absorption efficiency over time due to clogging due to adhesion of iron or manganese oxidized by ozone gas.

【0054】更にUチューブ型オゾン反応槽のように施
設の建設工事が複雑になるという問題もなく、建設コス
トの低廉化がはかれるとともに、反応槽内に貯留される
堆積物の除去とか槽内の清掃を簡便に行うことが可能と
なり、しかも反応槽の底部近傍で障害が発生しても直ち
に処置することができるという効果が得られる。
Further, there is no problem that the construction work of the facility is complicated unlike the U-tube type ozone reaction tank, the construction cost can be reduced, and the deposits stored in the reaction tank can be removed or the inside of the tank can be removed. As a result, it is possible to easily perform cleaning, and it is possible to immediately take measures even if an obstacle occurs near the bottom of the reaction tank.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる加圧型下方注入式多段オゾン接
触槽の第1実施例を全体的に示す概要図。
FIG. 1 is a schematic view generally showing a first embodiment of a pressure type downward injection type multi-stage ozone contact tank according to the present invention.

【図2】図1の要部を部分的に示す拡大図。FIG. 2 is an enlarged view partially showing a main part of FIG.

【図3】本発明の第2実施例を全体的に示す概要図。FIG. 3 is a schematic diagram generally showing a second embodiment of the present invention.

【図4】本発明の第3実施例を全体的に示す概要図。FIG. 4 is a schematic diagram generally showing a third embodiment of the present invention.

【図5】本発明の第4実施例を全体的に示す概要図。FIG. 5 is a schematic diagram generally showing a fourth embodiment of the present invention.

【図6】通常の散気管型オゾン反応槽の一例を示す要部
断面図。
FIG. 6 is a cross-sectional view of an essential part showing an example of a normal air diffusion tube type ozone reaction tank.

【図7】通常のUチューブ型オゾン接触槽の構造を示す
概略図。
FIG. 7 is a schematic diagram showing the structure of a normal U-tube type ozone contact tank.

【符号の説明】[Explanation of symbols]

11…多段オゾン接触槽 12…反応槽 13…処理水タンク 14…排出管 16…流入管 17…被処理水 18…キャピラリー散気部 19…急縮部 20…オゾンガスインジェクター部 21…注入ノズル 23…(過酸化水素の)供給管 25…紫外線照射ランプ 26…電源 27…触媒接触管 29…放散口 11 ... Multi-stage ozone contact tank 12 ... Reaction tank 13 ... Treated water tank 14 ... Discharge pipe 16 ... Inflow pipe 17 ... Water to be treated 18 ... Capillary air diffuser 19 ... Sudden reduction section 20 ... Ozone gas injector 21 ... Injection nozzle 23 ... (hydrogen peroxide) supply pipe 25 ... UV irradiation lamp 26 ... Power supply 27 ... Catalyst contact tube 29 ... Dissipation port

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C02F 1/78 B01F 1/00 C02F 1/32 C02F 1/72 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) C02F 1/78 B01F 1/00 C02F 1/32 C02F 1/72

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 最下段から上段に向けて複数段に分割さ
れて被処理水が流通可能なブロック型の接触槽の重合体
で構成された多段オゾン接触槽と反応槽とを並置し、 上記多段オゾン接触槽に挿通された流入管に対する被処
理水の流入口に、該流入管の管径を部分的に小径に絞っ
たオゾンガスインジェクター部が形成されているととも
に、このオゾンガスインジェクター部に臨んで上方から
オゾンガスの注入ノズルが配置されたキャピラリー散気
部を設け、該流入管の先端開口部を多段オゾン接触槽内
の最下段に位置する接触槽の底壁に対向する位置にまで
導入し、この底壁近傍に位置する流入管の管径を部分的
に小径に絞った急縮部を設け、該急縮部の上方近傍に位
置する流入管の側方から過酸化水素の供給管を挿通し、
多段オゾン接触槽を通過したオゾン処理水を並置された
反応槽に流入させて有機物を除去したオゾン処理水を得
るようにしたことを特徴とする加圧型下方注入式多段オ
ゾン接触槽。
1. A plurality of stages are divided from the bottom to the top.
Polymer in a block-type contact tank in which treated water can be distributed
The multi-stage ozone contact tank and the reaction tank configured in parallel are arranged side by side, and the pipe diameter of the inflow pipe is partially reduced to a small diameter at the inlet of the treated water to the inflow pipe inserted in the multi-stage ozone contact tank. A capillary diffuser with an ozone gas injector is formed and an ozone gas injection nozzle is arranged from above to face the ozone gas injector. Introduced to a position facing the bottom wall of the contact tank located in, and provided with a rapid compression part where the diameter of the inflow pipe located near this bottom wall is partially reduced to a small diameter, and near the upper part of the rapid compression part. Insert the hydrogen peroxide supply pipe from the side of the inflow pipe located at
A pressurized lower injection type multi-stage ozone contact tank, wherein ozone-treated water that has passed through the multi-stage ozone contact tank is caused to flow into a juxtaposed reaction tank to obtain organically-removed ozone-treated water.
【請求項2】 最下段から上段に向けて複数段に分割さ
れて被処理水が流通可能なブロック型の接触槽の重合体
で構成された多段オゾン接触槽と反応槽とを並置し、 上記多段オゾン接触槽に挿通された流入管に対する被処
理水の流入口に、該流入管の管径を部分的に小径に絞っ
たオゾンガスインジェクター部が形成されているととも
に、このオゾンガスインジェクター部に臨んで上方から
オゾンガスの注入ノズルが配置されたキャピラリー散気
部を設け、該流入管の先端開口部を多段オゾン接触槽内
の最下段に位置する接触槽の底壁に対向する位置にまで
導入する一方、反応槽の内方に紫外線照射ランプを配置
して、多段オゾン接触槽を通過したオゾン処理水を並置
された反応槽に流入させて紫外線照射によって水中に溶
解しているオゾンから過酸化水素を生成して有機物を除
去したオゾン処理水を得るようにしたことを特徴とする
加圧型下方注入式多段オゾン接触槽。
2. A plurality of stages are divided from the bottom to the top.
Polymer in a block-type contact tank in which treated water can be distributed
The multi-stage ozone contact tank and the reaction tank configured in parallel are arranged side by side, and the pipe diameter of the inflow pipe is partially reduced to a small diameter at the inlet of the treated water to the inflow pipe inserted in the multi-stage ozone contact tank. A capillary diffuser with an ozone gas injector is formed and an ozone gas injection nozzle is arranged from above to face the ozone gas injector, and the tip opening of the inflow pipe is placed at the bottom of the multi-stage ozone contact tank. Introduced to the position facing the bottom wall of the contact tank located at, while placing an ultraviolet irradiation lamp inside the reaction tank, the ozone treated water that passed through the multi-stage ozone contact tank flows into the juxtaposed reaction tank. In this way, a pressure-type downward injection type multi-purpose method is used, in which hydrogen peroxide is generated from ozone dissolved in water by ultraviolet irradiation to obtain ozone-treated water from which organic substances are removed. Stage ozone contact tank.
【請求項3】 最下段から上段に向けて複数段に分割さ
れて被処理水が流通可能なブロック型の接触槽の重合体
で構成された多段オゾン接触槽と反応槽とを並置し、 上記多段オゾン接触槽に挿通された流入管に対する被処
理水の流入口に、該流入管の管径を部分的に小径に絞っ
たオゾンガスインジェクター部が形成されているととも
に、このオゾンガスインジェクター部に臨んで上方から
オゾンガスの注入ノズルが配置されたキャピラリー散気
部を設け、該流入管の先端開口部を多段オゾン接触槽内
の最下段に位置する接触槽の底壁に対向する位置にまで
導入する一方、反応槽の内方に触媒接触管を収納配置し
て、多段オゾン接触槽を通過したオゾン処理水を並置さ
れた反応槽に流入させて触媒接触管と接触する過程で酸
化反応を促進して有機物を除去したオゾン処理水を得る
ようにしたことを特徴とする加圧型下方注入式多段オゾ
ン接触槽。
3. Divided into a plurality of stages from the bottom to the top.
Polymer in a block-type contact tank in which treated water can be distributed
The multi-stage ozone contact tank and the reaction tank configured in parallel are arranged side by side, and the pipe diameter of the inflow pipe is partially reduced to a small diameter at the inlet of the treated water to the inflow pipe inserted in the multi-stage ozone contact tank. A capillary diffuser with an ozone gas injector is formed and an ozone gas injection nozzle is arranged from above to face the ozone gas injector, and the tip opening of the inflow pipe is placed at the bottom of the multi-stage ozone contact tank. Introduced to the position facing the bottom wall of the contact tank located at, while the catalyst contact tube is housed inside the reaction tank, the ozone-treated water that has passed through the multi-stage ozone contact tank is placed side by side in the reaction tank. A pressurized lower injection type multi-stage ozone contact tank characterized in that an ozone-treated water from which organic substances are removed is obtained by promoting an oxidation reaction in a process of flowing in and contacting with a catalyst contact tube.
【請求項4】 最下段から上段に向けて複数段に分割さ
れて被処理水が流通可能なブロック型の接触槽の重合体
で構成された多段オゾン接触槽と反応槽とを並置し、 上記多段オゾン接触槽に挿通された流入管に対する被処
理水の流入口に、該流入管の管径を部分的に小径に絞っ
たオゾンガスインジェクター部が形成されているととも
に、このオゾンガスインジェクター部に臨んで上方から
オゾンガスの注入ノズルが配置されたキャピラリー散気
部を設け、該流入管の先端開口部を多段オゾン接触槽内
の最下段に位置する接触槽の底壁に対向する位置にまで
導入する一方、反応槽の内方に紫外線照射ランプと触媒
接触管とを配置して、多段オゾン接触槽を通過したオゾ
ン処理水を並置された反応槽に流入させて紫外線照射に
よって水中に溶解しているオゾンから過酸化水素を生成
するとともに触媒接触管と接触する過程で酸化反応を促
進して有機物を除去したオゾン処理水を得るようにした
ことを特徴とする加圧型下方注入式多段オゾン接触槽。
4. Dividing into a plurality of stages from the bottom to the top.
Polymer in a block-type contact tank in which treated water can be distributed
The multi-stage ozone contact tank and the reaction tank configured in parallel are arranged side by side, and the pipe diameter of the inflow pipe is partially reduced to a small diameter at the inlet of the treated water to the inflow pipe inserted in the multi-stage ozone contact tank. A capillary diffuser with an ozone gas injector is formed and an ozone gas injection nozzle is arranged from above to face the ozone gas injector, and the tip opening of the inflow pipe is placed at the bottom of the multi-stage ozone contact tank. Introduced to the position opposite to the bottom wall of the contact tank located at, the UV irradiation lamp and the catalyst contact tube are arranged inside the reaction tank, and the ozone-treated water that has passed through the multi-stage ozone contact tank is juxtaposed. Generated hydrogen peroxide from ozone dissolved in water by UV irradiation, and promotes oxidation reaction in the process of contacting with catalytic contact tube to remove organic matter A pressure type downward injection type multi-stage ozone contact tank characterized in that the ozone treated water described above is obtained.
【請求項5】 上記多段オゾン接触槽は、最上段の接触
槽に配備された処理水タンクから流出するオゾン処理水
を反応槽側へ流入させるようにした請求項1,2,3,
4記載の加圧型下方注入式多段オゾン接触槽。
5. The multistage ozone contact tank is configured such that ozone-treated water flowing out of a treated water tank provided in the uppermost contact tank is allowed to flow into the reaction tank side.
4. The pressurized downward injection multi-stage ozone contact tank according to 4.
JP18992095A 1995-07-26 1995-07-26 Pressurized downward injection type multi-stage ozone contact tank Expired - Fee Related JP3522010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18992095A JP3522010B2 (en) 1995-07-26 1995-07-26 Pressurized downward injection type multi-stage ozone contact tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18992095A JP3522010B2 (en) 1995-07-26 1995-07-26 Pressurized downward injection type multi-stage ozone contact tank

Publications (2)

Publication Number Publication Date
JPH0938672A JPH0938672A (en) 1997-02-10
JP3522010B2 true JP3522010B2 (en) 2004-04-26

Family

ID=16249429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18992095A Expired - Fee Related JP3522010B2 (en) 1995-07-26 1995-07-26 Pressurized downward injection type multi-stage ozone contact tank

Country Status (1)

Country Link
JP (1) JP3522010B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200461827Y1 (en) * 2010-05-03 2012-08-07 고공삼 Apparatus for cleaning waste water

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11226579A (en) * 1998-02-20 1999-08-24 Mitsubishi Electric Corp Sterilizing method and apparatus
JP2000202471A (en) * 1999-01-11 2000-07-25 Ebara Corp Treatment of sewage containing endocrine disrupter or carcinogenic substance and its apparatus
US20120192487A1 (en) * 2009-10-05 2012-08-02 Toshiharu Tanaka Nutriculture system and water treatment apparatus for sterilization and purification purposes
JP7360815B2 (en) * 2019-05-22 2023-10-13 前澤工業株式会社 Ozone contact reaction tank
KR102150864B1 (en) * 2020-06-16 2020-09-02 황명회 Nanobubble Deodorizing System

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200461827Y1 (en) * 2010-05-03 2012-08-07 고공삼 Apparatus for cleaning waste water

Also Published As

Publication number Publication date
JPH0938672A (en) 1997-02-10

Similar Documents

Publication Publication Date Title
CN102115253B (en) Novel multi-technology synergetic catalysis advanced micro-bubble ozone oxidation tower
CN101786756B (en) Process method for treating hardly-biodegradable organic wastewater
US5582741A (en) Method for treating polluted water
JP2009254967A (en) Water treatment system
CN104529083A (en) Pressure type ozone reaction and microbubble biological aerated filter sewage deep processing device and method
JP2001205277A (en) Method and apparatus for removing hardly decomposable organic compound in water
JP3522010B2 (en) Pressurized downward injection type multi-stage ozone contact tank
KR20010044325A (en) A waste water treatment apparatus by the advanced oxidation processing method
JP3617334B2 (en) Water treatment method and apparatus
JP3523751B2 (en) Pressurized downward injection type ozone contact tank and its control method
JP3977885B2 (en) Control method of pressurized bottom injection type multi-stage ozone contact tank
JP3493843B2 (en) Accelerated oxidation treatment equipment in water treatment
JPH09290280A (en) Ozone contact tank and control method therefor
JPH0663571A (en) Ozone-bioactive carbon treatment device
JPH0671273A (en) Ozone contact tank in advance purifying water system
JPH09206769A (en) Downward injecting type ozone treating device
JPH08243571A (en) Bottom-injection type multistage ozone contact tank and control method thereof
JPH09267096A (en) Water treating device using ozone
JPH07275873A (en) U-tube type ozone reaction tank
JP3522020B2 (en) Pressurized downward injection type ozone contact tank and its control method
CN211570406U (en) Landfill leachate MBR goes out advanced treatment system of water
JP3491371B2 (en) Downward injection type multi-stage ozone contact tank and its control method
JP3523743B2 (en) Pressurized downward injection type ozone contact tank and its control method
JP2001314880A (en) Water treatment apparatus
JPH0326393A (en) Water treating device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees