JPH0326393A - Water treating device - Google Patents

Water treating device

Info

Publication number
JPH0326393A
JPH0326393A JP16011389A JP16011389A JPH0326393A JP H0326393 A JPH0326393 A JP H0326393A JP 16011389 A JP16011389 A JP 16011389A JP 16011389 A JP16011389 A JP 16011389A JP H0326393 A JPH0326393 A JP H0326393A
Authority
JP
Japan
Prior art keywords
water
ozone
treated
catalyst
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16011389A
Other languages
Japanese (ja)
Inventor
Katsuhiro Shibata
芝田 勝博
Ikuo Takahashi
高橋 郁雄
Nobuyoshi Umiga
信好 海賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16011389A priority Critical patent/JPH0326393A/en
Publication of JPH0326393A publication Critical patent/JPH0326393A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To oxidize org. matter having no unsaturated bonds with ozone by providing a pipe for introducing water to be treated, an ozone diffuser pipe, a catalyst diffuser pipe and a mechanism for circulating the catalyst settled on the bottom in an ozone reaction vessel. CONSTITUTION:Water A to be treated is introduced into the ozone reaction vessel 1 through an inlet pipe 2, and an ozone-contg. gas B is injected into the water A as bubbles from the diffuser pipe 5 through an inlet pipe 4. The gas B is subjected to a gas-liq. catalytic reaction with the water A and sent upward to the upper part of the vessel 1, and the ozone is dissolved in the water to oxidize the org. matter in the water. Meanwhile, ferric oxide C as catalyst is uniformly injected into the water A from the diffuser pipe 7 at the upper part and gravitated in the water, and the ozone oxidation reaction is accelerated. The catalyst settled on the bottom of the vessel is returned to the diffuser pipe by a circulating mechanism and effective used.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、汚染された水をオゾンにより浄化する水処理
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a water treatment device that purifies contaminated water using ozone.

(従来の技術) 従来、例えば上水の殺菌を目的として、またし尿処理施
設の排水処理での脱色を目的として、さらにまた工業用
水,特殊用水における有機物の酸化処理を目的として、
オゾンの酸化力を利用した水処理装置が使用されている
(Prior art) Conventionally, for example, for the purpose of sterilizing tap water, for the purpose of decolorization in wastewater treatment of human waste treatment facilities, and for the purpose of oxidation treatment of organic substances in industrial water and special water,
Water treatment equipment that utilizes the oxidizing power of ozone is used.

一般に、オゾンは空気あるいは酸素に対する無声放電に
よって作られ、オゾン含有体として得られるもので、従
来の水処理装置においては、被処理水の浄化槽に対して
微細なオゾン含有体を槽の底部から注入して、オゾンと
被処理水とを気液接触反応させることにより、水中を上
昇する気泡中のオゾンで被処理水中の汚染物質を酸化さ
せるものとなっている。この場合において、オゾンガス
は気泡から水中へ溶解して溶存する有機物の酸化に利用
され、特に着色成分などの不飽和結合の有機物に対する
反応は速く、したがって脱色効果は極めて高い。ところ
が、不飽和結合を持たない有機物にはあまり効果がみら
れなかった。
In general, ozone is produced by silent discharge against air or oxygen, and is obtained as an ozone-containing substance.In conventional water treatment equipment, fine ozone-containing substances are injected into a septic tank for water to be treated from the bottom of the tank. By causing a gas-liquid contact reaction between ozone and the water to be treated, the ozone in the bubbles rising in the water oxidizes the pollutants in the water to be treated. In this case, ozone gas is used to oxidize organic substances dissolved in water from air bubbles, and the reaction with unsaturated bonded organic substances such as coloring components is particularly fast, so the decolorizing effect is extremely high. However, little effect was seen on organic substances that do not have unsaturated bonds.

(発明が解決しようとする課題) このように、単にオゾンと被処理水との気液接触反応の
みを利用した従来の水処理装置では、不飽和結合を持た
ない有機物に対しては充分なオゾン酸化処理を行えなか
ったため、この不飽和結合を持たない有機物が溶存する
汚染水の浄化には不適であった。
(Problems to be Solved by the Invention) As described above, in conventional water treatment equipment that uses only the gas-liquid contact reaction between ozone and water to be treated, there is insufficient ozone for organic substances that do not have unsaturated bonds. Because it could not perform oxidation treatment, it was unsuitable for purifying contaminated water containing dissolved organic substances that do not have these unsaturated bonds.

そこで本発明は、比較的簡単かつ安価な構成を付加する
だけで、不飽和結合を持たない有機物に対するオゾン酸
化処理を促進でき、この不飽和結合を持たない有機物が
溶存する汚染水の浄化をも確実に行える水処理装置を提
供しようとするものである。
Therefore, the present invention can promote ozone oxidation treatment of organic substances that do not have unsaturated bonds by simply adding a relatively simple and inexpensive configuration, and can also purify contaminated water in which organic substances that do not have unsaturated bonds are dissolved. The aim is to provide a water treatment device that can perform water treatment reliably.

[発明の構成] (課題を解決するための手段) 本発明の水処理装置は、オゾンと被処理水とを気液接触
反応させるオゾン反応槽と、この反応槽内に被処理水を
導入する被処理水導入管と、反応槽内の下部からオゾン
含有気体を被処理水へ注入するオゾン散気管と、反応槽
の上部から被処理水へ触媒を分散注入する触媒散水管と
、反応槽の底部に沈殿した触媒を散水管へ循環させる循
環機構とを備えたものである。
[Structure of the Invention] (Means for Solving the Problems) The water treatment apparatus of the present invention includes an ozone reaction tank in which ozone and water to be treated undergo a gas-liquid contact reaction, and a water to be treated is introduced into the reaction tank. An ozone diffuser pipe that injects ozone-containing gas into the water to be treated from the lower part of the reaction tank, a catalyst watering pipe that disperses and injects the catalyst into the water to be treated from the upper part of the reaction tank, and It is equipped with a circulation mechanism that circulates the catalyst precipitated at the bottom to the water spray pipe.

そして、触媒散水管により分散注入される触媒としては
、酸化鉄が考えられる。
Iron oxide can be considered as the catalyst that is dispersed and injected through the catalyst watering pipe.

また、オゾン反応槽は、その底部をテーバ状に形成する
ことが望ましい。
Further, it is desirable that the bottom of the ozone reaction tank be formed into a tapered shape.

(作用) このような構成の水処理装置においては、導入管により
被処理水が導入されたオゾン反応槽の下部から散水管に
よりオゾン含有気体が注入されるとともに、反応槽の上
部から被処理水に散水管により触媒が分散注入される。
(Function) In a water treatment device with such a configuration, ozone-containing gas is injected from the lower part of the ozone reaction tank into which the water to be treated is introduced through the introduction pipe, and the water to be treated is introduced from the upper part of the reaction tank. Catalyst is dispersed and injected through a water sprinkler pipe.

これにより、反応槽内でオゾンと被処理水との気液接触
反応による酸化反応が起こり、このオゾン酸化反応は触
媒によって促進される。
As a result, an oxidation reaction occurs in the reaction tank due to a gas-liquid contact reaction between ozone and the water to be treated, and this ozone oxidation reaction is promoted by the catalyst.

一方、被処理水に注入された触媒は反応槽の底部に沈殿
するが、この沈殿した触媒は循環機構によって散水管に
戻され、有効に使用される。
On the other hand, the catalyst injected into the water to be treated settles at the bottom of the reaction tank, but this precipitated catalyst is returned to the water sprinkler pipe by the circulation mechanism and is effectively used.

ここで、オゾン酸化反応を促進させる触媒としでは種々
調査したところ酸化鉄が望ましいことがわかった。これ
は、酸化鉄表面に有機物が付着してオゾン酸化反応を受
けやすくしているか、あるいはオゾンと有機物との反応
により生成する過酸化物,過酸化水素などの中間生戊物
を酸化鉄が分解促進するものと考えられる。
After conducting various investigations as a catalyst for promoting the ozone oxidation reaction, it was found that iron oxide is preferable. This may be due to organic matter adhering to the iron oxide surface, making it susceptible to the ozone oxidation reaction, or iron oxide decomposing intermediate products such as peroxide and hydrogen peroxide produced by the reaction between ozone and organic matter. This is considered to be a promotion.

以下に、実験例を示して触媒として酸化鉄が適している
ことを証明する。
Below, an experimental example will be shown to prove that iron oxide is suitable as a catalyst.

*実験例I マロン酸C H 2  ( C O O H ) ’2
を溶存有機物として次のような実験を行った。すなわち
、先ず250mlの洗気ビンにCOD (化学的酸素要
求量)が42mg/j,水温が25℃のマロン酸水溶液
を2 2 0 ml入れ、かつオゾン濃度が8 ag/
jのオゾン化空気を毎分1pの割合で散気して、COD
の時間変化を求めた。この場合の実験結果を第2図中5 Aに示す。
*Experimental Example I Malonic acid C H 2 ( C O OH ) '2
The following experiment was conducted using the dissolved organic matter. That is, first, 220 ml of malonic acid aqueous solution with a COD (chemical oxygen demand) of 42 mg/j and a water temperature of 25°C was put into a 250 ml air washing bottle, and the ozone concentration was 8 ag/j.
COD by diffusing j of ozonized air at a rate of 1p per minute.
We calculated the change over time. The experimental results in this case are shown in 5A in FIG.

次に同じマロン酸水溶液に2,Ogの酸化第2鉄を懸濁
させて同様なオゾンを処理を行った。この場合の実験結
果を第2図中Bに示す。
Next, similar ozone treatment was carried out by suspending 2,0g of ferric oxide in the same malonic acid aqueous solution. The experimental results in this case are shown in B in FIG.

第2図から明らかなように、酸化鉄を混入したもの(実
験結果B)の方が酸化鉄を混入しなかったもの(実験結
果A)に比べてCODの除去率が、30分後では19.
0%が33.3%に上昇し、1時間後では23.8%が
57.8%に上昇しており、以上の実験結果から酸化鉄
がマロン酸水溶液に対するオゾン酸化反応を促進させて
いることがわかる。
As is clear from Figure 2, the COD removal rate after 30 minutes was 19% higher in the product containing iron oxide (experimental result B) than in the product containing no iron oxide (experimental result A). ..
0% rose to 33.3%, and after 1 hour, 23.8% rose to 57.8%. From the above experimental results, iron oxide promotes the ozone oxidation reaction against malonic acid aqueous solution. I understand that.

*実験例■ 実際の下排水とし・て、生活排水を主体とし汚れを活性
汚泥法で処理した下水二次処理水にポリ塩化アルミニウ
ム9 mg/1を凝集剤として注入し、砂ろ過した三次
処理水を使用して次のような実験を行った。なお、実験
の方法は、実験例Iのマロン酸水溶液を三次処理水に換
えただけで、他の.実験条件は全て同じとした。
*Experiment example■ As actual sewage water, tertiary treatment was performed by injecting 9 mg/1 polyaluminum chloride as a coagulant into secondary treated sewage water, which was mainly domestic wastewater and treated with activated sludge method to remove dirt, and filtered with sand. The following experiment was conducted using water. In addition, the experimental method was that the malonic acid aqueous solution in Experimental Example I was replaced with tertiary treated water, and other methods were used. All experimental conditions were the same.

6 酸化第2鉄を混入しないで行った実験結果を第3図Aに
、酸化第2鉄を懸濁して行った実験結果を第3図Bに示
す。この場合も、酸化鉄を混入したもの(実験結果B)
の方が酸化鉄を混入しなかったもの(実験結果A)に比
べてCODの除去率が、30分後では20.0%が48
.0%に上昇し、1時間後では28,0%が56,O%
に上昇しており、以上の実験結果から酸化鉄が下水処理
水に対するオゾン酸化反応を促進させていることがわか
る。
6 The results of an experiment conducted without mixing ferric oxide are shown in FIG. 3A, and the results of an experiment conducted with ferric oxide suspended are shown in FIG. 3B. Also in this case, the one mixed with iron oxide (experimental result B)
The COD removal rate was 20.0% after 30 minutes compared to the one without iron oxide (experimental result A).
.. It rose to 0% and after 1 hour it was 28.0% to 56.0%
The above experimental results indicate that iron oxide promotes the ozone oxidation reaction in treated sewage water.

(実施例) 第1図は本発明の一実施例の構成を示す模式図である。(Example) FIG. 1 is a schematic diagram showing the configuration of an embodiment of the present invention.

同図において1はオゾンと被処理水とを気液接触反応さ
せるためのオゾン反応槽であって、このオゾン反応槽1
の側面上部には被処理水Aを導入するための被処理水導
入管2が接続され、側面下部にはこの反応槽1で処理さ
れた処理水を排出するための処理水排出管3か接続され
ている。
In the figure, 1 is an ozone reaction tank for causing a gas-liquid contact reaction between ozone and water to be treated, and this ozone reaction tank 1
A treated water introduction pipe 2 for introducing treated water A is connected to the upper side of the tank, and a treated water discharge pipe 3 for discharging the treated water treated in this reaction tank 1 is connected to the lower side of the tank. has been done.

また、オゾン反応槽1内の下部にはオゾン生成器(不図
示)にて生成されオゾン導入管4を介して供給されたオ
ゾン含有気体Bを注入するオゾン散気管5が設けられて
おり、オゾン反応槽1の上面には該反応槽1内で未反応
のオゾン含有気体Bを排出するためのオゾン排出管6が
接続されている。
Further, an ozone diffuser pipe 5 is provided at the lower part of the ozone reaction tank 1 to inject ozone-containing gas B generated by an ozone generator (not shown) and supplied via an ozone introduction pipe 4. An ozone discharge pipe 6 is connected to the upper surface of the reaction vessel 1 for discharging unreacted ozone-containing gas B within the reaction vessel 1 .

さらに、オゾン反応槽1の上部にはオゾン酸化反応を促
進する触媒としての酸化第2鉄Cを被処理水へ均一に分
散注入するための触媒散水管7が配設されており、この
散水管7には上記酸化第2鉄Cが充填された補給槽8が
バルブ9を介して接続されている。また、オゾン反応槽
1の底部はテーバ状に形成されており、触媒として上記
散水管7より被処理水中へ注入され自然沈降した酸化第
2鉄Cを集積し易くなっている。そして、この底部にて
集積された酸化第2鉄Cをスラリー状で引抜き、戻り管
10を介して前記散水管7へ循環させる循環ポンプ11
が設けられている。すなわち、この循環ポンプ11およ
び戻り管10によって循環機構が構成されている。また
前記処理水排出管3の処理水流入口には上記酸化第二鉄
Cが処理水と一緒に流入することを防止するためのフィ
ルタ12が取り付けられている。
Further, a catalyst water sprinkling pipe 7 is disposed in the upper part of the ozone reaction tank 1 for uniformly dispersing and injecting ferric oxide C as a catalyst for promoting the ozone oxidation reaction into the water to be treated. 7 is connected to a supply tank 8 filled with the ferric oxide C via a valve 9. Further, the bottom of the ozone reaction tank 1 is formed in a tapered shape, which facilitates the accumulation of ferric oxide C, which is injected into the water to be treated from the sprinkler pipe 7 and naturally settles as a catalyst. A circulation pump 11 draws out the ferric oxide C accumulated at the bottom in the form of slurry and circulates it to the water sprinkling pipe 7 via the return pipe 10.
is provided. That is, the circulation pump 11 and the return pipe 10 constitute a circulation mechanism. Further, a filter 12 is attached to the treated water inlet of the treated water discharge pipe 3 to prevent the ferric oxide C from flowing in together with the treated water.

このように構成された本実施例の水処理装置においては
、先ず下排水などの被処理水Aが導入管2を通してオゾ
ン反応槽1内へ導入される。次いで、オゾン生戊器にて
生或されたオゾン含有気体Bが導入管4を通して散気管
5により気泡として上記被処理水Aへ注入される。そう
すると、散気管5により気泡として注入されたオゾン含
有気体Bは、被処理水Aと気液接触反応を行いながら反
応槽1の上部へ上昇するが、その際、気泡から被処理水
中へ溶解して被処理水中に溶存する有機物の酸化を行う
In the water treatment apparatus of this embodiment configured as described above, first, water A to be treated such as sewage water is introduced into the ozone reaction tank 1 through the introduction pipe 2. Next, the ozone-containing gas B produced by the ozone generator is injected into the water A to be treated as bubbles through the introduction pipe 4 and the aeration pipe 5. Then, the ozone-containing gas B injected as bubbles through the aeration pipe 5 rises to the top of the reaction tank 1 while performing a gas-liquid contact reaction with the water to be treated A, but at this time, the ozone-containing gas B is dissolved from the bubbles into the water to be treated. The organic matter dissolved in the water to be treated is oxidized.

一方、被処理水Aには散水管7によって触媒としての酸
化第2鉄Cも上部から均一に分散注入される。ここで酸
化第2鉄Cは予め補給槽8から被処理水八の導入量に見
合った量が注入され、彼処理水内を自然沈降する。そし
て、テーパ状に形成された底部にて集積された酸化第2
鉄Cは、循環ポンプ11によりオゾン反応槽1中の処理
水と一緒にスラリー状で引き抜かれ、戻り管10を介し
9 て散水管7に導かれ、再度被処理水Aへ均一に分散注入
される。このような酸化第2鉄Cを循環させる工程は繰
り返し行われ、反応槽1の底部や管内に堆積して酸化第
2鉄の被処理水に対する含有量が低下した場合には補給
槽8より補給される。
On the other hand, ferric oxide C as a catalyst is also uniformly dispersed and injected into the water A to be treated from above through the water sprinkler pipe 7. Here, ferric oxide C is injected in advance from the supply tank 8 in an amount commensurate with the amount of water to be treated to be introduced, and naturally settles in the treated water. Then, the second oxide layer is accumulated at the bottom portion formed in a tapered shape.
Iron C is extracted in the form of a slurry together with the treated water in the ozone reaction tank 1 by the circulation pump 11, guided through the return pipe 10 to the sprinkler pipe 7, and uniformly dispersed and injected into the water to be treated A again. Ru. This process of circulating ferric oxide C is repeated, and if it accumulates at the bottom of the reaction tank 1 or inside the pipes and the content of ferric oxide in the water to be treated decreases, it is replenished from the replenishment tank 8. be done.

前述した実験結果からも明らかなように、被処理水とオ
ゾンとを気液接触反応させるオゾン反応槽1内に触媒と
して酸化第2鉄Cを注入することによって、被処理水中
に溶存する不飽和結合を有する有機物は勿論のこと、不
飽和結合を持たない有機物に対するオゾン酸化反応も促
進される。したがって、被処理水A中に不飽和結合を持
たない有機物が溶存していてもオゾン酸化反応による浄
化が確実に行なわれ、処理水は排出管3を通して外部へ
排出される。このとき、処理水中に含まれる酸化第2鉄
Cはフィルタ12によって排出が防止されるので問題は
ない。なお、オゾン反応槽1内でオゾン酸化反応に利用
されなかったオゾン含有気体Bは排出管6を通して図示
しないオゾン分解装置へ導かれ、オゾン分解されて無害
化された10 後、大気中へ排出される。
As is clear from the above-mentioned experimental results, by injecting ferric oxide C as a catalyst into the ozone reaction tank 1 in which the water to be treated and ozone undergo a gas-liquid contact reaction, unsaturation dissolved in the water to be treated can be reduced. The ozone oxidation reaction is promoted not only for organic substances that have bonds but also for organic substances that do not have unsaturated bonds. Therefore, even if organic substances having no unsaturated bonds are dissolved in the water to be treated A, purification by the ozone oxidation reaction is reliably performed, and the treated water is discharged to the outside through the discharge pipe 3. At this time, since the ferric oxide C contained in the treated water is prevented from being discharged by the filter 12, there is no problem. Note that the ozone-containing gas B that was not used in the ozone oxidation reaction in the ozone reaction tank 1 is led to an ozone decomposition device (not shown) through a discharge pipe 6, where it is decomposed into ozone and rendered harmless (10), and then discharged into the atmosphere. Ru.

このように、不飽和結合を持たない溶存有機物に対する
オゾン酸化処理を促進するための触媒として酸化第2鉄
を被処理水の上部から均一に分散注入できるように、散
水管7,補給槽8,バルブ9,循環機構としての循環ポ
ンプ11および戻り管10を付加しただけの簡単かつ比
較的安価な構成で、不飽和結合を持たない溶存有機物が
溶存した被処理水に対する浄化をも確実に行うことがで
きるようになる。
In this way, the water sprinkler pipe 7, supply tank 8, To reliably purify treated water containing dissolved organic matter having no unsaturated bonds with a simple and relatively inexpensive configuration that only includes a valve 9, a circulation pump 11 as a circulation mechanism, and a return pipe 10. You will be able to do this.

また、オゾン反応槽1の底部をテーパ状に形成したので
、自然沈降した酸化第2鉄Cが底面に堆積することなく
集積でき、酸化第2鉄を有効に使用できる。
Further, since the bottom of the ozone reaction tank 1 is formed into a tapered shape, the naturally precipitated ferric oxide C can be accumulated without being deposited on the bottom surface, and the ferric oxide can be used effectively.

なお、本発明は下排水処理のみならず、工場排水,特殊
排水,し尿処理,汚染された表流水を利用する浄水処理
などにも適用できるのは言うまでもないことである。
It goes without saying that the present invention is applicable not only to sewage treatment, but also to industrial wastewater, special wastewater, human waste treatment, water purification treatment using contaminated surface water, and the like.

[発明の効果コ 以上詳述したように、本発明によれば、比較11 的簡単かつ安価な構成を付加するだけで、不飽和結合を
持たない有機物に対するオゾン酸化処理を促進でき、こ
の不飽和結合を持たない有機物が溶存する汚染水の浄化
をも確実に行える水処理装置を提供できる。
[Effects of the Invention] As described in detail above, according to the present invention, ozone oxidation treatment for organic substances that do not have unsaturated bonds can be promoted by simply adding a comparatively simple and inexpensive structure, and this unsaturated It is possible to provide a water treatment device that can reliably purify contaminated water in which unbonded organic matter is dissolved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成を示す模式図、第2図
および第3図は本発明の原理を説明するために行った実
験例の実験結果を示す特性図である。 1・・・オゾン反応槽、2・・・被処理水導入管、3・
・・処理水排出管、4・・・オゾン導入管、5・・・オ
ゾン散気管、6・・・オゾン排出管、7・・・触媒散水
管、8・・・酸化第2鉄補給槽、9・・・バルブ、10
・・・戻り管、11・・・循環ポンプ、12・・・フィ
ルタ、A・・・被処理水、B・・・オゾン含有気体、C
・・・酸化第2鉄。
FIG. 1 is a schematic diagram showing the configuration of an embodiment of the present invention, and FIGS. 2 and 3 are characteristic diagrams showing the results of experiments conducted to explain the principle of the present invention. 1...Ozone reaction tank, 2...Water to be treated introduction pipe, 3.
... Treated water discharge pipe, 4 ... Ozone introduction pipe, 5 ... Ozone diffuser pipe, 6 ... Ozone discharge pipe, 7 ... Catalyst watering pipe, 8 ... Ferric oxide supply tank, 9...Valve, 10
...Return pipe, 11...Circulation pump, 12...Filter, A...Water to be treated, B...Ozone-containing gas, C
...Ferric oxide.

Claims (3)

【特許請求の範囲】[Claims] (1)オゾンと被処理水とを気液接触反応させるオゾン
反応槽と、この反応槽内に前記被処理水を導入する被処
理水導入管と、前記反応槽内の下部からオゾン含有気体
を前記被処理水へ注入するオゾン散気管と、前記反応槽
の上部から前記被処理水へ触媒を分散注入する触媒散水
管と、前記反応槽の底部に沈殿した前記触媒を前記散水
管へ循環させる循環機構とを具備したことを特徴とする
水処理装置。
(1) An ozone reaction tank in which ozone and water to be treated undergo a gas-liquid contact reaction, a water introduction pipe to introduce the water to be treated into the reaction tank, and an ozone-containing gas introduced from the lower part of the reaction tank. An ozone diffuser pipe for injecting into the water to be treated, a catalyst watering pipe for distributing and injecting a catalyst into the water to be treated from the top of the reaction tank, and circulating the catalyst precipitated at the bottom of the reaction tank to the watering pipe. A water treatment device characterized by comprising a circulation mechanism.
(2)前記触媒散水管により分散注入される触媒は、酸
化鉄であることを特徴とする請求項1記載の水処理装置
(2) The water treatment device according to claim 1, wherein the catalyst dispersed and injected through the catalyst watering pipe is iron oxide.
(3)前記オゾン反応槽は、その底部をテーパ状に形成
したことを特徴とする請求項1記載の水処理装置。
(3) The water treatment apparatus according to claim 1, wherein the ozone reaction tank has a tapered bottom.
JP16011389A 1989-06-22 1989-06-22 Water treating device Pending JPH0326393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16011389A JPH0326393A (en) 1989-06-22 1989-06-22 Water treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16011389A JPH0326393A (en) 1989-06-22 1989-06-22 Water treating device

Publications (1)

Publication Number Publication Date
JPH0326393A true JPH0326393A (en) 1991-02-04

Family

ID=15708141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16011389A Pending JPH0326393A (en) 1989-06-22 1989-06-22 Water treating device

Country Status (1)

Country Link
JP (1) JPH0326393A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518637A (en) * 1990-06-27 1996-05-21 Eco Still, Inc. Waste materials concentrator
CN101982237A (en) * 2010-09-20 2011-03-02 中国海洋石油总公司 Preparation method of ozone catalytic oxidation catalyst used for treating oil refining waste water
JP2014117669A (en) * 2012-12-18 2014-06-30 Ricoh Co Ltd Fluid purification apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518637A (en) * 1990-06-27 1996-05-21 Eco Still, Inc. Waste materials concentrator
CN101982237A (en) * 2010-09-20 2011-03-02 中国海洋石油总公司 Preparation method of ozone catalytic oxidation catalyst used for treating oil refining waste water
JP2014117669A (en) * 2012-12-18 2014-06-30 Ricoh Co Ltd Fluid purification apparatus

Similar Documents

Publication Publication Date Title
RU2148032C1 (en) Method and apparatus for biological destruction of injurious impurities in water
WO1999033552A1 (en) Vapor/liquid mixer and polluted water purification apparatus using the mixer
JP4732845B2 (en) Water treatment method and apparatus
JPH03137990A (en) High level treatment of sewage to be treated
JPH11226587A (en) Water treatment apparatus
JPH0326393A (en) Water treating device
JPH10305287A (en) Ozone catalytic reactor
JP2000279977A (en) Fluid treatment and fluid treatment apparatus
KR20010044325A (en) A waste water treatment apparatus by the advanced oxidation processing method
JP3522010B2 (en) Pressurized downward injection type multi-stage ozone contact tank
JPH10337579A (en) Method and apparatus for treatment of wastewater
JPH01119394A (en) Treatment of water by photocatalyst
JPH03143594A (en) Water treatment
JPH0671273A (en) Ozone contact tank in advance purifying water system
JPH0332795A (en) Water treating device
JP2655299B2 (en) How to remove hydrogen peroxide
JPH11347576A (en) Method and apparatus for treating water
JP2000070971A (en) Ozone reaction system
JP2004329988A (en) Liquid purifying treatment method
JP3556515B2 (en) Wastewater treatment method using ozone and hydrogen peroxide
JP2883009B2 (en) Organic wastewater treatment method and apparatus
JPH0312283A (en) Method and apparatus for removing ozone in dissolved ozone water
JPH08131759A (en) Method and apparatus for purifying air
JP2003024991A (en) Treatment system for wastewater containing formalin
JPH0244599B2 (en) JUNKANRYOKASUINOJOKAHOHOOYOBISOCHI