JPH03137990A - High level treatment of sewage to be treated - Google Patents

High level treatment of sewage to be treated

Info

Publication number
JPH03137990A
JPH03137990A JP27604289A JP27604289A JPH03137990A JP H03137990 A JPH03137990 A JP H03137990A JP 27604289 A JP27604289 A JP 27604289A JP 27604289 A JP27604289 A JP 27604289A JP H03137990 A JPH03137990 A JP H03137990A
Authority
JP
Japan
Prior art keywords
water
catalyst
treatment
ozone
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27604289A
Other languages
Japanese (ja)
Inventor
Ikuo Takahashi
高橋 郁雄
Katsuhiro Shibata
芝田 勝博
Nobuyoshi Umiga
信好 海賀
Koji Tanaka
孝二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27604289A priority Critical patent/JPH03137990A/en
Publication of JPH03137990A publication Critical patent/JPH03137990A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To make sewage as high quality treated water by adding a catalyst to an effluent of a secondary treatment process from a sewage treatment facility, recovering the catalyst while treating the effluent with ozone, and filtering the resulting effluent after adding a flocculant. CONSTITUTION:Flowing water to be treated is led to the secondary treatment process 8 such as an activated sludge process, and a suspension catalyst (e.g. iron oxide catalyst) 9 is added to the treated water flowing out from the secondary treatment process. Then, it is led to ozone treatment process 10 and while carring out the ozone treatment, the suspension catalyst 9 is recovered and recycled. Further, after a flocculant 11 is added to the ozone treated water flowing out from the ozone treatment process 10 and adding a trace of the suspension catalyst 9, treated water is obtained through a sand filtration process 12. Periodically cleaned water in the sand filtration process 12 is sent to a sludge treating process 13.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は下水処理場から流出する二次処理水をオゾンに
より処理する下水処理水の高度処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Purpose of the Invention (Field of Industrial Application) The present invention relates to an advanced treatment method for treated sewage water in which secondary treated water flowing out from a sewage treatment plant is treated with ozone.

(従来の技術) 従来から、オゾンの酸化力を利用して、汚染された水の
処理が行なわれている。例えば、ヨーロッパでは、19
06年から上水の殺菌を目的として処理が行なわれてお
り、我国ではし尿処理施設の廃水処理に脱色を目的とし
て、全国で利用されてきている。また、工業廃水、特殊
用水における有機物の酸化処理等にも利用されてきてい
る。
(Prior Art) Conventionally, the oxidizing power of ozone has been used to treat contaminated water. For example, in Europe, 19
Treatment has been carried out for the purpose of sterilizing tap water since 2006, and in Japan it has been used throughout the country for the purpose of decolorizing wastewater treatment at human waste treatment facilities. It has also been used for the oxidation treatment of organic matter in industrial wastewater and special purpose water.

一方近年では、工業用水や上水等の水需要は、産業の発
達や生活水準の向上と共に急増しているが、地下水の減
少や河川水の汚濁により、その確保が困難になりつつあ
る。また、都市化に伴う開発や河川の暗渠化等により、
生活環境の快適さや安らぎを与える緑や水辺等の自然が
破壊されてきている。
On the other hand, in recent years, the demand for water, such as industrial water and tap water, has increased rapidly with the development of industry and the improvement of living standards, but it is becoming difficult to secure water due to the decrease in groundwater and the pollution of river water. In addition, due to development accompanying urbanization and river culverts, etc.
Nature such as greenery and waterfronts, which provide a comfortable and peaceful living environment, are being destroyed.

そこで、このような問題を解決するために、下水処理場
から流出する二次処理水をオゾンにより高度処理を行な
い、トイレ用水等の雑用水やアメニティ−下水道(修景
用水)として有効利用する動きが、各方面で検討されて
きている。
Therefore, in order to solve these problems, there is a movement to perform advanced treatment of secondary treated water flowing out from sewage treatment plants with ozone and use it effectively as water for miscellaneous purposes such as toilet water, amenity water, and sewerage (landscape water). However, various aspects are being considered.

下水処理場から流出する二次処理水としては、既に三次
処理技術(砂ろ過設備)が定着しつつあるが、現在の放
流水水質基準としては、BOD10ppm以下の条件た
けてあり、着色、脱気1;ついては不快感を与えない程
度となっており、前述のような処理水の有効利用が拡大
されるには、さらに水質改善を図ることが今後期待され
る。
Tertiary treatment technology (sand filtration equipment) is already becoming established for secondary treated water flowing out from sewage treatment plants, but the current quality standards for effluent water are BOD of 10 ppm or less, coloring, deaeration, etc. 1; it is at a level that does not cause discomfort, and it is expected that further improvements in water quality will be made in the future in order to expand the effective use of treated water as described above.

ところで、従来この種の下水処理水の高度処理方法とし
ては、例えば第2図に示すように、流入する被処理水を
活性汚泥法等の二次処理工程1に通し、その二次処理水
中に含まれるりん1窒素等を除去するために、PAC等
の凝集剤2を混入した後に砂ろ過工程3に通し、その三
次処理水をオゾン処理工程4に通し、脱色、脱臭、脱泡
を行なった処理水を得るようにしている。なお、砂ろ過
工程3で定期的に洗浄した洗浄水は、排泥処理工程5へ
送られる。
By the way, as a conventional advanced treatment method for sewage treated water of this kind, for example, as shown in Figure 2, inflowing treated water is passed through a secondary treatment process 1 such as an activated sludge method, and the secondary treatment water is In order to remove the contained phosphorus, nitrogen, etc., a flocculant such as PAC was mixed in, and the water was then passed through a sand filtration process 3, and the tertiary treated water was passed through an ozone treatment process 4, where it was decolorized, deodorized, and defoamed. We are trying to get treated water. Note that the washing water periodically washed in the sand filtration process 3 is sent to the sludge treatment process 5.

この場合、オゾンは空気あるいは酸素に対する無声放電
によって作られ、オゾン含有気体として得られる。水処
理には、散気管、インジェクター充填塔基を利用し、被
処理水と気液接触が行なわれている。散気管、インジェ
クターによる気液接触は、被処理水の連続層に対して微
細なオゾン含有気体を底部から導入するもので、水中を
上昇する気泡中のオゾンが、被処理水中の汚染物質を酸
化洗浄させる。オゾンガスは、気泡から水中へ溶解して
溶存有機物の酸化に利用され、特に脱色成分等の不飽和
結合の反応は早く、脱色効果か極めて高い。しかしなが
ら、COD等の低下は、反応した酸素原子の量のみに依
存し、不飽和結合を持たない溶存有機物には余り効果が
見られなかった。
In this case, ozone is produced by silent discharge against air or oxygen and is obtained as an ozone-containing gas. For water treatment, gas-liquid contact with the water to be treated is carried out using aeration pipes and injector-packed towers. Gas-liquid contact using air diffusers and injectors introduces fine ozone-containing gas from the bottom into a continuous layer of water to be treated, and the ozone in the bubbles rising through the water oxidizes pollutants in the water to be treated. Have it washed. Ozone gas dissolves into water from air bubbles and is used to oxidize dissolved organic matter. In particular, the reaction of unsaturated bonds such as decolorizing components is fast, and the decolorizing effect is extremely high. However, the reduction in COD etc. depended only on the amount of reacted oxygen atoms, and no significant effect was seen on dissolved organic matter that does not have unsaturated bonds.

そこで本発明者らは、このような問題点の改良を検討し
、オゾン酸化反応を促進する懸濁触媒を水中に分散させ
ることによって効果的にオゾン処理を行なうことを見出
し、懸濁触媒を種々調査したところ、酸化鉄がオゾン酸
化反応を著しく促進することがわかった。以下に、実験
室における実験例について示す。
Therefore, the present inventors investigated ways to improve these problems and discovered that ozone treatment can be effectively carried out by dispersing suspended catalysts that promote ozone oxidation reactions in water. Upon investigation, it was found that iron oxide significantly accelerates the ozone oxidation reaction. Below, an example of an experiment in a laboratory will be shown.

(実験例I) マロン酸CH2(COOH) 2を溶存有機物としてオ
ゾン処理を行なった。洗気ビンに、マロン酸水溶液(C
OD 38 m g / D :水温25℃)を250
mJ7入れ、オゾン化空気(オゾン濃度15mg/Ω)
を毎分0.5gの割合で散気し、CODの時間変化を求
めた。第3図のAは、この場合の結果を示すものである
(Experimental Example I) Ozone treatment was performed using malonic acid CH2(COOH)2 as a dissolved organic substance. Add malonic acid aqueous solution (C
OD 38 mg/D: water temperature 25℃) 250
mJ7 installed, ozonized air (ozone concentration 15mg/Ω)
was diffused at a rate of 0.5 g per minute, and the change in COD over time was determined. A in FIG. 3 shows the result in this case.

次に、同様のマロン酸水溶液に、酸化第2鉄2.0gを
懸濁させて同様にオゾン処理を行なった。第3図のBは
、この場合の結果を示すものである。
Next, 2.0 g of ferric oxide was suspended in the same malonic acid aqueous solution and ozone treatment was performed in the same manner. B in FIG. 3 shows the results in this case.

かかる二つの実験結果から、酸化鉄を懸濁したものの方
が、酸化鉄を混入しないものに比べてCODの除去率が
、30分後では13.2%から57.9%に上昇し、1
時間後では15.8%が87.4%に上昇し、酸化鉄が
オゾン酸化反応を促進していることがわかった。
From the results of these two experiments, the COD removal rate of the suspension containing iron oxide increased from 13.2% to 57.9% after 30 minutes compared to the suspension containing no iron oxide.
After some time, the concentration rose from 15.8% to 87.4%, indicating that iron oxide promotes the ozone oxidation reaction.

(実験例n) 次に、実際の下排水のオゾン処理を行なった。(Experiment example n) Next, actual sewage wastewater was subjected to ozone treatment.

この場合、実際の原水としては、主に生活排水を主体と
した〆ηれを活性汚泥法で処理した下水二次処理水に、
ポリ塩化アルミニュウを9mg/Ωを凝集剤として注入
し、砂ろ過した三次処理水を使用した。
In this case, the actual raw water is mainly domestic wastewater, which is treated with secondary sewage treatment using the activated sludge method.
Tertiary treated water was used which was injected with 9 mg/Ω of polyaluminum chloride as a coagulant and filtered through sand.

実験の方法としては、実験例Iのマロン酸水溶液を下水
の三次処理水に換えただけで、他の実験条件は全て同様
とした。第4図のAは酸化第2鉄を混入しないで行なっ
た場合の結果を示すものであり、また第4図のBは酸化
第2鉄を懸濁して行なった場合の結果を示すものである
As for the experimental method, all other experimental conditions were the same except that the malonic acid aqueous solution in Experimental Example I was replaced with tertiary treated sewage water. A in Figure 4 shows the results when the test was carried out without mixing ferric oxide, and B in Figure 4 shows the results when the test was carried out with ferric oxide suspended. .

かかる二つの実験結果から、実験例■の場合と同様に、
CODの除去率が、30分後では20.0%が48,0
%に上昇し、1時間後では28.0%が56.0%に上
昇し、下水処理水における反応効率の向上も認められた
From these two experimental results, as in the case of experimental example ■,
The COD removal rate is 20.0% after 30 minutes, but it is 48.0%.
%, and after 1 hour, the reaction efficiency rose from 28.0% to 56.0%, and an improvement in the reaction efficiency in treated sewage water was also observed.

よって、最近では第5図に示すように、流入する被処理
水を活性汚泥法等の二次処理工程1に通し、その二次処
理水中に含まれるりん、窒素等を除去するために、PA
C等の凝集剤2を混入した後に砂ろ過工程3に通し、こ
の砂ろ過工程3で処理した三次処理水に触媒6を混入し
、オゾン処理工程4でオゾン処理を行なう処理方法が提
案されてきている。
Therefore, recently, as shown in Figure 5, inflowing water to be treated is passed through a secondary treatment process 1 such as activated sludge method, and in order to remove phosphorus, nitrogen, etc. contained in the secondary treatment water, PA is used.
A treatment method has been proposed in which a coagulant 2 such as C is mixed in, the water is passed through a sand filtration step 3, a catalyst 6 is mixed into the tertiary treated water treated in the sand filtration step 3, and ozone treatment is performed in an ozone treatment step 4. ing.

以上のことから、下水処理水の高度処理方法としては、
オゾン処理工程において、処理水に懸濁触媒を混入する
ことにより処理効果が上がる。しかしながら、懸濁触媒
として例えば酸化鉄を使用した場合、粒度は0.2μm
と非常に細かく、そのほとんどが沈殿で回収できるが、
一部が上澄へ混入して処理水として流出することが考え
られ、当該処理水中に酸化鉄が含まれると、茶色に感じ
させて脱色目的のオゾン処理では好ましくない。
From the above, as an advanced treatment method for sewage treatment water,
In the ozone treatment process, the treatment effect is improved by mixing a suspended catalyst into the treated water. However, when using e.g. iron oxide as suspended catalyst, the particle size is 0.2 μm.
It is extremely fine and most of it can be recovered by precipitation, but
It is thought that some of the iron oxide may mix into the supernatant and flow out as treated water, and if iron oxide is contained in the treated water, it will appear brown, which is not preferable in ozone treatment for the purpose of decolorization.

このため、かかる触媒を除去するために、ろ過装置等を
更に設けなければならず、結果として全体設備が複雑な
ものになってしまう。
Therefore, in order to remove the catalyst, a filtration device or the like must be additionally provided, and as a result, the overall equipment becomes complicated.

(発明が解決しようとする課題) 以上のように、従来の下水処理水の高度処理方法では、
触媒を用いてオゾン処理を行なって高度な処理水を得る
場合に、ろ過装置等を使用しなければならないという問
題があった。
(Problem to be solved by the invention) As described above, in the conventional advanced treatment method for sewage treatment,
When ozone treatment is performed using a catalyst to obtain highly treated water, there is a problem in that a filtration device or the like must be used.

本発明の目的は、触媒を除去するためのろ過装置等を使
用することなく、触媒を用いてオゾン処理を行ない高度
な処理水を得ることが可能な下水処理水の高度処理方法
を提供することにある。
An object of the present invention is to provide an advanced treatment method for sewage treatment water that can perform ozone treatment using a catalyst and obtain highly treated water without using a filtration device or the like to remove the catalyst. It is in.

[発明の構成] (課題を解決するための手段) 上記の目的を達成するために本発明では、下水処理場の
二次処理工程から流出する処理水に触媒を混入し、次に
オゾン処理工程に通してオゾン処理を行ないつつ触媒を
回収し、次にオゾン処理工程から流出する微量の触媒を
含むオゾン処理水に凝集剤を添加し、しかる後に砂ろ過
工程に通して処理水を得るようにしている。
[Structure of the Invention] (Means for Solving the Problem) In order to achieve the above object, the present invention mixes a catalyst into the treated water flowing out from the secondary treatment process of a sewage treatment plant, and then performs the ozone treatment process. The catalyst is recovered while performing ozone treatment through the ozonation process, and then a flocculant is added to the ozonated water containing a trace amount of catalyst flowing out from the ozonation process, and then the treated water is obtained by passing it through a sand filtration process. ing.

(作用) 従って、本発明の下水処理水の高度処理方法においては
、下水処理場に流入する汚水は、二次処理工程で活性汚
泥法等の二次処理が行なわれ、二次処理水に触媒を混入
してオゾン処理工程でオゾン処理が行なわれることによ
り、脱色、脱臭。
(Function) Therefore, in the advanced treatment method for sewage treated water of the present invention, the sewage flowing into the sewage treatment plant is subjected to secondary treatment such as activated sludge method in the secondary treatment step, and the secondary treatment water is catalyzed. Decolorization and deodorization are achieved through ozone treatment in the ozone treatment process.

脱泡およびCODが減少する。そして、オゾン処理工程
から流出するオゾン処理水に凝集剤が添加され、砂ろ過
工程を通ることにより、二次処理水中に含まれているり
ん、窒素を含む88分と、触媒回収において微量流出す
る触媒が同時に除去され、高度な処理水が得られること
になる。
Defoaming and COD are reduced. A flocculant is added to the ozonated water flowing out from the ozone treatment process, and by passing it through the sand filtration process, 88% of the phosphorus and nitrogen contained in the secondary treatment water and a trace amount flow out during catalyst recovery. The catalyst will be removed at the same time and highly treated water will be obtained.

(実施例) 以下、本発明の一実施例について図面を参照して詳細に
説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は、本発明による下水処理水の高度処理方法の全
体構成例を示す工程図である。すなわち、本実施例の下
水処理水の高度処理方法は、まず流入する被処理水を活
性汚泥法等の二次処理工程8に通し、この二次処理工程
8から流出する処理水に懸濁触媒(例えば、酸化鉄触媒
)9を混入する。
FIG. 1 is a process diagram showing an example of the overall configuration of the advanced treatment method for treated sewage water according to the present invention. That is, in the advanced treatment method for sewage treated water of this embodiment, the inflowing water to be treated is first passed through a secondary treatment process 8 such as an activated sludge method, and a suspended catalyst is added to the treated water flowing out from the secondary treatment process 8. (For example, iron oxide catalyst) 9 is mixed.

次に、これをオゾン処理工程10に通してオゾン処理を
行ないつつ、懸濁触媒9を回収してリサイクルさせる。
Next, this is passed through an ozone treatment step 10 to perform ozone treatment, while the suspended catalyst 9 is collected and recycled.

次に、オゾン処理工程10から流出する微量の懸濁触媒
9を含むオゾン処理水に凝集剤11を添加し、しかる後
に砂ろ過工程12に通して処理水を得る。
Next, a flocculant 11 is added to the ozonated water containing a small amount of suspended catalyst 9 flowing out from the ozonation process 10, and then passed through a sand filtration process 12 to obtain treated water.

なお、砂ろ過工程12にて定期的に洗浄した洗浄水は、
排泥処理工程13へ送られる。
In addition, the washing water regularly washed in sand filtration step 12 is
The sludge is sent to the sludge treatment process 13.

本実施例の下水処理水の高度処理方法においては、二次
処理工程8で活性汚泥法等の二次処理が行なわれた二次
処理水に、懸濁触媒9として酸化鉄触媒を混入させるこ
とにより、不飽和結合を持たない溶存有機物の処理もが
促進され、オゾン反応効率を高めることができる。また
、オゾン処理工程10から流出するオゾン処理水は、二
次処理水中に含まれた88分が凝集し易くなる性質があ
り、オゾン処理工程10から流出するオゾン処理水に添
加する凝集剤11も少量で済む。さらに、オゾン処理工
程10から流出するオゾン処理水には微量の懸濁触媒9
が混入しているが、これに凝集剤11を添加して砂ろ過
工程12を通すことにより、二次処理水中に含まれてい
るりん、窒素を含む88分とともに全ての固形物が除去
され、高度な処理水を得ることができる。
In the advanced treatment method for sewage treatment water of this embodiment, an iron oxide catalyst is mixed as a suspended catalyst 9 into the secondary treatment water that has been subjected to secondary treatment such as an activated sludge method in the secondary treatment step 8. This also promotes the treatment of dissolved organic matter that does not have unsaturated bonds, making it possible to increase the ozone reaction efficiency. In addition, the ozonated water flowing out from the ozonation process 10 has a property that the 88 minutes contained in the secondary treatment water tends to coagulate, and the flocculant 11 added to the ozonated water flowing out from the ozonation process 10 also Only a small amount is required. Furthermore, the ozonated water flowing out from the ozonation process 10 contains a small amount of suspended catalyst 9.
However, by adding a flocculant 11 to the water and passing it through the sand filtration step 12, all the solids, including phosphorus and nitrogen contained in the secondary treatment water, are removed. Highly treated water can be obtained.

上述したように、本実施例の下水処理水の高度処理方法
は、流入する被処理水を二次処理工程8に通し、この二
次処理工程8から流出する処理水に懸濁触媒9である酸
化鉄触媒を混入し、次にこれをオゾン処理工程10に通
してオゾン処理を行ないつつ、懸濁触媒9を回収してリ
サイクルさせ、次にオゾン処理工程10から流出する微
量の懸濁触媒9を含むオゾン処理水に凝集剤11を添加
し、しかる後に砂ろ過工程12に通して処理水を得るよ
うにしたものである。
As mentioned above, in the advanced treatment method for sewage treated water of this embodiment, the inflowing water to be treated is passed through the secondary treatment step 8, and a suspended catalyst 9 is added to the treated water flowing out from the secondary treatment step 8. An iron oxide catalyst is mixed in, and then it is passed through an ozonation process 10 for ozonation, while the suspended catalyst 9 is collected and recycled, and then a trace amount of suspended catalyst 9 flows out from the ozonation process 10. A flocculant 11 is added to the ozone-treated water containing ozonated water, which is then passed through a sand filtration step 12 to obtain treated water.

従って、オゾン処理工程10に酸化鉄触媒が懸濁される
ことにより、酸化鉄表面に有機物が何首してオゾン酸化
を受は易くする働き、あるいは酸化鉄がオゾンと有機物
との反応によって過酸化物過酸化水素等の中間生成物を
酸化物が分解促進させるため、オゾン反応を促進して反
応効率を著しく高めることが可能となる。また、本実施
例のオゾン処理は、安価な酸化鉄触媒を用いたオゾン処
理であり、オゾン処理で凝集し易くなった88分と微量
流出する懸濁触媒9とを、少量の凝集剤11の添加で同
時に除去することができるため、懸濁触媒9を除去する
ための特別なろ過装置等が一切不要となり、その分だけ
全体設備を簡単なものにすることが可能となる。
Therefore, by suspending an iron oxide catalyst in the ozone treatment step 10, organic substances are added to the surface of iron oxide, making it more susceptible to ozone oxidation, or iron oxide becomes peroxide due to the reaction between ozone and organic substances. Since the oxide accelerates the decomposition of intermediate products such as hydrogen peroxide, it becomes possible to accelerate the ozone reaction and significantly increase the reaction efficiency. In addition, the ozone treatment in this example is an ozone treatment using an inexpensive iron oxide catalyst, and a small amount of flocculant 11 is used to remove the 88 minutes and the suspended catalyst 9 that flows out in small amounts due to the ozone treatment. Since the suspended catalyst 9 can be removed at the same time as the addition, there is no need for any special filtration equipment or the like for removing the suspended catalyst 9, and the overall equipment can be simplified accordingly.

尚、上記実施例では、懸濁触媒9として酸化鉄を使用し
た場合を例として説明したが、何んらこれに限定される
ものではなく、懸濁触媒9として第2酸化鉄を使用する
場合についても、本発明を同様に適用して同様の効果を
得ることができるものである。
In addition, in the above embodiment, the case where iron oxide is used as the suspension catalyst 9 has been explained as an example, but the invention is not limited to this in any way, and the case where secondary iron oxide is used as the suspension catalyst 9 is explained. The present invention can also be similarly applied to obtain similar effects.

[発明の効果] 以上説明したように本発明によれば、下水処理場の二次
処理工程から流出する処理水に触媒を混入し、次にオゾ
ン処理工程に通してオゾン処理を行ないつつ触媒を回収
し、次にオゾン処理工程から流出する微量の触媒を含む
オゾン処理水に凝集剤を添加し、しかる後に砂ろ過工程
に通して処理水を得るようにしたので、触媒を除去する
ためのろ過装置等を使用することなく、触媒を用いてオ
ゾン処理を行ない高度な処理水を得ることが可能な下水
処理水の高度処理方法が提供できる。
[Effects of the Invention] As explained above, according to the present invention, a catalyst is mixed into the treated water flowing out from the secondary treatment process of a sewage treatment plant, and then the catalyst is mixed into the treated water flowing out from the secondary treatment process of a sewage treatment plant, and then the catalyst is added while performing ozone treatment through the ozone treatment process. A flocculant was added to the ozonated water containing a small amount of catalyst that flows out from the ozonation process, and then passed through a sand filtration process to obtain treated water. It is possible to provide an advanced treatment method for sewage treated water that can perform ozone treatment using a catalyst to obtain highly treated water without using any equipment or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による下水処理水の高度処理方法の一実
施例を示す工程図、第2図は従来の下水処理水の高度処
理方法の一例を示す工程図、第3図はマロン酸水溶液を
洗気ビンに入れて実験的にオゾン処理を行なった場合の
CODの時間的変化の一例を示す図、第4図は実際の下
排水を洗気ビンに入れて実験的にオゾン処理を行なった
場合のCODの時間的変化の一例を示す図、第5図は従
来の下水処理水の高度処理方法の他の例を示す工程図で
ある。 8・・・二次処理工程、9・・・懸濁触媒、10・・・
オゾン処理工程、11・・・凝集剤、12・・・砂ろ過
工程、13・・・排泥処理工程。 第1図 第2図
Figure 1 is a process diagram showing an example of the advanced treatment method for sewage treatment water according to the present invention, Figure 2 is a process diagram showing an example of the conventional advanced treatment method for sewage treatment water, and Figure 3 is a malonic acid aqueous solution. Figure 4 shows an example of the change in COD over time when sewage water was placed in an air washing bottle and subjected to experimental ozone treatment. FIG. 5 is a process chart showing another example of the conventional advanced treatment method for sewage treated water. 8... Secondary treatment step, 9... Suspension catalyst, 10...
Ozone treatment process, 11... flocculant, 12... sand filtration process, 13... sludge treatment process. Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)下水処理場の二次処理工程から流出する処理水に
触媒を混入し、次にオゾン処理工程に通してオゾン処理
を行ないつつ触媒を回収し、次に前記オゾン処理工程か
ら流出する微量の触媒を含むオゾン処理水に凝集剤を添
加し、しかる後に砂ろ過工程に通して処理水を得るよう
にしたことを特徴とする下水処理水の高度処理方法。
(1) A catalyst is mixed into the treated water flowing out from the secondary treatment process of a sewage treatment plant, and then passed through an ozone treatment process to recover the catalyst while performing ozone treatment, and then a trace amount flows out from the ozone treatment process. An advanced treatment method for sewage treated water, characterized in that a flocculant is added to ozonated water containing a catalyst, and then the treated water is obtained through a sand filtration process.
(2)前記触媒としては酸化鉄触媒を用いるようにした
ことを特徴とする請求項(1)項に記載の下水処理水の
高度処理方法。
(2) The advanced treatment method for treated sewage water according to claim (1), wherein an iron oxide catalyst is used as the catalyst.
JP27604289A 1989-10-25 1989-10-25 High level treatment of sewage to be treated Pending JPH03137990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27604289A JPH03137990A (en) 1989-10-25 1989-10-25 High level treatment of sewage to be treated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27604289A JPH03137990A (en) 1989-10-25 1989-10-25 High level treatment of sewage to be treated

Publications (1)

Publication Number Publication Date
JPH03137990A true JPH03137990A (en) 1991-06-12

Family

ID=17563978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27604289A Pending JPH03137990A (en) 1989-10-25 1989-10-25 High level treatment of sewage to be treated

Country Status (1)

Country Link
JP (1) JPH03137990A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1447383A1 (en) * 2003-02-10 2004-08-18 Huei-Tarng Liou Method for reducing COD (chemical oxygen demand) in waste water by using ozone with divalent ion
US6913698B2 (en) 2003-01-03 2005-07-05 Huei-Tarng Liou Method for reducing COD (chemical oxygen demand) in waste water by using O3 with valent ion chelation
US7445721B2 (en) * 2003-12-03 2008-11-04 Idaho Research Foundation, Inc. Reactive filtration
US7713423B2 (en) 2002-12-04 2010-05-11 Idaho Research Foundation, Inc. Reactive filtration
US7713426B2 (en) 2008-01-11 2010-05-11 Blue Water Technologies, Inc. Water treatment
US8071055B2 (en) 2002-12-04 2011-12-06 Blue Water Technologies, Inc. Water treatment techniques
US8080163B2 (en) 2002-12-04 2011-12-20 Blue Water Technologies, Inc. Water treatment method
CN103172148A (en) * 2013-04-10 2013-06-26 张登平 Sewage treating device
US8741154B2 (en) 2008-10-17 2014-06-03 Remembrance Newcombe Water denitrification
CN104496077A (en) * 2014-12-22 2015-04-08 同济大学 Deep scrap iron catalytic ozonation wastewater treatment method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8071055B2 (en) 2002-12-04 2011-12-06 Blue Water Technologies, Inc. Water treatment techniques
USRE44570E1 (en) 2002-12-04 2013-11-05 Board Of Regents Of The University Of Idaho Reactive filtration
US7713423B2 (en) 2002-12-04 2010-05-11 Idaho Research Foundation, Inc. Reactive filtration
US8080163B2 (en) 2002-12-04 2011-12-20 Blue Water Technologies, Inc. Water treatment method
US7744764B2 (en) * 2002-12-04 2010-06-29 Idaho Research Foundation, Inc. Reactive filtration
US6913698B2 (en) 2003-01-03 2005-07-05 Huei-Tarng Liou Method for reducing COD (chemical oxygen demand) in waste water by using O3 with valent ion chelation
EP1447383A1 (en) * 2003-02-10 2004-08-18 Huei-Tarng Liou Method for reducing COD (chemical oxygen demand) in waste water by using ozone with divalent ion
US7445721B2 (en) * 2003-12-03 2008-11-04 Idaho Research Foundation, Inc. Reactive filtration
US7713426B2 (en) 2008-01-11 2010-05-11 Blue Water Technologies, Inc. Water treatment
US8741154B2 (en) 2008-10-17 2014-06-03 Remembrance Newcombe Water denitrification
US9670082B2 (en) 2008-10-17 2017-06-06 Nexom (Us), Inc. Water denitrification
CN103172148B (en) * 2013-04-10 2014-04-09 张登平 Sewage treating device
CN103172148A (en) * 2013-04-10 2013-06-26 张登平 Sewage treating device
CN104496077A (en) * 2014-12-22 2015-04-08 同济大学 Deep scrap iron catalytic ozonation wastewater treatment method

Similar Documents

Publication Publication Date Title
RU2359919C2 (en) Plant and method of waste water cleaning
JP2009507625A (en) Wastewater purification method by adding oxidizer
CN107473435A (en) A kind of catalysed oxidation processes of low concentration bio-refractory industrial organic waste water processing
CN101311130A (en) Water treatment process of O3/H2O2/multiphase-fenton
JPH03137990A (en) High level treatment of sewage to be treated
CN108264186A (en) A kind of method recycled to nitric wastewater
JP2007083171A (en) Method and apparatus for treating water
CN109879512A (en) Method for treating garbage percolation liquid based on ceramic membrane
JP3801004B2 (en) Method and apparatus for treating organic wastewater
JP3575047B2 (en) Wastewater treatment method
JP3389902B2 (en) Sludge treatment method and sludge treatment device
JPH09314156A (en) Ozone treatment apparatus in which biological filter device is incorporated
JPH10305287A (en) Ozone catalytic reactor
JPH07275900A (en) Method for treating wastewater containing organic substance
JP3461514B2 (en) Advanced water treatment system and method of starting advanced water treatment system
JPH1133561A (en) Flocculation and sedimentation treatment equipment
JP3168757B2 (en) Advanced treatment method and equipment for purified water
JPH0671273A (en) Ozone contact tank in advance purifying water system
JP3178975B2 (en) Water treatment method
JP3449864B2 (en) Method and apparatus for reducing organic sludge
JPH03143594A (en) Water treatment
CN103833168B (en) Chemical microwave treatment method of industrial methyldiethanolamine wastewater
JPH10249329A (en) Water treating method and device therefor
JPH0332795A (en) Water treating device
KR100225693B1 (en) Nonbiodegradable organic material treatment process