JPH1133561A - Flocculation and sedimentation treatment equipment - Google Patents

Flocculation and sedimentation treatment equipment

Info

Publication number
JPH1133561A
JPH1133561A JP9200359A JP20035997A JPH1133561A JP H1133561 A JPH1133561 A JP H1133561A JP 9200359 A JP9200359 A JP 9200359A JP 20035997 A JP20035997 A JP 20035997A JP H1133561 A JPH1133561 A JP H1133561A
Authority
JP
Japan
Prior art keywords
sludge
ozone
tank
returned
coagulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9200359A
Other languages
Japanese (ja)
Inventor
Satoshi Yo
敏 楊
Fudeko Tsunoda
ふで子 角田
Tomio Iwai
富雄 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP9200359A priority Critical patent/JPH1133561A/en
Publication of JPH1133561A publication Critical patent/JPH1133561A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently decompose and remove a TOC component, iron, manganese or the like in return sludge by providing the way of a sludge return system with a sludge crushing means, a means adding an oxidizing agent to chemically oxidize return sludge to modify the same and an acid adding means ionizing flocs of an inorg. metal flocculant. SOLUTION: Sludge of a flocculation sedimentation tank 3 in purified water making equipment is conc. in a flocculated sludge concn. tank 5 and a part of conc. and flocculated sludge is sent to an aeration tank 8. Next, the sludge subjected to aeration treatment in the aeration tank 8 is aerated by ozone supplied to an ozone reaction tank 102 from an ozone generator 103. Return sludge is crushed and dispersed by the ultrasonic crusher attached to the ozone reaction tank 102 and oxidation is perfectly performed by aerated ozone to oxidize and decompose TOC or the like in flocculated sludge. An acid is added to the sludge aerated by ozone from an acid storage tank 12 on the way through a sludge return pipe 19 and the inorg. metal flocculant in sludge is ionized by a stirring device 13 to be returned to a stirring tank 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原水を凝集沈澱処
理して水道水、工業用水等の浄水および工業用水を製造
するに際し、凝集沈澱した汚泥の一部を回収使用し、凝
集剤使用量の低減および発生する汚泥性状の改質のため
に用いる凝集沈澱処理設備に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a process for coagulating and sedimenting raw water to produce purified water such as tap water and industrial water and industrial water. The present invention relates to a coagulation / sedimentation treatment facility used for reducing sludge and modifying the generated sludge properties.

【0002】[0002]

【従来の技術】原水を処理して浄水を製造する方法とし
て、アルミニウム系の凝集剤を添加して、攪拌装置で原
水と凝集剤を攪拌混和し、濁質成分を生成したフロック
で捕集して沈澱設備に導入して固液分離し、上澄水を処
理浄水とする凝集沈澱処理法がある。その際に固液分離
された固体は、沈降させた後沈澱設備より引き抜き、濃
縮後機械的または自然乾燥により脱水し、廃棄処分また
は再利用している。しかしこの方法は、処理操作が簡単
ではあるが、使用する凝集剤の量が多いという問題のあ
ることが知られている。
2. Description of the Related Art As a method for producing purified water by treating raw water, an aluminum-based flocculant is added, the raw water and the flocculant are stirred and mixed by a stirrer, and collected by a floc that generates a turbid component. There is a coagulation-sedimentation method in which the solution is introduced into a sedimentation facility for solid-liquid separation, and the supernatant water is treated and purified. The solid that has been separated into solid and liquid at that time is settled and then withdrawn from a sedimentation facility, concentrated, dehydrated by mechanical or natural drying, and disposed of or reused. However, this method is known to have a problem that although the processing operation is simple, a large amount of coagulant is used.

【0003】上記方法における凝集剤使用量を低減する
目的で、分離回収した汚泥をpH2程度にしてこれに含
まれている水酸化アルミニウム(Al(OH)3)を溶
解させ、上澄液からアルミニウムイオンAl3+を回収し
て凝集剤として再利用する方法も提案されている。これ
は一般に再生バンド方式と称され、再利用によって使用
する凝集剤の量が減少するため設備の運転コストが削減
されるという優れた利点がある。
[0003] In order to reduce the amount of coagulant used in the above method, the separated and recovered sludge is adjusted to about pH 2, aluminum hydroxide (Al (OH) 3 ) contained therein is dissolved, and aluminum is removed from the supernatant. A method of collecting ionic Al 3+ and reusing it as a flocculant has also been proposed. This is generally called a regeneration band method, and has an excellent advantage that the operation cost of the equipment is reduced because the amount of the coagulant used is reduced by recycling.

【0004】しかし、この再生バンド方式は、汚泥中の
アルミニウムを有効に利用できるためアルミニウム系凝
集剤の使用量を削減できるものの、アルミニウム回収後
の酸性の汚泥は消石灰等を添加して脱水処理しなければ
ならず汚泥量が増加するという欠点がある。また、アル
ミニウムを含む上澄液と汚泥とを分離するための沈澱槽
が必要になると共に、年間に1〜2回程度沈澱槽底部に
溜まった高濃度の汚泥を清掃処理しなければならないと
いう欠点もある。
[0004] However, in this regeneration band system, although the amount of aluminum-based flocculant can be reduced because aluminum in sludge can be used effectively, acidic sludge after aluminum recovery is dehydrated by adding slaked lime or the like. The disadvantage is that the amount of sludge must be increased. In addition, a sedimentation tank for separating the supernatant liquid containing aluminum from the sludge is required, and the high-concentration sludge collected at the bottom of the sedimentation tank must be cleaned once or twice a year. There is also.

【0005】これらの再生バンド方式の欠点を解消する
ため、本出願人は、懸濁物質を凝結させる攪拌系に、再
活性化したアルミニウムイオンのみを戻すのではなく、
沈澱回収した汚泥の一部を戻し、かつこの汚泥返送の途
中においてこれに含まれる水酸化アルミニウムのイオン
化のために酸を添加する方法(特開平2−157005
号)や、さらにこの方法の改良法として汚泥返送系の途
中に、返送汚泥をこれに含まれる好気性微生物の至適環
境に所定時間保持する酸化手段(空気曝気)と、該返送
汚泥中に含まれるAl(OH)3をイオン化させる酸添
加手段とを、この順序で設けて返送汚泥の悪臭の発生を
防止した凝集沈澱処理設備(特開平7−328327
号)を提案している。
[0005] To overcome these drawbacks of the regenerative band system, the Applicant has proposed that instead of returning only the reactivated aluminum ions to the stirring system for coagulating the suspended matter,
A method in which a part of the sludge collected by settling is returned, and an acid is added during the return of the sludge to ionize aluminum hydroxide contained therein (Japanese Patent Laid-Open No. 2-157005).
Oxidizing means (air aeration) for maintaining the returned sludge in an optimal environment of the aerobic microorganisms contained therein for a predetermined time in the middle of the sludge return system as an improved method of this method; An acid addition means for ionizing Al (OH) 3 contained therein is provided in this order to prevent generation of offensive odor of returned sludge and coagulation / sedimentation treatment equipment (JP-A-7-328327).
No.).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、汚泥中
に取り込まれたTOC(Total OrganicC
arbon)成分は空気曝気によっては、分解除去でき
ないため、従来法ではTOC除去効率が悪くなる。さら
に、原水となる河川水中にクリプトスポリジウム等の病
原性微生物が混入した場合、凝集沈澱処理によりその大
部分が凝集汚泥に濃縮される。ほとんどの病原性微生物
は、オゾンにより不活性化されるが、汚泥の中心部に取
り込まれた病原性微生物に対してはオゾンの効力が不十
分となり、病原性微生物を完全に不活性化できないおそ
れがある。
However, TOC (Total Organic C) taken into sludge is not suitable.
Since the arbon component cannot be decomposed and removed by air aeration, the TOC removal efficiency is poor in the conventional method. Further, when pathogenic microorganisms such as Cryptosporidium are mixed into river water as raw water, most of the mixed water is concentrated into flocculated sludge by the flocculation and sedimentation treatment. Most pathogenic microorganisms are inactivated by ozone, but ozone is ineffective against pathogenic microorganisms trapped in sludge and may not be completely inactivated. There is.

【0007】本発明が解決しようとする課題は、TOC
除去効率に優れ、かつクリプトスポリジウム等の病原性
微生物で原水が汚染されていても、病原性微生物を死滅
除去できる凝集沈澱処理設備を提供することである。
The problem to be solved by the present invention is the TOC
An object of the present invention is to provide a coagulation-sedimentation treatment facility which is excellent in removal efficiency and capable of killing and removing pathogenic microorganisms even when raw water is contaminated with pathogenic microorganisms such as cryptosporidium.

【0008】[0008]

【課題を解決するための手段】本発明者らは、鋭意研究
を重ねた結果、返送汚泥を破砕処理し、汚泥改質を行う
ことにより上記課題を解決できることを見いだし、本発
明を完成するに至った。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that the above problems can be solved by crushing the returned sludge and reforming the sludge, and have completed the present invention. Reached.

【0009】すなわち、本発明は、無機金属凝集剤の添
加により原水中の懸濁物質を凝集させる攪拌系と、凝結
した懸濁物質を凝集沈澱させて処理水と分離し、処理水
は処理水系に流出させると共に沈澱汚泥は回収する汚泥
分離処理系と、沈澱回収した汚泥の少なくとも一部を上
記攪拌系に戻す汚泥返送系と、を有する凝集沈澱処理設
備において、汚泥返送系の途中に、返送汚泥を破砕する
汚泥破砕手段と、返送汚泥に酸化剤を添加して化学的に
酸化処理して返送汚泥を改質する手段とを設け、さらに
該返送汚泥中に含まれる無機金属凝集剤のフロックをイ
オン化する酸添加手段とを設けたことを特徴とする凝集
沈澱処理設備に関するものである。
That is, the present invention provides a stirring system for aggregating suspended substances in raw water by adding an inorganic metal flocculant, and a flocculating suspended substance to be coagulated and precipitated to be separated from treated water. In a coagulated sedimentation treatment system having a sludge separation treatment system for collecting and recovering the settled sludge and a sludge return system for returning at least a part of the collected sludge to the stirring system. Sludge crushing means for crushing the sludge, and means for adding an oxidizing agent to the returned sludge and chemically oxidizing the returned sludge to improve the returned sludge, and further comprising a floc of inorganic metal coagulant contained in the returned sludge And an acid addition means for ionizing the compound.

【0010】[0010]

【発明の実施の形態】請求項1ないし請求項5に記載の
本発明の凝集沈澱処理設備に用いられる無機金属凝集剤
としては、凝集フロックが酸によりイオン化されるもの
であれば特に限定されないが、例えば硫酸アルミニウ
ム、ポリ塩化アルミニウム(PAC)等のアルミニウム
系凝集剤や硫酸第二鉄、塩化第二鉄、ポリ硫酸鉄等の鉄
系凝集剤等を挙げることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The inorganic metal coagulant used in the coagulation / sedimentation treatment equipment of the present invention according to claims 1 to 5 is not particularly limited as long as the coagulated floc is ionized by an acid. Examples thereof include aluminum-based coagulants such as aluminum sulfate and polyaluminum chloride (PAC), and iron-based coagulants such as ferric sulfate, ferric chloride and polyiron sulfate.

【0011】請求項1に記載の凝集沈澱処理設備は、汚
泥破砕手段により汚泥を破砕分散させるので、凝集した
汚泥中に取り込まれたTOC成分が媒質中に放出される
ので、酸化剤によりTOC成分が効率的に酸化され、除
去することができる。また、原水が病原性微生物により
汚染されている場合、凝集した汚泥中に病原性微生物が
取り込まれているが、凝集汚泥が汚泥破砕手段により破
砕分散されるので、より少ない酸化剤による酸化処理に
より、病原性微生物を不活性化することができる。
In the coagulation and sedimentation treatment apparatus according to the first aspect, the sludge is crushed and dispersed by the sludge crushing means, so that the TOC component taken in the coagulated sludge is released into the medium. Is efficiently oxidized and can be removed. When the raw water is contaminated by pathogenic microorganisms, the pathogenic microorganisms are incorporated into the aggregated sludge, but the aggregated sludge is crushed and dispersed by the sludge crushing means. , Can inactivate pathogenic microorganisms.

【0012】汚泥破砕手段は、凝集した汚泥を破砕分散
できる手段であれば特に限定されないが、例えば、超音
波破砕機や高速ミキサー等を挙げることができる。
The sludge crushing means is not particularly limited as long as it can crush and disperse the aggregated sludge, and examples thereof include an ultrasonic crusher and a high-speed mixer.

【0013】汚泥破砕手段による汚泥破砕は、連続的に
行っても、間欠的に行ってもよい。また、汚泥破砕は酸
化処理と別々に行ってもよいが、酸化処理と同時に行う
方がより効率的になる。なお、汚泥破砕を酸化処理と別
々に行なう場合は、酸化処理を行なう前に汚泥破砕を行
なうようにするとよい。
The sludge crushing by the sludge crushing means may be performed continuously or intermittently. Further, sludge crushing may be performed separately from the oxidation treatment, but it is more efficient to perform the sludge crushing simultaneously with the oxidation treatment. When the sludge crushing is performed separately from the oxidation treatment, the sludge crushing may be performed before the oxidation treatment.

【0014】また、超音波破砕機等の汚泥破砕手段で返
送汚泥を所定時間破砕処理することにより、TOC成分
とともに鉄、マンガンなどの成分も溶液側に放出され
る。これらの成分はすべて酸化剤を消費するため、破砕
処理後の返送汚泥を遠心濃縮し、上澄水を別途処理すれ
ば、返送汚泥が濃縮されて減容化されるので、その後の
汚泥改質のための設備を小さくすることができ、また、
酸化剤使用量を低減することができる。さらに、遠心濃
縮した後の上澄水を生物処理することにより、ほとんど
の鉄と一部のマンガンおよびTOC成分を除去すること
ができる。より効率的に上澄水中のTOC、マンガンを
除去するためには、酸化剤などでTOC成分を生分解性
のよいものに改質してから生物処理するとよい。その場
合、酸化剤を節約するために、酸化剤を添加する前に、
上澄水を空気、排オゾンガスなどで曝気して鉄成分を予
め酸化すればよい。また、遠心濃縮機で汚泥を濃縮する
場合、汚泥の操作性から濃縮された汚泥のTS(Tot
al Solid)濃度を1〜5%にするとよい。
Further, by subjecting the returned sludge to crushing for a predetermined time by a sludge crushing means such as an ultrasonic crusher, components such as iron and manganese are released to the solution side together with the TOC component. Since all of these components consume the oxidizing agent, the returned sludge after the crushing treatment is centrifugally concentrated, and if the supernatant water is separately treated, the returned sludge is concentrated and reduced in volume, so that the sludge reforming process is Equipment can be reduced,
The use amount of the oxidizing agent can be reduced. Furthermore, the biological treatment of the supernatant water after centrifugal concentration can remove most of iron and some manganese and TOC components. In order to remove TOC and manganese in the supernatant water more efficiently, the TOC component may be modified to a biodegradable material with an oxidizing agent or the like, and then subjected to biological treatment. In that case, to save the oxidizer, before adding the oxidizer,
The supernatant may be aerated with air, exhausted ozone gas or the like to oxidize the iron component in advance. When the sludge is concentrated by the centrifugal concentrator, the TS (Tot) of the concentrated sludge is used due to the operability of the sludge.
al Solid) concentration is preferably 1 to 5%.

【0015】請求項3に記載の発明は、返送汚泥を所定
時間含酸素気体で曝気して、返送汚泥中の鉄を酸化し、
さらに汚泥が嫌気状態になって悪臭を発生するのを防止
し、しかる後に含酸素気体による曝気では酸化しきれな
いマンガンを、酸化剤を添加して化学的に酸化すること
を特徴としている。これにより、酸化剤のみで鉄とマン
ガンの両方を酸化する場合に比べて酸化剤の添加を減ら
すことができる。
According to a third aspect of the present invention, the returned sludge is aerated with an oxygen-containing gas for a predetermined time to oxidize iron in the returned sludge,
Further, the present invention is characterized in that sludge is prevented from becoming anaerobic to generate an odor, and manganese which cannot be completely oxidized by aeration with an oxygen-containing gas is chemically oxidized by adding an oxidizing agent. Thereby, the addition of the oxidizing agent can be reduced as compared with the case where both iron and manganese are oxidized only by the oxidizing agent.

【0016】請求項4に記載の発明において活性炭を添
加する理由は、例えば酸化剤としてオゾンを使用する場
合、オゾン単独でTOCを除去することは通常難しいの
で、そこでオゾン処理では主としてFeおよびMnの酸
化を行い、残留するTOCを粉末活性炭で除去するよう
にしたものである。また、オゾンと過酸化水素で処理し
た後に活性炭を添加する場合は、TOCをより効率的に
除去することができる。 活性炭の添加量は、汚泥1L
当たり50〜2000mg、好ましくは200〜100
0mgの範囲で適宜選択すればよい。
The reason for adding activated carbon in the invention according to claim 4 is that, for example, when ozone is used as an oxidizing agent, it is usually difficult to remove TOC with ozone alone. The oxidation is performed, and the remaining TOC is removed with powdered activated carbon. Further, when activated carbon is added after treatment with ozone and hydrogen peroxide, TOC can be more efficiently removed. The amount of activated carbon added is 1L of sludge.
50 to 2000 mg, preferably 200 to 100
What is necessary is just to select suitably in the range of 0 mg.

【0017】活性炭を添加する位置は、汚泥に酸を添加
して汚泥中の無機金属凝集剤のフロックを溶解する反応
槽中に酸と同時に添加するか、あるいは汚泥に酸を添加
した後に活性炭を添加するのが好ましい。
The activated carbon may be added at the same time as the acid is added to the sludge and the acid is added to the reaction tank for dissolving the floc of the inorganic metal coagulant in the sludge, or the activated carbon is added after the acid is added to the sludge. It is preferred to add.

【0018】その理由は、汚泥に酸を添加して酸性に調
整することにより、汚泥中の固形物からTOC成分が溶
出し、汚泥のTOC濃度が増加するとともに、有機物に
対する活性炭の吸着効率は一般に中性よりも酸性側の方
が高いためである。
The reason is that by adding an acid to the sludge to adjust the acidity, the TOC component is eluted from the solid matter in the sludge, the TOC concentration of the sludge increases, and the adsorption efficiency of activated carbon to organic matter generally increases. This is because the acid side is higher than the neutral side.

【0019】請求項1ないし請求項6に記載の発明にお
いて、原水中の懸濁物質を凝結させる攪拌系とは、凝集
剤の添加により原水中の懸濁物質を微小な粒子に結合さ
せる反応(凝結反応)を行なう系として形成され、一般
的には、開放型の槽に導入された原水に対し凝集剤を添
加して急速に混和させる攪拌機付の槽(攪拌槽)として
設けられる。なお場合によっては比較的強い水流で攪拌
するタイプの攪拌槽も用いられる。この攪拌槽中(及び
/又は次記凝集沈澱槽)の原水に対しては従来法と同様
に塩素を添加するようにしてもよい。
In the first to sixth aspects of the present invention, the stirring system for coagulating the suspended matter in the raw water refers to a reaction for binding the suspended substance in the raw water to fine particles by adding a coagulant. (Coagulation reaction), and is generally provided as a tank with a stirrer (stirring tank) for adding a flocculant to raw water introduced into an open-type tank and mixing rapidly. In some cases, a stirring tank of a type that is stirred by a relatively strong water flow is also used. Chlorine may be added to the raw water in the stirring tank (and / or the coagulating sedimentation tank described below) as in the conventional method.

【0020】この攪拌系の次段に設けられ、凝結した懸
濁物質を凝集フロックとして成長させ沈澱させた汚泥を
処理水と分離して回収する上記汚泥分離処理系は、例え
ば、適度の緩速攪拌を行ないながら、凝結した懸濁物質
を凝集フロックとして成長させる領域と、この成長した
フロックを沈降により処理水と固液分離する領域とから
なる凝集沈澱槽として設けることができるが、特にこれ
に限定されるものではなく、既知の方式のいずれのもの
であってもよく、さらに上記攪拌系と汚泥分離処理系と
が一体として形成されている凝集沈澱槽も用いることが
できる。また、この凝集沈澱槽の汚泥引抜き系の次段
に、引抜いた汚泥を、原水側に戻すのに適した濃度に濃
縮調整するシックナー(沈降型濃縮槽)等の濃縮手段を
設けることが好ましい。
The sludge separation treatment system, which is provided at the next stage of the stirring system and grows coagulated suspended matter as flocculated floc and separates and recovers sludge precipitated from treated water, is, for example, a moderately slow sludge. While stirring, it can be provided as a coagulation sedimentation tank consisting of a region in which the coagulated suspended matter is grown as coagulated flocs, and a region in which the grown flocs are separated from treated water by settling to solid-liquid separation. The method is not limited, and any known method may be used. In addition, a coagulation settling tank in which the above-described stirring system and sludge separation treatment system are integrally formed may be used. Further, it is preferable to provide a thickening means such as a thickener (sedimentation type thickening tank) for adjusting the concentration of the extracted sludge to a concentration suitable for returning to the raw water side, at the next stage of the sludge pulling system of the coagulating sedimentation tank.

【0021】沈澱回収した汚泥を上記攪拌系に戻す汚泥
返送系は、上記凝集沈澱槽,濃縮槽等から連続的あるい
は間欠的に汚泥返送する経路として設けられ、汚泥返送
のためのポンプなどが併設される。返送は通常は上記凝
集沈澱槽,濃縮槽等で回収された汚泥の一部とされるが
必要に応じて全部とすることもできる。汚泥の返送は、
上記攪拌系の槽に戻すようにしてもよいし、攪拌槽に原
水を導入する経路に戻すようにしてもよく、特に限定さ
れるものではない。
A sludge return system for returning the collected sludge to the agitation system is provided as a path for continuously or intermittently returning sludge from the coagulation settling tank, the thickening tank, etc., and is provided with a pump for returning sludge. Is done. The return is usually a part of the sludge collected in the coagulating sedimentation tank, the thickening tank, etc., but it can be all if necessary. Returning sludge,
It may be returned to the above-described stirring system tank, or may be returned to the path for introducing raw water into the stirring tank, and is not particularly limited.

【0022】返送汚泥を所定時間含酸素気体で曝気する
方法は、特に限定されず例えば曝気槽に返送汚泥を導入
し、一般的には1時間当たりの空気(1気圧)量が汚泥
量とほぼ同量とした曝気を0.5時間〜24時間程度行
なうことにより、汚泥中の鉄が酸化され、さらに汚泥が
好気性状態となるため、返送汚泥が嫌気状態となること
による臭気発生を防止することができる。なお、鉄の酸
化や臭気の除去を主目的とした場合は曝気量にもよるが
通常、1時間〜12時間の曝気で十分である。返送汚泥
を所定時間含酸素気体で曝気した後添加する酸化剤とし
ては、オゾン、過酸化水素、次亜塩素酸ナトリウム、液
化塩素、二酸化塩素等を挙げることができるが、酸化力
が強く後述するように耐塩素性病原体を死滅除去できる
点で、オゾンまたはオゾンと過酸化水素の併用が好まし
い。
The method of aerating the returned sludge with oxygen-containing gas for a predetermined time is not particularly limited. For example, the returned sludge is introduced into an aeration tank, and the amount of air (1 atm) per hour is generally equal to the amount of sludge. By performing the same amount of aeration for about 0.5 to 24 hours, iron in the sludge is oxidized, and the sludge further becomes aerobic, thereby preventing odor generation due to the returned sludge becoming anaerobic. be able to. When the main purpose is to oxidize iron or remove odor, depending on the amount of aeration, aeration for 1 hour to 12 hours is usually sufficient. The oxidizing agent added after the returned sludge is aerated with an oxygen-containing gas for a predetermined time includes ozone, hydrogen peroxide, sodium hypochlorite, liquefied chlorine, chlorine dioxide, and the like. Ozone or a combination of ozone and hydrogen peroxide is preferred from the viewpoint that chlorine-resistant pathogens can be killed and removed.

【0023】酸化剤としてオゾンを用いる場合は、曝気
によりオゾンを供給することが好ましい。
When ozone is used as the oxidizing agent, it is preferable to supply ozone by aeration.

【0024】また、酸化剤としてのオゾンは、クリプト
スポリジウム等の耐塩素性病原体を死滅させることがで
きる点でも好ましい。オゾンによるクリプトスポリジウ
ムの不活性(死滅)率は、 c×t=10mg・min/L (ただし、c:溶存オゾン濃度(mg/L)、t:反応
時間(min))の条件で99%である。
Ozone as an oxidizing agent is also preferable in that it can kill chlorine-resistant pathogens such as Cryptosporidium. The inactivation (death) rate of Cryptosporidium by ozone is 99% under the conditions of c × t = 10 mg · min / L (c: dissolved ozone concentration (mg / L), t: reaction time (min)). is there.

【0025】したがって、オゾンで処理する場合は、c
×t値が15mg・min/L以上、好ましくは20〜
60mg・min/Lとなるような条件でオゾン処理を
行うことにより、クリプトスポリジウムをほぼ完全に死
滅させることができる。
Therefore, when treating with ozone, c
× t value is 15 mg · min / L or more, preferably 20 to
Cryptosporidium can be almost completely killed by performing the ozone treatment under the condition of 60 mg · min / L.

【0026】一方、汚泥中には凝集剤に吸着したTOC
(Total Organic Carbon)成分が
数十mg/L程度含まれている。このTOC成分は塩素
処理によりトリハロメタンとなるので、汚泥中からでき
るだけ取り除くことが好ましい。汚泥中のTOC成分
は、オゾン単独ではほとんど低減できないが、オゾンと
過酸化水素を併用することにより大幅に低減できる。従
って、オゾンと過酸化水素処理により、汚泥中のマンガ
ンの酸化だけではなく、TOC成分も除去でき、よって
凝集沈澱処理水中のマンガンとトリハロメタン発生源で
あるTOC成分を低減することができる。
On the other hand, the sludge contains TOC adsorbed on the flocculant.
(Total Organic Carbon) component is contained at about several tens mg / L. Since this TOC component becomes trihalomethane by chlorination, it is preferable to remove as much as possible from sludge. The TOC component in sludge can hardly be reduced by ozone alone, but can be significantly reduced by using ozone and hydrogen peroxide together. Therefore, by the treatment with ozone and hydrogen peroxide, not only the oxidation of manganese in the sludge but also the TOC component can be removed, and thus the manganese in the coagulated sedimentation-treated water and the TOC component which is a source of trihalomethane can be reduced.

【0027】なお、オゾンと過酸化水素を併用して処理
する場合は、オゾンと過酸化水素を同時に使用するとオ
ゾン単独の場合と比べて殺菌力が弱くなるため、まず上
記条件に準じてオゾン処理を行って汚泥中のマンガンを
酸化するとともに耐塩素性病原体を死滅させ、次いでオ
ゾン処理後の汚泥に過酸化水素を添加し、その後再びオ
ゾンを吹き込んでTOCの分解を行うようにするのが好
ましい。したがって、オゾンと過酸化水素を併用する場
合は、第1段目のオゾン処理槽と、過酸化水素添加後の
第2段目のオゾン処理槽の二つのオゾン処理槽が必要と
なる。
In the case where ozone and hydrogen peroxide are used in combination, the sterilizing power is weaker when ozone and hydrogen peroxide are used at the same time than when ozone is used alone. To oxidize manganese in the sludge and kill chlorine-resistant pathogens, then add hydrogen peroxide to the sludge after ozone treatment, and then blow ozone again to decompose the TOC. . Therefore, when both ozone and hydrogen peroxide are used, two ozone treatment tanks, a first-stage ozone treatment tank and a second-stage ozone treatment tank after adding hydrogen peroxide, are required.

【0028】返送汚泥を酸化剤により化学処理した後、
無機金属凝集剤を回収再利用するためにフロックをイオ
ン化するための酸添加手段を設けるが、酸添加手段とし
ては硫酸,塩酸などの鉱酸、好ましくは硫酸を添加し
て、返送汚泥をpH4以下、好ましくはpH2〜3程度
にするものである。具体的には攪拌機を有する貯槽に酸
を添加する方式、汚泥返送経路に酸を注入して経路中で
攪拌する方式、汚泥返送経路に酸を注入して攪拌機で攪
拌する方式など種々のものを採用することができる。酸
添加手段にはpHメータ等を設けて添加量制御を行なう
ことも好ましい。酸添加手段により無機金属凝集剤のフ
ロックをイオン化することができ、イオン化された無機
金属凝集剤が凝集工程へ返送されるため、凝集工程で使
用する無機金属凝集剤の使用量を低減することができ
る。
After the returned sludge is chemically treated with an oxidizing agent,
In order to recover and reuse the inorganic metal coagulant, an acid addition means for ionizing floc is provided. As the acid addition means, a mineral acid such as sulfuric acid or hydrochloric acid, preferably sulfuric acid is added, and the returned sludge is pH 4 or less. The pH is preferably adjusted to about 2 to 3. Specifically, there are various methods such as a method of adding acid to a storage tank having a stirrer, a method of injecting acid into a sludge return path and stirring in the path, and a method of injecting acid into a sludge return path and stirring with a stirrer. Can be adopted. It is also preferable to provide a pH meter or the like in the acid addition means to control the addition amount. The floc of the inorganic metal coagulant can be ionized by the acid addition means, and the ionized inorganic metal coagulant is returned to the coagulation step, so that the amount of the inorganic metal coagulant used in the coagulation step can be reduced. it can.

【0029】[0029]

【実施例】以下本発明を浄水製造設備に適用した場合の
実施例として、図面に基づいて更に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a water purification plant will be further described below with reference to the drawings.

【0030】実施例1 図1において、2は凝集剤混和攪拌槽であり、回転羽根
型の攪拌装置を備えている。そしてこの攪拌槽2におい
て、原水導入管1から導入される原水と、凝集剤貯留槽
16からポンプ等の凝集剤注入装置15により注入され
る無機金属凝集剤を攪拌混和させ、原水中に含まれてい
る懸濁物質の凝結反応を行なわせる。
Example 1 In FIG. 1, reference numeral 2 denotes a flocculant mixing and stirring tank, which is provided with a rotary blade type stirring device. In the stirring tank 2, the raw water introduced from the raw water introduction pipe 1 and the inorganic metal coagulant injected by the coagulant injection device 15 such as a pump from the coagulant storage tank 16 are stirred and mixed, and contained in the raw water. The coagulation reaction of the suspended material is carried out.

【0031】この凝集剤混和攪拌槽2の後段には、凝集
沈澱槽3が配置されていて、凝結された懸濁物質の微粒
子を適度の緩速攪拌により凝集フロック化すると共に更
にこれを成長させて、沈降分離により該槽3の底部に汚
泥を沈澱させ、他方、処理水18は、図示しない溢流路
を介して、同じく図示しない後段の浄水処理系に流出さ
せる。
A flocculating sedimentation tank 3 is disposed downstream of the flocculating agent mixing and stirring tank 2. The flocculated suspended fine particles are flocculated by moderate slow stirring and further grown. Then, the sludge is settled at the bottom of the tank 3 by sedimentation and separation, while the treated water 18 flows out to an unillustrated downstream water purification treatment system via an unillustrated overflow channel.

【0032】凝集沈澱槽3の底部に集められた汚泥は、
凝集汚泥引抜き管4により凝集汚泥濃縮槽5に適宜に引
抜かれ、この濃縮槽5において返送汚泥として原水側に
戻すのに適した濃度に濃縮(例えば2〜10倍程度)さ
れる。そしてこの濃縮槽5の底部からは、第1の濃縮凝
集汚泥引抜き管61を通して濃縮凝集汚泥移送ポンプ7
1により脱水装置などの濃縮凝集汚泥処理装置17に適
宜間欠的に送泥し、余剰汚泥を脱水廃棄処分できるよう
に設けられている。また濃縮槽5の底部にはもう一つの
第2の濃縮凝集汚泥引抜き管62が接続されていて、こ
れを通して濃縮凝集汚泥移送ポンプ72により汚泥の一
部を曝気槽8に送泥するように設けられている。
The sludge collected at the bottom of the coagulating sedimentation tank 3 is
The coagulated sludge is drawn into the coagulated sludge thickening tank 5 by the coagulated sludge withdrawal pipe 4 and concentrated in the thickening tank 5 to a concentration suitable for returning to the raw water side as returned sludge (for example, about 2 to 10 times). From the bottom of the thickening tank 5, a concentrated thickened sludge transfer pump 7 is passed through a first thickened concentrated sludge drawing pipe 61.
1 is provided such that the sludge is appropriately and intermittently sent to a concentrated coagulation sludge treatment device 17 such as a dehydration device, and excess sludge can be dewatered and disposed of. Further, another second concentrated coagulated sludge withdrawal pipe 62 is connected to the bottom of the concentrating tank 5, through which a part of the sludge is sent to the aeration tank 8 by the condensed coagulated sludge transfer pump 72. Have been.

【0033】本例の曝気槽8は開放型横流槽をなしてい
て、上記第2の濃縮凝集汚泥引抜き管62を通して導入
された汚泥が、後段の第1汚泥送泥ポンプ101により
送り出すまでの間において、ブロワ9により槽底部の散
気管91から噴出させた空気により曝気され、例えば2
時間の間この曝気槽内に保持されるように設けられてい
る。なお、この曝気槽8は省略してもよい。曝気程度
は、上記のように時間で管理することができるが、工業
的規模の装置としては、曝気槽の出口において汚泥の酸
化還元電位を監視し、曝気槽8の曝気制御あるいは汚泥
通流制御にフィードバックして確実な酸化制御を行なわ
せるように設けることも好ましい。この曝気処理によ
り、汚泥中に含まれる鉄、臭気原因物質等が主に酸化さ
れる。
The aeration tank 8 of the present embodiment is an open horizontal flow tank, and is used until the sludge introduced through the second concentrated coagulated sludge withdrawing pipe 62 is sent out by the first-stage first sludge feed pump 101. In the above, the air blown by the blower 9 from the air diffuser 91 at the bottom of the tank is aerated,
It is provided to be held in this aeration tank for a period of time. The aeration tank 8 may be omitted. The degree of aeration can be controlled by time as described above. However, as an industrial-scale device, the oxidation-reduction potential of sludge is monitored at the outlet of the aeration tank, and aeration control or sludge flow control of the aeration tank 8 is performed. It is also preferable to provide feedback so that reliable oxidation control is performed. By this aeration treatment, iron and odor-causing substances contained in the sludge are mainly oxidized.

【0034】この曝気槽8において所定の曝気処理が行
われた汚泥は、上記第1汚泥送泥ポンプ101により、
密閉型のオゾン反応槽102に導入され、オゾン発生機
103により供給されるオゾンにより曝気処理される。
処理後のオゾンは、排ガス排出管104により排出され
る。図示しないが、排出された廃オゾンは、排ガス処理
を施して系外へ排出する。なお、排オゾンガスを上記曝
気槽8に導入し、汚泥曝気用含酸素気体として利用する
こともできる。
The sludge that has been subjected to the predetermined aeration treatment in the aeration tank 8 is subjected to the first sludge pump 101 for sludge feeding.
The ozone is introduced into the hermetically sealed ozone reaction tank 102 and aerated by ozone supplied by the ozone generator 103.
The ozone after the treatment is discharged through the exhaust gas discharge pipe 104. Although not shown, the discharged waste ozone is subjected to an exhaust gas treatment and discharged outside the system. The exhausted ozone gas can be introduced into the aeration tank 8 and used as oxygen-containing gas for sludge aeration.

【0035】このオゾン反応槽102には、汚泥破砕手
段として超音波破砕機106が取り付けられており、超
音波破砕機より発生した超音波により返送汚泥が破砕分
散され、曝気されたオゾンにより酸化がより完全に行わ
れる。従って、凝集汚泥中に取り込まれた、病原性微生
物やTOC等はより完全に酸化分解される。
An ultrasonic crusher 106 is attached to the ozone reaction tank 102 as sludge crushing means. The returned sludge is crushed and dispersed by the ultrasonic waves generated by the ultrasonic crusher, and is oxidized by the aerated ozone. Done more completely. Therefore, pathogenic microorganisms, TOC, and the like, which are taken into the coagulated sludge, are more completely oxidatively decomposed.

【0036】オゾンで曝気処理された汚泥は、中間槽1
05へ導入し一時貯留し、第2汚泥送泥ポンプ10によ
り汚泥返送管19を通して途中、酸貯留槽12からの酸
が添加された後に攪拌装置13に導入され、該汚泥中に
含まれる無機金属凝集剤のイオン化が行われた後、上記
攪拌槽2に返送される。11は酸貯留槽12内の酸を汚
泥返送管19に注入するための酸注入ポンプである。ま
た14は、攪拌装置13からの出口における汚泥のpH
を測定するためのpHメータであり、この測定情報を上
記酸注入ポンプ11にフィードバックして、酸添加量を
例えば該出口汚泥のpHを3以下に維持するように制御
することに用いられる。
The sludge aerated with ozone is supplied to the intermediate tank 1
05 and temporarily stored therein, the acid from the acid storage tank 12 is added on the way through the sludge return pipe 19 by the second sludge pump 10, and then introduced into the stirring device 13, where the inorganic metal contained in the sludge is added. After the flocculant is ionized, it is returned to the stirring tank 2. Reference numeral 11 denotes an acid injection pump for injecting the acid in the acid storage tank 12 into the sludge return pipe 19. 14 is the pH of the sludge at the outlet from the stirring device 13
Is used to control the amount of acid added to, for example, maintain the pH of the outlet sludge at 3 or less by feeding back the measurement information to the acid injection pump 11.

【0037】以上のように構成された本実施例1の凝集
沈澱処理設備によれば、返送汚泥系の途中で、凝集した
返送汚泥を超音波破砕機で破砕分散してオゾン等の酸化
剤による化学的酸化処理を行い、しかる後に凝集剤の再
利用を図るための酸添加を行うので、凝集した汚泥に取
り込まれたTOC成分や病原性微生物を効率的に酸化分
解することができ、より少ない酸化剤で酸化処理をより
完全に行うことができる。
According to the coagulating sedimentation treatment equipment of the present embodiment 1 constructed as described above, in the middle of the returned sludge system, the aggregated returned sludge is crushed and dispersed by an ultrasonic crusher, and is returned to an oxidizing agent such as ozone. Since chemical oxidation treatment is performed, and then acid addition for reusing the flocculant is performed, TOC components and pathogenic microorganisms incorporated in the flocculated sludge can be efficiently oxidatively decomposed, and less. The oxidation treatment can be more completely performed with the oxidizing agent.

【0038】また、攪拌槽に返送された汚泥に含まれる
懸濁物質は原水に返送添加されることで凝集助剤として
機能し、原水が低濁度である場合には、従来の凝集剤添
加の量制御の困難性を改善し、また高い密度の凝集フロ
ックの成長にも貢献して汚泥の分離性を向上させるとい
う利益をもたらす。
The suspended solids contained in the sludge returned to the stirring tank function as a coagulation aid by being added back to the raw water, and when the raw water has a low turbidity, a conventional coagulant is added. This improves the difficulty of controlling the amount of sludge and also contributes to the growth of high-density flocculent flocs, thereby providing the advantage of improving the separation of sludge.

【0039】更に、使用凝集剤の削減、発生する廃棄汚
泥総量の削減、運転コストの削減等々の効果も、運転操
作の複雑化や新たな弊害を招致することなく実現できる
という効果も得られる。
Further, effects such as a reduction in the amount of coagulant used, a reduction in the total amount of waste sludge generated, a reduction in operation costs, and the like can be obtained without complicating the operation and introducing new adverse effects.

【0040】試験例1 TS濃度0.7%の浄水場汚泥1リットル(原汚泥)に
20kHzの超音波を5分間照射して汚泥の破砕処理を
行った。破砕処理後汚泥を濾過し、濾液中のTOC、
鉄、マンガンの濃度を表1に示す。比較するために、原
汚泥1リットルを2L/L/minの空気で10分間曝
気した後に濾過して濾液を測定した結果、および原汚泥
を何ら処理することなく単に濾過した後に濾液を測定し
た結果を併せて表1に示す。
Test Example 1 One liter (raw sludge) of a water purification plant having a TS concentration of 0.7% was irradiated with ultrasonic waves of 20 kHz for 5 minutes to perform a crushing treatment of the sludge. After the crushing treatment, the sludge is filtered, and the TOC in the filtrate,
Table 1 shows the concentrations of iron and manganese. For comparison, one liter of raw sludge was aerated with 2 L / L / min air for 10 minutes and then filtered to measure the filtrate, and the filtrate was measured after simply filtering the raw sludge without any treatment. Are also shown in Table 1.

【0041】[0041]

【表1】 [Table 1]

【0042】表1から分かるように、原汚泥をそのまま
濾過した場合に比べて超音波処理により濾過液中のTO
C濃度が高くなった。これは汚泥中に取り込まれていた
TOC成分が超音波処理により破砕された汚泥から溶液
中に溶けだしたためである。なお、空気曝気処理では、
濾液中のTOC成分の濃度は原汚泥のそれに比べてほと
んど変化がないのは、この程度の短時間の空気曝気処理
ではTOC成分はほとんど分解されないためである。一
方、空気曝気後の濾液中の鉄成分がほとんどなくなった
が、これは空気中の酸素により2価の鉄が3価鉄まで還
元されたためである。また、マンガンについては超音波
処理後少し高くなっているが、これは凝縮した汚泥中に
取り込まれていた2価マンガンが超音波処理による汚泥
破砕により溶液側に溶けだしたためである。
As can be seen from Table 1, the amount of TO in the filtrate is higher than that in the case where the raw sludge is directly filtered by ultrasonication.
C concentration increased. This is because the TOC component taken into the sludge began to dissolve into the solution from the sludge crushed by the ultrasonic treatment. In the air aeration process,
The concentration of the TOC component in the filtrate is hardly changed as compared with that of the raw sludge, because the TOC component is hardly decomposed by such a short-time air aeration treatment. On the other hand, the iron component in the filtrate after the air aeration was almost eliminated, because divalent iron was reduced to trivalent iron by oxygen in the air. In addition, manganese slightly increased after the ultrasonic treatment, because divalent manganese incorporated in the condensed sludge began to melt into the solution side by the sludge crushing by the ultrasonic treatment.

【0043】試験例2 試験例1で用いたTS濃度0.7%の浄水場汚泥にクリ
プトスポリジウムのオーシストを100個/ml(ただ
し、蛍光発光検出体数として)加えて、超音波による破
砕分散効果およびオゾンによる不活性効果を確認した。
その試験結果を表2に示す。なお、超音波処理は20k
Hzの超音波を5分間照射することにより行い、オゾン
処理はct値として30mg・min/Lの条件で行っ
た。
Test Example 2 Cryptosporidium oocysts were added to the sludge of the water purification plant with a TS concentration of 0.7% used in Test Example 1 at a rate of 100 / ml (as the number of fluorescent emission detectors), and crushed and dispersed by ultrasonic waves. The effect and the inactive effect by ozone were confirmed.
Table 2 shows the test results. The ultrasonic treatment is 20k
The ultrasonic treatment was performed by irradiating an ultrasonic wave of Hz for 5 minutes, and the ozone treatment was performed under the condition of a ct value of 30 mg · min / L.

【0044】なお、蛍光発光検体数とは、生存検体およ
び死滅検体を含むすべての検体数である。
The number of fluorescent light-emitting specimens is the number of all specimens including living specimens and dead specimens.

【0045】[0045]

【表2】 [Table 2]

【0046】表2の蛍光発光検体数の結果から分かるよ
うに、オーシスト添加後の原汚泥をそのまま測定した場
合は、添加したオーシストのうち約半分しか検出されな
かったのに対して、超音波による汚泥破砕処理によりオ
ーシストの検出率が増加し、添加したオーシストのほぼ
すべてが検出された。これは、汚泥が破砕分散されたた
め、汚泥中に取り込まれていたオーシストが溶液中に分
散したためである。また、超音波による汚泥破砕処理と
オゾン処理により、DAPI−PI試験法(染色法)に
よる生存検体数が不検出になったことから、超音波で汚
泥を破砕しながらオゾン処理することにより、クリプト
スポリジウムのオーシストをほぼ不活性化できることが
分かる。
As can be seen from the results of the number of fluorescent light-emitting specimens in Table 2, when the raw sludge to which oocysts had been added was measured as it was, only about half of the added oocysts were detected, whereas the ultrasonic sonication was not performed. The detection rate of oocysts increased by the sludge crushing treatment, and almost all of the added oocysts were detected. This is because the oocysts taken in the sludge were dispersed in the solution because the sludge was crushed and dispersed. In addition, since the number of living specimens by the DAPI-PI test method (staining method) was not detected by the sludge crushing treatment and the ozone treatment by the ultrasonic wave, the ozone treatment was carried out while the sludge was crushed by the ultrasonic wave. It can be seen that oocysts of Ptosporidium can be almost inactivated.

【0047】[0047]

【発明の効果】本発明の凝集沈澱処理設備により、返送
汚泥中のTOC成分、鉄、マンガン等を効率的に分解除
去でき、酸化剤の使用量の低減、酸化槽の小型化を図る
ことができる。
According to the coagulation / sedimentation treatment equipment of the present invention, the TOC component, iron, manganese, etc. in the returned sludge can be efficiently decomposed and removed, and the amount of the oxidizing agent used can be reduced and the size of the oxidation tank can be reduced. it can.

【0048】また、クリプトスポリジウム等の病原性微
生物により原水が汚染されていても、病原性微生物を効
率的に死滅除去することができる。
Further, even if the raw water is contaminated with a pathogenic microorganism such as Cryptosporidium, the pathogenic microorganism can be efficiently killed and removed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明よりなる凝集沈澱処理設備の実施例1の
構成概要をフロー図で示した一例を示す図である。
FIG. 1 is a diagram illustrating an example of a schematic configuration of a coagulation / sedimentation treatment facility according to a first embodiment of the present invention, which is shown in a flowchart.

【符号の説明】 1 原水導入管 2 凝集剤混和攪拌槽 3 凝集沈澱槽 4 凝集汚泥引抜き管 5 凝集汚泥濃縮槽 61,62 濃縮凝集汚泥引抜き管 71,72 濃縮凝集汚泥移送ポンプ 8 曝気槽 9 ブロワ 10 汚泥移送ポンプ 11 酸注入ポンプ 12 酸貯留槽 13 攪拌装置 14 pHメータ 15 凝集剤注入装置 16 凝集剤貯留槽 17 凝集汚泥処理装置 18 処理水 19 汚泥返送管 101 第1汚泥送泥ポンプ 102 オゾン反応槽 103 オゾン発生機 104 排ガス排出管 105 中間槽 106 超音波破砕機[Description of Signs] 1 Raw water introduction pipe 2 Coagulant mixing and stirring tank 3 Coagulation sedimentation tank 4 Coagulation sludge extraction pipe 5 Coagulation sludge concentration tank 61, 62 Concentration coagulation sludge extraction pipe 71, 72 Concentration coagulation sludge transfer pump 8 Aeration tank 9 Blower Reference Signs List 10 Sludge transfer pump 11 Acid injection pump 12 Acid storage tank 13 Stirrer 14 pH meter 15 Coagulant injection device 16 Coagulant storage tank 17 Coagulation sludge treatment device 18 Treated water 19 Sludge return pipe 101 First sludge conveyance pump 102 Ozone reaction Tank 103 Ozone generator 104 Exhaust gas discharge pipe 105 Intermediate tank 106 Ultrasonic crusher

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 1/78 C02F 1/78 11/06 ZAB 11/06 ZABA 11/12 11/12 Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C02F 1/78 C02F 1/78 11/06 ZAB 11/06 ZABA 11/12 11/12 Z

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 無機金属凝集剤の添加により原水中の懸
濁物質を凝集させる攪拌系と、凝結した懸濁物質を凝集
沈澱させて処理水と分離し、処理水は処理水系に流出さ
せると共に沈澱汚泥は回収する汚泥分離処理系と、沈澱
回収した汚泥の少なくとも一部を上記攪拌系に戻す汚泥
返送系と、を有する凝集沈澱処理設備において、汚泥返
送系の途中に、返送汚泥を破砕する汚泥破砕手段と、返
送汚泥に酸化剤を添加して化学的に酸化処理して返送汚
泥を改質する手段とを設け、さらに該返送汚泥中に含ま
れる無機金属凝集剤のフロックをイオン化する酸添加手
段を、設けたことを特徴とする凝集沈澱処理設備。
1. A stirring system for coagulating a suspended substance in raw water by adding an inorganic metal coagulant, and a coagulated and precipitated substance to be coagulated and precipitated to be separated from treated water. In the coagulated sedimentation treatment facility having a sludge separation treatment system for collecting the settled sludge and a sludge return system for returning at least a part of the collected sludge to the stirring system, the returned sludge is crushed in the middle of the sludge return system. A sludge crushing means, and a means for adding an oxidizing agent to the returned sludge and chemically oxidizing the returned sludge to reform the returned sludge; and an acid for ionizing flocs of the inorganic metal coagulant contained in the returned sludge. Coagulation / sedimentation treatment equipment characterized by comprising an adding means.
【請求項2】 汚泥破砕手段が、超音波破砕機であるこ
とを特徴とする請求項1に記載の凝集沈澱処理設備。
2. The coagulation / sedimentation treatment equipment according to claim 1, wherein the sludge crushing means is an ultrasonic crusher.
【請求項3】 返送汚泥に酸化剤を添加して化学的に酸
化処理し、返送汚泥を改質する手段の上流側に、返送汚
泥を所定時間含酸素気体で曝気する手段を設けたことを
特徴とする請求項1または請求項2に記載の凝集沈澱処
理設備。
3. A method of adding an oxidizing agent to the returned sludge to chemically oxidize the returned sludge and providing a means for aerating the returned sludge with an oxygen-containing gas for a predetermined time upstream of the means for reforming the returned sludge. The coagulation / sedimentation treatment equipment according to claim 1 or 2, wherein
【請求項4】 返送汚泥に酸化剤を添加して化学的に酸
化処理し、返送汚泥を改質する手段の下流側に、返送汚
泥に活性炭を添加する手段を設けたことを特徴とする請
求項1ないし請求項3のいずれか1項に記載の凝集沈澱
処理設備。
4. A means for adding an oxidizing agent to the returned sludge and chemically oxidizing the returned sludge, and a means for adding activated carbon to the returned sludge is provided downstream of the means for reforming the returned sludge. The coagulation sedimentation treatment equipment according to any one of claims 1 to 3.
【請求項5】 酸化剤がオゾンまたはオゾンおよび過酸
化水素であることを特徴とする請求項1ないし請求項4
のいずれか1項に記載の凝集沈澱処理設備。
5. The method according to claim 1, wherein the oxidizing agent is ozone or ozone and hydrogen peroxide.
The coagulation sedimentation treatment equipment according to any one of the above.
【請求項6】 無機金属凝集剤がアルミニウム系凝集剤
であることを特徴とする請求項1ないし請求項5のいず
れか1項に記載の凝集沈澱処理設備。
6. The coagulation-sedimentation treatment equipment according to claim 1, wherein the inorganic metal coagulant is an aluminum-based coagulant.
JP9200359A 1997-07-25 1997-07-25 Flocculation and sedimentation treatment equipment Pending JPH1133561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9200359A JPH1133561A (en) 1997-07-25 1997-07-25 Flocculation and sedimentation treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9200359A JPH1133561A (en) 1997-07-25 1997-07-25 Flocculation and sedimentation treatment equipment

Publications (1)

Publication Number Publication Date
JPH1133561A true JPH1133561A (en) 1999-02-09

Family

ID=16422995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9200359A Pending JPH1133561A (en) 1997-07-25 1997-07-25 Flocculation and sedimentation treatment equipment

Country Status (1)

Country Link
JP (1) JPH1133561A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010094491A (en) * 2000-03-31 2001-11-01 박상두 Water treatment apparatus using a ultrasonic, for infrared radiation, and a plasmatic oxygen and ozone, and a method to treat water
JP2002200499A (en) * 2000-12-28 2002-07-16 Matsushita Environment Airconditioning Eng Co Ltd Treatment method for excess sludge in waste water treatment process
KR100475451B1 (en) * 2002-10-07 2005-03-10 주식회사 아이이아이 The treatment system for purifying
CN108559845A (en) * 2017-12-28 2018-09-21 长春工程学院 A kind of method that the oxidation of room temperature wet method ultrasound-ozone removes iron and organic matter from neodymium iron boron greasy filth waste material
KR20190024378A (en) * 2017-08-31 2019-03-08 조정혁 Dehydrating and drying method of sludge using chlorine dioxide and polar organic chemicals
CN111423009A (en) * 2020-02-26 2020-07-17 宁波天扬工业新技术有限公司 Intelligent circulation treatment method and device for paint mist spray water
CN114275924A (en) * 2021-07-14 2022-04-05 湖南省煤炭科学研究院有限公司 Method for treating and recycling acid mine wastewater

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010094491A (en) * 2000-03-31 2001-11-01 박상두 Water treatment apparatus using a ultrasonic, for infrared radiation, and a plasmatic oxygen and ozone, and a method to treat water
JP2002200499A (en) * 2000-12-28 2002-07-16 Matsushita Environment Airconditioning Eng Co Ltd Treatment method for excess sludge in waste water treatment process
KR100475451B1 (en) * 2002-10-07 2005-03-10 주식회사 아이이아이 The treatment system for purifying
KR20190024378A (en) * 2017-08-31 2019-03-08 조정혁 Dehydrating and drying method of sludge using chlorine dioxide and polar organic chemicals
CN108559845A (en) * 2017-12-28 2018-09-21 长春工程学院 A kind of method that the oxidation of room temperature wet method ultrasound-ozone removes iron and organic matter from neodymium iron boron greasy filth waste material
CN111423009A (en) * 2020-02-26 2020-07-17 宁波天扬工业新技术有限公司 Intelligent circulation treatment method and device for paint mist spray water
CN114275924A (en) * 2021-07-14 2022-04-05 湖南省煤炭科学研究院有限公司 Method for treating and recycling acid mine wastewater

Similar Documents

Publication Publication Date Title
WO2000030982A1 (en) Method of treating liquid, liquid treatment apparatus, and liquid treatment system
JP2004058047A (en) Treatment method and equipment for organic waste liquid
KR100707975B1 (en) Treatment method for livestock waste water including highly concentrated organic materials
JPH0975993A (en) Treatment of organic matter-containing waste water and device therefor
JP4667909B2 (en) Organic waste treatment method and equipment
JPH1133561A (en) Flocculation and sedimentation treatment equipment
JP3843052B2 (en) Method for recovering and using valuable metals in metal-containing wastewater
JP3389902B2 (en) Sludge treatment method and sludge treatment device
JPH09225482A (en) Treatment of hardly decomposable organic material-containing waste water
JP3913843B2 (en) Coagulation sedimentation processing equipment
JP2002326088A (en) Method and apparatus for treating phosphorous and cod- containing water
JP3680742B2 (en) Method for treating wastewater containing dioxins
JP4620302B2 (en) Organic wastewater treatment method
JP3795003B2 (en) Waste liquid treatment method and apparatus
JP3195514B2 (en) Coagulation settling equipment
JPS5930153B2 (en) Treatment method for wastewater containing sterilization/disinfectant
JP2002316191A (en) Method and apparatus for treating organic foul water
JP3178975B2 (en) Water treatment method
JP2002263676A (en) Waste water treatment method and facility
JP2003053350A (en) Method and device for highly removing cod component in water
JP4156820B2 (en) Organic wastewater treatment method and treatment apparatus
KR100225693B1 (en) Nonbiodegradable organic material treatment process
JPH1076296A (en) Treatment method for drainage containing poorly decomposable organic substance
JPH11347592A (en) Method for treating sewage containing hardly decomposable organic matter
CN213327040U (en) Surfactant wastewater treatment system