JPH11347592A - Method for treating sewage containing hardly decomposable organic matter - Google Patents
Method for treating sewage containing hardly decomposable organic matterInfo
- Publication number
- JPH11347592A JPH11347592A JP10175321A JP17532198A JPH11347592A JP H11347592 A JPH11347592 A JP H11347592A JP 10175321 A JP10175321 A JP 10175321A JP 17532198 A JP17532198 A JP 17532198A JP H11347592 A JPH11347592 A JP H11347592A
- Authority
- JP
- Japan
- Prior art keywords
- treatment
- coagulation
- separation
- reforming
- treating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Physical Water Treatments (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、排水の処理方法に
係り、特に、難分解性有機物含有排水を処理する方法に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating wastewater, and more particularly to a method for treating wastewater containing hardly decomposable organic substances.
【0002】[0002]
【従来の技術】従来の難分解性有機物含有排水の処理方
法として、凝集沈殿処理、フェントン処理、オゾン処
理、及びヒドロキシラジカル等の活性酸素を発生させ、
有機物を酸化分解する方法が知られている。また、ヒド
ロキシラジカル等の活性酸素により溶存有機物の凝集分
離性を改善させる改質工程を設け、その後凝集分離する
処理法及び、改質工程の前段に凝集分離工程を設けた処
理方法が知られている。しかしながら、凝集沈殿法は、
単位スラッジ量あたりの除去可能な有機物量が少ないと
いう特性を持っており、多量の有機物を処理するために
発生するスラッジ量は、膨大なものとなるという欠点が
ある。フェントン法は、フェントン反応に必要な過酸化
水素、第一鉄塩に関わるコストが高額であり、かつ、フ
ェントン反応に用いた鉄イオンを回収するために、凝集
沈殿法と同様に多量のスラッジが発生する。また、フェ
ントン法で生じた活性酸素が、一部第一鉄イオンの酸化
に使用されてしまうため、活性酸素の反応効率が悪いと
いう欠点を持っている。2. Description of the Related Art As a conventional method for treating hardly decomposable organic matter-containing wastewater, coagulation sedimentation treatment, Fenton treatment, ozone treatment, and generation of active oxygen such as hydroxy radicals are performed.
A method of oxidatively decomposing organic matter is known. Also, there is known a treatment method in which a reforming step for improving the cohesion and separation properties of dissolved organic substances by active oxygen such as hydroxy radicals is provided, and then a coagulation separation step is provided, and a treatment method in which a coagulation separation step is provided before the reforming step. I have. However, the coagulation sedimentation method
It has the property that the amount of organic matter that can be removed per unit amount of sludge is small, and there is a disadvantage that the amount of sludge generated by treating a large amount of organic matter becomes enormous. In the Fenton method, the cost related to hydrogen peroxide and ferrous salt necessary for the Fenton reaction is expensive, and a large amount of sludge is generated as in the coagulation sedimentation method to recover the iron ions used in the Fenton reaction. Occur. In addition, since the active oxygen generated by the Fenton method is partially used for oxidizing ferrous ions, there is a disadvantage that the reaction efficiency of the active oxygen is low.
【0003】光化学的反応あるいは化学反応によって、
ヒドロキシラジカルのような活性酸素を発生させる方法
に於いては、酸化剤、或いは紫外線を照射するためのコ
ストが高額であり、実用化が困難という欠点がある。ま
た、以上のような処理法の欠点を解決する方法として、
排水中の難分解性有機物をヒドロキシラジカル等の活性
酸素により酸化分解しつつ、難分解性有機物の凝集分離
性を改善させるために改質工程に導入し、その後凝集分
離する処理法、及び改質工程の前段に凝集分離工程を設
けた処理方法がある。しかし、この方法においても、改
質工程の効果を最大限発揮させるためには、改質工程の
前段に凝集分離工程を設ける必要があり、固液分離を合
計2回行う必要があった。固液分離は、沈殿分離の場合
には敷地面積が大きく、また膜分離及びろ過分離では複
雑な設備を伴うため、固液分離を2回行うことは、設備
及び運転管理上好ましくない。[0003] By photochemical or chemical reaction,
The method of generating active oxygen such as hydroxy radical has a disadvantage that the cost for irradiating an oxidizing agent or an ultraviolet ray is high, and it is difficult to put it to practical use. In addition, as a method of solving the above-mentioned disadvantages of the processing method,
A treatment method in which a hardly decomposable organic substance in wastewater is oxidatively decomposed by active oxygen such as hydroxy radicals, and is introduced into a reforming step to improve the cohesive and separable properties of the hardly decomposable organic substance, and then coagulated and separated. There is a processing method in which a coagulation separation step is provided before the step. However, also in this method, in order to maximize the effect of the reforming step, it is necessary to provide an agglomeration / separation step before the reforming step, and it is necessary to perform solid-liquid separation twice in total. Solid-liquid separation has a large site area in the case of precipitation separation, and complicated equipment is involved in membrane separation and filtration separation. Therefore, performing solid-liquid separation twice is not preferable in terms of equipment and operation management.
【0004】[0004]
【発明が解決しようとする課題】本発明は、上記従来技
術に鑑み、高額な処理コスト、大量のスラッジ、広い敷
地面積及び複雑な運転管理を伴うことなく、高度な処理
を可能とした難分解性有機物含有排水の処理方法を提供
することを課題とする。SUMMARY OF THE INVENTION In view of the above-mentioned prior art, the present invention provides a hard-to-disassemble method which enables high-level processing without high processing costs, large amounts of sludge, large site area and complicated operation management. An object of the present invention is to provide a method for treating wastewater containing a toxic organic matter.
【0005】[0005]
【課題を解決するための手段】上記課題を解決するため
に、本発明では、難分解性有機物含有排水を、凝集剤に
より処理する凝集工程、活性酸素により処理する改質工
程、及び凝集剤により処理し固液分離を行う凝集分離工
程に順次導入して処理することを特徴とする難分解性有
機物含有排水の処理方法としたものである。また、本発
明では、難分解性有機物含有排水を、凝集剤により処理
する凝集工程に導入後、該凝集工程流出水の少なくとも
一部を活性酸素により処理する改質工程に導入して処理
し、前記凝集工程に循環させると共に、前記凝集工程流
出水の残部を固液分離を行う分離工程に導入して処理す
ることを特徴とする難分解性有機物含有排水の処理方法
としたものである。前記処理方法において、活性酸素
は、オゾン、過酸化水素、紫外線のうちのいずれか2つ
以上の組合せにより生成させることができる。In order to solve the above-mentioned problems, the present invention provides a coagulation step of treating a hardly decomposable organic matter-containing wastewater with a coagulant, a reforming step of treating the same with active oxygen, and a coagulant. This is a method for treating hardly decomposable organic matter-containing wastewater, which is successively introduced into a coagulation separation step of performing treatment and solid-liquid separation. In the present invention, the hardly decomposable organic matter-containing wastewater is introduced into a coagulation step of treating with a coagulant, and then introduced into a reforming step of treating at least a part of the effluent of the coagulation step with active oxygen. A method for treating hardly decomposable organic matter-containing wastewater, wherein the wastewater is circulated to the flocculation step and the remaining part of the effluent of the flocculation step is introduced and treated in a separation step for solid-liquid separation. In the treatment method, active oxygen can be generated by a combination of any two or more of ozone, hydrogen peroxide, and ultraviolet light.
【0006】[0006]
【発明の実施の形態】上記のように、本発明では、凝集
工程、改質工程、分離工程の各工程を組合せた発明であ
り、これらの工程はそれぞれ次のような作用を有する。
凝集工程では、原水に凝集剤が添加され、原水中の有機
物のうち、凝集剤と反応しやすい易凝集分離性の有機物
が凝集剤と反応し、凝集フロックが生成する。次に、改
質工程では、前段の凝集工程で生成した凝集フロック
が、懸濁したままの状態で、オゾンガス、紫外線、過酸
化水素のうちいずれか2つ以上の組合せの反応によって
生じた、ヒドロキシラジカル等の活性酸素により、凝集
工程で凝集剤と未反応の難凝集分離性の有機物の改質が
行われる。ここでいう改質とは、主に難凝集性の有機物
に活性酸素が作用することによる親水性の部分的増加で
ある。これにより、難凝集性の有機物のイオン性が増加
し、凝集剤との反応性が増加する。主に以上の作用よ
り、改質工程では、難凝集分離性の有機物が易凝集分離
性の有機物に改質される。DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, the present invention is an invention in which the respective steps of the aggregation step, the reforming step, and the separation step are combined, and these steps have the following actions.
In the coagulation step, a coagulant is added to the raw water, and among the organic substances in the raw water, organic substances that easily react with the coagulant and are easily coagulated and separated react with the coagulant to generate coagulated flocs. Next, in the reforming step, the flocculated floc generated in the preceding flocculating step was produced by a reaction of a combination of any two or more of ozone gas, ultraviolet rays, and hydrogen peroxide in a suspended state. By the active oxygen such as radicals, the hardly separable organic matter which has not reacted with the flocculant in the flocculation step is modified. The term “modification” as used herein means a partial increase in hydrophilicity caused mainly by the action of active oxygen on hardly cohesive organic substances. Thereby, the ionicity of the hardly coagulating organic substance increases, and the reactivity with the coagulant increases. Due mainly to the above-mentioned actions, in the reforming step, the hardly-coagulable and separable organic substance is reformed into the easily-coagulable and separable organic substance.
【0007】最後に、凝集分離工程では、凝集剤が添加
され、改質工程で改質された易凝集分離性の有機物が、
凝集剤と反応し凝集フロックが生成する。また、凝集工
程で生成した凝集フロックと凝集分離工程で生成した凝
集フロックが固液分離される。以上のような作用は、難
分解性有機物含有排水を凝集剤により処理する凝集工程
に導入し、ついで凝集工程流出水の少なくとも一部を、
ヒドロキシラジカル等の活性酸素により処理する改質工
程に循環させ、凝集工程流出水の残部を、固液分離を行
う分離工程に導入する方法によっても達成することがで
きる。本発明に使用される活性酸素とは、主に酸化力を
有し、有機物中の不飽和結合以外の部分と反応可能なラ
ジカルを意味し、上記のように、有機物、特に難分解性
有機物を易凝集分離性の有機物に改質できる能力を有し
ていれば、特に制限はない。それらの活性酸素は、オゾ
ン、過酸化水素、紫外線のうちの2つ以上の組合せによ
って、生成される。本発明に於いて、好ましい活性酸素
の生成は、オゾンと過酸化水素、オゾンと紫外線、過酸
化水素と紫外線、オゾンと過酸化水素と紫外線等の組合
せにより、それにより効率的に活性酸素を発生させるこ
とができる。Finally, in the coagulation / separation step, a coagulant is added, and the easily coagulated / separated organic substance modified in the modification step is:
Reacts with the flocculant to form floc. Further, the flocculated floc generated in the flocculating step and the flocculated floc generated in the flocculating separation step are subjected to solid-liquid separation. The action as described above is introduced into the coagulation step of treating the hardly decomposable organic matter-containing wastewater with a coagulant, and then at least a part of the water discharged from the coagulation step,
It can also be achieved by a method of circulating in a reforming step of treating with active oxygen such as hydroxy radicals, and introducing the remainder of the effluent of the flocculation step to a separation step of performing solid-liquid separation. The active oxygen used in the present invention mainly has an oxidizing power and means a radical capable of reacting with a portion other than an unsaturated bond in an organic substance, and as described above, an organic substance, particularly a hardly decomposable organic substance. There is no particular limitation as long as it has the ability to be reformed into an organic substance that is easily aggregated and separated. The active oxygen is produced by a combination of two or more of ozone, hydrogen peroxide, and ultraviolet light. In the present invention, the preferred generation of active oxygen is a combination of ozone and hydrogen peroxide, ozone and ultraviolet light, hydrogen peroxide and ultraviolet light, ozone, hydrogen peroxide and ultraviolet light, etc., thereby efficiently generating active oxygen. Can be done.
【0008】凝集工程或いは凝集分離工程で使用する凝
集剤は、無機系のものとしては、例えば、硫酸アルミニ
ウム、硫酸第二鉄、硫酸第一鉄、アルミン酸ナトリウ
ム、塩化第二鉄、塩化第一鉄、PAC等の無機塩、硫
酸、塩酸、二酸化炭素、二酸化硫黄等の酸、炭酸ナトリ
ウム、水酸化ナトリウム、水酸化カルシウム等のアルカ
リ、電解水酸化アルミニウム、電解水酸化鉄等の金属電
解産物、活性ケイ酸等であり、有機系のものとしては、
例えば、ラウリン酸ナトリウム、ステアリン酸ナトリウ
ム、オレイン酸ナトリウム、ドデシルベンゼンスルホン
酸ナトリウム、ロジン酸ナトリウム等の陰イオン性界面
活性剤、ドデシルアミンアセテート、オクタデシルアミ
ンアセテート、ロジンアミンアセテート、オクタデシル
トリメチルアンモニウムクロリド、オクタデシルジメチ
ルベンジルアンモニウムクロリド等の陽イオン性界面活
性剤、アルギン酸ナトリウム、水溶性アニリン樹脂塩酸
塩、ポリビニルベンジルトリメチルアンモニウムクロリ
ド、でんぷん、水溶性尿素樹脂、ゼラチン、ポリアクリ
ル酸ナトリウム、マレイン酸共重合物塩、ポリアクリル
アミド部分加水分解物塩、ポリエチレンイミン硫酸塩、
ビニルピリジン共重合物塩、ポリアクリルアミド、ポリ
オキシエチレン等の高分子物質をあげることができ、こ
れらを単独あるいは併用して使用することができる。凝
集工程と凝集分離工程とで同じ凝集剤を用いても、互い
に異なる凝集剤を用いても良い。The coagulant used in the coagulation step or coagulation separation step is, for example, an inorganic one such as aluminum sulfate, ferric sulfate, ferrous sulfate, sodium aluminate, ferric chloride, and ferrous chloride. Iron, inorganic salts such as PAC, sulfuric acid, hydrochloric acid, carbon dioxide, acids such as sulfur dioxide, alkalis such as sodium carbonate, sodium hydroxide, calcium hydroxide, electrolytic aluminum hydroxide, metal electrolytic products such as electrolytic iron hydroxide, Activated silicic acid, etc.
For example, anionic surfactants such as sodium laurate, sodium stearate, sodium oleate, sodium dodecylbenzenesulfonate, sodium rosinate, dodecylamine acetate, octadecylamine acetate, rosin amine acetate, octadecyltrimethylammonium chloride, octadecyl Cationic surfactants such as dimethylbenzylammonium chloride, sodium alginate, water-soluble aniline resin hydrochloride, polyvinylbenzyltrimethylammonium chloride, starch, water-soluble urea resin, gelatin, sodium polyacrylate, maleic acid copolymer salt, Polyacrylamide partial hydrolyzate salt, polyethyleneimine sulfate,
Examples thereof include polymer substances such as vinylpyridine copolymer salts, polyacrylamide, and polyoxyethylene, and these can be used alone or in combination. The same flocculant may be used in the flocculation step and the flocculation separation step, or different flocculants may be used.
【0009】また、凝集分離工程又は分離工程で採用可
能な固液分離手段としては、通常は沈殿池を使用する
が、ろ過、膜、遠心分離等による方法も有効である。前
記改質工程で、活性酸素の生成に用いる紫外線には、波
長が170〜380nmの紫外線を使用することができ
る。紫外線を供給する光源としては、低圧水銀ランプ、
中圧水銀ランプ、高圧水銀ランプ、エキシマレーザー等
比較的低波長の紫外線を照射可能なもの、或いは自然光
等を挙げることができるが、これに限るものではない。
紫外線ランプの破損防止のために保護管を使用する場
合、材質は170〜380nmの紫外線透過率が高い石
英、又は合成石英が望ましい。紫外線の設置方法として
は、水又はオゾンガスの流れに対して、紫外線ランプの
流れ方法を垂直又は水平として並べる方法があるが、水
及びオゾンガスと紫外線との接触効率を考慮した場合、
水及びオゾンガスの流れに対して垂直方向に並べる方法
が、接触効率のむらが少なくなり好適である。As a solid-liquid separation means that can be employed in the coagulation separation step or the separation step, a sedimentation basin is usually used, but a method using filtration, membrane, centrifugation or the like is also effective. In the reforming step, ultraviolet rays having a wavelength of 170 to 380 nm can be used as the ultraviolet rays used to generate active oxygen. Low-pressure mercury lamps,
Examples thereof include a medium-pressure mercury lamp, a high-pressure mercury lamp, an excimer laser, and the like, which can irradiate ultraviolet rays having a relatively low wavelength, natural light, and the like, but are not limited thereto.
When a protective tube is used to prevent damage to the ultraviolet lamp, the material is desirably quartz or synthetic quartz having a high ultraviolet transmittance of 170 to 380 nm. As a method of installing ultraviolet rays, there is a method in which the flow method of the ultraviolet lamp is arranged vertically or horizontally with respect to the flow of water or ozone gas, but when considering the contact efficiency between water and ozone gas and ultraviolet rays,
A method of arranging in the vertical direction with respect to the flow of water and ozone gas is preferable because unevenness in contact efficiency is reduced.
【0010】改質工程の反応槽内の攪拌方法としては、
オゾン気泡、或いは攪拌翼による攪拌の他、反応槽の上
下端又は左右端又は前後端を配管で結び、ポンプで循環
させる方法も可能である。特に、反応槽に紫外線ランプ
を複雑設置し、ランプ同士の間隔が広くなる場合には、
処理の安定のために強い攪拌を行うことが有効である。
改質工程それぞれの反応槽が、複数の反応槽より構成さ
れていても良い。この場合は、複数の反応槽を直列に連
結する構成が、水の流れがプラグフローとなり、処理が
より確実に行われる。また、改質工程のそれぞれの反応
槽が異なる活性種発生方法であっても良い。特に、前段
の反応槽がオゾン又はオゾンと過酸化水素を組合せた活
性種発生方法であり、後段が紫外線とオゾン、又は紫外
線とオゾンと過酸化水素を組合せた活性種発生方法であ
る場合では、前段の反応槽において、オゾン又は活性種
の作用により被処理水の紫外線透過率を向上させること
ができ、後段の反応槽における紫外線の照射効率を向上
させることができる。[0010] As a stirring method in the reaction tank in the reforming step,
In addition to ozone bubbles or stirring by a stirring blade, a method in which the upper and lower ends, left and right ends, or front and rear ends of the reaction tank are connected by piping and circulated by a pump is also possible. In particular, when a complex ultraviolet lamp is installed in the reaction tank and the distance between the lamps is increased,
It is effective to perform strong agitation to stabilize the treatment.
Each reaction tank in the reforming step may be composed of a plurality of reaction tanks. In this case, the configuration in which a plurality of reaction vessels are connected in series allows the flow of water to be a plug flow, and the processing is performed more reliably. Further, each reaction tank in the reforming step may be a different active species generation method. In particular, when the former reactor is an active species generation method using ozone or ozone and hydrogen peroxide, and the latter is an active species generation method using ultraviolet and ozone, or ultraviolet, ozone and hydrogen peroxide, In the first-stage reaction vessel, the ultraviolet transmittance of the water to be treated can be improved by the action of ozone or active species, and the irradiation efficiency of ultraviolet rays in the second-stage reaction vessel can be improved.
【0011】オゾンガスの注入方法としては、ディフュ
ーザー方式,イジェクター方式,Uチューブ方式,オゾ
ンガスを0.5〜10kg/cm2 の加圧状態で溶解さ
せる方式、水中攪拌式散気装置を用いる方法等を挙げる
ことができるが、これらに限るものではない。また、反
応槽内に注入した酸素含有気体に対して、電気的なエネ
ルギーを加えてオゾンガスを発生させる方法も可能であ
る。過酸化水素の注入方法としては、酸化処理工程流入
水の流入配管に注入する方法、酸化処理工程の反応槽に
直接注入する方法、オゾンガスを注入するイジェクター
の水の流入配管或いはイジェクターの内部に注入する方
法、水中攪拌式散気装置の内部に注入する方法等を挙げ
ることができる。また、これらの場合は複数の箇所から
過酸化水素を注入することも可能である。本発明による
処理水に、更に、生物処理、活性炭処理等を行うこと
で、処理水質を一層向上させることも可能である。ま
た、本発明による処理水を改質工程に循環させることに
よって、処理水質を一層向上させることも可能である。
また、改質工程後に脱酸化剤工程を設けることで、後段
の処理を安定化させることも可能である。As a method for injecting ozone gas, a diffuser method, an ejector method, a U-tube method, a method of dissolving ozone gas under a pressurized state of 0.5 to 10 kg / cm 2 , a method of using an underwater stirring type air diffuser, and the like are used. Examples include, but are not limited to: It is also possible to generate ozone gas by applying electric energy to the oxygen-containing gas injected into the reaction tank. Hydrogen peroxide can be injected into the inflow pipe of the inflow water of the oxidation treatment step, directly into the reaction tank of the oxidation treatment step, or injected into the inflow pipe of the ejector water into which the ozone gas is injected or into the ejector. And a method of injecting into the inside of a submerged stirring type air diffuser. In these cases, it is also possible to inject hydrogen peroxide from a plurality of locations. By subjecting the treated water according to the present invention to biological treatment, activated carbon treatment and the like, the treated water quality can be further improved. In addition, by circulating the treated water according to the present invention to the reforming step, it is possible to further improve the treated water quality.
In addition, by providing a deoxidizing step after the reforming step, it is also possible to stabilize the subsequent processing.
【0012】本発明に於いて、改質工程における活性酸
素の種類、量などは、処理対象原水の性状、例えばTO
C(全有機性炭素)濃度等によって、種々選定すること
ができる。例として、原水のTOCが200mg/l程
度で、活性酸素として過酸化水素とオゾンを用いる場合
を、以下に記載する。改質工程における過酸化水素注入
量は、通常10〜5000mg/l、好ましくは10〜
1000mg/lであり、オゾン注入量は通常50〜1
0000mg/l、好ましくは200〜3000mg/
lの範囲から選定される。また、原水の改質工程におけ
る反応時間は、気泡塔を用いた場合には、通常5〜60
min、好ましくは10〜20minである。別に、紫
外線を使用する場合、低圧水銀ランプの出力は、通常6
〜200W、好ましくは10〜200Wである。凝集工
程、凝集分離工程における凝集剤にPACを用いた場
合、その注入量は通常10〜5000mg・Al/l、
好ましくは100〜1000mg・Al/lであり、p
Hは通常5〜7である。In the present invention, the type and amount of active oxygen in the reforming step depend on the properties of the raw water to be treated, for example, TO
Various selections can be made according to the C (total organic carbon) concentration and the like. As an example, the case where the TOC of raw water is about 200 mg / l and hydrogen peroxide and ozone are used as active oxygen is described below. The injection amount of hydrogen peroxide in the reforming step is usually 10 to 5000 mg / l, preferably 10 to 5000 mg / l.
1000 mg / l, and the ozone injection amount is usually 50 to 1
0000 mg / l, preferably 200-3000 mg /
1 range. The reaction time in the raw water reforming step is usually 5 to 60 when a bubble column is used.
min, preferably 10 to 20 min. Separately, when using ultraviolet light, the output of a low-pressure mercury lamp is usually 6
It is -200W, preferably 10-200W. When PAC is used as the flocculant in the flocculation step and the flocculation separation step, the injection amount is usually 10 to 5000 mg · Al / l,
It is preferably 100 to 1000 mg · Al / l, and p
H is usually 5-7.
【0013】前記した本発明の難分解性有機物含有排水
の処理方法を用いることにより、排水中の有機物が低コ
スト、低発生スラッジでかつ高度に処理される。即ち、
第一に、凝集工程では、凝集剤が添加されることによ
り、原水中の有機物のうち、易凝集分離性のものが、選
択的に凝集フロックを生成する。第二に、改質工程で
は、ヒドロキシラジカルなどの活性酸素によって、凝集
工程では、凝集フロックとはならなかった難凝集分離性
の物質が、易凝集分離性の物質に改質される。第三に、
凝集分離工程では、凝集剤が添加されることにより、改
質工程で改質され易凝集分離性となった物質が凝集剤と
反応し、凝集フロックを生成する。また、凝集工程で生
成した凝集フロック及び凝集分離工程で生成した凝集フ
ロックが水から分離、除去される。By using the above-described method for treating wastewater containing hardly decomposable organic matter according to the present invention, the organic matter in the wastewater is treated with low cost, low generated sludge and highly. That is,
First, in the aggregating step, by adding an aggregating agent, among the organic substances in the raw water, those that are easily aggregated and separated selectively generate aggregated flocs. Second, in the reforming step, the hardly flocculable and separable material that did not become flocculated floc in the flocculation step is reformed into an easily flocculated and separable material by active oxygen such as hydroxy radical. Third,
In the aggregating / separating step, by adding the aggregating agent, the material which has been modified in the reforming step and has an easily aggregating / separating property reacts with the aggregating agent to generate an aggregated floc. Further, the flocculated floc generated in the flocculating step and the flocculated floc generated in the flocculating separation step are separated and removed from water.
【0014】以上、第一〜第三の工程を行うことによ
り、凝集工程、凝集分離工程における処理対象を易凝集
分離性の物質のみにできるため、除去有機物量あたりに
必要な凝集剤量が減少し、発生スラッジ量が低下すると
共に、凝集剤に関わるコストが低下する。また、凝集フ
ロックの分離設備が一つで済むため、施設の運転も簡易
である。以上のような効果は、凝集工程流出水の少なく
とも一部を改質工程に循環させ、凝集工程流出水の残部
を分離工程に導入した場合においても、改質工程で改質
された結果生成した易凝集分離性の有機物を、凝集工程
で凝集処理することができ、同様の効果を得ることがで
きる。また、改質工程で、難凝集分離性の有機物を易凝
集分離性の有機物に改質するのに要する酸化剤量、紫外
線照射量は、原水中の有機物を必要とされる処理水質ま
で完全分解するものと比べて、きわめて少量であり、改
質工程での処理コストは高額とはならない。As described above, by performing the first to third steps, the substance to be treated in the aggregating step and the aggregating / separating step can be made only of the easily aggregating / separating substance. However, the amount of generated sludge decreases and the cost related to the flocculant decreases. In addition, since only one flocculation floc separation facility is required, the operation of the facility is simple. The effects as described above are produced as a result of reforming in the reforming step even when at least a part of the effluent of the flocculation step is circulated to the reforming step and the remainder of the effluent of the flocculation step is introduced to the separation step. An easily coagulable and separable organic substance can be subjected to a coagulation treatment in the coagulation step, and the same effect can be obtained. Also, in the reforming process, the amount of oxidizing agent and the amount of UV irradiation required to reform the hard-to-aggregate separable organic matter to the easily-separable sedimentable organic matter are completely decomposed to the required treated water quality of the organic matter in the raw water. The amount is extremely small as compared with that required for the process, and the processing cost in the reforming process is not high.
【0015】更に、改質に伴い、一部の有機物が水と炭
酸ガスにまで酸化分解されるが、この様な補助的な効果
によっても、排水中の有機物濃度が低下し、必要な凝集
剤量が低減化される。以上のような、凝集フロック存在
下における、溶存有機物の凝集分離性の改善について
は、過去報告が無く、本発明に関わる鋭意研究によっ
て、単純には確かめられない効果を初めて確認した。以
上要するに、本発明による難分解性有機物含有排水の処
理方法によれば、低コスト、低スラッジ発生量で高度な
処理が可能で、かつ運転も容易なのである。Further, with the reforming, some organic substances are oxidized and decomposed into water and carbon dioxide gas. However, even with such an auxiliary effect, the concentration of the organic substances in the waste water is reduced, and a necessary coagulant is required. The amount is reduced. As described above, there has been no report on the improvement of the cohesion and separability of dissolved organic matter in the presence of coagulated flocs, and an intensive study on the present invention has confirmed for the first time an effect that cannot be simply confirmed. In short, according to the method for treating hardly decomposable organic matter-containing wastewater according to the present invention, advanced treatment is possible with low cost, low sludge generation amount, and easy operation.
【0016】次に、本発明を図面を用いて詳細に説明す
る。図1は、本発明の具体的構成の一例を示す説明図で
ある。図1においては、原水中の有機物を凝集剤により
処理する凝集工程2と、凝集フロック存在下で凝集工程
2で残存した溶存有機物を活性酸素により処理すること
により、易凝集分離性の有機物に改質する改質工程3
と、改質工程3により得られた易凝集分離性有機物を凝
集処理し、凝集フロックを分離処理する凝集分離工程4
からなるものである。凝集工程2は、原水1と凝集剤9
が混合される混合槽8、及び凝集フロックが生成する凝
集槽10からなる。改質工程3は、凝集工程流出水が流
入する改質処理槽5を有し、活性酸素を生成するための
過酸化水素6及びオゾン7が各々槽の入口及び槽内に供
給される。改質工程3で処理され、易凝集分離性有機物
を含む水は、凝集分離工程の混合槽8に流入し、添加さ
れた凝集剤9と混合され、次いで、槽の下流に設けた凝
集槽10にて凝集フロックが生成、固液分離槽13にて
固液分離され、処理水11が得られる。Next, the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory diagram showing an example of a specific configuration of the present invention. In FIG. 1, an organic substance in raw water is treated with a flocculant, and a dissolved organic substance remaining in the flocculation step 2 is treated with active oxygen in the presence of flocculants to convert the organic substance into an easily flocculated and separable organic substance. Quality reforming process 3
And an aggregation separation step 4 in which the easily aggregated and separable organic matter obtained in the reforming step 3 is aggregated and the aggregated flocs are separated.
It consists of The coagulation step 2 includes raw water 1 and coagulant 9
And a coagulation tank 10 in which coagulated flocs are generated. The reforming step 3 has a reforming treatment tank 5 into which the coagulation step effluent flows, and hydrogen peroxide 6 and ozone 7 for generating active oxygen are supplied to the inlet of the tank and the inside of the tank, respectively. The water that is treated in the reforming step 3 and contains the easily coagulable and separable organic substance flows into the mixing tank 8 in the coagulation / separation step, is mixed with the added coagulant 9, and then the coagulation tank 10 provided downstream of the tank. To form flocculated floc, and the solid-liquid separation is performed in the solid-liquid separation tank 13 to obtain treated water 11.
【0017】図2は、本発明の具体的構成の別の1例を
示す説明図である。図2においては、凝集分離工程4に
おける凝集フロックと水の分離を膜17により行い、改
質工程3に於いて、更に紫外線ランプ14を併用する構
成である。その他は図1に示す構成と同じである。図3
は、本発明の具体的構成の別の1例を示す説明図であ
る。図3においては、凝集工程2が凝集混和槽16によ
る構成のものである。改質工程3ではオゾン7、過酸化
水素6、紫外線14を併用している。その他は図1に示
す構成と同じである。図4は、本発明の具体的構成の別
の1例を示す説明図である。図4は、凝集工程2流出水
の少なくとも一部を改質工程3に循環させ、凝集工程2
流出水の残部を分離工程15に導入する構成のものであ
る。改質工程3ではオゾン7と過酸化水素6を併用して
いる。FIG. 2 is an explanatory diagram showing another example of a specific configuration of the present invention. FIG. 2 shows a configuration in which the flocculated floc and water are separated by the membrane 17 in the coagulation / separation step 4, and the ultraviolet lamp 14 is additionally used in the modification step 3. The rest is the same as the configuration shown in FIG. FIG.
FIG. 4 is an explanatory diagram showing another example of a specific configuration of the present invention. In FIG. 3, the aggregation step 2 is configured by an aggregation mixing tank 16. In the reforming step 3, ozone 7, hydrogen peroxide 6, and ultraviolet light 14 are used together. The rest is the same as the configuration shown in FIG. FIG. 4 is an explanatory diagram showing another example of a specific configuration of the present invention. FIG. 4 shows that at least a part of the effluent of the coagulation step 2 is circulated to the reforming step 3 and the coagulation step 2
The remaining part of the effluent is introduced into the separation step 15. In the reforming step 3, ozone 7 and hydrogen peroxide 6 are used in combination.
【0018】[0018]
【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれに限定されるものではない。 実施例1 TOCが300mg/lであるゴミ埋立て地浸出水の生
物処理水を原水とし、原水流量を0.1リットル/mi
nとして、下記条件で図1に示すフローに従って処理し
た。 凝集工程 ・使用凝集剤:PAC ・凝集剤注入量:500mg・Al/l ・pH:6.0 改質工程 ・使用酸化剤:過酸化水素、オゾン ・過酸化水素注入量:300mg/l ・オゾン注入量:1000mg/l ・オゾン注入方法:ディフューザー ・滞留時間:30minEXAMPLES The present invention will be described below in more detail with reference to examples, but the present invention is not limited to these examples. Example 1 Wastewater from litter landfill leachate having a TOC of 300 mg / l was used as raw water, and the raw water flow rate was 0.1 liter / mi.
n was processed according to the flow shown in FIG. 1 under the following conditions. Coagulation process-Coagulant used: PAC-Coagulant injection amount: 500 mg Al / l-pH: 6.0 Reforming process-Oxidant used: hydrogen peroxide, ozone-Hydrogen peroxide injection amount: 300 mg / l-ozone Injection amount: 1000 mg / l ・ Ozone injection method: diffuser ・ Residence time: 30 min
【0019】凝集分離工程 ・使用凝集剤:PAC ・凝集剤注入量:100〜400mg・Al/l ・pH:6.0 以上のような条件で処理した結果を、改質工程を行わな
い比較例1と共に表1に示す。また、凝集分離工程にお
けるPAC注入量とD−TOC除去量の関係を図5に示
す。図5で実施例1を−○−、比較例1を−×−で示
す。これより、本実施例の凝集分離工程におけるD−T
OC除去量は、改質工程で改質を行わなかった場合に比
較して高く、本発明においては、凝集工程で生成した凝
集フロックが存在する条件においても、溶存有機物の凝
集分離性が改善されることが認められた。Coagulation separation step Coagulant used: PAC Coagulant injection amount: 100 to 400 mg Al / l pH: 6.0 The result of treatment under the above conditions is a comparative example without modification step 1 and Table 1 are shown. FIG. 5 shows the relationship between the PAC injection amount and the D-TOC removal amount in the aggregation separation step. In FIG. 5, Example 1 is indicated by -O-, and Comparative Example 1 is indicated by -X-. Thus, the DT in the coagulation separation step of the present example
The OC removal amount is higher than that in the case where the reforming is not performed in the reforming step, and in the present invention, the flocculation and separability of the dissolved organic matter is improved even under the condition where the flocculated floc generated in the flocculation step exists. Was recognized.
【0020】[0020]
【表1】 [Table 1]
【0021】実施例2 TOCが300mg/lであるゴミ埋立て地浸出水の生
物処理水を原水とし、原水流量0.1リットル/min
として、下記条件で図3に示すフローに従って処理し
た。 凝集工程 ・使用凝集剤:PAC ・凝集剤注入量:500mg・Al/l ・pH:6.0 改質工程 ・酸化剤:過酸化水素、オゾン ・紫外線:25W低圧水銀ランプ ・過酸化水素注入量:50mg/l ・オゾン注入量:500mg/l ・オゾン注入方法:ディフューザー ・滞留時間:30minExample 2 The biologically treated water of leachate from garbage landfill having a TOC of 300 mg / l was used as raw water, and the raw water flow rate was 0.1 liter / min.
The process was performed according to the flow shown in FIG. 3 under the following conditions. Coagulation process • Coagulant used: PAC • Coagulant injection amount: 500 mg · Al / l • pH: 6.0 Reforming process • Oxidant: hydrogen peroxide, ozone • Ultraviolet light: 25 W low-pressure mercury lamp • Hydrogen peroxide injection amount : 50 mg / l ・ Ozone injection amount: 500 mg / l ・ Ozone injection method: diffuser ・ Dwell time: 30 min
【0022】凝集分離工程 ・使用凝集剤:PAC ・凝集剤注入量:100〜400mg・Al/l ・pH:6.0 ・膜の孔径:0.1μm 処理結果を、改質工程を行わない比較例2と共に表2に
示す。これにより、実施例1と同様の結果が認められ
た。Coagulation separation step • Coagulant used: PAC • Coagulant injection amount: 100 to 400 mg • Al / l • pH: 6.0 • Membrane pore size: 0.1 μm Comparison of the treatment results without the modification step The results are shown in Table 2 together with Example 2. Thereby, the same result as in Example 1 was recognized.
【0023】[0023]
【表2】 [Table 2]
【0024】実施例3 TOCが300mg/lであるゴミ埋立て地浸出水の生
物処理水を原水とし、原水流量を0.05リットル/m
inとして、下記条件で図4に示すフローに従って処理
した。 凝集工程 ・使用凝集剤:PAC ・凝集剤注入量:1000mg・Al/l ・pH:6.0 改質工程 ・酸化剤:過酸化水素、オゾン ・過酸化水素注入量:50mg/l ・オゾン注入量:500mg/l ・オゾン注入方法:ディフューザー ・滞留時間:30min ・凝集工程流出水の改質工程への循環率:100%(原
水流量に対して)Example 3 Wastewater from litter landfill leachate having a TOC of 300 mg / l was used as raw water, and the flow rate of raw water was 0.05 l / m2.
In was processed according to the flow shown in FIG. 4 under the following conditions. Coagulation process-Coagulant used: PAC-Coagulant injection amount: 1000 mg Al / l-pH: 6.0 Reforming process-Oxidizer: hydrogen peroxide, ozone-Hydrogen peroxide injection amount: 50 mg / l-Ozone injection Amount: 500 mg / l ・ Ozone injection method: Diffuser ・ Residence time: 30 min ・ Circulation rate of effluent of coagulation process to reforming process: 100% (relative to raw water flow rate)
【0025】以上のような条件で処理した結果を、図6
に示す。また、改質工程でオゾン及び過酸化水素の注入
を行わなかった比較例3の結果を、図7に示す。これら
より、凝集工程におけるD−TOC除去量は、本実施例
で70mg/l、比較例3で50mg/lであり、本実
施例の方が多かった。これより、本実施例においても、
溶存有機物の凝集分離性が改善されることが認められ
た。以上のように、凝集工程流出水の少なくとも一部を
改質工程に循環させ、凝集工程流出水の残部を分離工程
に導入する場合に於いても、本発明による効果に変わり
はない。The result of processing under the above conditions is shown in FIG.
Shown in FIG. 7 shows the result of Comparative Example 3 in which ozone and hydrogen peroxide were not injected in the reforming step. From these, the amount of D-TOC removed in the aggregation step was 70 mg / l in this example and 50 mg / l in comparative example 3, which was greater in this example. From this, also in this embodiment,
It was found that the cohesive separation of dissolved organic matter was improved. As described above, even when at least a part of the effluent of the flocculation step is circulated to the reforming step, and the remaining part of the effluent of the flocculation step is introduced into the separation step, the effect of the present invention remains unchanged.
【0026】[0026]
【発明の効果】本発明によれば、凝集工程、凝集分離工
程における処理対象を易凝集分離性の物質のみでできる
ため、除去有機物量あたりに必要な凝集剤量が減少し、
発生スラッジ量が低下すると共に、凝集剤に関わるコス
トが低下する。また、凝集フロックの分離設備が一つで
済むため、施設の運転も簡易である。また、改質工程
で、難凝集分離性の有機物を易凝集分離性の有機物に改
質するのに要する酸化剤量、紫外線照射量は、原水中の
有機物を必要とされる処理水質まで完全分解するものと
比べて、きわめて少量であり、改質工程での処理コスト
は高額とはならない。更に、改質に伴い、一部の有機物
が水と炭酸ガスにまで酸化分解されるが、この様な補助
的な効果によっても、排水中の有機物濃度が低下し、必
要な凝集剤量が低減化される。According to the present invention, the object to be treated in the aggregating step and the aggregating / separating step can be made of only an easily aggregating / separating substance.
The amount of generated sludge decreases, and the cost related to the flocculant decreases. In addition, since only one flocculation floc separation facility is required, the operation of the facility is simple. Also, in the reforming process, the amount of oxidizing agent and the amount of UV irradiation required to reform the hard-to-aggregate separable organic matter to the easily-separable sedimentable organic matter are completely decomposed to the required treated water quality of the organic matter in the raw water. The amount is extremely small as compared with that required for the process, and the processing cost in the reforming process is not high. In addition, some organic substances are oxidatively decomposed into water and carbon dioxide gas due to the reforming. However, such auxiliary effects also lower the concentration of organic substances in the wastewater and reduce the amount of required coagulant. Be transformed into
【図1】本発明による難分解性有機物含有排水の処理方
法を示すフロー説明図。FIG. 1 is a flow diagram illustrating a method for treating wastewater containing hardly decomposable organic substances according to the present invention.
【図2】本発明による別の実施形態を示すフロー説明
図。FIG. 2 is a flowchart illustrating another embodiment of the present invention.
【図3】本発明による別の実施形態を示すフロー説明
図。FIG. 3 is a flowchart illustrating another embodiment according to the present invention.
【図4】本発明による別の実施形態を示すフロー説明
図。FIG. 4 is a flowchart illustrating another embodiment of the present invention.
【図5】実施例1における凝集分離工程のPAC注入量
とD−TOC除去量の関係を示すグラフ。FIG. 5 is a graph showing the relationship between the PAC injection amount and the D-TOC removal amount in the aggregation separation step in Example 1.
【図6】実施例3の処理結果を示す図。FIG. 6 is a view showing a processing result of the third embodiment.
【図7】比較例3の処理結果を示す図。FIG. 7 is a view showing a processing result of Comparative Example 3.
1:原水、2:凝集工程、3:改質工程、4:凝集分離
工程、5:改質処理槽、6:過酸化水素、7:オゾン、
8:混合槽、9:凝集剤、10:凝集槽、11:処理
水、12:スラッジ、13:固液分離槽、14:紫外線
ランプ、15:分離工程、16:凝集混和槽、17:膜1: raw water, 2: coagulation step, 3: reforming step, 4: coagulation separation step, 5: reforming tank, 6: hydrogen peroxide, 7: ozone,
8: mixing tank, 9: flocculant, 10: flocculation tank, 11: treated water, 12: sludge, 13: solid-liquid separation tank, 14: ultraviolet lamp, 15: separation step, 16: flocculation mixing tank, 17: membrane
フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 1/32 C02F 1/32 1/52 1/52 K 1/72 1/72 Z 101 101 1/78 ZAB 1/78 ZAB Continued on the front page (51) Int.Cl. 6 Identification code FI C02F 1/32 C02F 1/32 1/52 1/52 K 1/72 1/72 Z 101 101 1/78 ZAB 1/78 ZAB
Claims (3)
り処理する凝集工程、活性酸素により処理する改質工
程、及び凝集剤により処理し固液分離を行う凝集分離工
程に順次導入して処理することを特徴とする難分解性有
機物含有排水の処理方法。1. A wastewater containing a hardly decomposable organic substance is sequentially introduced into a coagulation step of treating with a coagulant, a reforming step of treating with active oxygen, and a coagulation / separation step of treating with a coagulant and performing solid-liquid separation. A method for treating wastewater containing a hardly decomposable organic substance, comprising:
り処理する凝集工程に導入後、該凝集工程流出水の少な
くとも一部を活性酸素により処理する改質工程に導入し
て処理し、前記凝集工程に循環させると共に、前記凝集
工程流出水の残部を固液分離を行う分離工程に導入して
処理することを特徴とする難分解性有機物含有排水の処
理方法。2. The method according to claim 1, wherein the wastewater containing the hardly decomposable organic substance is introduced into a coagulation step of treating with a coagulant, and then introduced into a reforming step of treating at least a part of the water discharged from the coagulation step with active oxygen. A method for treating hardly decomposable organic matter-containing wastewater, wherein the wastewater is circulated to a coagulation step and the remaining part of the effluent of the coagulation step is introduced into a separation step for solid-liquid separation for treatment.
紫外線のうちのいずれか2つ以上の組合せにより生成さ
せることを特徴とする請求項1又は2記載の難分解性有
機物含有排水の処理方法。3. The active oxygen includes ozone, hydrogen peroxide,
The method according to claim 1, wherein the wastewater is generated by a combination of two or more of ultraviolet rays.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10175321A JPH11347592A (en) | 1998-06-09 | 1998-06-09 | Method for treating sewage containing hardly decomposable organic matter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10175321A JPH11347592A (en) | 1998-06-09 | 1998-06-09 | Method for treating sewage containing hardly decomposable organic matter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11347592A true JPH11347592A (en) | 1999-12-21 |
Family
ID=15994047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10175321A Pending JPH11347592A (en) | 1998-06-09 | 1998-06-09 | Method for treating sewage containing hardly decomposable organic matter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11347592A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003326284A (en) * | 2002-05-14 | 2003-11-18 | Mitsubishi Electric Corp | Water treatment apparatus and water treatment method |
WO2004026773A1 (en) * | 2002-08-13 | 2004-04-01 | Korea Institute Of Science And Technology | Method for advanced wastewater treatment without excess sludge using sludge disintegration |
WO2017094106A1 (en) * | 2015-12-01 | 2017-06-08 | 株式会社ロイヤルコーポレーション | Method for increasing amount of hydrocarbon oil, and device therefor |
JP2018164892A (en) * | 2017-03-28 | 2018-10-25 | 住友重機械エンバイロメント株式会社 | Oxidation treatment apparatus |
CN114702157A (en) * | 2022-03-29 | 2022-07-05 | 浙江工业大学 | Advanced treatment method for biochemical effluent of high-concentration pharmaceutical wastewater |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09225482A (en) * | 1996-02-20 | 1997-09-02 | Ebara Corp | Treatment of hardly decomposable organic material-containing waste water |
JPH1076296A (en) * | 1996-09-02 | 1998-03-24 | Ebara Corp | Treatment method for drainage containing poorly decomposable organic substance |
-
1998
- 1998-06-09 JP JP10175321A patent/JPH11347592A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09225482A (en) * | 1996-02-20 | 1997-09-02 | Ebara Corp | Treatment of hardly decomposable organic material-containing waste water |
JPH1076296A (en) * | 1996-09-02 | 1998-03-24 | Ebara Corp | Treatment method for drainage containing poorly decomposable organic substance |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003326284A (en) * | 2002-05-14 | 2003-11-18 | Mitsubishi Electric Corp | Water treatment apparatus and water treatment method |
WO2004026773A1 (en) * | 2002-08-13 | 2004-04-01 | Korea Institute Of Science And Technology | Method for advanced wastewater treatment without excess sludge using sludge disintegration |
WO2017094106A1 (en) * | 2015-12-01 | 2017-06-08 | 株式会社ロイヤルコーポレーション | Method for increasing amount of hydrocarbon oil, and device therefor |
JP2018164892A (en) * | 2017-03-28 | 2018-10-25 | 住友重機械エンバイロメント株式会社 | Oxidation treatment apparatus |
CN114702157A (en) * | 2022-03-29 | 2022-07-05 | 浙江工业大学 | Advanced treatment method for biochemical effluent of high-concentration pharmaceutical wastewater |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004058047A (en) | Treatment method and equipment for organic waste liquid | |
KR20070115427A (en) | A waste treatment device using multi frequency and active electron and method thereof | |
JPH11347592A (en) | Method for treating sewage containing hardly decomposable organic matter | |
KR19990026365A (en) | Wastewater Treatment Method and Apparatus by Fenton Oxidation and Electric Electrolysis | |
JPH09225482A (en) | Treatment of hardly decomposable organic material-containing waste water | |
JP2000176468A (en) | Sewage treatment and device therefor | |
JPH0631298A (en) | Sophisticated treatment method for waste chemical plating liquid | |
JP4277736B2 (en) | Method for treating water containing organic arsenic compound | |
JPH1076296A (en) | Treatment method for drainage containing poorly decomposable organic substance | |
JPH1133561A (en) | Flocculation and sedimentation treatment equipment | |
JP2005185967A (en) | Treatment method and treatment apparatus for organic waste water | |
JPH11347591A (en) | Treatment of sewage containing biologically hardly decomposable organic matter | |
JP3795003B2 (en) | Waste liquid treatment method and apparatus | |
JP2002079258A (en) | Method for treating hardly decomposable organic matter | |
JP3400942B2 (en) | Method and apparatus for decomposing organic chlorine compounds such as dioxins in landfill leachate | |
JPH09253695A (en) | Method for treating waste water containing hardly decomposable organic matter | |
JPS5930153B2 (en) | Treatment method for wastewater containing sterilization/disinfectant | |
KR100225693B1 (en) | Nonbiodegradable organic material treatment process | |
JP2652493B2 (en) | COD removal method for leachate from landfill | |
JP2003071487A (en) | Method and apparatus for treating organic wastewater | |
JP3178975B2 (en) | Water treatment method | |
JPH0952092A (en) | Treatment of waste water | |
JP2006142256A (en) | Treating method of organic waste water | |
KR100251530B1 (en) | Method of treating wastewater | |
CN108128977A (en) | A kind of chemical wastewater treatment system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050729 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061002 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070116 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070720 |