JPH09290280A - Ozone contact tank and control method therefor - Google Patents

Ozone contact tank and control method therefor

Info

Publication number
JPH09290280A
JPH09290280A JP10898396A JP10898396A JPH09290280A JP H09290280 A JPH09290280 A JP H09290280A JP 10898396 A JP10898396 A JP 10898396A JP 10898396 A JP10898396 A JP 10898396A JP H09290280 A JPH09290280 A JP H09290280A
Authority
JP
Japan
Prior art keywords
ozone
water
contact tank
treated
injection pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10898396A
Other languages
Japanese (ja)
Inventor
Hiroshi Tsukura
洋 津倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP10898396A priority Critical patent/JPH09290280A/en
Publication of JPH09290280A publication Critical patent/JPH09290280A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance the absorption efficiency of ozone in water to be treated and to lower the cost by arranging a pressure volute pump for mixing gaseous ozone and the water to be treated at the inflow part of the water to an ozone contact tank and providing a sharply contracted part for controlling the pressure in a pipe close to the tip opening of a downward injection pipe. SOLUTION: Gaseous ozone is introduced into the water 20 to be treated through an ozone injection pipe 18, a pressure volute pump 16 is started to mix the ozone and the water 20 by the impeller of the pump 16, hence the bubble is micronized to form an ozonized water having a high content of dissolved ozone, the ozonized water is passed through an inlet pipe 15 under pressure with the flow rate controlled by a variable-speed gear 17 and allowed to descend in a downward injection pipe 21 while in contact with the gas. At this time, the pressure in the pipe is optimized by a sharply contracted part 22 provided to the injection pipe 21. The ozonized water passed through the sharply contracted part 22 is collided with the bottom wall of the lowermost contact tank 11a and made turbulent, and hence the gaseous ozone is brought into efficient contact with the water 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は上下水道の処理方法
としてのオゾン処理装置に適用して有用な加圧型下方注
入式オゾン接触槽とその制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressurized downward injection type ozone contact tank useful for application to an ozone processing apparatus as a method for treating water and sewage, and a control method therefor.

【0002】[0002]

【従来の技術】近年における都市部での水環境の悪化に
伴って河川とか湖沼の水質汚濁が進んでおり、従来の凝
集沈澱とか砂濾過処理及び塩素処理との組み合わせだけ
では、水道用原水中の色度,臭気の除去作用に限界点が
生じている現状にある。特に我国の水道水として利用さ
れる水源の約70%は、地表水と呼ばれる湖沼水,ダム
水及び河川水に依存しており、これら湖沼水とかダムに
は富栄養化に伴う生物活動が活発化することによるカビ
臭とか藻臭の発生があり、他方の河川水には各種排水に
含まれている有機物とかアンモニア性窒素が流入され、
河川の自然浄化作用によってこれらの流入物を完全に浄
化することは期待できない状況にある。
2. Description of the Related Art Water pollution in rivers and lakes has been progressing with the deterioration of the water environment in urban areas in recent years. Raw water for tap water can be obtained only by the conventional combination of coagulation sedimentation, sand filtration and chlorination. There is a point where the chromaticity and odor removing action of the odor have a limit. In particular, about 70% of the water sources used as tap water in Japan depend on surface water, such as lakes, dams and river water, and these lakes and dams have active biological activities associated with eutrophication. There is a generation of mold odor and algae odor due to the formation of organic substances and ammonia nitrogen contained in various wastewater into the other river water,
It is impossible to completely purify these inflows by the natural purification action of rivers.

【0003】このような高度経済成長に伴う水源の水質
悪化に対処するため、前塩素処理が一般的に採用されて
いるが、前塩素処理を採用した浄水過程で発生する有機
塩素化合物であるトリハロメタン(THM)が発ガン性
を有していることが知られている。このような水源のカ
ビ臭とか藻臭の消去、及びトリハロメタン等発ガン物質
対策として、浄水の操作工程中にオゾン処理、又は該オ
ゾン処理と活性炭処理との複合処理を導入する高度浄水
システムが検討されている。
[0003] In order to cope with the deterioration of the water quality of the water source due to such high economic growth, pre-chlorination is generally adopted. Trihalomethane which is an organic chlorine compound generated in a water purification process employing pre-chlorination is used. (THM) is known to have carcinogenicity. In order to eliminate mold odors and algae odors from such water sources and to prevent carcinogens such as trihalomethanes, an advanced water purification system that introduces ozone treatment or a combined treatment of ozone treatment and activated carbon treatment into the operation process of water purification is considered. Has been done.

【0004】オゾンガスはそれ自身の持つ強力な酸化力
で水中に溶解している溶存性の有害物質を酸化除去する
作用があり、近時は上水のみならず下水処理にも採用さ
れている。しかしオゾン処理は塩素処理に比して約2倍
のコスト増となるため、オゾンガスの処理効果をより一
層高めることが要求され、そのため無数の微細なオゾン
ガスの気泡を作ることによって水とオゾンガスとの接触
効率を上げて、効率良くオゾンガスを水中に溶解吸収さ
せることが必須の要件となっている。
[0004] Ozone gas has an action of oxidizing and removing dissolved harmful substances dissolved in water by its own strong oxidizing power, and has recently been adopted not only for water supply but also for sewage treatment. However, the cost of ozone treatment is about twice as high as that of chlorination, and it is required to further enhance the effect of ozone gas treatment. Therefore, by forming countless fine ozone gas bubbles, water and ozone gas It is an essential requirement to increase the contact efficiency and to efficiently dissolve and absorb ozone gas in water.

【0005】従来からオゾンガスの接触効率及び吸収効
率を上げるための手段として、散気管型オゾン接触槽と
か下方注入式オゾン接触槽(Uチューブ型オゾン接触
槽)が知られている。上記散気管型オゾン接触槽は上下
迂流式オゾン接触槽とも呼称され、例えば「オゾン利用
水処理技術」(宗宮 功,公害対策技術同好会,198
9年5月)には、図6に示したように上下対向迂流式の
オゾン接触槽の例が開示されている。
Conventionally, as means for increasing the contact efficiency and absorption efficiency of ozone gas, a diffuser type ozone contact tank or a downward injection type ozone contact tank (U tube type ozone contact tank) is known. The air diffuser type ozone contact tank is also called an up-and-down bypass ozone contact tank. For example, “Ozone-using water treatment technology” (Isao Soumiya, Pollution Control Technology Association, 198
(May 9th), an example of a vertically opposed bypass type ozone contact tank as shown in FIG. 6 is disclosed.

【0006】即ち、この例ではオゾン接触槽1の内部に
底面から立ち上がる隔壁2,2と、上面から垂下された
隔壁3,3が配設されていて、この隔壁2,3によって
気相部が分離されているとともに液相部が相互に連通さ
れた越流式の複数の反応室が構成されている。
That is, in this example, partitions 2 and 2 rising from the bottom and partitions 3 and 3 suspended from the top are disposed inside the ozone contact tank 1, and the gas phase portion is formed by the partitions 2 and 3. A plurality of overflow-type reaction chambers which are separated and whose liquid phase portions communicate with each other are formed.

【0007】そして各室の内方底面近傍に数十μmの微
細孔を持つセラミック等の散気管4.4が配置されてい
て、図外のオゾン発生装置から得られるオゾンガスが該
散気管4.4に送り込まれ、流入口5から流入する被処
理水とオゾンガスとが矢印A,Aに示すように対向流と
して接触することによって該オゾンガスの接触効率が高
められ、オゾン処理水10として流出する。
An air diffuser 4.4 made of ceramic or the like having fine holes of several tens of μm is arranged near the inner bottom surface of each chamber, and ozone gas obtained from an ozone generator (not shown) is supplied to the air diffuser 4. When the water to be treated and the ozone gas, which have been fed into the inlet 4 and come into contact with the ozone gas, come into contact with each other as a counter flow as shown by arrows A and A, the contact efficiency of the ozone gas is increased and the ozone treated water 10 flows out.

【0008】他方の下方注入式オゾン反応槽(Uチュー
ブ型オゾン反応槽)は別名インジェクター型オゾン接触
槽とも呼称され、図7に示したように縦長のオゾン接触
槽1の内方に内管6が配置されていて、オゾン発生装置
7で得られるオゾンガスがガス放出管8を介して内管6
の上部から送り込まれる。そしてオゾンガス接触槽1の
側方の流入口5から流入する被処理水とオゾンガスとが
内管6内で下降流として継続的に接触して所望のオゾン
処理が行われ、そのまま内管6の外壁面に沿って上昇し
てオゾン接触槽1の上方部からオゾン処理水10として
流出する。未反応のオゾンガスは排オゾン処理装置9に
送り込まれて清浄化処理される。
On the other hand, the lower injection type ozone reaction tank (U-tube type ozone reaction tank) is also called an injector type ozone contact tank, and as shown in FIG. And the ozone gas obtained by the ozone generator 7 is supplied to the inner pipe 6 through the gas discharge pipe 8.
Sent from the top of the. Then, the water to be treated and the ozone gas flowing from the inflow port 5 on the side of the ozone gas contact tank 1 are continuously contacted as a downward flow in the inner pipe 6 to perform a desired ozone treatment. It rises along the wall surface and flows out as ozonized water 10 from above the ozone contact tank 1. The unreacted ozone gas is sent to a waste ozone treatment device 9 and is subjected to a cleaning treatment.

【0009】上記オゾン接触槽1の縦方向の長さは20
〜30メートルと可成長くなっていて、これによって内
管6内の水圧が2.0〜2.5(kgf/cm2)のレベ
ルに保持される。
The vertical length of the ozone contact tank 1 is 20
The water pressure in the inner tube 6 is maintained at a level of 2.0 to 2.5 (kgf / cm 2 ).

【0010】このUチューブ型オゾン接触槽は、内管6
で発生する乱流によってオゾンガスと被処理水との気液
接触効果が高められ、オゾンガスが内管6内を流下する
につれて増大する水圧によって該オゾンガスの水中への
溶解が促進されるので、散気管方式に較べてオゾン溶解
効率で5〜10%向上しており、オゾンガスと被処理水
との接触時間を約5倍以上取ることができるとともに反
応槽内での滞留時間は1/5以下に短縮することができ
るという特徴を有している。又、オゾン接触槽が縦長で
あるため、オゾン処理施設の設置スペースが散気管方式
の1/5ですむという利点を有している。
This U-tube type ozone contact tank has an inner tube 6
The gas-liquid contact effect between the ozone gas and the water to be treated is enhanced by the turbulent flow generated in the step, and the water pressure that increases as the ozone gas flows down in the inner pipe 6 promotes the dissolution of the ozone gas into the water. The ozone dissolution efficiency is improved by 5 to 10% compared to the system, the contact time between ozone gas and the water to be treated can be about 5 times or more, and the residence time in the reaction tank is reduced to 1/5 or less. It has the feature that it can be done. Further, since the ozone contact tank is vertically long, there is an advantage that the installation space of the ozone treatment facility is only 1/5 that of the air diffuser system.

【0011】かかるオゾン反応槽を用いることにより、
塩素よりもはるかに酸化力の強力なオゾンガスによって
被処理水の異臭味とか色度除去、有害物質の酸化除去が
行われる(上記Uチューブ型オゾン処理装置に関して
は、第2回日本オゾン協会年次研究講演会講演集の第7
6頁〜第77頁,鳥山ら「Uチューブ型オゾン接触槽の
有機物除去特性」を参照)。
By using such an ozone reaction tank,
Ozone gas, which has much more oxidizing power than chlorine, removes off-flavors and chromaticity of the water to be treated, and oxidizes and removes harmful substances. (For the U-tube type ozone treatment equipment, the 2nd Annual Ozone Association of Japan Research Lecture Series No. 7
Pages 6 to 77, see Toriyama et al., "Organic matter removal characteristics of U-tube ozone contact tank").

【0012】[0012]

【発明が解決しようとする課題】しかしながら上記した
高度浄水システム等に採用されるオゾン接触槽は、被処
理水に対するオゾンガスの吸収効率を上げるための制御
方法が確立されていないため、経時的な吸収効率低下現
象が発生する惧れがある外、装置の大型化等に起因する
コストアップを招来してしまうという課題がある。
However, in the ozone contact tank used in the above-mentioned advanced water purification system, etc., since a control method for increasing the absorption efficiency of ozone gas with respect to the water to be treated has not been established, absorption over time There is a possibility that the phenomenon of reduced efficiency may occur, and there is a problem that the cost increases due to the increase in size of the device.

【0013】例えば図6に示した散気管型オゾン接触槽
は、処理が進むにつれて散気管4の表面にオゾンガスに
よって酸化された鉄とかマンガンが付着して、散気管4
の目詰まりに起因する経時的なオゾン吸収効率低下現象
を引き起こす惧れがあり、これに対処して散気管自体の
交換が必要になるという問題がある。更にオゾンガスに
よる反応時間を充分に取るためには、接触槽を大型化し
なければならないので、設備費等に要するコストアップ
を招来するとともに、装置を設置するための大きな敷地
面積を要することになり、都市部における浄水場のよう
に用地確保が困難な地区での採用が難しい。
For example, in the air diffuser type ozone contact tank shown in FIG. 6, as the treatment progresses, iron or manganese oxidized by ozone gas adheres to the surface of the air diffuser pipe 4, and
There is a concern that the ozone absorption efficiency may decrease over time due to clogging of the air, and there is a problem that it is necessary to replace the air diffuser itself in order to cope with the phenomenon. Furthermore, in order to take sufficient reaction time with ozone gas, the contact tank must be enlarged, which leads to an increase in equipment costs and the like, and also requires a large site area for installing the apparatus. It is difficult to adopt in areas where land is difficult to secure, such as water purification plants in urban areas.

【0014】他方の図7に示したUチューブ型オゾン接
触槽は、散気管型オゾン接触槽に比較してオゾン溶解効
率で5〜10%程度向上しており、且つオゾンガスと被
処理水との接触時間も5倍以上長く取ることができると
ともに接触槽内での滞留時間は1/5以下に短縮するこ
とができるという利点があるが、前記したようにオゾン
接触槽の水深が20〜30メートルと可成長くなってい
るので、散気管方式よりも施設の建設工事が複雑になる
という問題があり、更に接触槽内に貯留される堆積物の
除去とか槽内の清掃が簡便に行えない上、接触槽の底部
近傍で何等かの障害が発生しても直ちに処置することが
できないという難点を有している。
On the other hand, the U-tube type ozone contact tank shown in FIG. 7 has an ozone dissolution efficiency improved by about 5 to 10% as compared with the diffuser tube type ozone contact tank, and the ozone gas and the water to be treated are The contact time can be longer than 5 times, and the residence time in the contact tank can be shortened to 1/5 or less, but as described above, the water depth of the ozone contact tank is 20 to 30 meters. However, there is a problem that the construction work of the facility is more complicated than that of the air diffusing system, and further, the removal of the deposits stored in the contact tank and the cleaning of the tank cannot be performed easily. However, even if some trouble occurs in the vicinity of the bottom of the contact tank, it cannot be immediately treated.

【0015】ここで別の観点からオゾンの反応過程を考
察してみると、このオゾン反応過程はオゾンの拡散が律
速する初期段階と、オゾン反応が律速する後期段階とに
大別することができる。従って気液反応接触槽もこれら
の特性を踏まえた装置であることが理想的であり、例え
ばオゾン反応の初期時には拡散効率を高めるための大き
な接触面積と強力な撹拌機構を備え、オゾン反応の後期
時には十分な反応を得るための滞留時間が確保される装
置であることが望ましい。
Considering the reaction process of ozone from another viewpoint, the ozone reaction process can be roughly classified into an initial stage in which the diffusion of ozone is rate-determining and a late stage in which the ozone reaction is rate-limiting. . Therefore, it is ideal that the gas-liquid reaction contact tank is also a device based on these characteristics.For example, at the beginning of the ozone reaction, it has a large contact area and a strong stirring mechanism to increase the diffusion efficiency, and Sometimes it is desirable to have a device that ensures a residence time for obtaining a sufficient reaction.

【0016】前記2種類のオゾン接触槽の反応過程を考
慮すると、オゾン反応の初期時にはUチューブ型オゾン
接触槽が適しており、オゾン反応の後期時には散気管型
オゾン接触槽が適しているものといえる。
Considering the reaction processes of the two types of ozone contact tanks, the U-tube type ozone contact tank is suitable at the initial stage of the ozone reaction, and the diffuser tube type ozone contact tank is suitable at the latter stage of the ozone reaction. I can say.

【0017】そこで本発明は上記に鑑みてなされたもの
であり、被処理水に対するオゾンの吸収効率を高め、コ
ストの低廉化がはかれる上、経時的な吸収効率低下現象
が生じないオゾン接触槽とその制御方法を提供すること
を目的とするものである。
Therefore, the present invention has been made in view of the above, and an ozone contact tank which improves absorption efficiency of ozone with respect to water to be treated, reduces cost, and does not cause a phenomenon of deterioration of absorption efficiency with time. The purpose is to provide a control method therefor.

【0018】[0018]

【課題を解決するための手段】本発明は上記の目的を達
成するために、先ず請求項1により、被処理水が滞留し
ながら流通可能な縦型のオゾン接触槽と、該オゾン接触
槽に送り込まれる被処理水の流入部に配備され、オゾン
発生装置で得られたオゾンガスと被処理水とを気液混合
する加圧渦流ポンプ及び被処理水の流入水量調整用の可
変速器と、オゾン接触槽の上部から内部に挿入配置され
て、被処理水が下降流として落下する下方注入管と、オ
ゾン接触槽の底壁に対向する部位の下方注入管の先端開
口部近傍に形成された管内圧力調整用の急縮部とを備え
てなるオゾン接触槽の構成にしてあり、請求項2によ
り、気相部が分離されているとともに液相部が相互に連
通された複数段の反応室を有する上下迂流式のオゾン接
触槽と、上記各反応室内に縦型に配置されて、オゾン発
生装置で得られたオゾンガスと被処理水とが加圧渦流ポ
ンプ、流量制御弁及び流量計を介して流入して下降流と
して落下する下方注入管と、オゾン接触槽の底壁に対向
する部位の下方注入管の先端開口部近傍に形成された管
内圧力調整用の急縮部とを備えてなるオゾン接触槽を提
供する。
In order to achieve the above object, the present invention firstly provides a vertical ozone contact tank through which water to be treated can flow while staying, and an ozone contact tank according to claim 1. A pressurized swirl pump provided in the inflow part of the treated water to be fed, for mixing the ozone gas obtained by the ozone generator with the treated water, and a variable speed device for adjusting the inflow amount of the treated water, and ozone. Inside the pipe formed near the tip opening of the lower injection pipe that is inserted and arranged from the upper part of the contact tank and through which the water to be treated falls as a downward flow, and the portion of the lower injection pipe that faces the bottom wall of the ozone contact tank. The ozone contact tank is provided with a pressure-reducing section for pressure adjustment, and a plurality of reaction chambers in which the gas phase section is separated and the liquid phase sections are communicated with each other are provided. Upper and lower bypass type ozone contact tank and each of the above reactions A vertical injection pipe that is vertically arranged in the ozone gas and the water to be treated obtained by the ozone generator flows in through a pressurized swirl pump, a flow control valve, and a flow meter and falls as a downflow. Provided is an ozone contact tank including a sharply reducing portion for adjusting the internal pressure of a pipe formed in the vicinity of a tip opening of a lower injection pipe at a portion facing a bottom wall of the ozone contact tank.

【0019】請求項3により、前記各反応室内に溶存オ
ゾン濃度計と有機物濃度計を配置して、この溶存オゾン
濃度計と有機物濃度計の測定値及び流量計の測定値に基
づいて、制御部が流量制御弁の開度とオゾン発生装置の
駆動状況を演算して、オゾン注入率とL/G比を最適に
調整する制御を行う制御方法を提供し、請求項4により
前記下方注入管での被処理水流量/オゾンガス流量の比
(L/G比)を10以上とし、管内圧力は1.5(kg
f/cm2)以上とした制御方法を提供する。
According to a third aspect of the present invention, a dissolved ozone concentration meter and an organic matter concentration meter are arranged in each of the reaction chambers, and the control unit is based on the measured values of the dissolved ozone concentration meter and the organic matter concentration meter and the measured value of the flow meter. Provides a control method for calculating the opening of the flow control valve and the driving condition of the ozone generator to perform the control for optimally adjusting the ozone injection rate and the L / G ratio, and the lower injection pipe according to claim 4 The treated water flow rate / ozone gas flow rate ratio (L / G ratio) is 10 or more, and the pipe pressure is 1.5 (kg
f / cm 2 ) or more.

【0020】更に請求項5により、気相部が分離されて
いるとともに液相部が相互に連通された複数段の反応室
を有する上下迂流式のオゾン接触槽と、上記各反応室内
に縦型に配置されて、オゾン発生装置で得られたオゾン
ガスと被処理水とが加圧渦流ポンプ、流量制御弁及び流
量計を介して流入して下降流として落下する下方注入管
と、オゾン接触槽に配備されて、各下方注入管に凝集剤
を供給する凝集剤注入装置と、各反応室の上壁部近傍に
配備した浮上汚泥収集装置と、オゾン接触槽の底壁に対
向する部位の下方注入管の先端開口部近傍に形成された
管内圧力調整用の急縮部とを備えてなるオゾン接触槽の
構成にしてあり、請求項6により、下方注入管に送り込
まれた被処理水中に凝集剤を供給して、被処理水中の濁
質と気泡を凝集、濃縮し、水面上に浮上した凝集濃縮物
を、間欠もしくは連続的に吸引除去するようにしたオゾ
ン接触槽の制御方法を提供する。
Further, according to claim 5, a vertical bypass type ozone contact tank having a plurality of reaction chambers in which a gas phase portion is separated and a liquid phase portion is communicated with each other, and a vertical bypass chamber in each reaction chamber. A lower injection pipe, which is arranged in a mold and into which the ozone gas obtained by the ozone generator and the water to be treated flow in through a pressurized swirl pump, a flow control valve and a flow meter and drop as a downward flow, and an ozone contact tank. A coagulant injection device for supplying a coagulant to each lower injection pipe, a flotation sludge collection device installed near the upper wall of each reaction chamber, and a portion of the ozone contact tank facing the bottom wall below. The ozone contact tank is provided with a rapid compression section for adjusting the pressure inside the tube formed in the vicinity of the opening of the tip of the injection tube, and the ozone is agglomerated in the water to be treated sent to the lower injection tube according to claim 6. Supply agent to aggregate suspended particles and bubbles in the water to be treated, Condensation, and aggregation concentrate was floated on the water surface, a control method of an ozone contact tank which is adapted to intermittently or continuously removed by suction.

【0021】かかる請求項1記載のオゾン接触槽によれ
ば、被処理水オゾンガスとが加圧渦流ポンプによって混
合・微細気泡化されて高溶存オゾン水となり、急縮部に
よって管内圧力が所定値に調整された下方注入管内を気
液が接触しながら下降して接触槽底壁に当たることによ
ってオゾンガスと被処理水との接触効率を高められ、短
時間で効率的なオゾン処理が行われるという特徴があ
る。
According to the ozone contact tank of the first aspect, the ozone gas to be treated is mixed with the pressurized swirl pump to form fine bubbles, and becomes highly dissolved ozone water, and the pressure in the pipe becomes a predetermined value by the rapid compression section. The contact efficiency between ozone gas and water to be treated can be improved by contacting the bottom wall of the contact tank with gas-liquid falling while contacting the adjusted lower injection pipe, and efficient ozone treatment is performed in a short time. is there.

【0022】請求項2,3,4記載の分岐されたオゾン
接触槽とその制御方法によれば、被処理水の一方は加圧
渦流ポンプ16によるオゾンガスとの混合・微細気泡化
により高溶存オゾン水となり、他方は未処理のまま高溶
存オゾン水とともに反応室1a,1bを迂流することに
よって短時間で反応を進行させるという特徴がある。更
に請求項5,6記載のオゾン接触槽とその制御方法によ
れば、高濁質を含む被処理水に凝集剤を注入することに
より、浮上分離法によって濁質を濃縮除去することがで
きるので、オゾンの注入率低減作用と、後段工程である
砂濾過池とか活性炭濾過装置等に対する負荷が低減され
るという作用が得られる。
According to the branched ozone contact tank and the control method therefor, one of the water to be treated is highly dissolved ozone by mixing with the ozone gas by the pressurized swirl pump 16 and forming fine bubbles. It becomes water, and the other one is characterized by allowing the reaction to proceed in a short time by bypassing the reaction chambers 1a and 1b together with the highly dissolved ozone water without treatment. Further, according to the ozone contact tank and the control method thereof according to claims 5 and 6, by injecting the coagulant into the water to be treated containing the highly suspended matter, the suspended matter can be concentrated and removed by the flotation method. The effect of reducing the injection rate of ozone and the effect of reducing the load on the sand filter basin, the activated carbon filter device, and the like in the subsequent step can be obtained.

【0023】[0023]

【発明の実施の形態】以下図面に基づいて本発明にかか
るオゾン接触槽とその制御方法の各種実施例を説明す
る。図1は本発明にかかるオゾン接触槽の第1実施例を
示す概要図であり、この第1実施例では加圧型下方注入
式オゾン接触槽を基本構成としている。11はオゾン接
触槽であって、このオゾン接触槽11は、最下段から上
段に向けて複数段に分割されているとともに被処理水が
流通可能なブロック型の接触槽11a,11b,11
c,11d,11eの重合体で構成されており、最上段
の接触槽11eに配備された処理水タンク12からオゾ
ン処理水10が流出する。13は排オゾンガスの排出管
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Various embodiments of an ozone contact tank and its control method according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing a first embodiment of an ozone contact tank according to the present invention. In this first embodiment, a pressure type downward injection type ozone contact tank is used as a basic structure. Reference numeral 11 denotes an ozone contact tank, and this ozone contact tank 11 is divided into a plurality of stages from the lowermost stage to the upper stage, and block-type contact chambers 11a, 11b, 11 through which water to be treated can flow.
The ozone-treated water 10 is made of a polymer of c, 11d, and 11e, and the ozone-treated water 10 flows out from the treated water tank 12 provided in the uppermost contact tank 11e. Reference numeral 13 denotes an exhaust pipe for exhaust ozone gas.

【0024】各単位毎に分割されたブロック型接触槽1
1a,11b,11c,11d,11eの側部には、最
下方から夫々サンプリングポート14a,14b,14
c,14d,14e,14f,14g,14hが配備さ
れている。
Block type contact tank 1 divided into units
1a, 11b, 11c, 11d, and 11e are provided with sampling ports 14a, 14b, and 14 from the lowermost side, respectively.
c, 14d, 14e, 14f, 14g, 14h are provided.

【0025】15はオゾン接触槽11に送り込まれる被
処理水20の流入管であり、この流入管15に対する被
処理水20の流入部には、加圧渦流ポンプ16と流入水
量を調整する可変速器17(インバータ)とが配備され
ている。図2に拡大して示したように、加圧渦流ポンプ
16内にはインペラー部16aが構成されており、更に
加圧渦流ポンプ16の前段には被処理水20中に図外の
オゾン発生装置からオゾンガスを送り込むためのオゾン
注入管18が挿入されている。この加圧渦流ポンプ16
は、オゾンガスと被処理水20とを「混合・微細気泡化
・圧送」するという三つの機能を有している。
Reference numeral 15 is an inflow pipe for the treated water 20 fed into the ozone contact tank 11, and a pressurized swirl pump 16 and a variable speed for adjusting the amount of the inflow water are provided at the inflow portion of the treated water 20 to the inflow pipe 15. The device 17 (inverter) is provided. As shown in an enlarged manner in FIG. 2, an impeller portion 16 a is configured in the pressurizing vortex pump 16, and an ozone generator (not shown) in the treated water 20 is provided in the preceding stage of the pressurizing vortex pump 16. An ozone injection pipe 18 for feeding ozone gas from the inside is inserted. This pressurized vortex pump 16
Has three functions of "mixing, forming fine bubbles, and pumping" the ozone gas and the water 20 to be treated.

【0026】上記流入管15は、オゾン接触槽11内に
縦方向に挿入配置された下方注入管21に連結されてお
り、この下方注入管21の先端開口部はオゾン接触槽1
1内の前記最下段の接触槽11aの底壁に対向する近傍
位置にまで導入されている。この先端開口部の近傍部位
には、下方注入管21の管内圧力を調整するための急縮
部22が形成されている。この急縮部22は、図3の拡
大図に示したように下方注入管21の管径を部分的に小
径に絞ったオリフィス22aにより構成されている。
The inflow pipe 15 is connected to a lower injection pipe 21 which is vertically inserted in the ozone contact tank 11, and the tip opening of the lower injection pipe 21 is connected to the ozone contact tank 1.
It is introduced up to a position near the bottom wall of the lowermost contact tank 11a in the inside 1. A rapid contraction portion 22 for adjusting the pressure inside the lower injection pipe 21 is formed near the tip opening. As shown in the enlarged view of FIG. 3, the abrupt contraction portion 22 is constituted by an orifice 22a in which the diameter of the lower injection pipe 21 is partially reduced to a small diameter.

【0027】上記オゾン接触槽11の縦方向の長さは約
5〜6メートルであり、従来のUチューブ型オゾン接触
槽の同部分の20〜30メートルという長さが大幅に短
縮されていて、謂わば通常の散気管型オゾン接触の水深
レベルと略同等であることが本実施例の構造上の特徴と
もなっている。
The vertical length of the ozone contact tank 11 is about 5 to 6 meters, and the length of the same portion of the conventional U-tube type ozone contact tank, which is 20 to 30 meters, is greatly shortened. It is a structural feature of this embodiment that the water depth level is almost equivalent to that of a normal diffuser type ozone contact.

【0028】かかる第1実施例におけるオゾン接触槽1
1の運転時の操作と動作原理を以下に説明する。先ず基
本的な操作としてオゾン処理すべき被処理水20内にオ
ゾン注入管18を介してオゾンガスを送り込み、加圧渦
流ポンプ16を起動することによってオゾンガスと被処
理水20とがこの加圧渦流ポンプ16のインペラー部1
6aによって混合・微細気泡化されて高溶存オゾン水と
なり、可変速器17により流入水量が調整されて流入管
15内を圧送され、下方注入管21内を気液が接触しな
がら下降する。この時に急縮部22によって管内圧力は
0〜4.0(kgf/cm2)に調整される。
Ozone contact tank 1 in the first embodiment
The operation and the operating principle of No. 1 operation will be described below. First, as a basic operation, ozone gas is fed into the water to be treated 20 to be subjected to ozone treatment through the ozone injection pipe 18, and the pressurized vortex pump 16 is started to cause the ozone gas and the water to be treated 20 to be the pressurized vortex pump. 16 impeller parts 1
6a mixes them into fine bubbles to form highly dissolved ozone water, the amount of inflow water is adjusted by the variable speed device 17 and is pumped through the inflow pipe 15, and descends while contacting the gas and liquid in the lower injection pipe 21. At this time, the pressure in the pipe is adjusted to 0 to 4.0 (kgf / cm 2 ) by the sudden contraction section 22.

【0029】そして下方注入管21に形成された急縮部
22を通過してから最下段の接触槽11aの底壁に当た
って乱流状態となり、これによってオゾンガスと被処理
水20との接触効率が高められる。
Then, after passing through the rapid contraction portion 22 formed in the lower injection pipe 21, it hits the bottom wall of the contact tank 11a at the lowermost stage to be in a turbulent state, whereby the contact efficiency between the ozone gas and the treated water 20 is increased. To be

【0030】上記の動作時に、加圧渦流ポンプ16で送
り込まれる被処理水20の流速と圧力は、両方とも高い
方が望ましい。その理由はオゾンガス接触後のオゾンの
水中への移動を容易にするためと、急縮部22のオリフ
ィス部分で発生する圧力損失を補うためである。
At the time of the above operation, it is desirable that both the flow velocity and the pressure of the treated water 20 fed by the pressurized vortex pump 16 are high. The reason is to facilitate the movement of ozone into water after contact with ozone gas, and to supplement the pressure loss generated at the orifice portion of the rapid contraction portion 22.

【0031】このようにしてオゾンガスが混合された被
処理水20は、オゾン接触槽11を構成するブロック単
位の各接触槽11a,11b,11c,11d,11e
の最下段から上段に向けて流れ、所定の滞留時間を経て
から最上段に配備された処理水タンク12からオゾン処
理水10として流出して図外のオゾン処理水槽に一時的
に貯留されて次段の工程に備える。この時には当然各サ
ンプリングポート14a,14b,14c,14d,1
4e,14f,14g,11hは閉止されている。
The treated water 20 mixed with the ozone gas in this manner is used as the contact tanks 11a, 11b, 11c, 11d, and 11e in units of blocks which constitute the ozone contact tank 11.
Flow from the lowermost stage to the upper stage, and after a predetermined residence time, the treated water tank 12 provided at the uppermost stage flows out as ozone-treated water 10 and is temporarily stored in an ozone-treated water tank (not shown). Prepare for the step process. At this time, of course, each sampling port 14a, 14b, 14c, 14d, 1
4e, 14f, 14g and 11h are closed.

【0032】又、未反応のオゾンガスは排出管13から
図外の排オゾン処理装置に送り込まれ、周知の熱分解,
触媒を用いた分解,土壌分解,薬液洗浄処理又は活性炭
処理によって無害なガスに分解されて大気中に放出され
る。即ち、オゾンガスはフッ素につぐ強力な酸化力を有
していて人体にも有害な物質であるため、排オゾン処理
装置での分解処理が不可欠である。
Further, the unreacted ozone gas is sent from the exhaust pipe 13 to an exhaust ozone treatment device (not shown), and the known thermal decomposition,
It is decomposed into harmless gas by decomposition using a catalyst, soil decomposition, chemical solution cleaning treatment or activated carbon treatment and released into the atmosphere. That is, since ozone gas has a strong oxidizing power next to fluorine and is a harmful substance to the human body, it is indispensable to decompose the ozone gas with an exhaust ozone treatment device.

【0033】このようなオゾンガスと被処理水20との
接触により、脱臭,脱色,鉄マンガン,多環状化合物と
か有機物の酸化除去及び殺菌,殺藻及び異臭味の除去が
行われる。
By contacting the ozone gas with the water 20 to be treated, deodorization, decolorization, oxidation and sterilization of ferro-manganese, polycyclic compounds and organic substances such as algae and off-flavors are carried out.

【0034】本第1実施例のオゾン接触槽11は、最下
段から上段に向けて複数段に分割されたブロック型接触
槽11a,11b,11c,11d,11eの重合体で
構成されているため、必要に応じて単位槽としてのブロ
ック型接触槽の追加とか削減が自在であるという特徴を
有している。例えばオゾンガスと被処理水の接触時間を
長く取りたい場合には、同様な他のブロック型接触槽を
追加重合することによってオゾン接触槽としての全体的
な水深を大きくすることが可能であり、更に運転中に接
触槽の一部に不具合が生じた場合には、その接触槽のみ
をブロック単位に削減するとか交換する等の処置を取れ
ばよく、ブロック型接触槽全体を交換しなくても済むと
いう利点がある。
Since the ozone contact tank 11 of the first embodiment is composed of a polymer of block type contact tanks 11a, 11b, 11c, 11d, 11e divided into a plurality of stages from the bottom to the top. The feature is that a block type contact tank as a unit tank can be added or removed as needed. For example, when it is desired to take a long contact time with ozone gas and water to be treated, it is possible to increase the overall water depth as an ozone contact tank by additionally polymerizing another similar block type contact tank. If a problem occurs in a part of the contact tank during operation, it is only necessary to reduce the contact tank in blocks or replace it, and it is not necessary to replace the entire block contact tank. There is an advantage.

【0035】又、上記の各単位に分割されたブロック型
接触槽11a,11b,11c,11d,11eの側部
に夫々サンプリングポート14a,14b,14c,1
4d,14e,14f,14g,11hが配備されてい
るので、任意のサンプリングポートの開閉制御を実施す
ることによって被処理水20を流出させることが可能で
あり、オゾンガスとの接触時間を容易に変更することが
可能である。
Further, sampling ports 14a, 14b, 14c, 1 are provided on the sides of the block type contact tanks 11a, 11b, 11c, 11d, 11e divided into the above-mentioned units, respectively.
Since 4d, 14e, 14f, 14g, and 11h are provided, it is possible to cause the treated water 20 to flow out by performing opening / closing control of any sampling port, and easily change the contact time with ozone gas. It is possible to

【0036】上記の動作時において、被処理水流量/オ
ゾンガス流量の比(L/G比と略称)を10以上とし、
管内圧力は1.5(kgf/cm2)以上にすることが必
要である。即ちオゾン吸収効率とL/G比及び管内圧力
は相関関係があり、オゾン吸収効率が90%以上である
ことを目標とした場合にはオゾンガス流量が一定条件下
ではL/G比が10以上で且つ管内圧力が1.5(kg
f/cm2)以上となる。従って両条件を満たす操作が
必要であり、被処理水20の流量低減は可変速器17に
よる回転数制御によって流入水量調整と急縮部22のオ
リフィス径調整で達成することができる。
In the above operation, the ratio of the flow rate of treated water / the flow rate of ozone gas (abbreviated as L / G ratio) is 10 or more,
It is necessary that the internal pressure of the pipe is 1.5 (kgf / cm 2 ) or more. That is, there is a correlation between the ozone absorption efficiency, the L / G ratio, and the pipe pressure. If the ozone absorption efficiency is 90% or higher, the L / G ratio is 10 or higher under a constant ozone gas flow rate. Moreover, the pipe pressure is 1.5 (kg
f / cm 2 ) or more. Therefore, an operation satisfying both conditions is required, and the flow rate of the water to be treated 20 can be reduced by adjusting the inflow water amount and adjusting the orifice diameter of the rapid contraction unit 22 by controlling the rotation speed by the variable speed gear 17.

【0037】次に図4に基づいて本発明の第2実施例を
説明する。この第2実施例は上下迂流式オゾン接触槽と
加圧型下方注入式オゾン接触槽との組み合わせにかかる
装置例である。
Next, a second embodiment of the present invention will be described with reference to FIG. The second embodiment is an example of a device relating to a combination of a vertical bypass type ozone contact tank and a pressure type downward injection type ozone contact tank.

【0038】図示したように被処理水20の流路が第1
の流路23と第2の流路24とに分岐されていて、第2
の流路24は上下迂流式のオゾン接触槽1内に直接連結
されている。この上下迂流式のオゾン接触槽1の内部に
は、底面から立ち上がる隔壁2と上面から垂下された隔
壁3とによって気相部が分離されているとともに液相部
が相互に連通された越流式の反応室1a,1bが構成さ
れている。
As shown in the figure, the flow path of the water 20 to be treated is the first
Is divided into a flow path 23 and a second flow path 24 of
The flow path 24 is directly connected to the vertical bypass type ozone contact tank 1. Inside the up-and-down bypass ozone contact tank 1, a gas phase portion is separated by a partition wall 2 rising from the bottom surface and a partition wall 3 hanging from the top surface, and a liquid phase portion is communicated with each other. The reaction chambers 1a and 1b of the formula are constructed.

【0039】このオゾン接触槽1には、各反応室1a,
1b内の溶存オゾン(DO3)濃度を測定するための溶
存オゾン濃度計31と、有機物濃度を測定するための有
機物濃度計32とが付設されている。この有機物濃度計
32は紫外線吸光度(UV)から有機物濃度を求める測
定器であり、具体的には被処理水中の溶存オゾンを除去
することによって有機物に由来するUV値を測定する機
能を有している。尚、オゾン接触槽1の反応室1a,1
b内の底面近傍には、従来例(図6参照)のような微細
孔を持つオゾンガスの散気管は配置されていないことが
特徴の一つとなっている。
In this ozone contact tank 1, each reaction chamber 1a,
A dissolved ozone concentration meter 31 for measuring the dissolved ozone (DO 3 ) concentration in 1b and an organic matter concentration meter 32 for measuring the organic matter concentration are additionally provided. The organic substance concentration meter 32 is a measuring device for obtaining the organic substance concentration from the ultraviolet absorbance (UV), and specifically has a function of measuring the UV value derived from the organic substance by removing the dissolved ozone in the water to be treated. There is. The reaction chambers 1a, 1 of the ozone contact tank 1
One of the features is that an ozone gas diffuser having fine holes as in the conventional example (see FIG. 6) is not arranged near the bottom surface in b.

【0040】他方の第1の流路23は、流量制御弁2
5、前記加圧加圧渦流ポンプ16、流量制御弁26、流
量計29を介して反応室1a内に縦型に配置された第1
の下方注入管21aに連結されており、この第1の下方
注入管21aの上方部で分岐された流路27が流量制御
弁28を介して第2の反応室1b内に縦型に配置された
第2の下方注入管21bに連結されている。下方注入管
21a,21bの先端開口部の近傍部位には管内圧力を
調整するための急縮部22,22が形成されている。
The other first flow path 23 is connected to the flow control valve 2
5, the first vertically arranged in the reaction chamber 1a via the pressurization pressurization vortex pump 16, the flow control valve 26, and the flow meter 29.
Is connected to a lower injection pipe 21a of the first lower injection pipe 21a, and a flow path 27 branched at an upper portion of the first lower injection pipe 21a is vertically arranged in the second reaction chamber 1b via a flow control valve 28. And is connected to the second lower injection pipe 21b. The lower injection pipes 21a, 21b are provided with sharply contracted portions 22, 22 for adjusting the pressure inside the pipes in the vicinity of the tip end openings thereof.

【0041】7はオゾン発生装置、30は制御部であ
り、この制御部30はUチューブステップフィード演算
装置30aと、ニューロファジィ制御装置30bとから
構成されていて、該制御部30に前記溶存オゾン濃度計
31と有機物濃度計32の測定値及び流量計29の測定
値が入力され、制御部30の制御信号が流量制御弁2
5,26,28及びオゾン発生装置7に出力されてい
る。
Reference numeral 7 is an ozone generator, 30 is a control unit, and this control unit 30 is composed of a U-tube step feed arithmetic unit 30a and a neuro-fuzzy control unit 30b. The measured values of the densitometer 31 and the organic matter densitometer 32 and the measured value of the flowmeter 29 are input, and the control signal of the control unit 30 is input to the flow control valve 2.
5, 26, 28 and the ozone generator 7.

【0042】かかる第2実施例の作用と制御例を以下に
説明する。先ず流量制御弁25,26と加圧加圧渦流ポ
ンプ16の駆動に伴って被処理水20の2〜20%程度
を第1の流路23に流入させ、被処理水の残部98〜8
0%は第1の流路24に流入させる。
The operation and control example of the second embodiment will be described below. First, as the flow rate control valves 25, 26 and the pressurizing / pressurizing vortex pump 16 are driven, about 2 to 20% of the water to be treated 20 is allowed to flow into the first flow path 23, and the remaining portions of the water to be treated 98 to 8 are treated.
0% is made to flow into the first flow path 24.

【0043】第1の流路23に流入した被処理水20
は、第1実施例で説明したように第1の流路内に配置さ
れた加圧渦流ポンプ16の駆動に伴ってオゾン発生装置
7で得られるオゾンガスが被処理水中に送り込まれ、オ
ゾンガスと被処理水20とが加圧渦流ポンプ16のイン
ペラー部による混合・微細気泡化されて得られた高溶存
オゾン水が流量計29を介して下方注入管21a,21
bに送り込まれ、気液が接触しながら下降する。この時
に急縮部22によって管内圧力が最適に調整される。
The water 20 to be treated which has flowed into the first flow path 23.
As described in the first embodiment, the ozone gas obtained by the ozone generator 7 is fed into the water to be treated in accordance with the driving of the pressurizing vortex pump 16 arranged in the first flow path, and the ozone gas and the ozone gas The high-dissolved ozone water obtained by mixing the treated water 20 with the impeller portion of the pressurization vortex pump 16 and making it into fine bubbles forms the lower injection pipes 21 a, 21 via the flow meter 29.
It is sent to b and descends while contacting gas and liquid. At this time, the pressure in the pipe is optimally adjusted by the rapid contraction portion 22.

【0044】他方で第2の流路24に流入した被処理水
20は、下方注入管21a,21bから流出した高溶存
オゾン水とともに越流式の反応室1a,1bを迂流しな
がら反応が進行し、該オゾン接触槽1からオゾン処理水
10として流出する。
On the other hand, the water to be treated 20 that has flowed into the second flow path 24 proceeds with the highly dissolved ozone water that has flowed out from the lower injection pipes 21a and 21b while bypassing the overflow reaction chambers 1a and 1b. Then, the ozone-treated water 10 flows out from the ozone contact tank 1.

【0045】上記の動作時に、流量計29によって測定
された第1の流路23内の被処理水20の流量が制御部
30に入力されるとともにオゾン接触槽1内の被処理水
20の溶存オゾン濃度と有機物濃度とがそれぞれ溶存オ
ゾン濃度計31と有機物濃度計32によって測定され
て、測定値がフィードバック信号として制御部30に入
力される。そして制御部30を構成するUチューブステ
ップフィード演算装置30aとニューロファジィ制御装
置30bとにより、流路1に流れる被処理水20の流量
が必要最小限となるように流量制御弁25,26,28
の開度が演算され、更にオゾン発生装置7の駆動制御に
よりオゾン注入率とL/G比の制御が行われる。L/G
とは比被処理水流量/オゾンガス流量の比であり、この
L/G比が10以上で、下方注入管21a,21bの管
内圧力が1.5(kgf/cm2)以上になるように制御
される。
During the above operation, the flow rate of the treated water 20 in the first flow path 23 measured by the flow meter 29 is input to the control unit 30 and the treated water 20 in the ozone contact tank 1 is dissolved. The ozone concentration and the organic substance concentration are measured by the dissolved ozone concentration meter 31 and the organic substance concentration meter 32, respectively, and the measured values are input to the control unit 30 as feedback signals. The flow rate control valves 25, 26, 28 are controlled by the U-tube step feed computing device 30a and the neuro-fuzzy control device 30b that form the control unit 30 so that the flow rate of the water 20 to be treated flowing in the flow path 1 becomes the minimum necessary.
Is calculated, and the ozone injection rate and the L / G ratio are controlled by the drive control of the ozone generator 7. L / G
Is a ratio of specific treated water flow rate / ozone gas flow rate, and is controlled so that this L / G ratio is 10 or more and the internal pressure of the lower injection pipes 21a and 21b is 1.5 (kgf / cm 2 ) or more. To be done.

【0046】かかる第2実施例によれば、分岐された被
処理水の一方は加圧渦流ポンプ16によるオゾンガスと
の混合・微細気泡化により高溶存オゾン水となり、他方
は未処理のまま高溶存オゾン水とともに反応室1a,1
bを迂流することによって短時間で反応を進行させる効
果があり、且つ反応室1a,1b内に従来例のようなオ
ゾン放散用の散気管がないため、散気管の目詰まり現象
が発生する惧れはなく、メンテナンス及び運転コストの
面からも有利であるという作用がある。
According to the second embodiment, one of the branched water to be treated becomes highly dissolved ozone water by mixing with the ozone gas by the pressurizing vortex pump 16 and formation of fine bubbles, and the other is highly dissolved as untreated. Reaction chambers 1a, 1 with ozone water
By bypassing b, there is an effect of advancing the reaction in a short time, and since there is no ozone diffusion diffuser like in the conventional example in the reaction chambers 1a and 1b, clogging of the diffuser occurs. There is no fear of this, and there is an effect that it is advantageous in terms of maintenance and operating costs.

【0047】図5は本発明の第3実施例を説明する概要
図であり、この第3実施例は第2実施例と同様に上下対
向迂流式オゾン接触槽と加圧型下方注入式オゾン接触槽
との組み合わせにかかる例であって、基本的な構成は図
4と一致しているため、同一の構成部分に同一の符号を
付して表示してある。
FIG. 5 is a schematic diagram for explaining a third embodiment of the present invention. This third embodiment is similar to the second embodiment, in which the upper and lower opposed bypass ozone contact tanks and the pressurized downward injection ozone contact are used. This is an example relating to the combination with the tank, and since the basic configuration is the same as that in FIG. 4, the same components are denoted by the same reference numerals.

【0048】この第3実施例では第2実施例の構成に加
えてオゾン接触槽1に凝集剤注入装置35を配備してあ
り、前記第1の下方注入管21aと第2の下方注入管2
1bに凝集剤を供給するための配管36,37が連結さ
れている。更に反応室1a,1bの上壁部近傍に浮上汚
泥収集装置38を配備してある。この浮上汚泥収集装置
38は反応室1a,1b内に発生する濁質を集めて図外
のバキューム装置で吸引除去するために設けてある。
In the third embodiment, in addition to the structure of the second embodiment, a coagulant injection device 35 is provided in the ozone contact tank 1, and the first lower injection pipe 21a and the second lower injection pipe 2 are provided.
Pipes 36 and 37 for supplying a flocculant to 1b are connected. Further, a floating sludge collecting device 38 is provided near the upper wall of the reaction chambers 1a and 1b. The floating sludge collecting device 38 is provided to collect suspended matter generated in the reaction chambers 1a and 1b and suck and remove it with a vacuum device (not shown).

【0049】かかる第3実施例によれば、第2実施例と
同様に流量制御弁25,26と加圧加圧渦流ポンプ16
の駆動に伴って被処理水20の2〜20%程度を第1の
流路23に流入させ、被処理水の残部98〜80%を第
1の流路24に流入させて、この第1の流路24に流入
した被処理水20が下方注入管21a,21bに送り込
まれた被処理水20とともに越流式の反応室1a,1b
を迂流しながら反応が進行する。この動作と並行して配
管36,37を介して凝集剤注入装置35内に充填され
ているポリ塩化アルミニウム等の凝集剤を、第1の下方
注入管21aと第2の下方注入管21bに供給すると、
被処理水20中の濁質と微細な気泡とが凝集剤によって
凝集、濃縮され、水面上に浮上する。この凝集濃縮物は
図外のバキューム装置の間欠もしくは連続運転によって
吸引除去される。尚、制御部30による流量制御弁2
5,26,28の開度及びオゾン発生装置7の駆動制御
によるオゾン注入率とL/G比の制御は第2実施例と同
様に行われる。
According to the third embodiment, as in the second embodiment, the flow rate control valves 25 and 26 and the pressurizing / pressurizing vortex pump 16 are used.
2 to 20% of the water to be treated 20 flows into the first flow passage 23 and the remaining 98 to 80% of the water to be treated flows into the first flow passage 24. Water 20 that has flowed into the flow path 24 of the above together with the water 20 that has been sent to the lower injection pipes 21a and 21b is an overflow type reaction chamber 1a, 1b.
The reaction proceeds while bypassing. In parallel with this operation, the coagulant such as polyaluminum chloride filled in the coagulant injection device 35 is supplied to the first lower injection pipe 21a and the second lower injection pipe 21b through the pipes 36 and 37. Then,
The suspended matter and fine bubbles in the water to be treated 20 are aggregated and concentrated by the aggregating agent and float on the water surface. This aggregated concentrate is sucked and removed by intermittent or continuous operation of a vacuum device (not shown). The flow control valve 2 by the control unit 30
The ozone injection rate and the L / G ratio are controlled by the opening degrees of 5, 26, 28 and the drive control of the ozone generator 7 in the same manner as in the second embodiment.

【0050】図示例では凝集剤注入装置35から第1の
下方注入管21aと第2の下方注入管21bの両方に凝
集剤を供給する構成にしたが、複数段のオゾン接触槽1
の後段側の反応室1bだけに凝集剤を供給するようにし
てもよい。
In the illustrated example, the coagulant is supplied from the coagulant injection device 35 to both the first lower injection pipe 21a and the second lower injection pipe 21b.
The coagulant may be supplied only to the reaction chamber 1b on the subsequent stage side.

【0051】かかる第3実施例によれば、高濁質を含む
被処理水20に凝集剤を注入して浮上分離法によって濁
質を濃縮除去することができるので、オゾン発生装置7
によるオゾンの注入率を低減することが可能であり、更
に本オゾン接触槽1の後段工程である砂濾過池とか活性
炭濾過装置等に対する負荷が低減されるという作用が得
られる。
According to the third embodiment, since the flocculant can be concentrated and removed by the flotation separation method by injecting the coagulant into the water 20 to be treated containing the highly suspended matter, the ozone generator 7 can be used.
It is possible to reduce the injection rate of ozone due to the above, and further, it is possible to obtain the effect that the load on the sand filter, the activated carbon filter, etc., which is the subsequent step of the ozone contact tank 1, is reduced.

【0052】[0052]

【発明の効果】以上詳細に説明したように、本発明の請
求項1にかかるオゾン接触槽によれば、被処理水内にオ
ゾン注入管を介してオゾンガスを送り込んでから加圧渦
流ポンプによって混合・微細気泡化されて高溶存オゾン
水となり、且つ可変速器により流入水量が調整されてか
ら急縮部によって管内圧力が所定値に調整された下方注
入管内を気液が接触しながら下降して接触槽底壁に当た
ることによってオゾンガスと被処理水との接触効率を高
めることができるので、従来の散気管方式のオゾン接触
槽の滞留時間よりも短い滞留時間で同等の処理特性が得
られる。
As described in detail above, according to the ozone contact tank of claim 1 of the present invention, the ozone gas is fed into the water to be treated through the ozone injection pipe and then mixed by the pressurized vortex pump.・ It is made into fine bubbles and becomes highly dissolved ozone water, and after the amount of inflow water is adjusted by the variable speed device, the pressure inside the pipe is adjusted to a predetermined value by the rapid contraction part, and the liquid drops in contact with the lower injection pipe. Since the contact efficiency between the ozone gas and the water to be treated can be improved by hitting the bottom wall of the contact tank, the same treatment characteristics can be obtained with a residence time shorter than the residence time of the conventional diffuser tube type ozone contact tank.

【0053】請求項2,3.4にかかるオゾン接触槽と
その制御方法によれば、被処理水が分岐されて、一方は
加圧渦流ポンプによるオゾンガスとの混合・微細気泡化
により高溶存オゾン水となり、他方は未処理のまま高溶
存オゾン水とともに反応室を迂流することによって短時
間で反応を進行させる効果がある。又、反応室内にオゾ
ン放散用の散気管がないため、鉄とかマンガン等に起因
する散気管の目詰まり現象が発生せず、メンテナンス及
び運転コストの面からも有利である。又、被処理水に対
するオゾン反応の初期時には下方注入管による拡散効率
によって反応性の高い物質の除去が行われ、これにより
オゾンガスの拡散が律速する初期段階の反応過程が促進
されるとともにオゾン反応の後期時にはオゾン接触槽に
よる反応と滞留時間の確保により反応性の低い物質の除
去が行われて、オゾン反応が律速する後期段階の反応が
促進されるという効果が得られる。特にL/G比を10
以上とし、管内圧力を1.5(kgf/cm2)以上とし
たことにより安定した処理特性が得られる。
According to the ozone contact tank and the control method thereof according to claims 2 and 3.4, the water to be treated is branched, and one of them is highly dissolved ozone by mixing with ozone gas by a pressurized vortex pump and forming fine bubbles. Water becomes water, and the other one is an unprocessed one, and bypasses the reaction chamber together with highly dissolved ozone water, which has the effect of advancing the reaction in a short time. Further, since there is no diffuser for ozone diffusion in the reaction chamber, clogging of the diffuser due to iron, manganese, etc. does not occur, which is advantageous in terms of maintenance and operating costs. At the beginning of the ozone reaction to the water to be treated, a highly reactive substance is removed by the diffusion efficiency of the lower injection pipe, which promotes the reaction process in the initial stage where the diffusion of ozone gas is rate-determining and In the latter period, the reaction by the ozone contact tank and the retention time are secured to remove low-reactivity substances, and the latter stage reaction in which the ozone reaction is rate-determining is promoted. Especially L / G ratio of 10
By setting the internal pressure to 1.5 (kgf / cm 2 ) or more, stable processing characteristics can be obtained.

【0054】更に請求項5,6にかかるオゾン接触槽と
その制御方法によれば、上記の効果に加えて被処理水に
含まれる高濁質成分が凝集剤注入による浮上分離法によ
って濃縮除去されるので、オゾンの注入率の低減効果
と、後段工程である砂濾過池とか活性炭濾過装置等に対
する負荷が低減されるという効果が得られる。
Further, according to the ozone contact tank and the control method therefor according to claims 5 and 6, in addition to the above effects, the highly turbid component contained in the water to be treated is concentrated and removed by the floating separation method by injecting a coagulant. Therefore, it is possible to obtain the effect of reducing the injection rate of ozone and the effect of reducing the load on the sand filter, the activated carbon filter, and the like, which are the subsequent steps.

【0055】本実施例にかかるオゾン接触槽は従来のU
チューブ反応槽のように20〜30メートルの長さに形
成しなくてもよいので、装置の大型化を伴わずに被処理
水に対するオゾンガスの吸収効率を高めることができ
る。特に従来のUチューブ型オゾン反応槽のように施設
の建設工事が複雑になるという問題もなく、建設コスト
の低廉化がはかれるとともに、反応槽内に貯留される堆
積物の除去とか槽内の清掃を簡便に行うことが可能とな
り、しかも反応槽の底部近傍で障害が発生しても直ちに
処置することができるという効果が得られる。
The ozone contact tank according to the present embodiment is a conventional U
Since it does not have to be formed to a length of 20 to 30 meters like a tube reaction tank, it is possible to increase the ozone gas absorption efficiency for water to be treated without increasing the size of the apparatus. Especially, there is no problem that the construction work of the facility is complicated unlike the conventional U-tube type ozone reaction tank, and the construction cost can be reduced, and the deposits stored in the reaction tank and the cleaning inside the tank can be performed. Therefore, it is possible to easily carry out the above, and it is possible to immediately take action even if a failure occurs near the bottom of the reaction tank.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかるオゾン接触槽の第1実施例を全
体的に示す概要図。
FIG. 1 is a schematic diagram generally showing a first embodiment of an ozone contact tank according to the present invention.

【図2】図1の要部を部分的に示す拡大図。FIG. 2 is an enlarged view partially showing a main part of FIG.

【図3】図1の他の要部を部分的に示す拡大図。FIG. 3 is an enlarged view partially showing another main part of FIG.

【図4】本発明の第2実施例を全体的に示す概要図。FIG. 4 is a schematic diagram generally showing a second embodiment of the present invention.

【図5】本発明の第3実施例を全体的に示す概要図。FIG. 5 is a schematic diagram generally showing a third embodiment of the present invention.

【図6】通常の散気管型オゾン反応槽の一例を示す要部
断面図。
FIG. 6 is a cross-sectional view of an essential part showing an example of a normal air diffusion tube type ozone reaction tank.

【図7】通常のUチューブ型オゾン接触槽の構造を示す
概略図。
FIG. 7 is a schematic diagram showing the structure of a normal U-tube type ozone contact tank.

【符号の説明】[Explanation of symbols]

7…オゾン発生装置 11…オゾン接触槽 11a,11b,11c,11d,11e…ブロック型
接触槽 12…処理水タンク 14a,14b,14c,14d,14e,14f,1
4g,14h…サンプリングポート 15…流入管 16…加圧渦流ポンプ 17…可変速器 18…オゾン注入管 21…下方注入管 21a…第1の下方注入管 21b…第2の下方注入管 20…被処理水 22…急縮部 23…第1の流路 24…第2の流路 25.26,28…流量制御弁 29…流量計 30…制御部 31…溶存オゾン濃度計 32…有機物濃度計 35…凝集剤注入装置 38…浮上汚泥収集装置
7 ... Ozone generator 11 ... Ozone contact tank 11a, 11b, 11c, 11d, 11e ... Block type contact tank 12 ... Treated water tank 14a, 14b, 14c, 14d, 14e, 14f, 1
4g, 14h ... Sampling port 15 ... Inflow pipe 16 ... Pressurization vortex pump 17 ... Variable speed device 18 ... Ozone injection pipe 21 ... Lower injection pipe 21a ... First lower injection pipe 21b ... Second lower injection pipe 20 ... Covered Treated water 22 ... Rapid reduction section 23 ... First flow path 24 ... Second flow path 25.26, 28 ... Flow control valve 29 ... Flow meter 30 ... Control section 31 ... Dissolved ozone concentration meter 32 ... Organic matter concentration meter 35 Coagulant injection device 38 Floating sludge collection device

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被処理水が滞留しながら流通可能な縦型
のオゾン接触槽と、該オゾン接触槽に送り込まれる被処
理水の流入部に配備され、オゾン発生装置で得られたオ
ゾンガスと被処理水とを気液混合する加圧渦流ポンプ及
び被処理水の流入水量調整用の可変速器と、オゾン接触
槽の上部から内部に挿入配置されて、被処理水が下降流
として落下する下方注入管と、オゾン接触槽の底壁に対
向する部位の下方注入管の先端開口部近傍に形成された
管内圧力調整用の急縮部とを備えてなることを特徴とす
るオゾン接触槽。
1. A vertical ozone contact tank through which treated water can flow while accumulating, and an ozone gas obtained by an ozone generator which is provided at an inflow portion of the treated water fed into the ozone contact tank. A pressurized vortex flow pump for gas-liquid mixing with treated water, a variable speed regulator for adjusting the inflow amount of the treated water, and an inside of the ozone contact tank are inserted and arranged so that the treated water falls as a downward flow. An ozone contact tank comprising: an injection pipe; and an abruptly reducing portion for adjusting the internal pressure of the pipe, which is formed in the vicinity of the tip opening of the lower injection pipe at a portion facing the bottom wall of the ozone contact tank.
【請求項2】 気相部が分離されているとともに液相部
が相互に連通された複数段の反応室を有する上下迂流式
のオゾン接触槽と、上記各反応室内に縦型に配置され
て、オゾン発生装置で得られたオゾンガスと被処理水と
が加圧渦流ポンプ、流量制御弁及び流量計を介して流入
して下降流として落下する下方注入管と、オゾン接触槽
の底壁に対向する部位の下方注入管の先端開口部近傍に
形成された管内圧力調整用の急縮部とを備えてなること
を特徴とするオゾン接触槽。
2. An up-and-down bypass ozone contact tank having a plurality of reaction chambers in which a gas phase portion is separated and a liquid phase portion is communicated with each other, and vertically arranged in each reaction chamber. On the bottom wall of the ozone contact tank and the lower injection pipe where the ozone gas obtained by the ozone generator and the water to be treated flow in through the pressurized swirl pump, the flow control valve and the flow meter and fall as a downward flow. An ozone contact tank, characterized in that it comprises an abruptly reducing portion for adjusting the internal pressure of the pipe, which is formed in the vicinity of the opening of the tip of the lower injection pipe at the facing portion.
【請求項3】 前記各反応室内に溶存オゾン濃度計と有
機物濃度計を配置して、この溶存オゾン濃度計と有機物
濃度計の測定値及び流量計の測定値に基づいて、制御部
が流量制御弁の開度とオゾン発生装置の駆動状況を演算
して、オゾン注入率とL/G比を最適に調整する制御を
行うようにした請求項2記載のオゾン接触槽の制御方
法。
3. A dissolved ozone concentration meter and an organic matter concentration meter are arranged in each of the reaction chambers, and the control unit controls the flow rate based on the measured values of the dissolved ozone concentration meter and the organic matter concentration meter and the measurement value of the flowmeter. 3. The method for controlling an ozone contact tank according to claim 2, wherein a control for optimally adjusting the ozone injection rate and the L / G ratio is performed by calculating the valve opening degree and the driving condition of the ozone generator.
【請求項4】 前記下方注入管での被処理水流量/オゾ
ンガス流量の比(L/G比)を10以上とし、管内圧力
は1.5(kgf/cm2)以上とした請求項2記載のオ
ゾン接触槽の制御方法。
4. The ratio of the flow rate of water to be treated / the flow rate of ozone gas (L / G ratio) in the lower injection pipe is 10 or more, and the pipe internal pressure is 1.5 (kgf / cm 2 ) or more. Control method for ozone contact tank.
【請求項5】 気相部が分離されているとともに液相部
が相互に連通された複数段の反応室を有する上下迂流式
のオゾン接触槽と、上記各反応室内に縦型に配置され
て、オゾン発生装置で得られたオゾンガスと被処理水と
が加圧渦流ポンプ、流量制御弁及び流量計を介して流入
して下降流として落下する下方注入管と、オゾン接触槽
に配備されて、各下方注入管に凝集剤を供給する凝集剤
注入装置と、各反応室の上壁部近傍に配備した浮上汚泥
収集装置と、オゾン接触槽の底壁に対向する部位の下方
注入管の先端開口部近傍に形成された管内圧力調整用の
急縮部とを備えてなることを特徴とするオゾン接触槽。
5. A vertical bypass type ozone contact tank having a plurality of reaction chambers in which a gas phase portion is separated and a liquid phase portion is communicated with each other, and vertically arranged in each of the reaction chambers. The ozone gas obtained from the ozone generator and the water to be treated are installed in the ozone contact tank and the lower injection pipe through which the ozone gas flows in through the pressurized swirl pump, the flow rate control valve and the flow meter and falls as a downward flow. , A coagulant injection device for supplying a coagulant to each lower injection pipe, a flotation sludge collector installed near the upper wall of each reaction chamber, and a tip of the lower injection pipe at a portion facing the bottom wall of the ozone contact tank An ozone contact tank, comprising: a rapid contraction portion formed in the vicinity of the opening for adjusting the pressure inside the pipe.
【請求項6】 前記下方注入管に送り込まれた被処理水
中に凝集剤を供給して、被処理水中の濁質と気泡を凝
集、濃縮し、水面上に浮上した凝集濃縮物を、間欠もし
くは連続的に吸引除去するようにした請求項5記載のオ
ゾン接触槽の制御方法。
6. A coagulant is supplied to the water to be treated sent to the lower injection pipe to aggregate and concentrate turbidity and air bubbles in the water to be treated, and the flocculated concentrate floating on the water surface is intermittently or The method for controlling an ozone contact tank according to claim 5, wherein the suction and removal are performed continuously.
JP10898396A 1996-04-30 1996-04-30 Ozone contact tank and control method therefor Pending JPH09290280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10898396A JPH09290280A (en) 1996-04-30 1996-04-30 Ozone contact tank and control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10898396A JPH09290280A (en) 1996-04-30 1996-04-30 Ozone contact tank and control method therefor

Publications (1)

Publication Number Publication Date
JPH09290280A true JPH09290280A (en) 1997-11-11

Family

ID=14498618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10898396A Pending JPH09290280A (en) 1996-04-30 1996-04-30 Ozone contact tank and control method therefor

Country Status (1)

Country Link
JP (1) JPH09290280A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010042380A (en) * 2008-08-18 2010-02-25 Emirie Iryo System Kk Supplying apparatus of microbubble mixing water
JP2013029001A (en) * 2011-07-29 2013-02-07 Kyokado Kk Liquefaction prevention method
JP2013121414A (en) * 2011-12-09 2013-06-20 Fujidenoro Co Ltd Carbonated spring generating device
WO2013129159A1 (en) * 2012-02-29 2013-09-06 千代田化工建設株式会社 Produced water treatment method and treatment device
JP2016150314A (en) * 2015-02-18 2016-08-22 千代田化工建設株式会社 Water treatment method
CN108466603A (en) * 2018-04-13 2018-08-31 青岛朗博机械有限公司 A kind of gear tank cleaning system
JP2018158286A (en) * 2017-03-22 2018-10-11 株式会社東芝 Control device of ozone treatment apparatus and method of controlling the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010042380A (en) * 2008-08-18 2010-02-25 Emirie Iryo System Kk Supplying apparatus of microbubble mixing water
JP2013029001A (en) * 2011-07-29 2013-02-07 Kyokado Kk Liquefaction prevention method
JP2013121414A (en) * 2011-12-09 2013-06-20 Fujidenoro Co Ltd Carbonated spring generating device
WO2013129159A1 (en) * 2012-02-29 2013-09-06 千代田化工建設株式会社 Produced water treatment method and treatment device
JP2013180213A (en) * 2012-02-29 2013-09-12 Chiyoda Kako Kensetsu Kk Method and apparatus for treating produced water
JP2016150314A (en) * 2015-02-18 2016-08-22 千代田化工建設株式会社 Water treatment method
JP2018158286A (en) * 2017-03-22 2018-10-11 株式会社東芝 Control device of ozone treatment apparatus and method of controlling the same
CN108466603A (en) * 2018-04-13 2018-08-31 青岛朗博机械有限公司 A kind of gear tank cleaning system
CN108466603B (en) * 2018-04-13 2020-11-24 青岛朗博机械有限公司 Gear box cleaning system

Similar Documents

Publication Publication Date Title
JP2007021393A (en) Water treatment plant using fine bubble
CN209507714U (en) A kind of ozone oxidation reaction device
CN103395909B (en) Two-stage coagulation air-flotation separation equipment and method
JPH09290280A (en) Ozone contact tank and control method therefor
CN213834834U (en) Deep decolorization and purification system for waste water generated by brewing Maotai-flavor liquor
JP4271991B2 (en) Ozone water treatment equipment
JP6164941B2 (en) Muddy water treatment system and muddy water treatment method
JP3523751B2 (en) Pressurized downward injection type ozone contact tank and its control method
JP3522010B2 (en) Pressurized downward injection type multi-stage ozone contact tank
CN103086509A (en) Nitrogen and phosphor removal treatment method, and nitrogen and phosphor removal treatment apparatus
CN104860469B (en) Oil refining sewage integrated combination treatment system and oil refining sewage integrated combination treatment method
CN208218511U (en) The processing unit of high-concentration sewage
JP3944268B2 (en) Pressurized downward injection type multi-stage ozone contact tank and its control method
CN202430033U (en) Impeller cutting type vortex air-floatation device
JP3522020B2 (en) Pressurized downward injection type ozone contact tank and its control method
RU2359922C2 (en) Method of waste water cleaning by intensifying waste water saturation with oxygen and related device
JP3977885B2 (en) Control method of pressurized bottom injection type multi-stage ozone contact tank
JP3523743B2 (en) Pressurized downward injection type ozone contact tank and its control method
JP3491371B2 (en) Downward injection type multi-stage ozone contact tank and its control method
JP2020018966A (en) Water treatment method and water treatment apparatus
CN103086510A (en) Membrane separation active sludge treatment method and membrane separation active sludge treatment device
CN217921726U (en) Making wine waste water integration processing apparatus
CN217947848U (en) Advanced treatment device for printing and dyeing wastewater
JPH08243571A (en) Bottom-injection type multistage ozone contact tank and control method thereof
CN105129947A (en) Device for processing pollutant which can hardly be degraded biologically

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040203