JP2007021393A - Water treatment plant using fine bubble - Google Patents

Water treatment plant using fine bubble Download PDF

Info

Publication number
JP2007021393A
JP2007021393A JP2005207963A JP2005207963A JP2007021393A JP 2007021393 A JP2007021393 A JP 2007021393A JP 2005207963 A JP2005207963 A JP 2005207963A JP 2005207963 A JP2005207963 A JP 2005207963A JP 2007021393 A JP2007021393 A JP 2007021393A
Authority
JP
Japan
Prior art keywords
ozone
water
water treatment
treated
fine bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005207963A
Other languages
Japanese (ja)
Other versions
JP4910322B2 (en
Inventor
Masataka Hidaka
政隆 日▲高▼
Misaki Sumikura
みさき 隅倉
Shoji Watanabe
昭二 渡辺
Tetsuro Haga
鉄郎 芳賀
Ichiro Enbutsu
伊智朗 圓佛
Naoki Hara
直樹 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005207963A priority Critical patent/JP4910322B2/en
Priority to CN200610105600.XA priority patent/CN1899978B/en
Publication of JP2007021393A publication Critical patent/JP2007021393A/en
Application granted granted Critical
Publication of JP4910322B2 publication Critical patent/JP4910322B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an economical and reliable water treatment plant using fine ozone bubbles. <P>SOLUTION: Ozone gas generated in an ozone generator 2 is mixed with water to be treated in an injector 3 to form a gas-liquid two-phase flow. The gas-liquid two-phase flow is pressurized by a high-pressure pump 4, and then passed through a fine bubble generator 5 comprising variable hole number type perforated plates to generate the fine ozone bubbles. In a water treatment tank 1, measured signals of a pressure gauge 10, a flowmeter 11, and a dissolved ozone concentration meter 18 are input to a controller 8, and the controller controls the revolution number of the high-pressure pump 4, the hole number of the fine bubble generator 5, and the flow rate of ozone gas generated in the ozone gas generator 2. Thereby, the injection flow rate of ozone to a water treatment tank 1 can be adjusted while maintaining a pressure for generating the fine ozone bubbles, which reduces used electric power to improve the economical efficiency of the water treatment plant. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水道水,下水,河川水,湖沼水,産業排水などの浄化,殺菌,消毒に利用可能な微細気泡を利用した水処理設備に関する。   The present invention relates to a water treatment facility using fine bubbles that can be used for purification, sterilization, and disinfection of tap water, sewage, river water, lake water, and industrial wastewater.

浄化,殺菌,消毒における微細気泡の利用と効果を記載したものに、〔非特許文献1〕がある。また、オゾン水による殺菌効果を記載したものとして、〔非特許文献2〕がある。   There is [Non-patent Document 1] that describes the use and effect of fine bubbles in purification, sterilization, and disinfection. Moreover, there exists [nonpatent literature 2] as what described the bactericidal effect by ozone water.

〔非特許文献1〕には、微細気泡は、マイクロバブルと呼ばれる直径が50マイクロメータ以下の気泡であり、一般に、このサイズの気泡は、周囲流体への気泡内気体の溶け込みにより、液中で縮小していき、約2分で完全溶解すること、微細気泡は、周囲液体への溶け込みにしたがって直径が減少するため、表面張力の効果により内部が高温,高圧になること、気泡は微細になるほど体積に対する表面積比が大きくなるため溶解効率が高くなるが、気体の圧力に比例して溶解度が増加するヘンリーの法則によって溶解がさらに促進されること、微細気泡は消滅時に殺菌力を有するラジカルを発生し、このラジカルによって、細菌,有機物を分解できるため、浄化,殺菌,消毒効果が得られることが記載されている。以下、微細気泡は、このように定義することとする。   In [Non-Patent Document 1], fine bubbles are bubbles called microbubbles having a diameter of 50 micrometers or less. Generally, bubbles of this size are dissolved in the liquid by the dissolution of the gas in the bubbles into the surrounding fluid. Since the diameter of the microbubbles decreases as they dissolve into the surrounding liquid, the inside becomes high temperature and high pressure due to the effect of surface tension, and the bubbles become finer. Although the surface area ratio to volume increases, the dissolution efficiency increases. However, the dissolution is further accelerated by Henry's law, where the solubility increases in proportion to the pressure of the gas, and the microbubbles generate radicals with bactericidal power when they disappear. However, it is described that bacteria, organic matter can be decomposed by this radical, so that purification, disinfection and disinfection effects can be obtained. Hereinafter, the fine bubbles are defined as described above.

〔非特許文献2〕には、気体オゾンの溶け込んだオゾン水は酸化還元電位が高く、強力な殺菌効果を有すること、オゾン水の製造に微細気泡を用いれば、溶解速度が高いため、溶解せずに液面から抜ける気泡が減少し、オゾンの利用効率が向上すること、水ポンプによる気相の微細化を利用したオゾン殺菌装置が記載されている。   [Non-Patent Document 2] describes that ozone water in which gaseous ozone is dissolved has a high redox potential and has a strong bactericidal effect, and if fine bubbles are used in the production of ozone water, the dissolution rate is high. There is described an ozone sterilizer that uses less gas bubbles from the liquid surface and improves ozone utilization efficiency, and refinement of the gas phase by a water pump.

微細気泡の生成方法と利用方法の一つに、〔特許文献1〕に記載されているような加圧減圧による方法がある。この方法は、オゾン発生手段で発生したオゾンガスをエゼクタで被処理水に混合し、このオゾンガスが混合された水(混合水という)を高圧ポンプで圧送してオリフィスを通過させ、オリフィス通過時に混合水が減圧されることにより微細気泡を生成し、生成したオゾン微細気泡が混入した液体を処理槽に注入して液体処理に用いる方法である。   One of the generation methods and utilization methods of fine bubbles is a method using pressure reduction as described in [Patent Document 1]. In this method, ozone gas generated by ozone generating means is mixed with water to be treated by an ejector, and water mixed with this ozone gas (referred to as mixed water) is pumped by a high-pressure pump and passed through an orifice. Is a method in which fine bubbles are generated by reducing the pressure, and the liquid in which the generated ozone fine bubbles are mixed is injected into the treatment tank and used for liquid treatment.

〔特許文献2〕に記載の微細気泡発生方法では、〔特許文献1〕に記載した微細気泡発生部と同様にオリフィスを通過させて微細気泡を生成しているが、オリフィスを下部に半月状に開口したに流路形状に形成し、ポンプ回転数を制御するインバータを設けて、加圧圧力を微細気泡生成に最も適した圧力に制御している。   In the method of generating fine bubbles described in [Patent Document 2], the fine bubbles are generated by passing through the orifice in the same manner as the fine bubble generating part described in [Patent Document 1]. An opening is formed in the shape of the flow path, and an inverter for controlling the number of revolutions of the pump is provided to control the pressurizing pressure to a pressure most suitable for generating fine bubbles.

〔特許文献3〕に記載の上下水処理方法及び制御方法では、〔特許文献1〕に記載した微細気泡発生部と同様にオリフィスを通過させて微細気泡を生成しているが、処理槽の注入オゾン濃度や排オゾン濃度、あるいは溶存オゾン濃度を計測して、管径を小径に絞ったオリフィスの開度を調整して加圧圧力を調整し、排オゾン濃度や溶存オゾン濃度を制御している。   In the water and sewage treatment method and control method described in [Patent Document 3], fine bubbles are generated by passing through an orifice in the same manner as in the fine bubble generating section described in [Patent Document 1]. Measures ozone concentration, exhausted ozone concentration, or dissolved ozone concentration, adjusts the opening of the orifice with a small diameter to adjust the pressurization pressure, and controls the exhausted ozone concentration and dissolved ozone concentration. .

特開平10−225696号公報JP-A-10-225696 特開2003−117365号公報JP 2003-117365 A 特開平10−99877号公報Japanese Patent Laid-Open No. 10-99877 「水の特性と新しい利用技術」、株式会社エヌ・ティー・エス、 142−146頁、2004年“Characteristics of Water and New Utilization Technology”, NTS Corporation, pages 142-146, 2004 「新版オゾン利用の新技術」、サンユー書房、74−83頁、1988年"New Technology for Utilizing Ozone", Sanyu Shobo, 74-83, 1988

〔非特許文献1〕に記載の従来の技術は、微細気泡の特性について記述しているが、微細気泡の発生方法や具体的な水処理方法については開示されていない。又、〔非特許文献2〕に記載の従来の技術は、ポンプのインペラーのせん断による気泡生成方法であり、この気泡生成方法では、気泡が十分に微細化されないという問題がある。   The conventional technique described in [Non-Patent Document 1] describes the characteristics of fine bubbles, but does not disclose a method for generating fine bubbles or a specific water treatment method. Further, the conventional technique described in [Non-Patent Document 2] is a method of generating bubbles by shearing the impeller of the pump, and this method of generating bubbles has a problem that the bubbles are not sufficiently miniaturized.

〔特許文献1〕に記載の従来の技術では、混合水が高圧ポンプでオリフィス上流側で加圧され、オリフィス通過時に減圧されて微細気泡を生成できるが、流路面積が固定されたオリフィスであるため、オゾン微細気泡の混入水の必要流量を変化させる必要のある場合に対応できない問題がある。又、加圧圧力が変化すると微細気泡の径や発生量が変化するため、オゾン溶解効率が変化して水処理性能が不安定になる問題がある。この方式で加圧圧力と流量を変化させるためには、高圧ポンプに流量調整弁を有するバイパス流路を設けバイパス流路に混合水の一部を通水する方法を採ることも可能であるが、バイパス流路に通水した混合水はオリフィスに送水されないため無駄になり、高圧ポンプに加える電力の損失が増加する。   In the prior art described in [Patent Document 1], the mixed water is pressurized at the upstream side of the orifice with a high-pressure pump and is reduced in pressure when passing through the orifice to generate fine bubbles, but the orifice has a fixed channel area. Therefore, there is a problem that cannot be coped with when it is necessary to change the required flow rate of the mixed water of ozone fine bubbles. Moreover, since the diameter and generation amount of fine bubbles change when the pressurizing pressure changes, there is a problem that the ozone dissolution efficiency changes and the water treatment performance becomes unstable. In order to change the pressurization pressure and flow rate by this method, it is possible to adopt a method in which a bypass channel having a flow rate adjusting valve is provided in the high-pressure pump and a part of the mixed water is passed through the bypass channel. The mixed water that has passed through the bypass flow path is wasted because it is not sent to the orifice, and the loss of power applied to the high-pressure pump increases.

〔特許文献2〕に記載の従来の技術では、インバータでポンプ回転数を調整することによりオリフィスの加圧圧力を制御することができるが、オリフィス流路面積が固定されているため、〔特許文献1〕のものと同様にオゾン微細気泡混入水の要求流量の変化に対応する場合に、加圧圧力が変化して安定して微細気泡を生成できない問題がある。   In the conventional technique described in [Patent Document 2], the pressurization pressure of the orifice can be controlled by adjusting the pump rotation speed with an inverter. However, since the orifice channel area is fixed, [Patent Document 2] As in the case of 1], when dealing with the change in the required flow rate of ozone fine bubble mixed water, there is a problem that the pressurized pressure changes and the fine bubbles cannot be generated stably.

〔特許文献3〕に記載の従来の技術では、オリフィスの流路の絞りを可変調整して加圧圧力を制御しており、この方法により、オゾン微細気泡混入水の流量も制御することができるが、オリフィスの流路の絞りが変わると、オリフィスを通過する際の流速が変わり、微細気泡を生成するためのオリフィス部における減圧量が変化する。このため、加圧減圧のバランスが変わると微細気泡の径や発生量が変化するため、オゾン溶解効率が変化して水処理性能が不安定になる問題がある。   In the conventional technique described in [Patent Document 3], the pressure of the orifice is variably adjusted to control the pressurization pressure. By this method, the flow rate of the ozone fine bubble mixed water can also be controlled. However, when the restriction of the flow path of the orifice changes, the flow rate when passing through the orifice changes, and the amount of pressure reduction in the orifice part for generating fine bubbles changes. For this reason, when the balance between pressurization and depressurization changes, the diameter and generation amount of fine bubbles change, so that there is a problem that the ozone dissolution efficiency changes and the water treatment performance becomes unstable.

本発明の第1の目的は、加圧圧力と気液二相流の流量を制御して微細気泡の径や発生量を安定化することにより、オゾン溶解効率を保ち、水処理性能を高めた水処理設備を提供することにある。   The first object of the present invention is to control ozone pressure and the flow rate of gas-liquid two-phase flow to stabilize the diameter and generation amount of fine bubbles, thereby maintaining ozone dissolution efficiency and improving water treatment performance. To provide water treatment facilities.

本発明の第2の目的は、過大な加圧圧力を掛けることなくポンプ駆動電力を低減して運転経済性を向上した水処理設備を提供することにある。   The second object of the present invention is to provide a water treatment facility that improves the operational economy by reducing the pump drive power without applying excessive pressure.

上記目的を達成するための本発明の微細気泡を利用した水処理設備は、オゾンガスを発生させるオゾン発生装置と、発生したオゾンガスを被処理水に注入するオゾンガス注入装置と、オゾンガスが注入された被処理水を加圧する高圧ポンプと、高圧ポンプと水処理槽の間の流路に複数の連通孔を有する多孔板を具備しその有効孔数が可変の微細気泡生成装置を設け、インバータを制御して高圧ポンプの加圧圧力が許容範囲内となるように回転速度を制御するものである。多孔板の有効孔数を可変調整するとともに高圧ポンプの加圧圧力を許容範囲内に制御することにより、加圧されたオゾンガスが注入された被処理水を、孔部上流では適切な加圧状態とし、適切な孔径により多孔板に通水して孔部において減圧を生じさせて微細気泡を有効に生成することができる。   To achieve the above object, a water treatment facility using fine bubbles according to the present invention comprises an ozone generator for generating ozone gas, an ozone gas injection device for injecting the generated ozone gas into the water to be treated, and a target to which ozone gas has been injected. A high-pressure pump that pressurizes the treated water, and a micro-bubble generating device that includes a porous plate having a plurality of communication holes in the flow path between the high-pressure pump and the water treatment tank and has a variable effective number of holes, and controls the inverter. Thus, the rotation speed is controlled so that the pressurization pressure of the high-pressure pump is within an allowable range. By adjusting the effective number of holes in the perforated plate and controlling the pressurized pressure of the high pressure pump within an allowable range, the treated water into which pressurized ozone gas has been injected is in an appropriate pressurized state upstream of the hole. Then, water can be passed through the perforated plate with an appropriate pore diameter to reduce the pressure in the hole portion, and fine bubbles can be effectively generated.

又、多孔板の有効孔数を可変調整する代わりに、異なる孔数を有する複数の多孔板と、その多孔板をそれぞれ設置した複数の流路を設け、複数の流路に弁を設けて弁の開閉によって通水する流路を切替えることにより高圧ポンプと水処理槽の間に設けた多孔板の有効孔数を可変調整しても良い。   Also, instead of variably adjusting the number of effective holes of the perforated plate, a plurality of perforated plates having different numbers of holes and a plurality of flow paths each having the perforated plates are provided, and valves are provided in the plurality of flow paths. The number of effective holes of the perforated plate provided between the high-pressure pump and the water treatment tank may be variably adjusted by switching the flow path through which water flows by opening and closing.

又、水処理槽内の被処理水の一部を抽水し、抽水した被処理水にオゾン発生装置により発生させたオゾンガスを注入して、被処理水の循環ループとし、水処理槽に微細気泡を混入した被処理水を注入するものである。   Also, a portion of the water to be treated in the water treatment tank is extracted, and the ozone gas generated by the ozone generator is injected into the extracted water to be treated to form a circulation loop for the water to be treated. To be treated is mixed with water to be treated.

又、水処理槽へのオゾン微細気泡混入の被処理水の注入流量と高圧ポンプによる多孔板上流の加圧圧力を制御するとともに、オゾン発生装置でオゾンガス発生量の制御を行うことにより、被処理水へのオゾン注入量を制御できる。   In addition, by controlling the injection flow rate of water to be treated with ozone fine bubbles into the water treatment tank and the pressurized pressure upstream of the perforated plate by a high-pressure pump, the amount of ozone gas generated is controlled by the ozone generator. The amount of ozone injected into the water can be controlled.

又、水処理槽へのオゾン微細気泡混入に被処理水を直接用いても良く、帯水槽を設け、滞水槽に被処理水を貯留して、オゾン微細気泡混入被処理水として使用しても良い。   Moreover, the water to be treated may be directly used for mixing ozone fine bubbles into the water treatment tank, or a water tank may be provided to store the water to be treated in the aeration tank and used as the water to be treated with ozone fine bubbles. good.

又、制御器と、水処理槽におけるオゾン微細気泡の注入箇所より下流に被処理水の溶存オゾン濃度測定器を設け、被処理水の溶存オゾン濃度の目標値を制御器に入力し、制御器で溶存オゾン濃度測定器の計測値を溶存オゾン濃度の目標値と比較して、水処理槽に注入するオゾン量の過不足を計算し、制御器によって演算結果を基にポンプ回転数と多孔板の有効孔数とオゾン発生装置によるオゾン発生量を制御することにより、水処理槽に注入するオゾン量を調整するようにし、水処理槽に注入するオゾン量が不足した場合は、制御器によって多孔板の有効孔数を増加し、加圧圧力を維持するようにポンプ回転数を増加し、オゾン発生器によるオゾン発生量を増加し、一方、水処理槽に注入するオゾン量が過大になった場合は、制御器によって多孔板の有効孔数を減じ、加圧圧力を維持するようにポンプ回転数を減し、オゾン発生器によるオゾン発生量を減ずるように制御するものである。   Also, a controller and a dissolved ozone concentration measuring device for the water to be treated are provided downstream from the injection point of ozone fine bubbles in the water treatment tank, and the target value of the dissolved ozone concentration of the water to be treated is input to the controller. Compare the measured value of the dissolved ozone concentration meter with the target value of the dissolved ozone concentration, calculate the excess or deficiency of the ozone amount injected into the water treatment tank, and calculate the pump rotation speed and perforated plate based on the calculation result by the controller The amount of ozone injected into the water treatment tank is adjusted by controlling the number of effective pores and the amount of ozone generated by the ozone generator. If the amount of ozone injected into the water treatment tank is insufficient, the controller The number of effective holes in the plate was increased, the number of pump revolutions was increased to maintain the pressurized pressure, the amount of ozone generated by the ozone generator was increased, and the amount of ozone injected into the water treatment tank was excessive. By the controller Reducing the effective number of pores perforated plate, Hesi the pump speed so as to maintain the applied pressure and controls to reduce the ozone generation amount of the ozone generator.

又、制御の応答性と省エネルギー化のため、水処理槽に導入される被処理水の水質計測器と流量計を設け、被処理水の水質パラメータと流量を制御器に入力し、被処理水の水質の悪化あるいは流量増加が発生した場合に、必要なオゾン量増分値を制御器で計算し、被処理水水質の改善あるいは流量減少が発生した場合に必要オゾン量減分値を演算器で計算し、制御器によって演算結果を基にポンプ回転数と多孔板の有効孔数を制御し、水処理槽に注入するオゾン量を調整するものである。   In addition, for the purpose of control responsiveness and energy saving, a water quality meter and a flow meter for the water to be treated introduced into the water treatment tank are provided, and the water quality parameters and flow rate of the water to be treated are input to the controller to If the water quality deteriorates or the flow rate increases, the required ozone amount increment value is calculated by the controller, and if the treated water quality improves or the flow rate decreases, the required ozone amount decrement value is calculated by the calculator. The controller calculates the amount of ozone injected into the water treatment tank by controlling the number of rotations of the pump and the number of effective holes of the perforated plate based on the calculation result by the controller.

又、多孔板における孔の閉塞を防止するため、多孔板を通過する流れ方向を逆転し多孔板を逆洗洗浄するものである。又、発生したオゾンガスを被処理水中に注入する手段にエゼクタによる気相吸い込みを用いても良く、散気管の気相混合微細化機能を用いても良い。   Further, in order to prevent clogging of the holes in the perforated plate, the flow direction passing through the perforated plate is reversed and the perforated plate is backwashed. Further, as a means for injecting the generated ozone gas into the water to be treated, a gas phase suction by an ejector may be used, or a gas phase mixing and refinement function of an air diffuser may be used.

本発明によれば、微細気泡の径や発生量を安定化でき、オゾン溶解効率を保ち、水処理性能を高めることができるので、オゾン使用量が低減され水処理設備の経済性を向上できる。又、過大な加圧圧力を掛けることなくポンプ駆動電力を低減できるので、水処理設備における運転経済性を向上できる。   According to the present invention, the diameter and generation amount of fine bubbles can be stabilized, the ozone dissolution efficiency can be maintained, and the water treatment performance can be improved, so that the amount of ozone used can be reduced and the economics of the water treatment facility can be improved. In addition, since the pump driving power can be reduced without applying an excessive pressurizing pressure, the operation economy in the water treatment facility can be improved.

被処理水の溶存オゾン濃度等の水処理槽の状態をフィードバックし、微細気泡生成装置で気液二相流の加圧圧力と流量を制御して安定した気泡径と発生量の微細気泡を生成して水処理槽内に注入するオゾン量を調整し、水処理性能を高めた水処理設備を提供する。   The state of the water treatment tank, such as the dissolved ozone concentration of the water to be treated, is fed back, and the pressure and flow rate of the gas-liquid two-phase flow are controlled by the microbubble generator to generate microbubbles with a stable bubble diameter and generation amount. Thus, the amount of ozone injected into the water treatment tank is adjusted to provide water treatment equipment with improved water treatment performance.

以下、本発明の実施例1を図1から図6を用いて説明する。図1は本実施例の微細気泡を利用した水処理設備の構成図、図2から図4は孔数可変型多孔板による微細気泡生成装置の構造図、図5は微細気泡生成装置での気泡径分布の測定結果を示す。   Embodiment 1 of the present invention will be described below with reference to FIGS. FIG. 1 is a configuration diagram of a water treatment facility using microbubbles according to the present embodiment, FIGS. 2 to 4 are structural diagrams of a microbubble generator using a variable pore number perforated plate, and FIG. 5 is a bubble in the microbubble generator. The measurement result of a diameter distribution is shown.

本実施例の水処理設備は、図1に示すように構成されている。下水処理設備からの下水処理水が注入され、処理された水が再生水として排出される水処理槽1が設けられ、水処理槽1内は複数の仕切板13によって複数の槽に分割されている。仕切板13は、上部に固定された仕切板13a,13c,13eと下部が固定された仕切板13b,13dが交互に設けられ、下水処理設備から注入された下水処理水(被処理水ともいう)が仕切板
13aの下部の空間から下流側の次の槽に流れ、下部が固定された仕切板13bを乗り越えて下流側の次の槽に流れる動作を繰り返して、再生水として排出されるようになっている。仕切板13bの上部には、オゾンを排出するための管路が設けられ、配管には排オゾン処理装置12が接続されている。排オゾン処理装置12は、被処理水から離脱して水処理槽1内に溜まったオゾンを処理して大気へ放出するための装置である。再生水の排出口の近くには、溶存オゾン濃度計18が設けられ、再生水の溶存オゾン濃度が計測されるようになっている。
The water treatment facility of the present embodiment is configured as shown in FIG. A water treatment tank 1 is provided in which sewage treatment water from a sewage treatment facility is injected and the treated water is discharged as reclaimed water, and the water treatment tank 1 is divided into a plurality of tanks by a plurality of partition plates 13. . The partition plate 13 is provided with partition plates 13a, 13c, 13e fixed at the upper portion and partition plates 13b, 13d fixed at the lower portion, and sewage treated water (also referred to as treated water) injected from the sewage treatment facility. ) Flows from the space below the partition plate 13a to the next tank on the downstream side, passes over the partition plate 13b having the lower part fixed thereto, and flows to the next tank on the downstream side, so that it is discharged as reclaimed water. It has become. A pipe line for discharging ozone is provided on the upper part of the partition plate 13b, and the exhaust ozone treatment device 12 is connected to the pipe. The waste ozone treatment device 12 is a device for treating ozone released from the treated water and accumulating in the water treatment tank 1 and releasing it to the atmosphere. A dissolved ozone concentration meter 18 is provided near the discharge port of the reclaimed water, and the dissolved ozone concentration of the reclaimed water is measured.

水処理槽1の下水処理水の注入口側でその下方側には、下水処理水を取出すための抽水流路6が接続されている。抽水流路6は、流量調整弁62を介してオゾンガス注入装置3に接続されている。オゾンガス注入装置3には、オゾン発生装置2が流量調整弁61を介して接続され、オゾンガスを注入できるようになっている。オゾン発生装置2には、図示しないオゾン発生装置2から吐出される流量を計測するオゾン用の流量計が設けられている。水処理水槽1内の被処理水は、抽水流路6から抽水されオゾンガス注入装置3に流入する。オゾン発生装置2で発生したオゾンガスは、オゾンガス注入装置3で被処理水と混合し、気液二相流になる。オゾンガス注入装置3には、エゼクタ形式,散気管方式,直接混合などの気液混合方式のものが適用される。   On the side of the inlet of the sewage treatment water of the water treatment tank 1, a drawing water flow path 6 for taking out the sewage treatment water is connected to the lower side. The extraction flow path 6 is connected to the ozone gas injection device 3 via a flow rate adjustment valve 62. An ozone generator 2 is connected to the ozone gas injection device 3 via a flow rate adjusting valve 61 so that ozone gas can be injected. The ozone generator 2 is provided with an ozone flow meter for measuring a flow rate discharged from the ozone generator 2 (not shown). The treated water in the water treatment tank 1 is extracted from the extraction flow path 6 and flows into the ozone gas injection device 3. The ozone gas generated by the ozone generator 2 is mixed with the water to be treated by the ozone gas injector 3 to form a gas-liquid two-phase flow. As the ozone gas injection device 3, an ejector type, a diffuser type, a gas-liquid mixing type such as direct mixing is applied.

オゾンガス注入装置3の後流側には高圧ポンプ4が接続され、高圧ポンプ4は微細気泡生成装置5を介して水処理水槽1に接続されている。高圧ポンプ4には、駆動するためのインバータ9が接続されている。気液二相流は、高圧ポンプ4に吸い込まれ、高圧ポンプ4で昇圧された後、微細気泡生成装置5に流入する。ここで、高圧ポンプ4は、渦流ポンプが二相流吐き出し性能に優れるが、一般のポンプも使用可能である。   A high pressure pump 4 is connected to the downstream side of the ozone gas injection device 3, and the high pressure pump 4 is connected to the water treatment water tank 1 through a fine bubble generating device 5. An inverter 9 for driving is connected to the high-pressure pump 4. The gas-liquid two-phase flow is sucked into the high-pressure pump 4, boosted by the high-pressure pump 4, and then flows into the fine bubble generating device 5. Here, as the high-pressure pump 4, the vortex pump is excellent in the two-phase flow discharge performance, but a general pump can also be used.

微細気泡生成装置5は、図2に示すように、流入流路7に設けられたシール部24と、シール部24に取り付けられた駆動軸23と、駆動軸23に取り付けられたシャッター板22と、流入流路7に固定された多孔板21で構成されている。微細気泡生成装置5の上流側には圧力計10が設けられ、下流側には流量計11が設けられている。   As shown in FIG. 2, the microbubble generating device 5 includes a seal portion 24 provided in the inflow channel 7, a drive shaft 23 attached to the seal portion 24, and a shutter plate 22 attached to the drive shaft 23. The perforated plate 21 is fixed to the inflow channel 7. A pressure gauge 10 is provided on the upstream side of the fine bubble generating device 5, and a flow meter 11 is provided on the downstream side.

多孔板21は、図3に示すように、同じ径の孔が複数個設けられ、扇形状の領域毎に局所的に孔数の分布が異なるように加工されている。シャッター板22は、図4に示すように、扇形状の流通部分22aと邪魔板部位22bが設けられ、図示しないモータにより駆動軸23が回転されると、それに伴って流通部分22aが回転するようになっている。このため、駆動軸23の回転角を制御してシャッター板22の回転角を変更することにより、気液二相流が通過する孔数を変更することができる。ここで、孔数の変更は、シャッター板22を固定して、多孔板21を回転させても良い。この気液二相流が通過する孔数のことを、便宜上有効孔数という。   As shown in FIG. 3, the perforated plate 21 is provided with a plurality of holes having the same diameter, and is processed so that the distribution of the number of holes is locally different for each fan-shaped region. As shown in FIG. 4, the shutter plate 22 is provided with a fan-shaped flow portion 22a and a baffle plate portion 22b. When the drive shaft 23 is rotated by a motor (not shown), the flow portion 22a is rotated accordingly. It has become. For this reason, the number of holes through which the gas-liquid two-phase flow passes can be changed by controlling the rotation angle of the drive shaft 23 and changing the rotation angle of the shutter plate 22. Here, the number of holes may be changed by fixing the shutter plate 22 and rotating the porous plate 21. The number of holes through which this gas-liquid two-phase flow passes is referred to as the effective number of holes for convenience.

オゾン発生装置2,高圧ポンプ4,微細気泡生成装置5を制御するための制御器8が設けられており、制御器8には溶存オゾン濃度計18の信号,圧力計10の信号,流量計
11の信号,オゾン用の流量計の信号がフィードバックされている。
A controller 8 for controlling the ozone generator 2, the high-pressure pump 4, and the fine bubble generator 5 is provided. The controller 8 includes a signal from the dissolved ozone concentration meter 18, a signal from the pressure gauge 10, and a flow meter 11. Signal and ozone flow meter signal are fed back.

ここで、微細気泡生成装置5での微細気泡の生成過程について詳細に説明する。高圧ポンプ4から吐き出されたオゾンガスが混入した気液二相流は、圧力によって一部が液中に溶解しながら微細気泡生成装置5に達する。図2に示す多孔板21の上流側は高圧であり、下流側は低圧である。高圧の上流側から多孔板21に流入した被処理水は、孔部を通過する時に圧力損失が生じるとともに、流速が増加するためベルヌーイの定理で表されるように圧力が低下して減圧される。このため、加圧溶解していた気泡が微細気泡となって析出する。又、多孔板21の下流側では流路面積が増加するため、圧力回復が図られるが、急激な流路面積の変化によって圧力が不安定になり、気泡はさらに崩壊する。この減圧と圧力不安定によって、微細気泡が生成される。   Here, the process of generating fine bubbles in the fine bubble generating apparatus 5 will be described in detail. The gas-liquid two-phase flow mixed with the ozone gas discharged from the high-pressure pump 4 reaches the fine bubble generating device 5 while being partially dissolved in the liquid by the pressure. The upstream side of the porous plate 21 shown in FIG. 2 has a high pressure, and the downstream side has a low pressure. The water to be treated that flows into the perforated plate 21 from the high-pressure upstream side causes a pressure loss when passing through the hole, and the flow velocity increases, so that the pressure is reduced and reduced as represented by Bernoulli's theorem. . For this reason, bubbles dissolved under pressure are deposited as fine bubbles. Further, since the flow path area increases on the downstream side of the porous plate 21, pressure recovery is achieved, but the pressure becomes unstable due to a sudden change in the flow path area, and the bubbles further collapse. Due to the reduced pressure and pressure instability, fine bubbles are generated.

実験を行った結果、孔径は直径で0.1mm 〜5mmの範囲が微細気泡を生成するのに好適であり、孔径が0.5mm 〜2mmの範囲とすると微細気泡の生成はより安定化し生成効率はよりよくなることが分った。加圧圧力は0.1MPa〜1.0MPaが許容範囲であった。加圧圧力については、微細気泡生成がより安定でコスト上有利な範囲は、0.3MPa 〜0.7MPaの範囲である。   As a result of experiments, a pore diameter in the range of 0.1 mm to 5 mm is suitable for generating fine bubbles, and if the pore diameter is in the range of 0.5 mm to 2 mm, the generation of fine bubbles becomes more stable and the production efficiency Found it to be better. The pressurizing pressure was within an allowable range of 0.1 MPa to 1.0 MPa. Regarding the pressurizing pressure, the range in which fine bubble generation is more stable and advantageous in terms of cost is in the range of 0.3 MPa to 0.7 MPa.

本実施例の微細気泡生成装置5を用いて、発生した気泡の気泡径分布を測定した結果を図5に示す。この測定では、多孔板21を通過したときに発生した気泡を粒子カウンタで測定して気泡径と気泡個数分布の関係を求めた。この測定により、気泡径は、マイクロバブル領域に集中しており、本実施例の微細気泡生成装置で気泡径の揃った微細気泡を生成できることが確認された。   FIG. 5 shows the result of measuring the bubble diameter distribution of the generated bubbles using the fine bubble generating device 5 of this example. In this measurement, bubbles generated when passing through the perforated plate 21 were measured with a particle counter to obtain the relationship between the bubble diameter and the bubble number distribution. From this measurement, it was confirmed that the bubble diameter was concentrated in the microbubble region, and it was possible to generate fine bubbles having the same bubble diameter with the fine bubble generating apparatus of this example.

このように構成された水処理設備では、オゾン用の流量計,圧力計10,流量計11,溶存オゾン濃度計18の信号を入力して、高圧ポンプ4のインバータ9と微細気泡生成装置5のシャッター板22の回転角度、オゾンガス発生装置2の発生流量を制御するが、その制御シーケンスを図6により説明する。   In the water treatment equipment configured as described above, signals from the ozone flow meter, pressure meter 10, flow meter 11, and dissolved ozone concentration meter 18 are input, and the inverter 9 of the high-pressure pump 4 and the microbubble generator 5 are connected. The rotation angle of the shutter plate 22 and the flow rate generated by the ozone gas generator 2 are controlled. The control sequence will be described with reference to FIG.

ステップ100で、入力データの読込みを行う。主な入力データとしては、溶存オゾン濃度の設定値Cs,溶存オゾン濃度の許容範囲ΔC,高圧ポンプ加圧圧力の設定値Ps,高圧ポンプ加圧圧力の許容範囲ΔP,オゾン微細気泡混入液体の注入量許容範囲ΔF,パラメータ増減率ΔXである。ステップ101で、計測運転がONか否かを判断し、計測運転ONでなければ終了する。計測運転ONであれば、ステップ102で、オゾン用の流量計,圧力計10,流量計11,溶存オゾン濃度計18の信号を制御器8に入力して、溶存オゾン濃度値Cm,高圧ポンプ加圧圧力Pm,注入量Fm,オゾン発生器流量fomが読込まれる。   In step 100, input data is read. Main input data include dissolved ozone concentration set value Cs, dissolved ozone concentration allowable range ΔC, high pressure pump pressurizing pressure set value Ps, high pressure pump pressurizing pressure allowable range ΔP, injection of ozone fine bubble mixed liquid The amount allowable range ΔF and the parameter increase / decrease rate ΔX. In step 101, it is determined whether or not the measurement operation is ON. If the measurement operation is not ON, the process ends. If the measurement operation is ON, in step 102, signals from the ozone flow meter, pressure meter 10, flow meter 11, and dissolved ozone concentration meter 18 are input to the controller 8, and the dissolved ozone concentration value Cm, high pressure pump added The pressure Pm, the injection amount Fm, and the ozone generator flow rate fom are read.

ステップ103で、入力データのうち、溶存オゾン濃度の設定値Cs,溶存オゾン濃度の許容範囲ΔCと溶存オゾン濃度値Cmの比較演算が行われる。すなわち、溶存オゾン濃度の設定値Csに溶存オゾン濃度の許容範囲ΔCを加味した数値範囲であるCs−ΔC,Cs+ΔCと溶存オゾン濃度値Cmを比較する。溶存オゾン濃度CmがCs−ΔCとCs+ΔCの間であれば、タイマーで時間計測を行い、設定された時間が経過後にステップ
101に戻り、ステップ101からステップ103の動作を繰り返す。
In step 103, a comparison operation is performed on the set value Cs of the dissolved ozone concentration, the allowable range ΔC of the dissolved ozone concentration, and the dissolved ozone concentration value Cm in the input data. That is, the dissolved ozone concentration value Cm is compared with Cs−ΔC, Cs + ΔC, which are numerical ranges obtained by adding the allowable range ΔC of the dissolved ozone concentration to the set value Cs of the dissolved ozone concentration. If the dissolved ozone concentration Cm is between Cs−ΔC and Cs + ΔC, the timer measures the time, returns to step 101 after the set time has elapsed, and repeats the operations from step 101 to step 103.

溶存オゾン濃度値CmがCs−ΔCより低い場合、溶存オゾン濃度値CmがCs+ΔCより高い場合は、ステップ104で、溶存オゾン濃度の変化率aを数1により算出する。   When the dissolved ozone concentration value Cm is lower than Cs−ΔC, or when the dissolved ozone concentration value Cm is higher than Cs + ΔC, the change rate a of the dissolved ozone concentration is calculated by Equation 1 in Step 104.

Figure 2007021393
Figure 2007021393

ステップ105で、算出された溶存オゾン濃度の変化率aが0より大きいか否かを判定し、0より大きい場合は、例えば数2により、注入量Fの目標値Fp,オゾン発生流量
foの目標値fopを算出する。
In step 105, it is determined whether or not the calculated change rate a of the dissolved ozone concentration is greater than 0. If it is greater than 0, the target value Fp of the injection amount F and the target of the ozone generation flow rate fo are calculated according to Equation 2, for example. The value fop is calculated.

Figure 2007021393
Figure 2007021393

溶存オゾン濃度の変化率aが0か0より小さい場合は、例えば数3により、注入量Fの目標値Fp,オゾン発生流量foの目標値fopを算出する。   When the change rate a of the dissolved ozone concentration is 0 or smaller than 0, the target value Fp of the injection amount F and the target value fo of the ozone generation flow rate fo are calculated by Equation 3, for example.

Figure 2007021393
Figure 2007021393

注入量Fの目標値Fp,オゾン発生流量foの目標値fopが算出されると、ステップ108で、注入量値Fmが数4に示す範囲となるように、多孔板21の孔数の制御を行う。   When the target value Fp of the injection amount F and the target value fop of the ozone generation flow rate fo are calculated, the number of holes of the perforated plate 21 is controlled in step 108 so that the injection amount value Fm falls within the range shown in Formula 4. Do.

Figure 2007021393
Figure 2007021393

又、ステップ109で、高圧ポンプ加圧圧力Pmが数5に示す範囲内となるように、高圧ポンプ4の回転数制御を行う。   In step 109, the rotational speed of the high-pressure pump 4 is controlled so that the high-pressure pump pressurization pressure Pm is within the range shown in Formula 5.

Figure 2007021393
Figure 2007021393

ステップ110で、注入量値Fm及び高圧ポンプ加圧圧力Pmが数4と数5の範囲に入っているか否かを判断し、範囲に入っていればステップ101の戻り、ステップ110までの動作を繰り返す。範囲に入っていなければ、ステップ108に戻り、ステップ110までの動作を繰り返す。   In step 110, it is determined whether or not the injection amount value Fm and the high-pressure pump pressurization pressure Pm are within the ranges of Equations 4 and 5. If they are within the ranges, the process returns to Step 101 and the operations up to Step 110 are performed. repeat. If it is not within the range, the process returns to step 108 and the operations up to step 110 are repeated.

溶存オゾン濃度計18で計測された溶存オゾン濃度が、設定値Cs−溶存オゾン濃度許容範囲ΔCより低い場合は、制御器8から微細気泡生成装置5に制御信号が送信され、シャッター板22の駆動機構を制御してシャッター板22を回転させて孔数を増加させる。孔数を増加させることにより、多孔板21での圧力損失が低減し、流量が増加するとともに高圧ポンプ4の加圧圧力が低下する。圧力計10により計測される高圧ポンプ加圧圧力Pmが制御器8にフィードバックされ、数5に示す範囲内となるように、高圧ポンプ4のインバータ9に制御信号が送信され、ポンプ4の回転数を増加するように制御される。又、オゾン発生装置2に制御信号が送信され、オゾンガス発生量を増加するように制御する。微細気泡生成装置5では、オゾンガス発生装置2の発生流量と、抽水流路6及び注入流路7の循環流量を増加することにより、水処理槽1へのオゾン注入量を増加することができる。   When the dissolved ozone concentration measured by the dissolved ozone concentration meter 18 is lower than the set value Cs−the dissolved ozone concentration allowable range ΔC, a control signal is transmitted from the controller 8 to the fine bubble generating device 5 to drive the shutter plate 22. The mechanism is controlled to rotate the shutter plate 22 to increase the number of holes. By increasing the number of holes, the pressure loss in the perforated plate 21 is reduced, the flow rate is increased, and the pressurizing pressure of the high-pressure pump 4 is decreased. The high-pressure pump pressurization pressure Pm measured by the pressure gauge 10 is fed back to the controller 8 and a control signal is transmitted to the inverter 9 of the high-pressure pump 4 so that it falls within the range shown in Equation 5, and the rotation speed of the pump 4 Is controlled to increase. In addition, a control signal is transmitted to the ozone generator 2 so as to increase the amount of ozone gas generated. In the fine bubble generating device 5, the amount of ozone injected into the water treatment tank 1 can be increased by increasing the generated flow rate of the ozone gas generating device 2 and the circulating flow rates of the extraction flow channel 6 and the injection flow channel 7.

このように制御することにより、オゾン微細気泡を生成するための加圧圧力の変化を許容範囲内に制御し、オゾン注入量を増加させて循環流量を増加させることができるので、水処理槽1の溶存オゾン濃度を許容範囲内に制御することができる。   By controlling in this way, it is possible to control the change in the pressurizing pressure for generating ozone fine bubbles within an allowable range and increase the ozone injection amount to increase the circulation flow rate, so that the water treatment tank 1 It is possible to control the dissolved ozone concentration within an allowable range.

溶存オゾン濃度計18で計測された溶存オゾン濃度が、設定値Cs+溶存オゾン濃度許容範囲ΔCより高い場合は、多孔板21を回転させて孔数を減少させる。孔数を減少させることにより、多孔板21での圧力損失が増大し、流量が減少するとともに高圧ポンプ4の加圧圧力が上昇する。圧力計10により計測される高圧ポンプ加圧圧力Pmが制御器8にフィードバックされ、数5に示す範囲内となるように、高圧ポンプ4のインバータ9に制御信号が送信され、ポンプ4の回転数を減少するように制御される。又、オゾン発生装置2に制御信号が送信され、オゾンガス発生量を減少するように制御する。   When the dissolved ozone concentration measured by the dissolved ozone concentration meter 18 is higher than the set value Cs + the dissolved ozone concentration allowable range ΔC, the porous plate 21 is rotated to reduce the number of holes. By reducing the number of holes, the pressure loss in the perforated plate 21 increases, the flow rate decreases, and the pressurizing pressure of the high-pressure pump 4 increases. The high-pressure pump pressurization pressure Pm measured by the pressure gauge 10 is fed back to the controller 8 and a control signal is transmitted to the inverter 9 of the high-pressure pump 4 so that it falls within the range shown in Equation 5, and the rotation speed of the pump 4 Is controlled to decrease. In addition, a control signal is transmitted to the ozone generator 2 so as to reduce the amount of ozone gas generated.

このように制御することにより、オゾン微細気泡を生成するための加圧圧力の変化を許容範囲内に制御し、オゾン注入量を減少させて循環流量を減少させることができるので、水処理槽1の溶存オゾン濃度を許容範囲内に制御することができる。   By controlling in this way, it is possible to control the change in the pressurizing pressure for generating ozone fine bubbles within an allowable range, and to reduce the amount of ozone injected to reduce the circulation flow rate. It is possible to control the dissolved ozone concentration within an allowable range.

又、高圧ポンプ4の加圧圧力を微細気泡生成に適した圧力に保ちながらオゾン注入の循環流量を増減できるので、ポンプ動力の無駄を省くことができる。   In addition, since the circulation flow rate of ozone injection can be increased or decreased while maintaining the pressurization pressure of the high-pressure pump 4 at a pressure suitable for generating fine bubbles, waste of pump power can be saved.

微細気泡生成装置5において微細気泡が混入された気液二相流は、注入流路7を通り、水処理槽1に吐出される。微細気泡の作用によって、オゾンの溶解効率が高くなり溶存オゾン濃度が増加して強い消毒作用が生じる。又、気泡溶解時のラジカル生成によってさらに消毒作用が促進される。   The gas-liquid two-phase flow in which fine bubbles are mixed in the fine bubble generating device 5 passes through the injection flow path 7 and is discharged to the water treatment tank 1. Due to the action of the fine bubbles, the dissolution efficiency of ozone is increased, the dissolved ozone concentration is increased, and a strong disinfection action is generated. Moreover, the disinfection action is further promoted by the generation of radicals when the bubbles are dissolved.

オゾンが注入され水処理槽1内に吐出された被処理水の一部は、再び抽水流路6から微細気泡生成装置5に流入し、残りの被処理水は、オゾン酸化作用を継続しながら水処理槽1内を流れ、処理槽出口から再生水として排出される。   A portion of the water to be treated which has been injected with ozone and discharged into the water treatment tank 1 flows again into the fine bubble generating device 5 from the extraction flow path 6, and the remaining water to be treated continues its ozone oxidation action. It flows in the water treatment tank 1 and is discharged as recycled water from the treatment tank outlet.

ここで、水処理槽1の流路を被処理水が消毒されながら流れるにしたがって、オゾンが消費されるため溶存オゾン濃度は減少する。このため、オゾン微細気泡混合液体の注入流路7を複数系統設ける、或いは微細気泡生成装置5を複数系統設け、水処理槽1の流路中の複数の箇所にオゾン微細気泡混合液体を注入するようにしても良い。   Here, since ozone is consumed as the water to be treated flows through the flow path of the water treatment tank 1 while being disinfected, the dissolved ozone concentration decreases. For this reason, the ozone fine bubble mixed liquid injection flow path 7 is provided with a plurality of lines, or the fine bubble generating device 5 is provided with a plurality of lines, and the ozone fine bubble mixed liquid is injected into a plurality of locations in the flow path of the water treatment tank 1. You may do it.

本実施例の微細気泡を利用した水処理設備によれば、微細気泡の径や発生量を安定化することができ、オゾン溶解効率を保ち、水処理性能を高めることができるので、オゾン使用量が低減され水処理設備の経済性を向上できる。又、加圧圧力を許容範囲内に制御してポンプ駆動電力を低減しているので、水処理設備における運転経済性を向上できる。又、被処理水の水質パラメータと流量を演算し、インバータによるポンプ回転数と多孔板の孔数を制御することにより制御の応答性が向上して省エネルギー運転が可能になり、水処理設備における運転経済性を向上できる。   According to the water treatment facility using fine bubbles of the present embodiment, the diameter and generation amount of fine bubbles can be stabilized, ozone dissolution efficiency can be maintained, and water treatment performance can be improved. Can be reduced and the economics of the water treatment facility can be improved. In addition, since the pump driving power is reduced by controlling the pressurizing pressure within an allowable range, it is possible to improve the operation economy in the water treatment facility. In addition, by calculating the water quality parameters and flow rate of the water to be treated, and controlling the pump rotation speed and the number of holes in the perforated plate by the inverter, the control responsiveness is improved and energy saving operation becomes possible. Economic efficiency can be improved.

本実施例の超微細気泡を利用した水処理設備によれば、殺菌消毒するための塩素を多用することなく下水処理水の殺菌消毒が可能になるため、下水処理水再生設備の経済性を向上する効果と殺菌消毒性能を向上する効果がある。   According to the water treatment facility using ultrafine bubbles of the present embodiment, it becomes possible to sterilize and disinfect sewage treated water without using a lot of chlorine for sterilizing and disinfecting, so the economic efficiency of the sewage treated water recycling facility is improved. Has the effect of improving the sterilization performance.

なお、本実施例の水処理槽は、オゾン微細気泡混入水を注入された被処理水がオゾンと接触しながら複数の槽を移動する形式のものを説明したが、貯留型あるいは加圧式処理装置にも適用可能である。   In addition, although the water treatment tank of a present Example demonstrated the thing of the type which the to-be-processed water inject | poured the ozone fine bubble mixing water moves a some tank, contacting ozone, a storage type or a pressurization type processing apparatus It is also applicable to.

本発明の実施例2を図7により説明する。本実施例は実施例1の変形例で、図7は複数の多孔板流路型の微細気泡生成装置の構造図である。実施例1では、図2から図4で示す孔数可変型の多孔板21を用いた微細気泡生成装置5で構成しているが、本実施例では、孔数が固定された複数の多孔板14,15を設けている。この例では、多孔板14の孔数を多く、多孔板15の孔数を少なくしている。   A second embodiment of the present invention will be described with reference to FIG. The present embodiment is a modification of the first embodiment, and FIG. 7 is a structural diagram of a plurality of perforated plate channel type fine bubble generating apparatuses. In the first embodiment, the micro-bubble generating device 5 using the variable-hole-number perforated plate 21 shown in FIGS. 2 to 4 is used. However, in this embodiment, a plurality of perforated plates having a fixed number of holes. 14 and 15 are provided. In this example, the number of holes in the porous plate 14 is increased and the number of holes in the porous plate 15 is decreased.

図7に示す例では、多孔板14,多孔板15を有する2系統の流路19,流路20を設けている。流路19と流路20の合流部には切替弁17が設けられ、制御器8からの信号により切替弁17を切替えて流路19と流路20を切替えるようになっている。高圧ポンプ4には、バイパス弁16が設けられている。   In the example shown in FIG. 7, two channels 19 and 20 having a porous plate 14 and a porous plate 15 are provided. A switching valve 17 is provided at the junction of the channel 19 and the channel 20, and the switching valve 17 is switched by a signal from the controller 8 to switch the channel 19 and the channel 20. The high pressure pump 4 is provided with a bypass valve 16.

このように構成された水処理設備において、溶存オゾン濃度計18で計測された溶存オゾン濃度が、設定値Cs−溶存オゾン濃度許容範囲ΔCより低い場合は、制御器8から切替弁17に制御信号が送信され、切替弁17を流路19側に切替える。流路19に切替えると、孔数が多い多孔板14を気液二相流が流れるので、多孔板14での圧力損失が低減し、流量が増加するとともに高圧ポンプ4の加圧圧力が低下する。圧力計10により計測される高圧ポンプ加圧圧力Pmが制御器8にフィードバックされ、数5に示す範囲内となるように、高圧ポンプ4のインバータ9に制御信号が送信され、ポンプ4の回転数を増加するように制御される。又、オゾン発生装置2に制御信号が送信され、オゾンガス発生量を増加するように制御する。   In the water treatment equipment configured as described above, when the dissolved ozone concentration measured by the dissolved ozone concentration meter 18 is lower than the set value Cs−the dissolved ozone concentration allowable range ΔC, the control signal is sent from the controller 8 to the switching valve 17. Is transmitted, and the switching valve 17 is switched to the flow path 19 side. When the flow path 19 is switched, the gas-liquid two-phase flow flows through the porous plate 14 having a large number of holes, so that the pressure loss in the porous plate 14 is reduced, the flow rate is increased, and the pressurized pressure of the high-pressure pump 4 is reduced. . The high-pressure pump pressurization pressure Pm measured by the pressure gauge 10 is fed back to the controller 8 and a control signal is transmitted to the inverter 9 of the high-pressure pump 4 so that it falls within the range shown in Equation 5, and the rotation speed of the pump 4 Is controlled to increase. In addition, a control signal is transmitted to the ozone generator 2 so as to increase the amount of ozone gas generated.

このように制御することにより、オゾン微細気泡を生成するための加圧圧力の変化を許容範囲内に制御し、オゾン注入量を増加させて循環流量を増加させることができるので、水処理槽1の溶存オゾン濃度を許容範囲内に制御することができる。   By controlling in this way, it is possible to control the change in the pressurizing pressure for generating ozone fine bubbles within an allowable range and increase the ozone injection amount to increase the circulation flow rate, so that the water treatment tank 1 It is possible to control the dissolved ozone concentration within an allowable range.

溶存オゾン濃度計18で計測された溶存オゾン濃度が、設定値Cs+溶存オゾン濃度許容範囲ΔCより高い場合は、切替弁17を流路20側に切替える。多孔板15の孔数が少ないため、圧力損失が増大し、流量が減少するとともに高圧ポンプ4の加圧圧力が上昇する。圧力計10により計測される高圧ポンプ加圧圧力Pmが制御器8にフィードバックされ、数5に示す範囲内となるように、高圧ポンプ4のインバータ9に制御信号が送信され、ポンプ4の回転数を減少するように制御される。又、オゾン発生装置2に制御信号が送信され、オゾンガス発生量を減少するように制御する。   When the dissolved ozone concentration measured by the dissolved ozone concentration meter 18 is higher than the set value Cs + the dissolved ozone concentration allowable range ΔC, the switching valve 17 is switched to the flow path 20 side. Since the number of holes in the perforated plate 15 is small, the pressure loss increases, the flow rate decreases, and the pressurizing pressure of the high pressure pump 4 increases. The high-pressure pump pressurization pressure Pm measured by the pressure gauge 10 is fed back to the controller 8 and a control signal is transmitted to the inverter 9 of the high-pressure pump 4 so that it falls within the range shown in Equation 5, and the rotation speed of the pump 4 Is controlled to decrease. In addition, a control signal is transmitted to the ozone generator 2 so as to reduce the amount of ozone gas generated.

このように制御することにより、オゾン微細気泡を生成するための加圧圧力の変化を許容範囲内に制御し、オゾン注入量を減少させて循環流量を減少させることができるので、水処理槽1の溶存オゾン濃度を許容範囲内に制御することができる。   By controlling in this way, it is possible to control the change in the pressurizing pressure for generating ozone fine bubbles within an allowable range, and to reduce the amount of ozone injected to reduce the circulation flow rate. It is possible to control the dissolved ozone concentration within an allowable range.

本実施例の水処理設備によれば、実施例1による効果に加えて、微細気泡生成装置に回転部がないため故障が少なくなり、下水処理水再生設備の信頼性が向上する。   According to the water treatment facility of the present embodiment, in addition to the effects of the first embodiment, the microbubble generator does not have a rotating part, so that the failure is reduced and the reliability of the sewage treatment water reclamation facility is improved.

なお、本実施例の微細気泡生成装置5を用いた場合、オゾン微細気泡混合液体の流量調整はステップ状になるが、3系統以上に流路数を増加することにより、オゾン微細気泡混合液体のより細かい流量調整が可能である。   In addition, when the fine bubble production | generation apparatus 5 of a present Example is used, the flow volume adjustment of ozone fine bubble mixed liquid becomes step shape, but by increasing the number of flow paths to three or more systems, ozone fine bubble mixed liquid of Finer flow rate adjustment is possible.

本発明の実施例3を図8により説明する。図8は本実施例の微細気泡を利用した水処理設備の構成図である。本実施例では、実施例1の構成に加えて、水処理槽1に流入する被処理水の流路に流量計25と有機物濃度計26を設け、流量計25,有機物濃度計26と制御器8とを信号線で接続している。図8では有機物濃度計26を設けて水質の計測を行っているが、水質の計測は、有機物濃度計の他に大腸菌センサー,浮遊物濃度計,臭気センサー,色度センサーなどを設けても良い。   A third embodiment of the present invention will be described with reference to FIG. FIG. 8 is a configuration diagram of a water treatment facility using fine bubbles according to the present embodiment. In the present embodiment, in addition to the configuration of the first embodiment, a flow meter 25 and an organic substance concentration meter 26 are provided in the flow path of the water to be treated flowing into the water treatment tank 1, and the flow meter 25, the organic substance concentration meter 26 and the controller are provided. 8 is connected by a signal line. In FIG. 8, the organic matter concentration meter 26 is provided to measure the water quality. However, in addition to the organic matter concentration meter, the E. coli sensor, the suspended matter concentration meter, the odor sensor, the chromaticity sensor, etc. may be provided for the water quality measurement. .

本実施例では、流量計25或いは有機物濃度計26の計測値が設定値より高い場合は、制御器8から微細気泡生成装置5に制御信号が送信され、シャッター板22の駆動機構を制御してシャッター板22を回転させて孔数を増加させる。孔数を増加させることにより、多孔板21での圧力損失が低減し、流量が増加するとともに高圧ポンプ4の加圧圧力が低下する。圧力計10により計測される高圧ポンプ加圧圧力Pmが制御器8にフィードバックされ、高圧ポンプ4のインバータ9に制御信号が送信され、高圧ポンプ4の回転数を増加するように制御される。又、オゾン発生装置2に制御信号が送信され、オゾンガス発生量を増加するように制御する。   In this embodiment, when the measured value of the flow meter 25 or the organic substance concentration meter 26 is higher than the set value, a control signal is transmitted from the controller 8 to the fine bubble generating device 5 to control the driving mechanism of the shutter plate 22. The shutter plate 22 is rotated to increase the number of holes. By increasing the number of holes, the pressure loss in the perforated plate 21 is reduced, the flow rate is increased, and the pressurizing pressure of the high-pressure pump 4 is decreased. The high-pressure pump pressurization pressure Pm measured by the pressure gauge 10 is fed back to the controller 8, and a control signal is transmitted to the inverter 9 of the high-pressure pump 4 so that the number of rotations of the high-pressure pump 4 is increased. In addition, a control signal is transmitted to the ozone generator 2 so as to increase the amount of ozone gas generated.

これによって、オゾン微細気泡生成のための加圧圧力の変化幅を小さくして、オゾンの循環流量を増加させ、水処理槽1の水処理能力を向上できる。その結果、再生水の水質を維持できる。   Thereby, the change width of the pressurization pressure for ozone fine bubble production | generation can be made small, the circulation flow volume of ozone can be increased, and the water treatment capacity of the water treatment tank 1 can be improved. As a result, the quality of the reclaimed water can be maintained.

流量計25或いは有機物濃度計26の計測値が設定値より低い場合は、逆の操作、すなわちシャッター板22を回転させて孔数を減少させ、高圧ポンプ4の回転数を減少させ、オゾン発生装置2のオゾンガス発生量を減少するように制御する。この操作によって、オゾンの循環流量が減少し、水処理槽1の水処理能力を許容範囲内に維持することができる。   When the measurement value of the flow meter 25 or the organic substance concentration meter 26 is lower than the set value, the reverse operation, that is, the shutter plate 22 is rotated to decrease the number of holes and the rotation number of the high-pressure pump 4 is decreased. The ozone gas generation amount of 2 is controlled to decrease. By this operation, the circulation flow rate of ozone is reduced, and the water treatment capacity of the water treatment tank 1 can be maintained within an allowable range.

このように制御することにより、水処理槽1へ流入する下水処理水の流量,水質条件を基にオゾン注入量を調整できるので、処理後のオゾン濃度をフィードバックして制御する実施例1と比較して短時間で再生水の水質を制御できる。このため、水処理性能の負荷追従性が向上し、運転条件の変動量を低減できるのでポンプ動力の無駄を省くことができる。   By controlling in this way, the ozone injection amount can be adjusted on the basis of the flow rate and water quality conditions of the sewage treated water flowing into the water treatment tank 1, so that it is compared with Example 1 in which the ozone concentration after treatment is controlled by feedback. Thus, the quality of the reclaimed water can be controlled in a short time. For this reason, the load followability of the water treatment performance is improved and the fluctuation amount of the operation condition can be reduced, so that waste of pump power can be eliminated.

本実施例の水処理設備によれば、実施例1による効果に加えて、下水処理水再生設備の運転に関わる経済性が向上する。   According to the water treatment facility of the present embodiment, in addition to the effects of the first embodiment, the economic efficiency related to the operation of the sewage treated water reclamation facility is improved.

本発明の実施例4を図9により説明する。図9は本実施例の微細気泡を利用した水処理設備の構成図である。   A fourth embodiment of the present invention will be described with reference to FIG. FIG. 9 is a configuration diagram of a water treatment facility using fine bubbles according to the present embodiment.

実施例1では、水処理槽1に抽水流路6と注入流路7を敷設しているが、本実施例では、抽水流路6に第2の抽水流路28を、注入流路7に第2の注入流路27を接続し、第2の抽水流路28と第2の注入流路27を水処理槽1の上方から水処理槽1内に設置するようになっている。   In the first embodiment, the extraction channel 6 and the injection channel 7 are laid in the water treatment tank 1, but in the present example, the second extraction channel 28 is provided in the extraction channel 6 and the injection channel 7 is provided. The second injection channel 27 is connected, and the second extraction channel 28 and the second injection channel 27 are installed in the water treatment tank 1 from above the water treatment tank 1.

本実施例によれば、水処理槽1の上方から第2の抽水流路及び第2の注入流路を挿入しているので、万一、注水流路あるいは注入流路が破断した時でも水処理槽1内の被処理水が水処理槽1外に流出することがないため、水処理設備の安全性を高めることができる。また、水線下に流路挿入部や接合部がないため、水密性を保つためのメンテナンス作業が不要となり、点検に関わる経済性を向上できる。   According to the present embodiment, since the second extraction channel and the second injection channel are inserted from above the water treatment tank 1, even if the water injection channel or the injection channel breaks, Since the water to be treated in the treatment tank 1 does not flow out of the water treatment tank 1, the safety of the water treatment facility can be improved. In addition, since there is no flow path insertion part or joint part below the water line, maintenance work for maintaining water tightness is not required, and the economics related to inspection can be improved.

本発明の実施例5を図10により説明する。図10は微細気泡を利用した水処理設備を適用した下水処理施設の構成図である。   A fifth embodiment of the present invention will be described with reference to FIG. FIG. 10 is a configuration diagram of a sewage treatment facility to which a water treatment facility using fine bubbles is applied.

本実施例の下水処理施設は、図10に示すように、それぞれ直列に接続された沈殿池
31,生物反応槽32,最終沈殿池33と、沈殿池31と生物反応槽32と最終沈殿池
33の底部に接続された濃縮槽34と、濃縮槽34に接続された汚泥処理装置35と、最終沈殿池33に接続された実施例1から実施例4のいずれかの水処理設備30で構成されている。最終沈殿池33で処理された一部の下水は、生物反応槽32に戻されるように流路が接続されている。
As shown in FIG. 10, the sewage treatment facility of this embodiment includes a sedimentation basin 31, a biological reaction tank 32, a final sedimentation basin 33, a sedimentation basin 31, a biological reaction tank 32, and a final sedimentation basin 33 connected in series. And a sludge treatment device 35 connected to the concentration tank 34, and a water treatment facility 30 of any of the first to fourth examples connected to the final sedimentation basin 33. ing. A flow path is connected so that a part of the sewage treated in the final sedimentation basin 33 is returned to the biological reaction tank 32.

下水は最初に沈殿池31に流入し、有機物を主体とする比重の大きい浮遊物質が除去される。有機物を主体とする比重の大きい浮遊物質が除去された下水は生物反応槽32に流入する。生物反応槽32では、有機物窒素,りんなどが生物学的に処理される。生物処理後の下水は最終沈殿池33に流入し、微生物フロックを主体とする比重の小さい浮遊物質が除去される。沈殿池31,生物反応槽32及び最終沈殿池33で除去された汚泥は、濃縮槽34に送られ濃縮後に汚泥処理装置35に送られる。   The sewage first flows into the settling basin 31 and the suspended solids having a large specific gravity mainly composed of organic substances are removed. The sewage from which suspended solids mainly composed of organic substances are removed flows into the biological reaction tank 32. In the biological reaction tank 32, organic nitrogen, phosphorus and the like are biologically processed. The sewage after the biological treatment flows into the final sedimentation basin 33, and suspended solids having a small specific gravity, mainly microbial flocs, are removed. The sludge removed in the sedimentation basin 31, the biological reaction tank 32 and the final sedimentation basin 33 is sent to the concentration tank 34 and is sent to the sludge treatment device 35 after concentration.

最終沈殿池33で微生物フロックを主体とする比重の小さい浮遊物質が除去された被処理水は、水処理設備30に流入し、下水処理水の全量を処理する。上述したように、微細気泡を利用した水処理設備30を最終沈殿池33の後段に設け、再生水は放流水の他、水洗用水,散水用水,修景用水,親水用水等に利用される。微細気泡を利用した水処理設備30は、オゾンを用いているため消毒効果が高く、従来の下水処理施設と比較して、塩素注入,滅菌工程を簡素化できる効果がある。この結果、本実施例によれば、下水処理施設の簡素化が可能であり、施設建設と運転に関わる経済性を向上できる。   The treated water from which the suspended solids mainly composed of microbial flocs are removed in the final sedimentation basin 33 flows into the water treatment facility 30 and treats the entire amount of sewage treated water. As described above, the water treatment facility 30 using the fine bubbles is provided at the rear stage of the final sedimentation basin 33, and the reclaimed water is used as flush water, water for spraying, landscape water, water for hydrophilicity, etc. in addition to the discharged water. Since the water treatment facility 30 using fine bubbles uses ozone, the disinfection effect is high, and there is an effect that the chlorine injection and sterilization processes can be simplified as compared with the conventional sewage treatment facility. As a result, according to the present embodiment, it is possible to simplify the sewage treatment facility, and it is possible to improve the economy related to facility construction and operation.

本発明の実施例6を図11により説明する。図11は、微細気泡を利用した水処理設備を適用した下水処理施設の他の構成図である。   A sixth embodiment of the present invention will be described with reference to FIG. FIG. 11 is another configuration diagram of a sewage treatment facility to which a water treatment facility using fine bubbles is applied.

本実施例の下水処理施設は、実施例5と同様に構成されているが、図11に示すように、最終沈殿池33の後段には、水処理設備30と滅菌槽36が並列的に設けられ、滅菌槽36の上流側には塩素の注入部が設けられている。   The sewage treatment facility of this example is configured in the same manner as in Example 5. However, as shown in FIG. 11, the water treatment facility 30 and the sterilization tank 36 are provided in parallel at the subsequent stage of the final sedimentation basin 33. In addition, a chlorine injection section is provided on the upstream side of the sterilization tank 36.

沈殿池31に流入した下水は、最終沈殿池33まで実施例5で説明したように処理される。最終沈殿池33で処理された下水処理水の一部は、滅菌槽36に流入し、塩素が混和され、滅菌槽36で接触時間が確保された後、処理水は放流される。最終沈殿池33で処理した下水処理水の残りは、実施例1から実施例4のいずれかの水処理設備30に導かれて処理される。処理後の再生水は放流水の他、水洗用水,散水用水,修景用水,親水用水等に利用される。   The sewage flowing into the settling basin 31 is processed as described in the fifth embodiment up to the final settling basin 33. A part of the sewage treated water treated in the final sedimentation basin 33 flows into the sterilization tank 36 and is mixed with chlorine. After the contact time is secured in the sterilization tank 36, the treated water is discharged. The remainder of the sewage treated water treated in the final sedimentation basin 33 is guided to the water treatment facility 30 of any one of the first to fourth embodiments and processed. The treated reclaimed water is used for flushing water, watering water, landscape water, hydrophilic water, etc. in addition to the discharged water.

本実施例によれば、微細気泡を利用した水処理設備30は、オゾンを用いているため消毒効果が高く、用途と利用先の基準によって、塩素注入,滅菌工程を省略可能である。また、従来の下水処理施設と比較して、塩素注入,滅菌工程を簡素化できる効果がある。又、下水処理施設の簡素化が可能であり、施設建設と運転に関わる経済性を向上できる。   According to the present embodiment, the water treatment facility 30 using fine bubbles has a high disinfection effect because ozone is used, and the chlorine injection and sterilization steps can be omitted depending on the application and the usage standard. Moreover, compared with the conventional sewage treatment facility, there is an effect that the chlorine injection and sterilization processes can be simplified. In addition, simplification of the sewage treatment facility is possible, and the economy related to the construction and operation of the facility can be improved.

なお、微細気泡を利用した水処理設備30の後段に塩素の注入部を儲け、再生水に塩素を注入して塩素を混和するための滅菌槽36を設けてもよく、滅菌槽36で接触時間が確保された後、処理水は放流される。   A sterilization tank 36 for injecting chlorine into the reclaimed water and mixing the chlorine may be provided after the water treatment facility 30 using fine bubbles, and the contact time in the sterilization tank 36 may be provided. After being secured, the treated water is discharged.

本発明の実施例7を図12により説明する。図12は、微細気泡を利用した水処理設備を適用した下水処理施設の他の構成図である。   A seventh embodiment of the present invention will be described with reference to FIG. FIG. 12 is another configuration diagram of a sewage treatment facility to which a water treatment facility using fine bubbles is applied.

本実施例の下水処理施設は、実施例6と同様に構成されているが、図12に示すように、最終沈殿池33と水処理設備30の間に砂ろ過池37を設置し、砂ろ過池37でろ過された洗浄液の一部を濃縮槽34に戻すように接続されている。砂ろ過池37では、下水処理水の浮遊物、及び浮遊物に付着した窒素,りん等が除去され、砂ろ過池で処理された被処理水は、実施例1から実施例4のいずれかの水処理設備30に導かれて処理される。これによって、微細気泡を利用した水処理設備30における被処理水の水質が向上するとともに、水質が安定する。   The sewage treatment facility of this example is configured in the same manner as in Example 6. However, as shown in FIG. 12, a sand filtration basin 37 is installed between the final sedimentation basin 33 and the water treatment facility 30, and sand filtration is performed. A part of the cleaning liquid filtered in the pond 37 is connected to the concentration tank 34. In the sand filtration basin 37, the suspended matter in the sewage treated water, and nitrogen, phosphorus, etc. adhering to the suspended matter are removed, and the treated water treated in the sand filtration basin is any one of the first to fourth embodiments. It is guided to the water treatment facility 30 and processed. As a result, the quality of the water to be treated in the water treatment facility 30 using fine bubbles is improved and the water quality is stabilized.

本実施例によれば、被処理水の水質向上によって、微細気泡を利用した水処理設備のオゾン消費量が減少するため、下水処理施設の運転に関わる経済性を向上できる。   According to the present embodiment, since the amount of ozone consumed by the water treatment facility using fine bubbles is reduced by improving the quality of the water to be treated, the economy related to the operation of the sewage treatment facility can be improved.

本発明の実施例8を図13により説明する。図13は微細気泡を利用した水処理設備を適用した下水処理施設の他の構成図である。   An eighth embodiment of the present invention will be described with reference to FIG. FIG. 13 is another configuration diagram of a sewage treatment facility to which a water treatment facility using fine bubbles is applied.

本実施例の下水処理施設は、実施例6と同様に構成されているが、図13に示すように、最終沈殿池33と水処理設備30の間に凝集沈殿池38を設置し、凝集沈殿池38の汚泥を濃縮槽34に戻すように接続されている。凝集沈殿池38の上流側には凝集剤の注入部が設けられており、注入された凝集剤によって下水処理水の浮遊物、及び有機物が除去される。これによって、微細気泡を利用した水処理設備30における被処理水の水質が向上するとともに、水質が安定する。   The sewage treatment facility of this example is configured in the same manner as in Example 6. However, as shown in FIG. 13, a coagulation sedimentation basin 38 is installed between the final sedimentation basin 33 and the water treatment facility 30, and the coagulation sedimentation is performed. It is connected so that the sludge in the pond 38 is returned to the concentration tank 34. A flocculant injection part is provided on the upstream side of the coagulation sedimentation basin 38, and suspended solids and organic substances in the sewage treatment water are removed by the injected flocculant. As a result, the quality of the water to be treated in the water treatment facility 30 using fine bubbles is improved and the water quality is stabilized.

本実施例によれば、被処理水の水質向上によって、微細気泡を利用した水処理設備のオゾン消費量が減少するため、下水処理施設の運転に関わる経済性を向上できる。   According to the present embodiment, since the amount of ozone consumed by the water treatment facility using fine bubbles is reduced by improving the quality of the water to be treated, the economy related to the operation of the sewage treatment facility can be improved.

本発明の実施例9を図14及び図15により説明する。図14は微細気泡を利用した水処理設備の構成図、図15は水処理槽内の流れを説明する図である。   A ninth embodiment of the present invention will be described with reference to FIGS. FIG. 14 is a configuration diagram of a water treatment facility using fine bubbles, and FIG. 15 is a diagram illustrating a flow in the water treatment tank.

本実施例の下水処理施設は、実施例1と同様に構成されているが、図14,図15に示すように、水処理槽1内の流路のうち、下降流となる液面下の流路43に邪魔板41を設けている。図14に示す例では、下降流となる流路は、流路43,43a,43bの3箇所であり、それぞれに邪魔板41,41a,41bが設けられている。   The sewage treatment facility of this example is configured in the same manner as in Example 1, but, as shown in FIGS. A baffle plate 41 is provided in the flow path 43. In the example shown in FIG. 14, the flow paths that become the downward flow are the three positions of the flow paths 43, 43 a, and 43 b, and baffle plates 41, 41 a, and 41 b are respectively provided.

微細気泡生成装置5で発生した微細気泡が、注入流路7の内部或いは水処理槽1内の流路43において合体して気泡径が増加すると、径の増加にともなって上昇速度が増加するため流路43内を上昇することがある。このような合体気泡が液面に達して水処理槽1の上部空間に抜けると、排オゾン処理の負荷が増加するだけでなく、水処理に使用するオゾン量が減少する可能性がある。   When the fine bubbles generated in the fine bubble generating device 5 are combined in the injection flow channel 7 or the flow channel 43 in the water treatment tank 1 and the bubble diameter increases, the rising speed increases as the diameter increases. The flow path 43 may rise. If such coalesced bubbles reach the liquid level and escape into the upper space of the water treatment tank 1, not only the load of the exhaust ozone treatment increases, but the amount of ozone used for the water treatment may decrease.

本実施例では、図15に示すように、邪魔板41を設けているので、流路43の流路面積が縮小し、縮小箇所での流速が局所的に合体気泡の上昇速度より大きくなるため、合体気泡は縮小箇所より上方に抜けることがなくなり、オゾンの利用効率が向上する。又、邪魔板41の下方の流路面積が拡大している箇所で渦が生じるため、気泡の攪拌と崩壊が促進される。これによって、気泡が再び微細化し、液体への溶解が促進される。これによって、合体気泡が発生した際にも高いオゾンの利用効率と溶解効率を維持できる。邪魔板
41によって形成される縮流部での流速は、定格被処理水流量と流路面積から求められるが、好ましくは気泡の上昇速度の上限値である約0.4m/s 以上が必要である。
In this embodiment, as shown in FIG. 15, since the baffle plate 41 is provided, the flow passage area of the flow passage 43 is reduced, and the flow velocity at the reduced portion is locally greater than the rising speed of the combined bubbles. The coalesced bubbles do not escape upward from the reduced portion, and the utilization efficiency of ozone is improved. Moreover, since a vortex is generated at a location where the flow path area below the baffle plate 41 is enlarged, the stirring and collapse of bubbles are promoted. As a result, the bubbles are refined again and the dissolution into the liquid is promoted. Accordingly, high ozone utilization efficiency and dissolution efficiency can be maintained even when coalesced bubbles are generated. The flow velocity at the contracted portion formed by the baffle plate 41 is obtained from the rated treated water flow rate and the flow path area, but preferably about 0.4 m / s or more, which is the upper limit value of the bubble rising speed. is there.

本実施例によれば、オゾンの利用効率と溶解効率を維持できるため、下水処理水再生設備の運転に関わる経済性を維持できる。   According to the present embodiment, the utilization efficiency and dissolution efficiency of ozone can be maintained, so that the economy related to the operation of the sewage treated water reclamation facility can be maintained.

本発明の実施例10を図16及び図17により説明する。図16は本実施例の微細気泡を利用した水処理設備の構成図、図17は水処理槽内の流れを説明する図である。   A tenth embodiment of the present invention will be described with reference to FIGS. FIG. 16 is a configuration diagram of a water treatment facility using fine bubbles according to the present embodiment, and FIG. 17 is a diagram illustrating a flow in the water treatment tank.

本実施例の下水処理施設は、実施例1と同様に構成されているが、図14,図15に示すように、流路43内の注入流路7の注入口の上下に、邪魔板44,邪魔板45を設けている。   The sewage treatment facility of the present embodiment is configured in the same manner as in the first embodiment. However, as shown in FIGS. 14 and 15, the baffle plates 44 are provided above and below the injection port of the injection channel 7 in the channel 43. , A baffle plate 45 is provided.

邪魔板44は、実施例9で説明したように、流れの縮流によって流速の増加と気泡の攪拌,崩壊が発生し、合体気泡の上昇が防止される。又、邪魔板45では流れの縮流によって流速が増加するとともに気泡の攪拌,崩壊が発生し、微細気泡の混合が促進される。これによって、高いオゾンの利用効率と溶解効率を維持できる。   As described in the ninth embodiment, the baffle plate 44 causes an increase in the flow velocity and agitation and collapse of the bubbles due to the contraction of the flow, thereby preventing the combined bubbles from rising. In the baffle plate 45, the flow velocity is increased by the contraction of the flow, and the bubbles are agitated and collapsed to promote the mixing of the fine bubbles. Thereby, high utilization efficiency and dissolution efficiency of ozone can be maintained.

本実施例によれば、オゾンの利用効率と溶解効率を維持できるため、下水処理水再生設備の運転に関わる経済性を維持できる。   According to the present embodiment, the utilization efficiency and dissolution efficiency of ozone can be maintained, so that the economy related to the operation of the sewage treated water reclamation facility can be maintained.

本発明の実施例11を図18により説明する。図18は、本実施例の微細気泡生成装置の構成図である。   An eleventh embodiment of the present invention will be described with reference to FIG. FIG. 18 is a configuration diagram of the fine bubble generating device of the present embodiment.

本実施例は、実施例1の微細気泡生成装置と同様に構成されているが、図18に示すように、オゾン発生装置2とオゾンガス注入装置3とを接続する流路49に混合器50を設け、混合器50から分岐した流路47を流量調整弁48及び気液分離器46を介して微細気泡生成装置5に接続しており、気液分離器46は注入流路7と接続されている。気液分離器46は、流速を低下させて気液分離を促進するため、注入流路7の一部に拡大流路を形成し、上部の体積が下部の体積より大となる形状にしている。   The present embodiment is configured in the same manner as the fine bubble generating apparatus of the first embodiment. However, as shown in FIG. 18, a mixer 50 is provided in a flow path 49 that connects the ozone generator 2 and the ozone gas injector 3. A flow path 47 branched from the mixer 50 is connected to the fine bubble generating device 5 via a flow rate adjusting valve 48 and a gas-liquid separator 46, and the gas-liquid separator 46 is connected to the injection flow path 7. Yes. In order to promote gas-liquid separation by reducing the flow rate, the gas-liquid separator 46 is formed with an enlarged flow channel in a part of the injection flow channel 7 so that the upper volume is larger than the lower volume. .

気液分離器46では、注入流路7内で微細気泡の合体が発生し、生成した粗大気泡を気液分離する。気液分離器46で分離された気相は、流路47を通って混合器50に達し、オゾン発生装置2から送気され混合器50に流入したオゾンガスと混合する。混合器50で混合されたオゾンガスは、オゾンガス注入装置3で再び液相に注入される。これによって、微細気泡が合体して発生した粗大気泡が再び微細化されるので、水処理槽1にオゾンの利用効率と溶解効率の良い気泡を注入することができる。   In the gas-liquid separator 46, coalescence of fine bubbles occurs in the injection flow path 7, and the generated coarse bubbles are gas-liquid separated. The gas phase separated by the gas-liquid separator 46 reaches the mixer 50 through the flow path 47 and is mixed with the ozone gas sent from the ozone generator 2 and flowing into the mixer 50. The ozone gas mixed by the mixer 50 is again injected into the liquid phase by the ozone gas injection device 3. As a result, the coarse bubbles generated by the combination of the fine bubbles are refined again, so that it is possible to inject bubbles with good ozone utilization efficiency and dissolution efficiency into the water treatment tank 1.

本実施例によれば、オゾンの利用効率と溶解効率を維持できるため、下水処理水再生設備の運転に関わる経済性を維持できる。   According to the present embodiment, the utilization efficiency and dissolution efficiency of ozone can be maintained, so that the economy related to the operation of the sewage treated water reclamation facility can be maintained.

本発明の実施例12を図19及び図20により説明する。図19,図20は、本実施例の微細気泡生成装置の系統図である。本実施例の微細気泡生成装置には逆洗装置が設けられており、多孔板21に汚れや汚泥が付着した場合に洗浄できるようになっている。   A twelfth embodiment of the present invention will be described with reference to FIGS. 19 and 20 are system diagrams of the fine bubble generating device of the present embodiment. The fine bubble generating apparatus of the present embodiment is provided with a backwashing device so that it can be cleaned when dirt or sludge adheres to the porous plate 21.

本実施例の微細気泡生成装置5は、実施例1と同様に構成されているが、図19に示すように、高圧ポンプ4と微細気泡生成装置5の間の流路に三方弁54が設けられ、三方弁54の一方側は、微細気泡生成装置5に接続され、その接続部が分岐されて開閉弁51を介して汚泥処理設備に接続されている。また、三方弁の他方側は、逆洗流路52に接続され微細気泡生成装置5の下流側に接続されている。逆洗流路52の接続点より水処理槽1側の注入流路7には開閉弁53が設けられている。   The fine bubble generating device 5 of the present embodiment is configured in the same manner as in the first embodiment, but a three-way valve 54 is provided in the flow path between the high pressure pump 4 and the fine bubble generating device 5 as shown in FIG. In addition, one side of the three-way valve 54 is connected to the fine bubble generating device 5, and the connecting portion is branched and connected to the sludge treatment facility via the on-off valve 51. The other side of the three-way valve is connected to the backwash channel 52 and connected to the downstream side of the fine bubble generating device 5. An opening / closing valve 53 is provided in the injection channel 7 on the water treatment tank 1 side from the connection point of the backwash channel 52.

通常運転時には、図19に示すように、三方弁54の逆洗流路52側を閉め、開閉弁
51を閉め、開閉弁53を開く。これにより、高圧ポンプ4から吐出されるオゾンガス注入水は、微細気泡生成装置5を通り、水処理槽1に注入される。
At the time of normal operation, as shown in FIG. 19, the backwash flow path 52 side of the three-way valve 54 is closed, the open / close valve 51 is closed, and the open / close valve 53 is opened. Thereby, the ozone gas injection water discharged from the high pressure pump 4 passes through the fine bubble generating device 5 and is injected into the water treatment tank 1.

一方、逆洗時には、図20に示すように、三方弁54の逆洗流路52側を開き、開閉弁53を閉め、開閉弁51を開く。これにより、高圧ポンプ4から吐出されるオゾンガス注入水は、微細気泡生成装置5を逆流し、開閉弁51を通って汚泥処理装置に流れる。オゾンガス注入水が多孔板21を逆流する際に、孔に付着した汚れや汚泥が取り除かれ、孔が洗浄される。また、逆洗時に、好ましくは水道水,再生水等の清浄な水を用いる。   On the other hand, at the time of backwashing, as shown in FIG. 20, the backwashing flow path 52 side of the three-way valve 54 is opened, the on-off valve 53 is closed, and the on-off valve 51 is opened. Thereby, the ozone gas injection water discharged from the high-pressure pump 4 flows backward through the fine bubble generating device 5 and flows to the sludge treatment device through the on-off valve 51. When ozone gas injection water flows back through the perforated plate 21, dirt and sludge adhering to the holes are removed, and the holes are washed. In addition, clean water such as tap water and reclaimed water is preferably used during backwashing.

逆洗による多孔板21の洗浄によって安定した微細気泡の生成が可能になるとともに、オゾンの利用効率と溶解効率を維持できる。   By washing the perforated plate 21 by backwashing, it is possible to generate stable fine bubbles and maintain ozone utilization efficiency and dissolution efficiency.

本実施例によれば、微細気泡生成装置5の閉塞が防止されるので、下水処理水再生設備の信頼性を維持できる。また、オゾンの利用効率と溶解効率を維持できるため、下水処理水再生設備の運転に関わる経済性を維持できる。   According to the present embodiment, since the block of the fine bubble generating device 5 is prevented, the reliability of the sewage treated water recycling facility can be maintained. Moreover, since the utilization efficiency and dissolution efficiency of ozone can be maintained, the economy related to the operation of the sewage treatment water reclamation facility can be maintained.

以上説明したように、各実施例によれば、微細気泡の径や発生量が安定化でき、オゾン溶解効率を保ち、水処理性能を高めることができるので、オゾン使用量が低減され水処理設備の経済性を向上できる。又、過大な加圧圧力を掛けることなくポンプ駆動電力を低減できるので、水処理設備における運転経済性を向上できる。また、被処理水の水質パラメータと流量を演算し、インバータによるポンプ回転数と多孔板の孔数を制御することにより制御の応答性が向上して省エネルギー運転が可能になり、水処理設備における運転経済性を向上できる。   As described above, according to each embodiment, the diameter and generation amount of fine bubbles can be stabilized, the ozone dissolution efficiency can be maintained, and the water treatment performance can be improved. Can improve economic efficiency. In addition, since the pump driving power can be reduced without applying an excessive pressurizing pressure, the operation economy in the water treatment facility can be improved. In addition, by calculating the water quality parameters and flow rate of the water to be treated, and controlling the pump rotation speed and the number of holes in the perforated plate by the inverter, the control responsiveness is improved and energy saving operation is possible. Economic efficiency can be improved.

本発明の実施例1である微細気泡を利用した水処理設備の構成図。The block diagram of the water treatment facility using the fine bubble which is Example 1 of this invention. 実施例1の微細気泡生成装置の縦断面図。1 is a longitudinal sectional view of a fine bubble generating device according to Embodiment 1. FIG. 実施例1の微細気泡生成装置の多孔板を示す平面図。FIG. 2 is a plan view showing a perforated plate of the fine bubble generating device of the first embodiment. 実施例1の微細気泡生成装置のシャッター板を示す平面図。FIG. 3 is a plan view illustrating a shutter plate of the fine bubble generating device according to the first embodiment. 気泡径と気泡個数分布の関係を示す図。The figure which shows the relationship between a bubble diameter and bubble number distribution. 実施例1の水処理設備の制御フロー図。The control flow figure of the water treatment facility of Example 1. FIG. 本発明の実施例2である微細気泡生成装置の構造図。FIG. 5 is a structural diagram of a fine bubble generating apparatus that is Embodiment 2 of the present invention. 本発明の実施例3である微細気泡を利用した水処理設備の構成図。The block diagram of the water treatment facility using the fine bubble which is Example 3 of this invention. 本発明の実施例4である微細気泡を利用した水処理設備の構成図。The block diagram of the water treatment equipment using the fine bubble which is Example 4 of this invention. 本発明の実施例5である下水処理施設の構成図。The block diagram of the sewage treatment facility which is Example 5 of this invention. 本発明の実施例6である下水処理施設の構成図。The block diagram of the sewage treatment facility which is Example 6 of this invention. 本発明の実施例7である下水処理施設の構成図。The block diagram of the sewage treatment facility which is Example 7 of this invention. 本発明の実施例8である下水処理施設の構成図。The block diagram of the sewage treatment facility which is Example 8 of this invention. 本発明の実施例9である水処理設備の構成図。The block diagram of the water treatment equipment which is Example 9 of this invention. 実施例9の処理槽内の流れを説明する図。The figure explaining the flow in the processing tank of Example 9. FIG. 本発明の実施例10である水処理設備の構成図。The block diagram of the water treatment equipment which is Example 10 of this invention. 実施例10の処理槽内の流れを説明する図。The figure explaining the flow in the processing tank of Example 10. FIG. 本発明の実施例11である微細気泡生成装置の構成図。The block diagram of the microbubble production | generation apparatus which is Example 11 of this invention. 本発明の実施例12である多孔板洗浄装置の系統図。The systematic diagram of the perforated panel washing | cleaning apparatus which is Example 12 of this invention. 本発明の実施例12である多孔板洗浄装置の系統図。The systematic diagram of the perforated panel washing | cleaning apparatus which is Example 12 of this invention.

符号の説明Explanation of symbols

1…水処理槽、2…オゾン発生装置、3…オゾンガス注入装置、4…高圧ポンプ、5…微細気泡生成装置、6…抽水流路、7…注入流路、8…制御器、9…インバータ、10…圧力計、11,19,25…流量計、12…排オゾン処理装置、13…仕切板、14,
15,21…多孔板、16…バイパス弁、17…切替弁、18…溶存オゾン濃度計、20,26…有機物濃度計、22…シャッター板、23…駆動軸、24…シール部。


DESCRIPTION OF SYMBOLS 1 ... Water treatment tank, 2 ... Ozone generator, 3 ... Ozone gas injection apparatus, 4 ... High pressure pump, 5 ... Fine bubble production | generation apparatus, 6 ... Extraction flow path, 7 ... Injection flow path, 8 ... Controller, 9 ... Inverter DESCRIPTION OF SYMBOLS 10 ... Pressure gauge 11, 19, 25 ... Flow meter, 12 ... Waste ozone treatment apparatus, 13 ... Partition plate, 14,
DESCRIPTION OF SYMBOLS 15,21 ... Perforated plate, 16 ... Bypass valve, 17 ... Switching valve, 18 ... Dissolved ozone concentration meter, 20, 26 ... Organic substance concentration meter, 22 ... Shutter plate, 23 ... Drive shaft, 24 ... Seal part.


Claims (11)

オゾンガスを発生させるオゾン発生装置と、該オゾン発生装置により発生されたオゾンガスを被処理水中に注入するオゾンガス注入装置と、該オゾンガス注入装置によりオゾンガスが注入された被処理水を加圧する高圧ポンプと、該高圧ポンプで加圧されたオゾンガス混入の被処理水から微細気泡を生成させる微細気泡生成装置を有し、該微細気泡生成装置で生成されたオゾン微細気泡混入の被処理水を水処理槽に注入して被処理水を消毒処理する微細気泡を利用した水処理設備。   An ozone generator for generating ozone gas, an ozone gas injector for injecting ozone gas generated by the ozone generator into the water to be treated, a high-pressure pump for pressurizing the water to be treated with ozone gas injected by the ozone gas injector, It has a fine bubble generating device that generates fine bubbles from the water to be treated mixed with ozone gas pressurized by the high-pressure pump, and the water to be treated mixed with ozone fine bubbles generated by the fine bubble generating device is used as a water treatment tank. Water treatment facility that uses fine bubbles to inject and disinfect treated water. 前記微細気泡生成装置が、前記高圧ポンプと水処理槽の間の流路に設置されたものであって、複数の連通孔を有する多孔板と、該多孔板の有効孔数を変化させるためのシャッター板を備えた請求項1に記載の微細気泡を利用した水処理設備。   The fine bubble generating device is installed in a flow path between the high-pressure pump and a water treatment tank, and is used to change the number of effective holes of the porous plate having a plurality of communication holes. The water treatment facility using fine bubbles according to claim 1, comprising a shutter plate. 前記微細気泡生成装置が、前記高圧ポンプと水処理槽の間の流路に設置されるものであって、異なる孔数を有する複数の多孔板と、該多孔板をそれぞれ設置した複数の第2の流路と、該複数の第2の流路にそれぞれ設けられた弁とを有し、該弁の開閉によって通水する第2の流路を切替えることにより有効孔数を可変調整する請求項1に記載の微細気泡を利用した水処理設備。   The fine bubble generating device is installed in a flow path between the high-pressure pump and the water treatment tank, and includes a plurality of perforated plates having different numbers of holes and a plurality of second plates each provided with the perforated plates. And a valve provided in each of the plurality of second flow paths, and the effective number of holes is variably adjusted by switching the second flow path through which the water flows by opening and closing the valves. A water treatment facility using the fine bubbles according to 1. 前記高圧ポンプがインバータによって回転速度を制御されるものであって、前記高圧ポンプの加圧圧力を許容範囲内となるように回転速度を制御する請求項2又は3に記載の微細気泡を利用した水処理設備。   The high pressure pump is controlled by an inverter, and the rotational speed is controlled so that the pressurizing pressure of the high pressure pump falls within an allowable range. Water treatment facility. 前記水処理槽に水処理槽内の被処理水を抽水するための抽水流路が設けられ、該抽水流路が流量調整弁を介して前記オゾンガス注入装置に接続されている請求項1に記載の微細気泡を利用した水処理設備。   The water treatment tank is provided with a water extraction channel for extracting water to be treated in the water treatment tank, and the water extraction channel is connected to the ozone gas injection device via a flow rate adjustment valve. Water treatment facility using fine bubbles. 前記水処理槽における前記オゾン微細気泡混入の被処理水の注入箇所より下流に被処理水の溶存オゾン濃度計を設け、制御器により溶存オゾン濃度計の計測値をオゾン濃度目標値と比較して、前記水処理槽に注入するオゾン量の過不足を演算し、該演算結果を基にポンプ回転数と前記多孔板の有効孔数と前記オゾン発生装置のオゾン発生量を制御する請求項4に記載の微細気泡を利用した水処理設備。   Provide a dissolved ozone concentration meter for the treated water downstream from the injection location of the treated water mixed with ozone fine bubbles in the water treatment tank, and compare the measured value of the dissolved ozone concentration meter with the ozone concentration target value by the controller. And calculating an excess or deficiency of the amount of ozone injected into the water treatment tank, and controlling the number of rotations of the pump, the number of effective holes of the perforated plate, and the amount of ozone generated by the ozone generator based on the calculation result. Water treatment equipment using the fine bubbles described. 前記高圧ポンプによる多孔板上流の加圧圧力を0.1MPaから1.0MPaの範囲に制御する請求項1から3のいずれかに記載の微細気泡を利用した水処理設備。   The water treatment facility using fine bubbles according to any one of claims 1 to 3, wherein the pressure applied to the upstream side of the perforated plate by the high-pressure pump is controlled in the range of 0.1 MPa to 1.0 MPa. 前記オゾン注入装置をエゼクタによる気相混合装置、或いは散気管による気液混合装置である請求項1から7のいずれかに記載の微細気泡を利用した水処理設備。   The water treatment facility using fine bubbles according to any one of claims 1 to 7, wherein the ozone injection device is a gas phase mixing device using an ejector or a gas-liquid mixing device using an air diffuser. 前記水処理槽に注入するオゾン量の過不足の演算結果が、水処理槽に注入するオゾン量が不足している場合には、前記制御器によって多孔板の有効孔数を増加し、前記加圧圧力を維持するように前記ポンプ回転数を増加し、前記オゾン発生装置によるオゾン発生量を増加するように制御し、前記水処理槽に注入するオゾン量が過大である場合は、前記制御器によって多孔板の有効孔数を減じ、前記加圧圧力を維持するように前記ポンプ回転数を減し、前記オゾン発生器によるオゾン発生量を減ずるように制御する請求項6に記載の微細気泡を利用した水処理設備。   If the calculation result of excess or deficiency of the amount of ozone injected into the water treatment tank indicates that the amount of ozone injected into the water treatment tank is insufficient, the controller increases the number of effective holes of the perforated plate and When the pump rotation speed is increased so as to maintain the pressure and pressure, the amount of ozone generated by the ozone generator is controlled to increase, and when the amount of ozone injected into the water treatment tank is excessive, the controller The fine bubbles according to claim 6, wherein the number of effective holes of the perforated plate is reduced by the control, the number of rotations of the pump is reduced so as to maintain the pressurized pressure, and the amount of ozone generated by the ozone generator is reduced. Water treatment equipment used. 前記水処理槽に導入される被処理水の水質を計測する水質計測計と流量計を設け、該水質計測器の計測値と前記流量計で計測された流量を前記制御器に入力し、被処理水水質の悪化あるいは流量増加が発生した場合には、必要なオゾン量増分値を演算し、被処理水の水質の改善あるいは流量減少が発生した場合には、必要なオゾン量減分値を演算し、該演算結果を基にポンプ回転数と多孔板の有効孔数を制御して、水処理槽内に注入するオゾン量を調整する請求項4に記載の微細気泡を利用した水処理設備。   A water quality meter and a flow meter for measuring the quality of the water to be treated introduced into the water treatment tank are provided, and the measured value of the water quality meter and the flow rate measured by the flow meter are input to the controller, When the quality of the treated water deteriorates or the flow rate increases, the necessary ozone amount increment value is calculated, and when the quality of the treated water improves or the flow rate decreases, the required ozone amount decrement value is calculated. 5. The water treatment facility using fine bubbles according to claim 4, wherein the amount of ozone injected into the water treatment tank is adjusted by calculating and controlling the number of rotations of the pump and the number of effective holes of the perforated plate based on the calculation result. . 前記多孔板を通過する流れ方向を逆転し多孔板を逆洗洗浄する逆洗洗浄装置を具備した請求項1から10のいずれかに記載の微細気泡を利用した水処理設備。

The water treatment facility using fine bubbles according to any one of claims 1 to 10, further comprising a backwash cleaning device that reverses the flow direction passing through the porous plate and backwashes the porous plate.

JP2005207963A 2005-07-19 2005-07-19 Water treatment equipment using fine bubbles Expired - Fee Related JP4910322B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005207963A JP4910322B2 (en) 2005-07-19 2005-07-19 Water treatment equipment using fine bubbles
CN200610105600.XA CN1899978B (en) 2005-07-19 2006-07-19 Micro air bubble generation device and method, water treatment device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005207963A JP4910322B2 (en) 2005-07-19 2005-07-19 Water treatment equipment using fine bubbles

Publications (2)

Publication Number Publication Date
JP2007021393A true JP2007021393A (en) 2007-02-01
JP4910322B2 JP4910322B2 (en) 2012-04-04

Family

ID=37782841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005207963A Expired - Fee Related JP4910322B2 (en) 2005-07-19 2005-07-19 Water treatment equipment using fine bubbles

Country Status (1)

Country Link
JP (1) JP4910322B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082777A (en) * 2007-09-28 2009-04-23 Hitachi Ltd Water treatment facility and gas generating device
JP2009125684A (en) * 2007-11-26 2009-06-11 Toshiba Corp Water treatment apparatus
JP2009254967A (en) * 2008-04-16 2009-11-05 Hitachi Ltd Water treatment system
JP2009291775A (en) * 2008-05-08 2009-12-17 Sasakura Engineering Co Ltd Treatment apparatus of hydrazine-containing liquid and treatment method of hydrazine-containing liquid
JP2010172842A (en) * 2009-01-30 2010-08-12 Nippon Refine Kk Gas-liquid reaction method and apparatus using microbubble
JP2010227783A (en) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Gas dissolving apparatus
JP4573141B1 (en) * 2009-05-21 2010-11-04 康正 西山 Gas dissolving device
JP2012096202A (en) * 2010-11-05 2012-05-24 Hitachi Ltd Membrane treatment facility
JP2012148243A (en) * 2011-01-19 2012-08-09 Panasonic Corp Liquid conveyance apparatus
JP2012223705A (en) * 2011-04-19 2012-11-15 Panasonic Corp Ozone bubbles containing water delivery device
JPWO2011049215A1 (en) * 2009-10-22 2013-03-14 エウレカ・ラボ株式会社 Processing equipment for gas / liquid or liquid / liquid dispersion, dissolution, solubilization or emulsification
JP2014151221A (en) * 2013-02-04 2014-08-25 Matsumura Akiko Gas-liquid mixing system
CN104240579A (en) * 2014-08-06 2014-12-24 中国人民解放军海军工程大学 Microbubble circulating water channel
CN106315753A (en) * 2016-10-07 2017-01-11 玉灵华科技有限公司 Light reaction device for sewage treatment, and sewage treatment method
KR101848041B1 (en) * 2017-10-20 2018-05-24 주식회사 엘에스테크놀로지 Ozonated water producing apparatus for maintaining the concentration of ozone at a predetermined level or higher
JP2018158286A (en) * 2017-03-22 2018-10-11 株式会社東芝 Control device of ozone treatment apparatus and method of controlling the same
CN108636276A (en) * 2018-07-19 2018-10-12 江苏博环保科技有限公司 A kind of Intellectualized sewage water processing automatic medicament feeding system
CN110776158A (en) * 2019-12-02 2020-02-11 杭州老板电器股份有限公司 Water purifying device and using method thereof
JP2020189256A (en) * 2019-05-20 2020-11-26 株式会社環境開発技研 Wastewater treatment method and wastewater treatment apparatus used therefor
CN112313000A (en) * 2018-06-28 2021-02-02 日本特殊陶业株式会社 Fine bubble generation device and fine bubble generation method
CN113800611A (en) * 2020-06-16 2021-12-17 上海交通大学 Deep disinfection system and method for water supply and drainage
WO2023223929A1 (en) * 2022-05-19 2023-11-23 株式会社Uts Circulating water treatment device, circulating water treatment system, method for same, and program for same
HRP20220213B1 (en) * 2019-07-19 2024-03-15 Net Spólka Z Organizacioną Odpowiedzialnošcią Water Technologies Spólka Komandytowa A system for saturating liquids with gas and a method for saturating liquids with gas using this system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396776A (en) * 1989-09-08 1991-04-22 Kubota Corp Driving mechanism of valve
JPH03129184A (en) * 1989-10-13 1991-06-03 Hitachi Ltd Pressure-flow rate adjusting device
JPH0626585A (en) * 1992-07-06 1994-02-01 Canon Inc Control valve
JP2005095877A (en) * 2003-08-25 2005-04-14 Asahi Tec Corp Fine bubble generator and water mixer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396776A (en) * 1989-09-08 1991-04-22 Kubota Corp Driving mechanism of valve
JPH03129184A (en) * 1989-10-13 1991-06-03 Hitachi Ltd Pressure-flow rate adjusting device
JPH0626585A (en) * 1992-07-06 1994-02-01 Canon Inc Control valve
JP2005095877A (en) * 2003-08-25 2005-04-14 Asahi Tec Corp Fine bubble generator and water mixer

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082777A (en) * 2007-09-28 2009-04-23 Hitachi Ltd Water treatment facility and gas generating device
JP2009125684A (en) * 2007-11-26 2009-06-11 Toshiba Corp Water treatment apparatus
JP2009254967A (en) * 2008-04-16 2009-11-05 Hitachi Ltd Water treatment system
JP2009291775A (en) * 2008-05-08 2009-12-17 Sasakura Engineering Co Ltd Treatment apparatus of hydrazine-containing liquid and treatment method of hydrazine-containing liquid
JP2010172842A (en) * 2009-01-30 2010-08-12 Nippon Refine Kk Gas-liquid reaction method and apparatus using microbubble
JP2010227783A (en) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Gas dissolving apparatus
JP4573141B1 (en) * 2009-05-21 2010-11-04 康正 西山 Gas dissolving device
JP2010269299A (en) * 2009-05-21 2010-12-02 Yasumasa Nishiyama Gas dissolving apparatus
JP5380545B2 (en) * 2009-10-22 2014-01-08 エウレカ・ラボ株式会社 Processing equipment for gas / liquid or liquid / liquid dispersion, dissolution, solubilization or emulsification
JPWO2011049215A1 (en) * 2009-10-22 2013-03-14 エウレカ・ラボ株式会社 Processing equipment for gas / liquid or liquid / liquid dispersion, dissolution, solubilization or emulsification
JP2012096202A (en) * 2010-11-05 2012-05-24 Hitachi Ltd Membrane treatment facility
JP2012148243A (en) * 2011-01-19 2012-08-09 Panasonic Corp Liquid conveyance apparatus
JP2012223705A (en) * 2011-04-19 2012-11-15 Panasonic Corp Ozone bubbles containing water delivery device
JP2014151221A (en) * 2013-02-04 2014-08-25 Matsumura Akiko Gas-liquid mixing system
CN104240579A (en) * 2014-08-06 2014-12-24 中国人民解放军海军工程大学 Microbubble circulating water channel
CN106315753A (en) * 2016-10-07 2017-01-11 玉灵华科技有限公司 Light reaction device for sewage treatment, and sewage treatment method
JP2018158286A (en) * 2017-03-22 2018-10-11 株式会社東芝 Control device of ozone treatment apparatus and method of controlling the same
JP7005155B2 (en) 2017-03-22 2022-01-21 株式会社東芝 Ozone treatment equipment control device and control method
KR101848041B1 (en) * 2017-10-20 2018-05-24 주식회사 엘에스테크놀로지 Ozonated water producing apparatus for maintaining the concentration of ozone at a predetermined level or higher
CN112313000A (en) * 2018-06-28 2021-02-02 日本特殊陶业株式会社 Fine bubble generation device and fine bubble generation method
CN108636276A (en) * 2018-07-19 2018-10-12 江苏博环保科技有限公司 A kind of Intellectualized sewage water processing automatic medicament feeding system
JP2020189256A (en) * 2019-05-20 2020-11-26 株式会社環境開発技研 Wastewater treatment method and wastewater treatment apparatus used therefor
HRP20220213B1 (en) * 2019-07-19 2024-03-15 Net Spólka Z Organizacioną Odpowiedzialnošcią Water Technologies Spólka Komandytowa A system for saturating liquids with gas and a method for saturating liquids with gas using this system
CN110776158A (en) * 2019-12-02 2020-02-11 杭州老板电器股份有限公司 Water purifying device and using method thereof
CN113800611A (en) * 2020-06-16 2021-12-17 上海交通大学 Deep disinfection system and method for water supply and drainage
WO2023223929A1 (en) * 2022-05-19 2023-11-23 株式会社Uts Circulating water treatment device, circulating water treatment system, method for same, and program for same

Also Published As

Publication number Publication date
JP4910322B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP4910322B2 (en) Water treatment equipment using fine bubbles
CN1899978B (en) Micro air bubble generation device and method, water treatment device using same
EP3357872A1 (en) Wastewater treatment system and wastewater treatment method
WO1999033552A1 (en) Vapor/liquid mixer and polluted water purification apparatus using the mixer
KR101220539B1 (en) Water treating apparatus
KR20170076464A (en) Ozone Water Treatment System Using Lower Energy
JP6310108B2 (en) Sewage treatment equipment
JP5982239B2 (en) Liquid processing equipment
JP5782931B2 (en) Water treatment method and water treatment apparatus
JP5682904B2 (en) High concentration dissolved water generating apparatus and high concentration dissolved water generating system
JP6150954B1 (en) Sewage treatment equipment
JP6164941B2 (en) Muddy water treatment system and muddy water treatment method
JP4271991B2 (en) Ozone water treatment equipment
JP2007330894A (en) Activated sludge treatment apparatus
CN201046934Y (en) Device for processing high-concentration emulsion waste water
KR101192174B1 (en) Plants for advanced treatment of wastewater
KR20150146477A (en) Water treating apparatus including bubble generator
JPH09290280A (en) Ozone contact tank and control method therefor
KR101671410B1 (en) Water treatement apparatus for reusing rainwater and waste water
JP2006312122A (en) Control method for electrolysis of sludge
JP2014008474A (en) Pond water circulation hybrid purification method and pond water circulation hybrid purification system
JP2016209800A (en) Excess sludge weight loss device
KR100842435B1 (en) Water purification system having electrical discharging equipment with filtering system and water purification method using thereof
JP2011005445A (en) Water treatment apparatus
JP3785212B2 (en) Wastewater treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees