JP2005095877A - Fine bubble generator and water mixer - Google Patents

Fine bubble generator and water mixer Download PDF

Info

Publication number
JP2005095877A
JP2005095877A JP2004243123A JP2004243123A JP2005095877A JP 2005095877 A JP2005095877 A JP 2005095877A JP 2004243123 A JP2004243123 A JP 2004243123A JP 2004243123 A JP2004243123 A JP 2004243123A JP 2005095877 A JP2005095877 A JP 2005095877A
Authority
JP
Japan
Prior art keywords
water
regulating valve
pressure regulating
treated
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004243123A
Other languages
Japanese (ja)
Other versions
JP4854942B2 (en
Inventor
Tomoya Masuda
智也 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Tec Corp
Original Assignee
Asahi Tec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Tec Corp filed Critical Asahi Tec Corp
Priority to JP2004243123A priority Critical patent/JP4854942B2/en
Publication of JP2005095877A publication Critical patent/JP2005095877A/en
Application granted granted Critical
Publication of JP4854942B2 publication Critical patent/JP4854942B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To make fine bubbles containing air, oxygen or ozone acting efficiently on water to be treated with regard to a fine bubble generator and a water mixer. <P>SOLUTION: A pressurizing pump 18, a water mixer 20 and a pressure regulation valve 22 are arranged at water charging piping to a storage tank for water to be treated. Ozone gas from an ozone generator 24 is introduced into an injection water pipe 12 and is dissipated as fine bubbles to water to be treated from the pressure regulation valve 22 via the water mixer 20 after pressurizing with the pressurizing pump 18. The pressure regulation valve 22 is connected to an electric motor 26, and when it detects that the flow rate is insufficient (clogging with foreign matters) by a flowmeter 16, the pressure regulation valve 22 is totally opened by the electric motor 26. A part of the injection water pipe 12 from the pressure regulation valve 22 and the electric motor 26 and from a water surface to the pressure regulation valve 22 is covered liquid-tightly with a case 40. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は微細気泡発生装置及び水流混合器に関し、被処理水に空気若しくは酸素若しくはオゾンを含有した微細気泡を作用せしめるためのものであり、下水汚泥削減化、下水処理水の消毒、合流式下水道雨天時越流水(CSO)における大腸菌の殺菌、浄水場におけるクリプトスポリジウムの殺菌などに特に適したものである。   The present invention relates to a fine bubble generating device and a water flow mixer, and is for causing fine bubbles containing air, oxygen or ozone to act on treated water, reducing sewage sludge, disinfection of sewage treated water, and combined sewerage. It is particularly suitable for sterilization of Escherichia coli in rainy weather overflowing water (CSO) and Cryptosporidium in water purification plants.

空気若しくは酸素若しくはオゾン、特に、オゾンを含有した気泡を利用した水処理は汚水における曝気槽や加圧浮上装置、浄水場における殺菌などにおいて使用されている。この場合、気泡はその径が微細なほど浮上速度が低下するため水処理の効率化の観点から微細なほど好ましい。従来の微細気泡発生装置として、圧力調整弁によるものと水流混合器によるものとがある。   Water treatment using air, oxygen, or ozone, particularly bubbles containing ozone, is used in aeration tanks and pressurized levitation devices in sewage, sterilization in water purification plants, and the like. In this case, the finer the bubble, the smaller the diameter, the lower the flying speed. Therefore, the finer the bubble, the better the efficiency of water treatment. Conventional microbubble generators include those using a pressure regulating valve and those using a water flow mixer.

圧力調整弁を使用したもの(特許文献1参照)においては加圧ポンプの下流側に圧力調整弁が設けられており、圧力調整弁により通常は流路が絞られるため、その上流は圧力が高くなっている。そのため、圧力調整弁を通過時に圧力が急激に低下するため溶解度が下がり、余剰分がオゾンを含んだ気泡として分離され、気泡の上昇中に被処理水中の大腸菌などの雑菌と接触しこれを分解せしめる。加圧浮上方式においては圧力降下が大きい(流速が大きい)ほど多量の気泡が得られるが、通常の下水処理としては圧力降下は0.4〜0.5MPaの程度である。   In those using a pressure regulating valve (see Patent Document 1), a pressure regulating valve is provided on the downstream side of the pressurizing pump, and the flow path is normally throttled by the pressure regulating valve. It has become. For this reason, the pressure drops sharply when passing through the pressure regulating valve, so that the solubility is lowered and the excess is separated as bubbles containing ozone, and decomposes by contacting with bacteria such as Escherichia coli in the treated water while the bubbles are rising. Let me. In the pressure levitation method, the larger the pressure drop (the larger the flow velocity), the larger the amount of bubbles that can be obtained, but the pressure drop is about 0.4 to 0.5 MPa for normal sewage treatment.

水流混合器によるものは特許文献2などに開示されており、この種の水流混合器においては、注入水が通過する流路に長手方向に間隔をおいて複数の邪魔板が設けられ、邪魔板により流路を絞ることにより圧力降下を生じさせ流速を高めると共に、邪魔板により流れの撹乱を惹起させ、微細気泡を発生せしめている。圧力制御弁の代りに水流混合器を加圧浮上装置において代替使用したとしても必要な微細気泡量は不変であるから水流混合器においても圧力調整弁に準じた0.4〜0.5MPa(流速としては4〜7m/s)の圧力降下が生ずるように水流混合器の設計を行う必要がある。   An apparatus using a water flow mixer is disclosed in Patent Document 2 and the like, and in this type of water flow mixer, a plurality of baffle plates are provided at intervals in the longitudinal direction in a flow path through which injected water passes, By narrowing the flow path, a pressure drop is caused to increase the flow velocity, and the baffle plate causes flow disturbance to generate fine bubbles. Even if a water flow mixer is used instead of the pressure control valve in the pressurized flotation device, the required amount of fine bubbles remains unchanged, so the water flow mixer also has a pressure of 0.4 to 0.5 MPa (4 as the flow rate). It is necessary to design the water flow mixer so that a pressure drop of ˜7 m / s) occurs.

特開平7−171585号公報Japanese Patent Laid-Open No. 7-171585 特許第2923402号公報Japanese Patent No. 2923402

従来の圧力調整弁を使用した微細気泡発生装置においては空気若しくは酸素若しくはオゾンを注入水に加圧下で溶解させ、圧力調整弁を通過後の圧力降下による過剰溶解分を微細気泡として処理槽中に生成せしめるものである。圧力調整弁の上流側で未溶解の空気若しくは酸素若しくはオゾンは粗大気泡化し、そのまま圧力調整弁を通過してしまうため、圧力調整弁の上流側には未溶解の空気若しくは酸素若しくはオゾンの放出のための手段を設ける必要があり、その分、設備コストが嵩む結果となる。特に、オゾンを使用した場合は、大気汚染の対策上排オゾン処理のための高価な設備が必須である。   In a fine bubble generator using a conventional pressure regulating valve, air, oxygen or ozone is dissolved in the injected water under pressure, and the excess dissolved portion due to the pressure drop after passing through the pressure regulating valve is treated as fine bubbles in the treatment tank. It is generated. Undissolved air or oxygen or ozone on the upstream side of the pressure regulating valve becomes coarse bubbles and passes through the pressure regulating valve as it is, so that the undissolved air, oxygen or ozone is released upstream of the pressure regulating valve. Therefore, it is necessary to provide a means for this, and as a result, the equipment cost increases. In particular, when ozone is used, expensive equipment for waste ozone treatment is essential for air pollution countermeasures.

また、微細気泡発生装置においては微細気泡の浮上距離を長くとるため処理槽に対する注入水の注入配管は処理槽にその深い部位において開口させる必要がある。他方、圧力調整弁は注入水配管に設けられため、圧力調整弁を被処理水中に直接開口させることは加圧浮上槽のように地面から直立している場合は圧力調整弁を側壁に設置する設計が容易なため大した問題とはならないが、曝気槽等で地下に埋設された場合は困難である。即ち、曝気槽の場合は地上に設置された圧力調整弁からの注入水配管を曝気槽中の底面付近まで導く構造となる。この場合、圧力調整弁から注入水配管の開口端までの部分が長大なものとなる。注入水は圧力調整弁を通過すると即座に圧力が降下するため溶解しきれなくなった余剰気体は気泡となり、この気泡は被処理水中に放散されるまでに圧力調整弁からの注入水配管の長大部分を通過することになり、狭隘な注入水配管の長大部分を通過する間に気泡は相互に接触し粗大化してしまい所期の効果が得られなくなる恐れがあった。   In addition, in the fine bubble generating device, in order to increase the floating distance of the fine bubbles, it is necessary to open the injection pipe for the injection water into the treatment tank at a deep portion thereof. On the other hand, since the pressure regulating valve is provided in the injection water piping, opening the pressure regulating valve directly into the water to be treated is to install the pressure regulating valve on the side wall when standing upright from the ground like a pressurized flotation tank It is not a big problem because it is easy to design, but it is difficult if it is buried underground in an aeration tank. That is, in the case of the aeration tank, the structure is such that the injection water piping from the pressure regulating valve installed on the ground is guided to the vicinity of the bottom surface in the aeration tank. In this case, the part from the pressure regulating valve to the opening end of the injection water pipe becomes long. As the injected water passes through the pressure regulating valve, the pressure immediately drops, so the surplus gas that could not be dissolved becomes bubbles, and this bubble is the longest part of the injected water piping from the pressure regulating valve until it is diffused into the water to be treated There is a possibility that the bubbles come into contact with each other and become coarse while passing through the long portion of the narrow injection water pipe, and the desired effect cannot be obtained.

他方、水流混合器を使用した処理装置においては未溶解の空気若しくは酸素若しくはオゾンの気泡があっても水流混合器において破砕されるため、粗大な気泡のまま処理槽に導入されるということはない。即ち、圧力調整弁を使用した方式と相違して余剰な空気若しくは酸素若しくはオゾンの排出設備が不要であり、しかも注入水に対する見かけのオゾン溶解量を高めることができ、より多量の微細気泡を発生せしめることができる。しかしながら、水流混合器の場合においても所望量の微細気泡を得るためには圧力調整弁の場合と同様な0.4〜0.5MPaの圧力降下(流速としては4〜7m/s)を生成させる必要はある。このような圧力降下を生じせしめる流路径は、異物を必ず含む汚水の場合は狭隘に過ぎ、異物による閉塞の問題が避けられない。即ち、圧力調整弁の場合は異物による閉塞が生じたときは圧力調整弁を強制的に全開とすることにより流路径を一時的に大きくし、異物による閉塞状態を解消させることで異物による閉塞に対し対策が容易であるが、水流混合器の場合は流路径が固定であるため異物による閉塞が一旦生ずると、設備を停止し、解体する必要があり、そのため汚水処理用としては実質的に採用不可能であった。   On the other hand, in a processing apparatus using a water flow mixer, even if there are bubbles of undissolved air or oxygen or ozone, they are crushed in the water flow mixer, so that they are not introduced into the treatment tank as coarse bubbles. . In other words, unlike the method using a pressure control valve, there is no need for excess air or oxygen or ozone discharge equipment, and the apparent amount of ozone dissolved in the injected water can be increased, generating more fine bubbles. It can be shown. However, even in the case of a water flow mixer, in order to obtain a desired amount of fine bubbles, it is necessary to generate a pressure drop of 0.4 to 0.5 MPa (the flow rate is 4 to 7 m / s) as in the case of the pressure regulating valve. . The flow path diameter that causes such a pressure drop is too narrow in the case of sewage that always contains foreign matter, and the problem of blockage by foreign matter is inevitable. In other words, in the case of a pressure regulating valve, when the blockage due to foreign matter occurs, the pressure regulating valve is forcibly fully opened to temporarily increase the flow path diameter, thereby eliminating the blockage state due to the foreign matter. Countermeasures are easy, but in the case of a water flow mixer, since the flow path diameter is fixed, once clogging with foreign matter occurs, it is necessary to stop and dismantle the equipment, so it is practically used for sewage treatment. It was impossible.

また、水流混合器の構造そのものを見ても特許文献2の構造では邪魔板を長手方向に交互に180度対称に配置し、かつ邪魔板の先端を中心に向けて凸の形状としている。そのため、汚水を処理した場合、汚水中に含まれる髪の毛等の異物が邪魔板に絡み易い問題があった。   Further, even if the structure of the water mixer itself is seen, in the structure of Patent Document 2, the baffle plates are alternately arranged 180 degrees symmetrically in the longitudinal direction, and the baffle plate has a convex shape with the front end of the baffle plate as the center. For this reason, when sewage is treated, there is a problem that foreign matters such as hair contained in the sewage are easily entangled with the baffle plate.

この発明は以上の問題点を解決するためになされたものである。また、この発明はコストを押えつつそして被処理水槽の設置態様に係わらず微細気泡を効率的に発生させると共に、汚水中に含まれる異物による閉塞、特に、髪の毛などの絡み付きが起こり難いようにすることを目的とする。   The present invention has been made to solve the above problems. In addition, the present invention suppresses costs and efficiently generates fine bubbles regardless of the installation mode of the water tank to be treated, and makes it difficult for clogging due to foreign matters contained in the sewage, particularly entanglement of hair and the like. For the purpose.

請求項1に記載の発明によれば、水処理系における被処理部に開口された注入水配管と、注入水配管内における水流中に酸素含有気体を導入する酸素含有気体導入手段と、前記注入水配管中に設置され、酸素含有気体が導入された水流を加圧する加圧ポンプと、注入水配管に配置された水流混合器と、前記注入水配管中に位置された圧力調整弁と、圧力調整弁を開放するべく駆動する駆動手段とを具備して成ることを特徴とする微細気泡発生装置が提供される。   According to invention of Claim 1, the injection water piping opened to the to-be-processed part in a water treatment system, the oxygen-containing gas introduction means which introduce | transduces oxygen-containing gas in the water flow in an injection water piping, The said injection | pouring A pressure pump installed in the water pipe for pressurizing the water flow introduced with the oxygen-containing gas, a water flow mixer disposed in the injection water pipe, a pressure regulating valve located in the injection water pipe, and a pressure There is provided a microbubble generator characterized by comprising driving means for driving the regulating valve to open.

ここに酸素含有気体とは空気若しくは酸素若しくはオゾンなどのその中に酸素が含まれた気体のことをいう。   Here, the oxygen-containing gas refers to a gas containing oxygen, such as air or oxygen or ozone.

請求項2に記載の発明によれば、請求項1に記載の発明において、前記水流混合器における圧力降下の値より圧力調整弁での圧力降下の値が大きいことを特徴とする微細気泡発生装置が提供される。   According to a second aspect of the present invention, in the first aspect of the present invention, the value of the pressure drop at the pressure regulating valve is larger than the value of the pressure drop in the water flow mixer. Is provided.

請求項3に記載の発明によれば、請求項1に記載の発明において、前記駆動手段は、前記圧力調整弁を開閉駆動する電動駆動手段と、前記圧力調整弁の上流における注入水配管に設置され、注入水配管の閉塞状態の有無を検出する検出手段と、前記検出手段により注入水配管の閉塞が有りと検出時に閉塞状態の解消のため前記圧力調整弁を開放するべく電動駆動手段を制御する制御手段とから成ることを特徴とする微細気泡発生装置が提供される。   According to a third aspect of the present invention, in the first aspect of the present invention, the driving means is installed in an electric driving means for opening and closing the pressure regulating valve, and an injection water pipe upstream of the pressure regulating valve. And detecting means for detecting whether or not the injection water pipe is blocked, and controlling the electric drive means to open the pressure adjusting valve to eliminate the blockage when the detection means detects that the injection water pipe is blocked. There is provided a fine bubble generating device characterized by comprising control means for controlling.

請求項4に記載の発明によれば、請求項3に記載の発明において、前記電動駆動手段は被処理部における被処理水の液面より下方に設置されると共に、電動駆動手段及び圧力調整弁及び圧力調整弁への配管を流密収容する筐体を備え、筐体は上端が水面を超えて延出していることを特徴とする微細気泡発生装置が提供される。   According to a fourth aspect of the invention, in the third aspect of the invention, the electric drive means is disposed below the surface of the water to be treated in the treated portion, and the electric drive means and the pressure regulating valve. And a casing for fluidly accommodating the pipe to the pressure regulating valve, and the casing is provided with a fine bubble generator characterized in that the upper end extends beyond the water surface.

請求項5に記載の発明によれば、請求項3に記載の発明において、前記制御手段による圧力調整弁の開放に係わらず閉塞状態が解消されない場合に故障と判定する故障判定手段を具備したことを特徴とする微細気泡発生装置が提供される。   According to a fifth aspect of the present invention, in the third aspect of the present invention, the apparatus according to the third aspect further comprises failure determination means for determining a failure when the closed state is not resolved regardless of the opening of the pressure regulating valve by the control means. A fine bubble generating device is provided.

請求項6に記載の発明によれば、請求項5に記載の発明において、前記故障判定手段は所定回数の圧力調整弁の開放操作を行い、所定回数の圧力調整弁の開放操作に係わらず閉塞状態が解消されない場合に故障と判定することを特徴とする微細気泡発生装置が提供される。   According to a sixth aspect of the present invention, in the fifth aspect of the present invention, the failure determination means performs a predetermined number of times of opening the pressure regulating valve and closes regardless of the predetermined number of times of opening of the pressure regulating valve. There is provided a fine bubble generating device characterized in that a failure is determined when the state cannot be resolved.

請求項7に記載の発明によれば、請求項1に記載の発明において、前記圧力調整弁の排出口は実質的に直接的に水処理系における被処理部に開口するべく配置されていることを特徴とする微細気泡発生装置が提供される。ここで、実質的に直接的にとは圧力調整弁の排出口がそのまま若しくは極めて短い配管(最大1.5m)にて被処理部に開口した状態をいうものとする。   According to the seventh aspect of the present invention, in the first aspect of the present invention, the discharge port of the pressure regulating valve is arranged to open substantially directly to the portion to be treated in the water treatment system. A fine bubble generating device is provided. Here, “substantially directly” means a state in which the discharge port of the pressure regulating valve is opened to the processing target as it is or with an extremely short pipe (maximum 1.5 m).

請求項8に記載の発明によれば、請求項1に記載の発明において、前記水流混合器は酸素含有気体が導入された水流が通過する筒状本体と、夫々が筒状本体側に固定され、注入水の流路の途中まで実質的に半径方向に延び、筒状本体の長手方向に沿って間隔をおいて配置された複数の邪魔板とから構成されたことを特徴とする微細気泡発生装置が提供される。   According to an eighth aspect of the present invention, in the first aspect of the present invention, the water flow mixer includes a cylindrical main body through which a water flow into which an oxygen-containing gas has been introduced, and each is fixed to the cylindrical main body side. Microbubble generation characterized by comprising a plurality of baffle plates extending substantially in the radial direction to the middle of the flow path of the injected water and arranged at intervals along the longitudinal direction of the cylindrical body An apparatus is provided.

請求項9に記載の発明によれば、請求項8に記載の発明において、前記邪魔板の自由端縁は直線状若しくは流路の中心に向けて凹んだ形状をなしていることを特徴とする微細気泡発生装置が提供される。   According to the invention described in claim 9, in the invention described in claim 8, the free edge of the baffle plate is linear or has a shape recessed toward the center of the flow path. A microbubble generator is provided.

請求項10に記載の発明によれば、被処理水収容槽と、前記被処理水収容槽の底部付近に接続された注入水配管と、注入水配管内における水流中に酸素含有気体を導入する酸素含有気体導入手段と、前記注入水配管中に設置され、酸素含有気体が導入された水流を加圧する加圧ポンプと、加圧ポンプの下流において注入水配管に常態では水流を絞るべく位置された圧力調整弁と、必要時に圧力調整弁を開放するべく駆動する駆動手段とを具備し、圧力調整弁からの絞られた注入水の流れは実質的に直接的に前記被処理水収容槽中に放出されるように配置されたことを特徴とする微細気泡発生装置が提供される。   According to invention of Claim 10, an oxygen-containing gas is introduce | transduced in the water flow in the to-be-processed water storage tank, the injection water piping connected near the bottom part of the said to-be-processed water storage tank, and the injection water piping. An oxygen-containing gas introduction means, a pressure pump that is installed in the injection water pipe and pressurizes the water flow into which the oxygen-containing gas has been introduced, and is positioned downstream of the pressure pump to normally restrict the water flow to the injection water pipe. A pressure regulating valve and a drive means for driving the pressure regulating valve to be opened when necessary, and the flow of the squeezed injected water from the pressure regulating valve is substantially directly in the treated water storage tank. There is provided a microbubble generator characterized in that it is disposed so as to be discharged into the air.

請求項11に記載の発明によれば、被処理水収容槽と、前記被処理水収容槽の底部付近に接続された注入水配管と、注入水配管内における水流中に酸素含有気体を導入する酸素含有気体導入手段と、前記注入水配管中に設置され、酸素含有気体が導入された水流を加圧する加圧ポンプと、加圧ポンプの下流において注入水配管に常態では水流を絞るべく位置された圧力調整弁と、必要時に圧力調整弁を開放するべく駆動する駆動手段とを具備し、前記圧力調整弁は被処理水収容槽の水面から所定深さに位置していることを特徴とする微細気泡発生装置が提供される。   According to invention of Claim 11, an oxygen-containing gas is introduce | transduced in the water flow in the to-be-processed water storage tank, the injection water piping connected near the bottom part of the said to-be-processed water storage tank, and the injection water piping. An oxygen-containing gas introduction means, a pressure pump that is installed in the injection water pipe and pressurizes the water flow into which the oxygen-containing gas has been introduced, and is positioned downstream of the pressure pump to normally restrict the water flow to the injection water pipe. And a driving means for driving the pressure regulating valve to open when necessary, the pressure regulating valve being located at a predetermined depth from the water surface of the treated water storage tank. A microbubble generator is provided.

請求項12に記載の発明によれば、請求項11に記載の発明において、圧力調整弁の駆動のための前記駆動手段は電動式に構成され、圧力調整弁及び電動駆動手段は被処理水収容槽における被処理水中に没するように位置され、少なくとも圧力調整弁及び電動駆動手段を流密に包囲する筐体を具備したことを特徴とする微細気泡発生装置が提供される。   According to the invention described in claim 12, in the invention described in claim 11, the driving means for driving the pressure regulating valve is configured to be electrically operated, and the pressure regulating valve and the electric driving means accommodate treated water. There is provided a microbubble generator characterized in that it includes a casing that is positioned so as to be immersed in the water to be treated in a tank and that tightly surrounds at least the pressure regulating valve and the electric drive means.

請求項13に記載の発明によれば、請求項12に記載の発明において、注入水配管は被処理水収容槽における水面の上方から圧力調整弁まで延びており、前記筐体は圧力調整弁及び電動駆動手段に加えて注入水配管における液面やや上方から圧力調整弁まで延びた部分を包囲することを特徴とする微細気泡発生装置が提供される。   According to a thirteenth aspect of the present invention, in the twelfth aspect of the present invention, the injection water pipe extends from above the water surface in the treated water storage tank to the pressure regulating valve, and the casing includes the pressure regulating valve and In addition to the electric drive means, there is provided a fine bubble generator characterized in that it surrounds the liquid surface in the injection water pipe and a portion extending from slightly above to the pressure regulating valve.

請求項14に記載の発明によれば、請求項1から13のいずれか一項に記載の発明において、前記酸素含有気体はオゾンを含有していることを特徴とする微細気泡発生装置が提供される。   According to the invention described in claim 14, in the invention described in any one of claims 1 to 13, there is provided a microbubble generator characterized in that the oxygen-containing gas contains ozone. The

請求項15に記載の発明によれば、水処理系における被処理部に開口された注入水配管中に使用され、加圧された流水を撹乱せしめる水流混合器であって、加圧された流水が通過する筒状本体と、筒状本体の長手方向に沿って間隔をおいて配置された複数の邪魔板とを備え、各邪魔板は筒状本体側の固定部から実質的に半径方向に流路の途中まで延びて流路の実質的全幅にわたる自由端縁を形成しており、各邪魔板の前記自由端縁はその全長において直線状をなすか若しくは流路中心に向けて凹んでいることを特徴とする水流混合器が提供される。   According to invention of Claim 15, it is a water flow mixer used in the injection water piping opened to the to-be-processed part in a water treatment system, and disturbs the pressurized flowing water, Comprising: Pressurized flowing water And a plurality of baffle plates arranged at intervals along the longitudinal direction of the cylindrical main body, each baffle plate extending substantially radially from the fixing portion on the cylindrical main body side. The free end extends to the middle of the flow path and extends over substantially the entire width of the flow path, and the free edge of each baffle plate is linear in its entire length or is recessed toward the center of the flow path A water flow mixer is provided.

請求項16に記載の発明によれば、請求項15に記載の発明において、前記複数の邪魔板の各々は筒状本体内における加圧流水の流れ方向における前面において流れ方向における下流側に向けて幾分傾斜していることを特徴とする水流混合器が提供される。   According to the invention of claim 16, in the invention of claim 15, each of the plurality of baffle plates is directed toward the downstream side in the flow direction on the front surface in the flow direction of the pressurized flowing water in the cylindrical main body. A water flow mixer is provided which is characterized by some inclination.

請求項17に記載の発明によれば、請求項15若しくは16に記載の発明において、前記邪魔板は加圧流水の流れ方向における前面若しくは後面において複数の溝を形成したことを特徴とする水流混合器が提供される。   According to a seventeenth aspect of the present invention, in the invention according to the fifteenth or sixteenth aspect, the baffle plate has a plurality of grooves formed on the front surface or the rear surface in the flow direction of the pressurized flowing water. A vessel is provided.

請求項18に記載の発明によれば、請求項15から17のいずれか一項に記載の発明において、前記各邪魔板は筒状本体に挿入される筒状部材に固定され、長手方向に隣接する筒状本体は筒状本体内において端部当接構造をなしていることを特徴とする水流混合器が提供される。   According to the invention described in claim 18, in the invention described in any one of claims 15 to 17, each baffle plate is fixed to a cylindrical member inserted into the cylindrical main body and is adjacent to the longitudinal direction. The tubular body is provided with an end abutting structure in the tubular body, and a water flow mixer is provided.

請求項19に記載の発明によれば、請求項18に記載の発明において、隣接する筒状部材の対向端面は一方が突起、他方が円周方向に離間した溝を備え、前記突起と溝とは相互に嵌合していることを特徴とする水流混合器が提供される。   According to the invention described in claim 19, in the invention described in claim 18, one of the opposing end faces of the adjacent cylindrical members is provided with a protrusion, and the other is provided with a groove spaced in the circumferential direction. Are provided that are interdigitated.

請求項20に記載の発明によれば、水処理系における被処理部に開口された注入水配管と、注入水配管内における水流中に酸素含有気体を導入する酸素含有気体導入手段と、前記注入水配管中に設置され、酸素含有気体が導入された水流を加圧する加圧ポンプと、前記加圧ポンプの下流に配置され、加圧された流水が通過する筒状本体の長手方向に沿って間隔をおいて配置された複数の邪魔板を備えた水流混合器とよりなり、前記水流混合器は被処理部に実質的に直接開口していることを特徴とする微細気泡発生装置が提供される。   According to the invention of claim 20, an injection water pipe that is opened in a portion to be treated in a water treatment system, an oxygen-containing gas introduction means that introduces an oxygen-containing gas into a water flow in the injection water pipe, and the injection A pressurization pump that is installed in the water pipe and pressurizes the water flow into which the oxygen-containing gas is introduced, and is disposed downstream of the pressurization pump, along the longitudinal direction of the cylindrical main body through which the pressurized flow water passes. There is provided a water flow mixer comprising a plurality of baffle plates arranged at intervals, wherein the water flow mixer is substantially directly open to the treated portion. The

請求項21に記載の発明によれば、請求項15から20に記載の発明において、筒状本体は長手方向に一連に接続された複数筒状部材よりなり、最上流と最下流の筒状部材を固定していることを特徴とする微細気泡発生装置が提供される。   According to the invention described in claim 21, in the invention described in claims 15-20, the cylindrical main body is composed of a plurality of cylindrical members connected in series in the longitudinal direction, and the most upstream and the most downstream cylindrical members. There is provided a fine bubble generating device characterized in that

請求項1の発明の作用・効果を説明すると、酸素含有気体は注入水配管における水流中に導入され、加圧ポンプにて加圧される。気体注入量が注入水の圧力により定まる溶解度を超えると、余剰気体は粗大気泡状のまま被処理部に導入されてしまうが、水流混合器を設置することにより粗大気泡を微細に破砕することができる。そして、微細気泡を含んだ水流は圧力調整弁を通過することにより第2段階の圧力降下を受け、その際の余剰溶解分により微細気泡が発生し、被処理部に放散される。この発明では水流混合器と圧力調整弁とを併用することにより、水流混合器による撹乱効果で余剰気体を微細気泡化しているため、微細気泡量を増やすことができると共に、余剰気体の排出のための高額な設備(オゾンを使用した場合の排オゾン処理装置等)が不要であり、しかも水流混合器は低圧力降下で済ますことができるため、汚水に使用した場合にも異物による閉塞の恐れを排除することができる。   The operation and effect of the invention of claim 1 will be described. The oxygen-containing gas is introduced into the water flow in the injection water pipe and pressurized by a pressure pump. If the amount of gas injection exceeds the solubility determined by the pressure of the injected water, excess gas will be introduced into the treated part in the form of coarse bubbles, but the coarse bubbles can be finely crushed by installing a water flow mixer. it can. Then, the water flow containing fine bubbles passes through the pressure regulating valve and receives a second-stage pressure drop, and fine bubbles are generated by the excessive dissolution at that time, and are diffused to the processing target portion. In this invention, by using the water flow mixer and the pressure regulating valve in combination, the excess gas is made into fine bubbles by the disturbance effect of the water flow mixer, so that the amount of fine bubbles can be increased and the excess gas can be discharged. Costly equipment (exhaust ozone treatment equipment when ozone is used) is not necessary, and the water flow mixer can be used with a low pressure drop. Can be eliminated.

請求項2の発明の作用・効果を説明すると、水流混合器において水流に付される圧力降下と比較して圧力調整弁により付される圧力降下を大きくすることにより水流混合器側での異物による閉塞の恐れを可及的に少なくすることができ、圧力調整弁における異物による閉塞に対しては圧力調整弁の開放により容易に対処することができる。   The operation and effect of the invention of claim 2 will be explained. By increasing the pressure drop applied by the pressure regulating valve compared to the pressure drop applied to the water flow in the water flow mixer, it is caused by the foreign matter on the water flow mixer side. The risk of blockage can be reduced as much as possible, and blockage caused by foreign matter in the pressure regulating valve can be easily dealt with by opening the pressure regulating valve.

請求項3の発明の作用・効果を説明すると、注入水配管の閉塞状態の有無を検出し、閉塞有りの場合は電動駆動手段により圧力調整弁を開放することができ、圧力調整弁の開放により通過抵抗が減るため、閉塞した異物を流通せしめ、閉塞状態を自動的に解消することができる。   The operation / effect of the invention of claim 3 will be described. The presence or absence of a blockage state of the injection water pipe is detected, and when the blockage is present, the pressure adjustment valve can be opened by the electric drive means. Since the passage resistance is reduced, the blocked foreign matter can be circulated and the blocked state can be automatically resolved.

請求項4の発明の作用・効果を説明すると、圧力調整弁及び電動駆動手段及び圧力調整弁への注入水配管が筐体に流密収容され、かつ筐体は水面を越えて延出している。そのため、筐体に収容された圧力調整弁及び電動駆動手段をいわば投げ込み型に被処理部に設置することができ、被処理部が曝気槽のように地中に設置されたタイプのものでも、簡便にかつ低コストにて設置することが可能となる。   The operation and effect of the invention of claim 4 will be described. The pressure adjusting valve, the electric drive means, and the injection water piping to the pressure adjusting valve are flow-tightly accommodated in the casing, and the casing extends beyond the water surface. . Therefore, the pressure regulating valve and the electric drive means accommodated in the housing can be installed in the processing target in a so-called throwing type, and even if the processing target is installed in the ground like an aeration tank, It becomes possible to install simply and at low cost.

請求項5の発明の作用・効果を説明すると、圧力調整弁の開放に係わらず閉塞状態が解消されないことを検出することにより、閉塞状態を迅速に検出し、必要な対応を促すことができる。   The operation and effect of the invention of claim 5 will be described. By detecting that the closed state is not resolved regardless of the opening of the pressure regulating valve, the closed state can be detected quickly and necessary action can be promoted.

請求項6の発明の作用・効果を説明すると、圧力調整弁の開放操作を所定回数繰り返し、それにもかかわらず閉塞状態が解消しない場合に故障と判断することにより、一時的な閉塞は検出対象から外し確実な判断を行うことができる。   The operation and effect of the invention of claim 6 will be explained. By repeating the opening operation of the pressure regulating valve a predetermined number of times and nevertheless the closed state is not resolved, it is determined that a failure has occurred, so that the temporary blockage is detected from the detection target. Detachable and reliable judgment can be made.

請求項7の発明の作用・効果を説明すると、圧力調整弁の排出口はそのまま若しくは最大1.5mの短い配管を介して被処理部に開口している。そのため、圧力調整弁通過の際の圧力低下により注入水中に生じた微細気泡は実質的にそのまま被処理部において放散される。そのため、気泡の粗大化が起こらないため、浮上時間を可及的に長くとり、最大限の効果を達成することができる。   The operation and effect of the invention of claim 7 will be described. The outlet of the pressure regulating valve is opened to the processing target as it is or through a short pipe having a maximum length of 1.5 m. Therefore, the fine bubbles generated in the injected water due to the pressure drop when passing through the pressure regulating valve are substantially diffused as they are in the treated portion. Therefore, since the bubble does not become coarse, the ascending time can be made as long as possible to achieve the maximum effect.

請求項8の発明の作用・効果を説明すると、水流混合器を夫々が半径方向に延び、筒状本体の長手方向に間隔を置いた複数の邪魔板から構成することにより、邪魔板の数若しくは個々の邪魔板の半径方向の長さを最適に設定することにより、所期の通過抵抗に設定しつつ所望の攪拌効果を得ることができ、効率的に微細気泡を発生しつつ閉塞を防止することができ、汚水の処理を最適化することができる。   The action and effect of the invention of claim 8 will be described. By forming the water flow mixer from a plurality of baffle plates each extending in the radial direction and spaced in the longitudinal direction of the cylindrical main body, the number of baffle plates or By setting the length of each baffle plate in the radial direction optimally, it is possible to obtain a desired stirring effect while setting the desired passage resistance, and to prevent clogging while efficiently generating fine bubbles. And the treatment of sewage can be optimized.

請求項9の発明の作用・効果を説明すると、水流混合器の邪魔板の自由端縁を直線状若しくは流路の中心に向けて凹んだ形状とすることにより、汚水中によく含まれる髪の毛等の絡み付きが起こり難くなり、汚水の処理に適合させることができる。   The action / effect of the invention of claim 9 will be described. By making the free edge of the baffle plate of the water flow mixer straight or recessed toward the center of the flow path, hair etc. often contained in sewage Entanglement becomes difficult to occur and can be adapted to the treatment of sewage.

請求項10の発明の作用・効果を説明すると、酸素含有気体は注入水配管における水流中に導入され、加圧ポンプにて加圧される。酸素含有気体を注入した水流は加圧ポンプにより加圧されるため、溶解度が高まり、大量の気体を溶解させることができる。圧力調整弁の通過時絞られることにより注入水の圧力は降下するため溶解度が下がり、差圧分だけ過剰な空気若しくは酸素若しくはオゾンが微細気泡として生成される。圧力調整弁からの絞られた注入水の流れは実質的に直接的に被処理水槽に放散されるため、気泡は相互に凝集粗大化することなく微細な状態に留まるため被処理水収容槽における浮上速度が遅くなり、気泡による殺菌や活性汚泥減容化などの効果を最大限役立てることができる。   The operation and effect of the invention of claim 10 will be described. The oxygen-containing gas is introduced into the water flow in the injection water pipe and pressurized by a pressure pump. Since the water flow in which the oxygen-containing gas is injected is pressurized by the pressurizing pump, the solubility is increased and a large amount of gas can be dissolved. When the pressure regulating valve passes, the pressure of the injected water drops, so that the solubility decreases, and excess air, oxygen, or ozone corresponding to the differential pressure is generated as fine bubbles. Since the flow of the throttled injection water from the pressure regulating valve is dissipated substantially directly to the water tank to be treated, the bubbles remain in a fine state without coagulating and coarsening each other. The ascending speed becomes slow, and the effects such as sterilization by air bubbles and volume reduction of activated sludge can be utilized to the maximum.

請求項11の発明の作用・効果を説明すると、酸素含有気体は注入水配管における水流中に導入され、加圧ポンプにて加圧される。酸素含有気体を注入した水流は加圧ポンプにより加圧されるため、溶解度が高まり、大量の気体を溶解させることができる。圧力調整弁は常態では水流を絞るように位置しているため、圧力調整弁通過時に注入水の圧力は降下するため溶解度が下がり、差圧分だけ過剰な空気若しくは酸素若しくはオゾンが微細気泡として生成される。そして、前記圧力調整弁が被処理水収容槽の液面から所定深さに位置しているため、圧力調整弁からの絞られた注入水の流れは実質的に直接的に被処理水収容槽に放散されるため、気泡は相互に凝集粗大化することなく微細な状態に留まるため被処理水収容槽における浮上速度が遅くなり、気泡効果を最大限役立てることができる。   The operation and effect of the invention of claim 11 will be described. The oxygen-containing gas is introduced into the water flow in the injection water pipe and pressurized by the pressure pump. Since the water flow in which the oxygen-containing gas is injected is pressurized by the pressurizing pump, the solubility is increased and a large amount of gas can be dissolved. Since the pressure regulating valve is normally positioned so as to restrict the water flow, the pressure of the injected water drops when passing through the pressure regulating valve, so that the solubility decreases, and excess air, oxygen or ozone is generated as fine bubbles by the differential pressure. Is done. And since the said pressure regulation valve is located in the predetermined depth from the liquid level of a to-be-processed water storage tank, the flow of the injection water restrict | squeezed from a pressure control valve is substantially directly processed water storage tank Therefore, the bubbles remain in a fine state without coagulating and coarsening each other, so that the rising speed in the treated water storage tank becomes slow, and the bubble effect can be used to the maximum.

請求項12の発明の作用・効果を説明すると、圧力調整弁は被処理水収容槽中に水没位置しているため、圧力調整弁から注入水を直接的に被処理水収容槽中に放出することができ、圧力降下により生じた微細気泡は少しも粗大化されることなく被処理水中に放散され、気泡による最大限の効果を得ることができ、また、圧力調整弁及び電動駆動手段は水中に没しているが圧力調整弁及び電動駆動手段を筐体により流密に包囲しているため漏洩により故障の恐れなく安定な動作を期することができる。   The action and effect of the invention of claim 12 will be described. Since the pressure regulating valve is submerged in the treated water storage tank, the injected water is directly discharged from the pressure regulating valve into the treated water storage tank. The fine bubbles generated by the pressure drop are dissipated into the water to be treated without any coarsening, and the maximum effect of the bubbles can be obtained. However, since the pressure regulating valve and the electric drive means are surrounded in a fluid-tight manner by the casing, a stable operation can be expected without fear of failure due to leakage.

請求項13の発明の作用・効果を説明すると、圧力調整弁及び電動駆動手段及び圧力調整弁への配管の水面のやや上までの部分を筐体により流密包囲しているため、圧力調整弁及び電動駆動手段及び圧力調整弁への配管を投げ込み型の組立体として便利に使用することができ、地面から掘られているため側壁を持たない水槽や水路などにおいても好都合に使用しうる。   The operation and effect of the invention of claim 13 will be explained. Since the pressure control valve, the electric drive means, and the portion up to the water surface of the pipe to the pressure control valve are surrounded by a casing, the pressure control valve In addition, the piping to the electric drive means and the pressure regulating valve can be conveniently used as a throw-in type assembly, and since it is dug from the ground, it can also be conveniently used in a water tank or a water channel having no side wall.

請求項14の発明の作用・効果を説明すると、気体中にオゾンを含有させることにより気泡中にはオゾンが含有され、しかも気泡は微細であるため、オゾンによる殺菌などの効果を最大限利用することができる。   The action and effect of the invention of claim 14 will be explained. Ozone is contained in the gas by containing ozone in the gas, and since the air bubbles are fine, the effect of sterilization by ozone is utilized to the maximum. be able to.

請求項15の発明の作用・効果を説明すると、水流混合器は夫々が実質的に半径方向に流路の途中まで延びる長手方向に離間した複数の邪魔板より構成され、邪魔板の自由端は長手方向に離間して構成されるため、半径方向における邪魔板の延長長さ及び数を適宜配置することにより所定の所期の攪拌効果を得ることができ、また邪魔板はその自由端縁がその全長において直線状をなすか若しくは流路中心に向けて凹んでいるため、全通過幅にわたって凸部が全然形成されず、髪の毛などの異物が絡み難く、汚水処理への利用に好都合である。   The action and effect of the invention of claim 15 will be described. The water flow mixer is composed of a plurality of longitudinally spaced baffle plates each extending substantially in the radial direction to the middle of the flow path, and the free ends of the baffle plates are Since it is configured to be separated in the longitudinal direction, a predetermined stirring effect can be obtained by appropriately arranging the extension length and number of baffle plates in the radial direction, and the baffle plate has a free edge. Since the entire length is linear or concave toward the center of the flow path, no convex part is formed over the entire passage width, and foreign matters such as hair are hardly entangled, which is convenient for use in sewage treatment.

請求項16の発明の作用・効果を説明すると、邪魔板の前面を流れ方向における下流側に向けて幾分傾斜させることにより被処理水のスムースな流れを得ることができる。   The operation and effect of the invention of claim 16 will be described. A smooth flow of the water to be treated can be obtained by slightly inclining the front surface of the baffle plate toward the downstream side in the flow direction.

請求項17の発明の作用・効果を説明すると、邪魔板の前面及び後面に溝を形成することにより乱れを惹起させ、微細気泡の発生に寄与させることができる。   The operation and effect of the invention of claim 17 will be described. By forming grooves on the front and rear surfaces of the baffle plate, disturbance can be caused and contribute to the generation of fine bubbles.

請求項18の発明の作用・効果を説明すると、各邪魔板をそれを固定した邪魔板の長手方向の厚みより大きい厚みの筒状部材とで組立体に構成することができ、各組立体を筒状本体に挿入することにより多数の邪魔板を長手方向に離間させた配置を簡単に得ることができる。   The action and effect of the invention of claim 18 will be described. Each baffle plate can be formed into an assembly with a cylindrical member having a thickness larger than the thickness in the longitudinal direction of the baffle plate to which the baffle plate is fixed. By inserting it into the cylindrical main body, it is possible to easily obtain an arrangement in which a number of baffle plates are separated in the longitudinal direction.

請求項19の発明の作用・効果を説明すると、隣接する1対の筒状部材の一方の対向端面には円周方向に離間する溝、他方には突起を設け、この突起を複数の円周方向の溝における一つの溝に嵌合させることで、飛び飛びの角度ではあるが隣接する邪魔板間の相対角度を溝の設置数に応じて簡便に変化させることができ、組立てが容易となり、また、邪魔板の角度調節が容易となる。   The operation and effect of the invention of claim 19 will be described. A pair of adjacent cylindrical members is provided with a circumferentially spaced groove on one opposing end surface, and a projection on the other, and the projection is arranged in a plurality of circumferential directions. By fitting in one groove in the direction groove, the relative angle between adjacent baffle plates can be easily changed according to the number of grooves installed, although it is a jumping angle, and assembly is facilitated. This makes it easy to adjust the baffle angle.

請求項20の発明の作用・効果を説明すると、加圧ポンプにて加圧された酸素含有気体は注入水配管における水流中に導入され、加圧ポンプにて加圧され、水流混合器に導入される。水流混合器においては多数の邪魔板を通過することにより攪拌を受け、適当な高さの邪魔板を適当な個数設置することにより所定の微細気泡径とすることができると共に、水流混合器が被処理部に実質的に直接開口しているため、微細気泡の凝集及び粗大化を回避し、微細気泡による効果的な殺菌・消毒を行うことができる。   The operation and effect of the invention of claim 20 will be explained. The oxygen-containing gas pressurized by the pressurizing pump is introduced into the water flow in the injection water pipe, pressurized by the pressurizing pump, and introduced into the water flow mixer. Is done. In the water flow mixer, stirring is carried out by passing through a number of baffle plates, and by setting a suitable number of baffle plates of appropriate height, a predetermined fine bubble diameter can be obtained, and the water flow mixer is covered. Since the processing portion is substantially directly opened, it is possible to avoid agglomeration and coarsening of the fine bubbles, and to perform effective sterilization / disinfection with the fine bubbles.

請求項21の発明の作用・効果を説明すると、筒状部材260を直列させ通しボルト及びナットにより組立体としているため、詰まりなどに対しては、ボルト及びナットの弛緩させることにより水流混合器の分解を容易に行うことができ、水流混合器のメンテナンス上極めて有利となる。   The operation and effect of the invention of claim 21 will be described. Since the cylindrical member 260 is connected in series to form an assembly with bolts and nuts, the clogging and the like can be prevented by loosening the bolts and nuts. The decomposition can be easily performed, which is extremely advantageous for maintenance of the water flow mixer.

図1はこの発明の実施形態における微細気泡発生装置を概略的に示しており、この実施形態は汚泥の処理システムにおける被処理水収容槽10(この発明における被処理部)への応用に向けられたものである。被処理水収容槽10としては、例えば、汚水処理における曝気槽や加圧浮上槽が挙げられるが、この発明は浄水場におけるクリプトスポリジウムの殺菌等のためにも使用可能である。被処理水収容槽10中にオゾン含有微細気泡を生成し、微細気泡が表面浮上する間に汚泥を微細気泡に付着せしめると共に気泡に含まれるオゾンによって殺菌・消毒を図るものである。気体(酸素+オゾン)は注入水中において溶解されており、注入水が被処理水収容槽10に放出される際に圧力が降下し、その分溶解度が下がるため余剰の酸素+オゾンを数〜数10μmの径の微細気泡として被処理水収容槽10に生成することができる。12は注入水のための配管を示し、上流端は下水処理システムにおける適当な取水部位(例えば汚水処理の場合は最終沈殿池の下流側など)からの水を溜めるための注入水タンク14に接続され、下流端は被処理水収容槽10の底部付近に開口される。注入水配管12には上流側より順次流量計16(この発明の検出手段)、加圧ポンプ18、水流混合器20及び圧力調整弁22が配置される。加圧ポンプ18の吸入側にはオゾン発生器24(この発明の酸素含有気体導入手段)が配置される。   FIG. 1 schematically shows an apparatus for generating fine bubbles according to an embodiment of the present invention. This embodiment is directed to application to a treated water storage tank 10 (treated portion in the present invention) in a sludge treatment system. It is a thing. Examples of the treated water storage tank 10 include an aeration tank and a pressurized levitation tank in sewage treatment, and the present invention can also be used for sterilization of Cryptosporidium in a water purification plant. Ozone-containing microbubbles are generated in the water tank 10 to be treated, and sludge is adhered to the microbubbles while the microbubbles are floating on the surface, and sterilization / disinfection is achieved by ozone contained in the bubbles. The gas (oxygen + ozone) is dissolved in the injected water, and when the injected water is discharged into the treated water storage tank 10, the pressure drops, and the solubility decreases accordingly. It can generate | occur | produce in the to-be-processed water accommodation tank 10 as a microbubble of a diameter of 10 micrometers. Reference numeral 12 denotes a pipe for injection water, and the upstream end is connected to an injection water tank 14 for collecting water from an appropriate water intake site in the sewage treatment system (for example, downstream of the final sedimentation basin in the case of sewage treatment). The downstream end is opened near the bottom of the treated water storage tank 10. A flow meter 16 (detecting means of the present invention), a pressurizing pump 18, a water flow mixer 20, and a pressure adjusting valve 22 are sequentially arranged in the injection water pipe 12 from the upstream side. An ozone generator 24 (oxygen-containing gas introducing means of the present invention) is disposed on the suction side of the pressure pump 18.

この発明の構成は加圧浮上式の通常の微細気泡発生装置と比較して水流混合器20と圧力調整弁22とを併用することにより汚水に適合させた点が相違する。水流混合器を利用した微細気泡発生装置では圧力損失と撹乱作用とにより微細気泡を発生させている。即ち、高速で水流混合器を通過させることにより注入水中の未溶解の気泡を破砕させることができ、粗大化しないため、ガス状の余剰空気を排出する必要がない利点がある上、見かけ上溶解度を上げることができ、被処理水収容槽10中に生成される微細気泡量を増大させうるが、このような高圧損及び高流速での微細気泡の生成は異物があると水流混合器が閉塞し易く、大量の異物を含んだ汚水への使用には適さないと考えられていた。そこで、この発明では水流混合器20はそこでの圧力損失が高くなく、低流速として設計することにより、異物による閉塞の懸念なく水流混合器による微細気泡化を行いつつ、水流混合器における気泡不足分を高圧損で高流速の圧力調整弁での気泡発生により補充し、トータルとして効率的な微細気泡の発生を行いうるようにしたものである。そして、高圧損の圧力調整弁の部位での異物の閉塞の問題に対しては圧力調整弁を自動弁とし、異物の閉塞があった場合には圧力調整弁を強制的に開放することにより異物の流通を促すことで対処している。即ち、水流混合器単独で所期の量の微細気泡を得るためには0.5MPa程度の圧力損失(≒加圧ポンプ18の吐出圧力)は必要といわれているが、この発明では水流混合器20においては0.1MPa程度の低圧力降下のものを使用し、圧力調整弁22において残りの0.4MPaの圧力損失を分担させることで微細気泡量の増大と異物の閉塞に対する容易対応との相矛盾する要求に対処している。   The configuration of the present invention is different from that of an ordinary fine bubble generator of the pressure floating type in that it is adapted to sewage by using a water flow mixer 20 and a pressure regulating valve 22 in combination. In a microbubble generator using a water flow mixer, microbubbles are generated by pressure loss and disturbance. In other words, by passing through a water flow mixer at high speed, undissolved bubbles in the injected water can be crushed, and since it does not become coarse, there is an advantage that there is no need to discharge gaseous excess air, and apparent solubility The amount of fine bubbles generated in the water tank 10 to be treated can be increased, but the generation of fine bubbles at such a high pressure loss and high flow rate can block the water flow mixer if foreign matter is present. It was thought to be easy to use and not suitable for use in sewage containing a large amount of foreign matter. Therefore, in the present invention, the water flow mixer 20 does not have a high pressure loss, and is designed to have a low flow rate, so that the bubbles are insufficient in the water flow mixer while the water flow mixer is microbubbled without fear of clogging by foreign matter. Is replenished by generating bubbles with a high pressure loss and high flow rate pressure regulating valve so that efficient generation of fine bubbles can be achieved as a whole. For the problem of foreign matter blockage at the high pressure loss pressure regulating valve, the pressure regulating valve is an automatic valve, and when there is a foreign matter blockage, the pressure regulating valve is forcibly opened to remove the foreign matter. It is dealt with by encouraging distribution. That is, it is said that a pressure loss of about 0.5 MPa (≈ discharge pressure of the pressurizing pump 18) is required to obtain a desired amount of fine bubbles by the water flow mixer alone. Use a low pressure drop of about 0.1 MPa and share the remaining pressure loss of 0.4 MPa in the pressure regulating valve 22 to contradict demands for increasing the amount of fine bubbles and easy countermeasures against foreign matter blockage. Is addressed.

オゾン発生器24は、オゾンを所定割合で含有した空気が加圧ポンプ18の上流において注入水配管12中に導入される。オゾン発生器24としては、原料となる空気をゼオライトのような吸着剤を用いPSA(Pressure Swing Adsorption)により加圧減圧を繰り返すことにより、高純度の酸素ガスとなし、酸素ガスを放電型のオゾナイザによってオゾンを生成することにより高濃度のオゾンが含まれたオゾン/酸素混合ガスを発生せしめる方式のものを採用することができる。オゾン発生器24からは加圧下のオゾン/酸素の混合ガスが取出され、加圧ポンプ18の吸入側での注入水に混入される。   In the ozone generator 24, air containing ozone at a predetermined ratio is introduced into the injection water pipe 12 upstream of the pressure pump 18. As the ozone generator 24, high-purity oxygen gas is obtained by repeating the pressurization and depressurization by PSA (Pressure Swing Adsorption) using an adsorbent such as zeolite for the raw material air, and the oxygen gas is a discharge type ozonizer. A system that generates ozone / oxygen mixed gas containing high-concentration ozone by generating ozone can be employed. The ozone / oxygen mixed gas under pressure is taken out from the ozone generator 24 and mixed into the injected water on the suction side of the pressure pump 18.

圧力調整弁22は図1に示すように電動モータ26(この発明の電動駆動手段)により自動駆動され、図2に模式的に示すようにボールバルブとして構成される。即ち、圧力調整弁22は弁ハウジング28と、弁ハウジング28の内部の球形空洞に回転可能に収容される球状弁体30と、球状弁体30に連結される回転軸32とを具備する。回転軸32は電動モータ26の出力軸に連結され、電動モータ26は図示されていないマイクロコンピュータを備えた制御回路(この発明の制御手段)によって制御される。電動モータ26の出力軸の回転運動によって球状弁体30は所定角度範囲内において回転運動し、流量を制御することができる。即ち、球状弁体30は半径方向に延びる弁通路34を形成しており、他方、弁ハウジング28は図1の注入水配管12側に接続される吸入口36と、被処理水収容槽10に開口した排出口38とを備えている。弁通路34、吸入口36及び排出口38の流路径は殆ど同一径であるが、異物による閉塞が生じていない通常状態においては図2に示すように球状弁体30の回転位置では弁通路34は絞られている。球状弁体30のこの状態を圧力調整弁22の絞り位置と称し、図3は圧力調整弁22のこの絞り位置における吸入口、排出口36, 38に対する弁通路34の位置関係(図2のIII方向より見た図)を示し、球状弁体30の回転により弁通路34が絞られていることが分かる。圧力調整弁22の絞り位置では、注入水は圧力調整弁22の通過時に大きな圧力低下を受け、上述のように被処理水収容槽10中に微細気泡を生成せしめることができる。そして、異物による閉塞が生じた場合においては、球状弁体30は図2の位置から矢印fのように反時計方向に回動せしめられ、弁通路34を2点鎖線34Aに示すように吸入口、排出口36, 38に整列位置させることができる(球状弁体30のこの状態を圧力調整弁22の開放位置と称する)。この開放位置では弁通路34は絞られないため、異物を強制的に排出し、閉塞状態を解消し、球状弁体30を図2の矢印fと反対方向に回転させ、圧力調整弁22を閉鎖位置(絞り状態)とし、再び圧力調整弁22による本来の圧力降下を惹起させ、被処理水収容槽10中に微細気泡を発生せしめる本来の運転状態に復帰せしめることができる。   The pressure regulating valve 22 is automatically driven by an electric motor 26 (electric drive means of the present invention) as shown in FIG. 1, and is configured as a ball valve as schematically shown in FIG. That is, the pressure regulating valve 22 includes a valve housing 28, a spherical valve body 30 that is rotatably accommodated in a spherical cavity inside the valve housing 28, and a rotary shaft 32 that is connected to the spherical valve body 30. The rotating shaft 32 is connected to the output shaft of the electric motor 26, and the electric motor 26 is controlled by a control circuit (control means of the present invention) having a microcomputer (not shown). The spherical valve body 30 is rotated within a predetermined angle range by the rotational movement of the output shaft of the electric motor 26, and the flow rate can be controlled. That is, the spherical valve body 30 forms a valve passage 34 extending in the radial direction, while the valve housing 28 is connected to the inlet 36 connected to the injection water pipe 12 side in FIG. And an open discharge port 38. The valve passage 34, the suction port 36, and the discharge port 38 have almost the same diameter, but in a normal state where no blockage due to foreign matter occurs, the valve passage 34 is located at the rotational position of the spherical valve body 30 as shown in FIG. Is squeezed. This state of the spherical valve body 30 is referred to as the throttle position of the pressure regulating valve 22, and FIG. 3 shows the positional relationship of the valve passage 34 with respect to the inlet and outlet ports 36, 38 at this throttle position of the pressure regulating valve 22 (III in FIG. 2). FIG. 3 shows that the valve passage 34 is throttled by the rotation of the spherical valve body 30. At the throttle position of the pressure regulating valve 22, the injected water undergoes a large pressure drop when passing through the pressure regulating valve 22, and fine bubbles can be generated in the treated water storage tank 10 as described above. When the blockage by the foreign matter occurs, the spherical valve body 30 is rotated counterclockwise as indicated by an arrow f from the position of FIG. 2, and the valve passage 34 is inhaled as shown by a two-dot chain line 34A. The discharge ports 36 and 38 can be aligned with each other (this state of the spherical valve body 30 is referred to as the open position of the pressure regulating valve 22). Since the valve passage 34 is not throttled in this open position, the foreign matter is forcibly discharged, the closed state is eliminated, the spherical valve body 30 is rotated in the direction opposite to the arrow f in FIG. 2, and the pressure regulating valve 22 is closed. It is possible to return to the original operation state in which the fine pressure bubbles are generated in the treated water storage tank 10 by causing the original pressure drop by the pressure adjusting valve 22 again to the position (throttle state).

図1に示すように、この実施形態においては、圧力調整弁22及びその駆動用の電動モータ26は被処理水収容槽10の液面Wの上方よりいわば投げ込み型に設置され、圧力調整弁22及びその駆動用の電動モータ26は被処理水収容槽10中に没するように位置している。そして、電動モータ26は、圧力調整弁22及び圧力調整弁22への配管部分も含めて筐体40によって完全に被覆されており、これにより投げ込み構造であるにも係わらず電動モータ26及び電動モータ26から圧力調整弁22への連結部を防水するようにしている。図4及び図5によってこの投げ込み型の防水構造(本発明の流密構造)について説明すると、フランジにて連結された複数のパイプ42, 42', 42"は図1の水流混合器20からの注入水配管の一部を構成するもので、被処理水収容槽10にその液面の上方から導入される。図2に示す圧力調整弁22の吸入口36は下端側のパイプ42'の端部にフランジ接続されている。パイプ42'の端部は被処理水収容槽10の底面との角度を緩めるように幾分曲折され、圧力調整弁22の排出口38は出口ホーン44を介して被処理水収容槽10に開口している。出口ホーン44の開口部位は液面からDの深さの部位となっている。上端側のパイプ42″は90度曲折され、水流混合器20からのパイプにフランジ接続される。筐体40は上端部40-1より上側移行部40-2、中間部40-3,40-4及び下側移行部40-5を介して下端部40-6に接続され、これらの部分40-1, 40-2, 40-3, 40-4, 40-5, 40-6は近接した端部同士がフランジにて一連に接続されており、これにより内部に防水(密閉)された空洞を形成し、この空洞中にパイプ42及び圧力調整弁22及び電動モータ26を収容することができる。図4において、垂直支柱46は上端が被処理水収容槽10の側壁の上端からの張出部10-1に固定され、垂直支柱46の下端は被処理水収容槽10の底面10-2に固定されており、筐体40はその下端側における下側移行部40-5においてブラケット50により垂直支柱46に固定されている。そのため、投げ込み構造に係わらず被処理水収容槽10中での筐体40及びその内部空洞に収容された圧力調整弁22及び電動モータ26の安定姿勢を確保することができる。図4に示すように、出口ホーン44は筐体40の下端部40-6を介して被処理水収容槽10中に少し突出している。圧力調整弁22の球状弁体30(図2)から出口ホーン44の開口端までの距離は短く、圧力調整弁22の流路径の絞り部を流出する瞬間に形成される気泡はこの絞り部から実質的に直接的に被処理水収容槽10に放散される。そのため、圧力調整弁22の流路径の絞り部から被処理水収容槽10までを長大なパイプにて接続した場合に起こりうる気泡の凝集及び粗大化を防止し、微細気泡のまま被処理水収容槽10中を浮上させることができる。   As shown in FIG. 1, in this embodiment, the pressure regulating valve 22 and the electric motor 26 for driving the pressure regulating valve 22 are installed in a so-called throwing type from above the liquid level W of the treated water storage tank 10. And the electric motor 26 for the drive is located so that it may be immersed in the to-be-processed water storage tank 10. FIG. The electric motor 26 is completely covered with the housing 40 including the pressure regulating valve 22 and the piping portion to the pressure regulating valve 22, so that the electric motor 26 and the electric motor are provided regardless of the throwing structure. The connection part from 26 to the pressure regulating valve 22 is waterproofed. Referring to FIGS. 4 and 5, this throw-in waterproof structure (the flow-tight structure of the present invention) will be described. A plurality of pipes 42, 42 ′, 42 ″ connected by flanges are connected to the water flow mixer 20 of FIG. It constitutes a part of the injection water pipe and is introduced from above the liquid level into the treated water storage tank 10. The inlet 36 of the pressure regulating valve 22 shown in Fig. 2 is the end of the lower pipe 42 '. The end of the pipe 42 ′ is slightly bent so as to loosen the angle with the bottom surface of the treated water storage tank 10, and the outlet 38 of the pressure regulating valve 22 is connected via the outlet horn 44. It opens to the water tank 10 to be treated, and the opening portion of the outlet horn 44 is a portion having a depth of D from the liquid surface. The flange is connected to the pipe. The housing 40 is connected to the lower end portion 40-6 from the upper end portion 40-1 via the upper transition portion 40-2, the intermediate portions 40-3 and 40-4, and the lower transition portion 40-5. -1, 40-2, 40-3, 40-4, 40-5, 40-6 are connected to each other by a series of flanges, and the cavity is sealed (sealed) inside. And the pipe 42, the pressure regulating valve 22 and the electric motor 26 can be accommodated in the cavity. In FIG. 4, the vertical column 46 has an upper end fixed to an overhanging portion 10-1 from the upper end of the side wall of the treated water storage tank 10, and a lower end of the vertical column 46 is located on the bottom surface 10-2 of the treated water storage tank 10. The casing 40 is fixed to the vertical column 46 by the bracket 50 at the lower transition portion 40-5 on the lower end side. Therefore, it is possible to ensure a stable posture of the casing 40 in the treated water storage tank 10 and the pressure regulating valve 22 and the electric motor 26 accommodated in the internal cavity regardless of the throwing structure. As shown in FIG. 4, the outlet horn 44 slightly protrudes into the treated water storage tank 10 via the lower end portion 40-6 of the housing 40. The distance from the spherical valve body 30 (FIG. 2) of the pressure regulating valve 22 to the opening end of the outlet horn 44 is short, and bubbles formed at the moment when the pressure regulating valve 22 flows out from the throttle portion of the flow path diameter are from this throttle portion. It is diffused directly to the treated water storage tank 10 substantially directly. For this reason, bubbles are prevented from agglomerating and coarsening that can occur when the pipe from the throttle part of the flow path diameter of the pressure regulating valve 22 to the treated water storage tank 10 is connected by a long pipe, and the treated water is accommodated in the form of fine bubbles. The inside of the tank 10 can be levitated.

この実施形態では圧力調整弁22及び電動モータ26及び水面から圧力調整弁22の配管の部分は筐体により流密保持された投げ込み構造とし、この投げ込み構造を曝気槽や加圧浮上槽などの被処理水収容槽10に設置した例を説明している。しかしながら、本発明はこれに限らず、上記投げ込み構造を水路に設置し、オゾンガスにより殺菌するなどに応用することができる。また、以上説明の実施形態では上記投げ込み構造は水流混合器20と組み合わせた形で使用されているが、水流混合器20を設けない配置もこの発明に包含される。即ち、加圧ポンプからの加圧された注入水は直接圧力調整弁22に導入され、被処理水収容槽10に微細気泡を放散させる。   In this embodiment, the pressure regulating valve 22, the electric motor 26, and the piping portion of the pressure regulating valve 22 from the water surface have a throwing structure in which the casing is flow-tightly held, and this throwing structure is covered by an aeration tank, a pressurized floating tank, or the like. The example installed in the treated water storage tank 10 is demonstrated. However, the present invention is not limited to this, and the present invention can be applied to installing the throwing structure in a water channel and sterilizing with ozone gas. In the embodiment described above, the throwing structure is used in combination with the water mixer 20, but an arrangement without the water mixer 20 is also included in the present invention. In other words, the pressurized injected water from the pressurizing pump is directly introduced into the pressure regulating valve 22, and the fine bubbles are diffused into the treated water storage tank 10.

この発明においては図1に示すように注入水配管12に圧力調整弁22に加えて水流混合器20を設けることにより効率よく微細気泡を発生しうるようにしている。即ち、オゾン発生器からのオゾン/空気混合ガスは加圧ポンプ18により加圧されているため大気圧下と比較して多量のガスを溶解することができる。しかしながら、過剰分については溶解しないため、そのままでは粗大気泡化してしまう。そこで、従来から水流混合器によって高圧損及び高流速下で気泡を破砕し微細気泡化するものは知られていた。しかしながら、従来構造では高圧損及び高流速とするため水流混合器の場合は有効径を絞らざるを得ず、汚水の処理に利用した場合、避け得ない異物による閉塞の問題に対応できなかった。そこで、この発明においては圧力調整弁22に加えて水流混合器20を設け、水流混合器20は低圧力降下及び低流速で気泡の破砕を行いうる構造のものとし、不足の部分を圧力調整弁22で補うことにより微細気泡の発生効率が高いにも係わらず異物による閉塞にも対応しうるようにしている。図6〜図8によって水流混合器の構造について説明すると、水流混合器20は加圧された流水が通過する筒状本体60と、夫々が筒状本体の内周面より流路の途中まで延び、筒状本体の長手方向に沿って間隔をおいて配置された複数の邪魔板62とを備える。筒状本体60の端部はフランジ64を備え、図1の注入水配管12を構成するパイプ66, 68のフランジ部66', 68'に接合されている。図6及び図7に示すように各邪魔板62は対応の筒状部材70の内周面に溶接固定されることにより邪魔板組立体72を構成している。そして、この邪魔板組立体72における筒状部材70が筒状本体60に順次挿入されることで複数の邪魔板62を長手方向に間隔をおいた配置とすることができる。図9に示すように、邪魔板62は筒状部材70の内周面からその中心線を幾分越えた自由端縁62Aまで延びており、筒状本体60の対抗面との距離Lがこの筒状本体の有効径となっている。自由端縁62Aはこの実施形態においては直線状に延びている(図10参照)。図9に示すように注入水の流れ方向(矢印a)において邪魔板62の前面は下流側に傾斜しており、筒状本体60内における注入水のスムースな流れを得ることができ、汚水中の異物の堆積を防止することができる。また、邪魔板62の前面及び後面には夫々多数の溝62-1, 62-2が形成されており、注入水がこれらの溝62-1, 62-2と衝突することにより注入水の流れが撹乱され、気泡の粉砕に寄与させることができる。図6の実施形態においては、複数の邪魔板62は隣接長手方向において交互に位相を180度転じて配置される。しかしながら、必ずしもこの配置に限らず、任意の配置が可能であり、この実施形態では各邪魔板62は0, 90, 180, 270度の4種類の角度位置をとることができる。即ち、邪魔板組立体72における筒状部材70はその長手方向における一端面における円周方向の一箇所に図10に示すように断面三角形の位置決め用の突起73(図12も参照)を有し、他端面に円周方向に図11に示すように90度づつ離間した4個の断面三角形の切欠74(図13も参照)を有し、これらの位置決め用の突起73と切欠74とは相互に実質的に遊びなく嵌合しうる寸法となっている。従って、長手方向に隣接する一対の邪魔板組立体72において一方の筒状部材70の突起73を形成した端面と切欠74を形成した端面とを対抗させ、この対抗面において位置決め用の突起73を4個の切欠74のうちの適当な一つの切欠74とを嵌合させることにより長手方向に隣接する一対の邪魔板62の相対角度位置を0, 90, 180, 270度の4種類の相対角度位置の内の任意の相対角度位置を取ることができる。例えば、図14は別実施形態の水流混合器120を示しており、複数の邪魔板62を筒状本体60の長手方向に間隔をおいて配置した点は図6と同様であるが、同一角度位置の2枚の隣接した邪魔板62からなる複数の邪魔板が180度対称位置に配置されている。このような構成でも同様に作用せしめることができ、また、図6及び図14以外にも長手方向に複数の邪魔板を任意の角度位置で配置することができる。   In the present invention, as shown in FIG. 1, a water flow mixer 20 is provided in the injection water pipe 12 in addition to the pressure regulating valve 22, so that fine bubbles can be generated efficiently. That is, since the ozone / air mixed gas from the ozone generator is pressurized by the pressurizing pump 18, a large amount of gas can be dissolved as compared with that under atmospheric pressure. However, since the excess is not dissolved, it becomes coarse bubbles as it is. Therefore, it has been conventionally known that bubbles are crushed and made into fine bubbles under a high pressure loss and a high flow rate by a water flow mixer. However, since the conventional structure has a high pressure loss and a high flow velocity, the effective diameter has to be reduced in the case of a water flow mixer, and when used in the treatment of sewage, it cannot cope with the problem of obstruction caused by foreign matters. Therefore, in the present invention, the water flow mixer 20 is provided in addition to the pressure control valve 22, and the water flow mixer 20 has a structure capable of crushing bubbles with a low pressure drop and a low flow rate. By supplementing with 22, it is possible to cope with the blockage by the foreign matter although the generation efficiency of the fine bubbles is high. The structure of the water flow mixer will be described with reference to FIGS. 6 to 8. The water flow mixer 20 has a cylindrical main body 60 through which pressurized flowing water passes, and each extends from the inner peripheral surface of the cylindrical main body to the middle of the flow path. And a plurality of baffle plates 62 arranged at intervals along the longitudinal direction of the cylindrical main body. The end of the cylindrical main body 60 is provided with a flange 64, and is joined to flanges 66 'and 68' of the pipes 66 and 68 constituting the injection water pipe 12 of FIG. As shown in FIGS. 6 and 7, each baffle plate 62 constitutes a baffle plate assembly 72 by being welded and fixed to the inner peripheral surface of the corresponding cylindrical member 70. The cylindrical members 70 in the baffle plate assembly 72 are sequentially inserted into the cylindrical main body 60, whereby the plurality of baffle plates 62 can be arranged at intervals in the longitudinal direction. As shown in FIG. 9, the baffle plate 62 extends from the inner peripheral surface of the cylindrical member 70 to a free end edge 62 </ b> A that slightly exceeds the center line, and the distance L between the opposing surface of the cylindrical body 60 is this. The effective diameter of the cylindrical body. The free edge 62A extends linearly in this embodiment (see FIG. 10). As shown in FIG. 9, the front surface of the baffle plate 62 is inclined downstream in the flow direction of the injected water (arrow a), and a smooth flow of injected water in the cylindrical main body 60 can be obtained. Accumulation of foreign matter can be prevented. In addition, a large number of grooves 62-1 and 62-2 are formed on the front surface and the rear surface of the baffle plate 62, respectively, and the injected water collides with these grooves 62-1 and 62-2 so that the flow of the injected water is increased. Can be disturbed and contribute to the crushing of bubbles. In the embodiment of FIG. 6, the plurality of baffle plates 62 are arranged with their phases alternately turned 180 degrees in the adjacent longitudinal direction. However, the present invention is not necessarily limited to this arrangement, and any arrangement is possible. In this embodiment, each baffle plate 62 can take four types of angular positions of 0, 90, 180, and 270 degrees. That is, the cylindrical member 70 in the baffle plate assembly 72 has a positioning projection 73 (see also FIG. 12) having a triangular cross section as shown in FIG. The other end face has four cutouts 74 (see also FIG. 13) that are spaced 90 degrees apart from each other in the circumferential direction as shown in FIG. 11, and these positioning projections 73 and the cutouts 74 are mutually connected. The dimensions are such that they can be fitted substantially without play. Therefore, in the pair of baffle plate assemblies 72 adjacent to each other in the longitudinal direction, the end surface on which the projection 73 of one cylindrical member 70 is formed and the end surface on which the notch 74 is formed are opposed to each other, and the positioning projection 73 is formed on the opposing surface. By fitting an appropriate one of the four cutouts 74, the relative angular position of the pair of baffle plates 62 adjacent in the longitudinal direction is set to four relative angles of 0, 90, 180, and 270 degrees. Any relative angular position of the position can be taken. For example, FIG. 14 shows a water flow mixer 120 according to another embodiment, and a plurality of baffle plates 62 are arranged in the longitudinal direction of the cylindrical main body 60 at intervals in the same manner as in FIG. A plurality of baffle plates composed of two baffle plates 62 adjacent to each other are arranged at 180 ° symmetrical positions. Such a configuration can also be applied in the same manner, and a plurality of baffle plates can be arranged at arbitrary angular positions in the longitudinal direction in addition to FIGS. 6 and 14.

水流混合器20は加圧ポンプ18からのオゾン含有注入水に撹乱を付与し、注入水中のオゾン含有気泡を破砕する機能を達成するものである。即ち、加圧ポンプ18(図1)により、例えば0.5MPa、といった圧力の注入水が得られ、このとき大気圧(0.0MPa)と比較して溶解度が大きくなりより大量のオゾンを溶解させることができる。しかしながら、過剰分があるので過剰分についてはオゾン含有気泡となる。このオゾン含有気泡は水流混合器20の通過時に邪魔板62が抵抗となり、流れが撹乱を受け、気泡を破砕することができる。水流混合器を使用した通常の加圧浮上装置では水流混合器が配管を介して加圧浮上槽に連結され、加圧ポンプで0.5MPaの注入水を生成する例の場合には水流混合器の圧力降下は0.5MPaとなる。この場合に邪魔板の流路抵抗を大きくすることにより邪魔板通過時における高圧損及び高流速を得ている。しかしながら、このように微細気泡の発生を水流混合器のみに依拠した従来の構成では水流混合器での高圧損を得るため邪魔板の開口面積が小さくなり、汚水の処理の場合には汚水中の異物が邪魔板に引っかかり、閉塞が起こり易く、実用には供し難かった。この発明では水流混合器20としては圧力降下の小さいものとし、水流混合器20の圧力降下として例えば0.1MPa程度のものとしている。即ち、水流混合器の有効径を定める邪魔板62の部位で流路間隙の寸法Lはこの0.1MPaの設定圧力降下が得られるように設計されている。水流混合器20で賄うことができない、残りの0.5MPa-0.1MPa=0.4MPaの分の圧力降下は圧力調整弁22で賄うようにし、換言すれば、図3に示す、圧力調整弁22の絞り位置での弁通路34の有効面積は前記の0.4MPaの圧力降下が得られるようにしている。従って、通常時の圧力調整弁22による絞り開度は汚水処理の場合汚水中の異物による閉塞の懸念があるが、圧力調整弁22が異物による閉塞を起こした場合は、圧力調整弁22を全開とすることにより絞り状態を解消することにより異物の流通を促し、異物による閉塞を解消せしめている。この発明の実施形態において水流混合器20は汚水処理システムにおける加圧浮上槽においてオゾン含有微細気泡の形成のため使用されているため、汚水中に必ず含まれる異物による閉塞の対策として水流混合器20は0.1MPa程度の低圧力降下で低流速となるように邪魔板62の開口面積を設計しているが、この発明の水流混合器20の構造は汚水以外の例えば浄水の処理にも使用可能であり、この場合は異物による閉塞の恐れを考慮しなくて良いので高圧損・高流速となるように設計することが可能である。   The water flow mixer 20 perturbs the ozone-containing injected water from the pressure pump 18 and achieves the function of crushing the ozone-containing bubbles in the injected water. That is, injection water having a pressure of, for example, 0.5 MPa is obtained by the pressurizing pump 18 (FIG. 1), and at this time, the solubility is increased compared with the atmospheric pressure (0.0 MPa), so that a larger amount of ozone can be dissolved. it can. However, since there is an excess amount, the excess amount becomes an ozone-containing bubble. When the ozone-containing bubbles pass through the water flow mixer 20, the baffle plate 62 becomes a resistance, the flow is disturbed, and the bubbles can be crushed. In the case of a normal pressure flotation device using a water flow mixer, the water flow mixer is connected to a pressure flotation tank via a pipe, and in the case of generating an injection water of 0.5 MPa with a pressure pump, The pressure drop is 0.5 MPa. In this case, the flow path resistance of the baffle plate is increased to obtain a high pressure loss and a high flow velocity when passing through the baffle plate. However, in the conventional configuration in which the generation of fine bubbles is based only on the water flow mixer, the opening area of the baffle plate is reduced in order to obtain a high pressure loss in the water flow mixer. The foreign matter was caught on the baffle plate, and the blockage was likely to occur, which was difficult to put into practical use. In the present invention, the water mixer 20 has a small pressure drop, and the water mixer 20 has a pressure drop of, for example, about 0.1 MPa. That is, the dimension L of the flow passage gap is designed so as to obtain this set pressure drop of 0.1 MPa at the portion of the baffle plate 62 that determines the effective diameter of the water flow mixer. The pressure drop of the remaining 0.5 MPa-0.1 MPa = 0.4 MPa that cannot be covered by the water flow mixer 20 should be covered by the pressure adjustment valve 22, in other words, the restriction of the pressure adjustment valve 22 shown in FIG. The effective area of the valve passage 34 at the position is such that the pressure drop of 0.4 MPa is obtained. Therefore, the throttle opening degree by the pressure regulating valve 22 at the normal time may be clogged by foreign matter in sewage in the case of sewage treatment, but when the pressure regulating valve 22 is clogged by foreign matter, the pressure regulating valve 22 is fully opened. By eliminating the throttle state, the flow of foreign matter is promoted, and the blockage by the foreign matter is eliminated. In the embodiment of the present invention, the water mixer 20 is used to form ozone-containing fine bubbles in the pressurized flotation tank in the sewage treatment system. Although the opening area of the baffle plate 62 is designed so that the flow rate is low with a low pressure drop of about 0.1 MPa, the structure of the water flow mixer 20 of the present invention can be used for the treatment of purified water other than sewage, for example. In this case, it is not necessary to consider the possibility of clogging by foreign matter, so that it can be designed to have a high pressure loss and a high flow rate.

この発明では水流混合器20は圧力降下としては0.1MPa程度と小さいものであり、汚水を流通させてもその中に含まれる異物の閉塞は起こし難いものであるが、汚水中によく含まれる髪の毛などの絡みやすい異物については閉塞を起こす懸念がある。その対策として、この図7に示す実施形態においては、邪魔板62の自由端縁62Aは端から端まで直線状に形成しており、直線状の自由端縁62Aとすることにより汚水処理に使用しても汚水中に含まれることが多い、髪の毛のような絡みやすい異物があっても停滞することなくスムースに通過しうるため閉塞を起こり難くすることができる。邪魔板62の構造としては図7のような端から端まで直線的な直線状の自由端縁62Aの代りに、髪の毛のような異物に対して絡みつきを少なくしうる別の自由端縁形状として、図15の如きものを採用することができる。図15(イ)の実施形態では邪魔板162は一端が筒状部材70の内周面に溶接され、半径方向に延びる構造となっているのは同様であるが、邪魔板162の自由端縁162Aは中心に向けて凹んだ実質的にV字形状をなしている。邪魔板162の自由端縁162Aのこの形状によって、汚水中の毛髪などを邪魔板162に絡み付き難くすることができる。図15(ロ)は別の実施形態の邪魔板262を示しており、この実施形態では邪魔板262の自由端縁262Aは中心に向けてアーチ状に凹んだ形状をなしている。また、図15(ハ)に示す別実施形態においては邪魔板362の自由端縁362Aは中央では直線状であるが、両端が直線状に曲折しており、この実施形態においても邪魔板362の自由端縁362Aは中央で凹んだ形状をなしている。   In the present invention, the water flow mixer 20 has a small pressure drop of about 0.1 MPa, and even if sewage is circulated, it is difficult for the foreign matter contained therein to be clogged. There is a concern that clogging of foreign matters such as As a countermeasure, in the embodiment shown in FIG. 7, the free end edge 62A of the baffle plate 62 is formed linearly from end to end, and is used for sewage treatment by forming a straight free end edge 62A. Even if there is a foreign matter that is often included in the sewage and tends to get entangled, it can pass smoothly without stagnation, so that the blockage can be made difficult to occur. As the structure of the baffle plate 62, instead of the straight free end edge 62A that is linear from end to end as shown in FIG. 7, another free end shape that can reduce the entanglement of foreign matter such as hair is used. A thing as shown in FIG. 15 can be adopted. In the embodiment shown in FIG. 15 (a), the baffle plate 162 has the same structure in which one end is welded to the inner peripheral surface of the cylindrical member 70 and extends in the radial direction. 162A is substantially V-shaped recessed toward the center. With this shape of the free edge 162A of the baffle plate 162, it is possible to prevent the hair in the sewage from getting tangled with the baffle plate 162. FIG. 15 (b) shows a baffle plate 262 of another embodiment. In this embodiment, the free end edge 262A of the baffle plate 262 has a shape recessed in an arch shape toward the center. In addition, in another embodiment shown in FIG. 15C, the free end edge 362A of the baffle plate 362 is linear at the center, but both ends are bent linearly. In this embodiment, the baffle plate 362 is also bent. The free edge 362A has a concave shape at the center.

以下、この発明のオゾン含有微細気泡発生装置の作動を説明する。即ち、この発明の基本的動作のアウトラインは次の通りで、圧力調整弁22は通常運転にあってはその開度は例えば0.4MPaといった大きな圧力降下を生ずる開度(絞り状態)に設定され、そのため、0.1MPaといった低圧力降下での水流混合器20における気泡の破砕と高圧損の圧力調整弁22からの実質的に直接的な注入水流出とによって、被処理水収容槽10における効率的な微細気泡形成作用を得ることができる。そして、汚水中の異物は圧力降下の大きい圧力調整弁22の絞り部に閉塞しうるが、閉塞発生時にはこれを検出し、閉塞状態を回避せしめ圧力調整弁22を自動的に全開とすることにより異物を流出せしめ、閉塞状態が回避された場合は、圧力調整弁22を本来の絞られた開度とする。他方、閉塞状態が解消しない場合は各機器を停止せしめ、必要な対応を促すようにしている。このような機器制御はマイクロコンピュータ等を有した図示しない制御回路によって行われる。以下、図16のフローチャートを参照しながら、この発明の実施形態のオゾン含有微細気泡発生装置の動作を詳細に順を追って説明すると、装置起動時にブロック100の処理により弁閉塞検出回数Nの設定が行われる。即ち、この実施形態においては、圧力調整弁22の絞り部への異物の閉塞を検出した場合、圧力調整弁22の開閉が弁閉塞検出回数(N)繰り返され、弁閉塞検出回数の圧力調整弁22の開閉の繰り返しに係わらず、閉塞状態が解消しない場合に、故障と判断して運転停止を行うようにしている。この実施形態ではこの弁閉塞検出回数Nを3回としている。次のブロック102の処理では定常運転開始のための圧力調整弁22の開度設定が行われる。即ち、装置停止時には圧力調整弁22は全閉状態にあり、弁通路34(図2)は完全閉鎖位置にあるが、定常運転の開始のため電動モータ26に駆動信号が送られ、圧力調整弁22の球状弁体30は図2の実線の所定開度位置(絞り状態)まで回動される。この所定開度位置における球状弁体30の位置は図3にて示され、球状弁体30により絞られた弁通路34の開口面積は上述の例では圧力調整弁22を通過時に0.4MPaの圧力降下を惹起するように設定されたものである。次のブロック104の処理では流量計16による注入水配管12内の流量の計測値所定値Lより小さいか否かの判断が行われる。即ち、定常運転時は圧力調整弁22は上記の所定開度に絞られており、異物による閉塞が生じない限りは、注入水配管12における汚水の流量はこの所定開度に応じたものである。従って、異物による閉塞がない限りは流量≧Lの判定結果となり、処理ブロック104の判断結果はNoであり、ブロック102に戻り、圧力調整弁22は設定開度を維持され、定常運転が継続される。   Hereinafter, the operation of the ozone-containing fine bubble generator of the present invention will be described. That is, the outline of the basic operation of the present invention is as follows. In the normal operation, the opening of the pressure regulating valve 22 is set to an opening (throttle state) that causes a large pressure drop such as 0.4 MPa, Therefore, the crushing of the bubbles in the water flow mixer 20 at a low pressure drop of 0.1 MPa and the substantially direct injection water outflow from the pressure regulating valve 22 with a high pressure loss make it efficient in the treated water storage tank 10. A fine bubble forming action can be obtained. The foreign matter in the sewage can be blocked by the throttle portion of the pressure adjustment valve 22 having a large pressure drop. By detecting this when the blockage occurs, the pressure adjustment valve 22 is automatically fully opened by avoiding the blockage. When the foreign matter is allowed to flow out and the closed state is avoided, the pressure adjustment valve 22 is set to the original throttle opening. On the other hand, if the blocked state cannot be resolved, each device is stopped to prompt the necessary response. Such device control is performed by a control circuit (not shown) having a microcomputer or the like. Hereinafter, the operation of the ozone-containing fine bubble generating apparatus according to the embodiment of the present invention will be described in detail with reference to the flowchart of FIG. 16. When the apparatus is activated, the setting of the number of valve blockage detections N is performed by the processing of block 100. Done. That is, in this embodiment, when the blockage of the foreign matter to the throttle part of the pressure regulating valve 22 is detected, the opening / closing of the pressure regulating valve 22 is repeated the number of times of valve closing detection (N). In the case where the closed state is not resolved regardless of the repeated opening and closing of 22, the operation is stopped by determining that it is a failure. In this embodiment, the valve blockage detection count N is set to 3 times. In the processing of the next block 102, the opening degree of the pressure regulating valve 22 for starting steady operation is set. That is, when the apparatus is stopped, the pressure adjustment valve 22 is in a fully closed state and the valve passage 34 (FIG. 2) is in a fully closed position, but a drive signal is sent to the electric motor 26 to start steady operation, and the pressure adjustment valve The 22 spherical valve bodies 30 are rotated to a predetermined opening position (a throttle state) indicated by a solid line in FIG. The position of the spherical valve body 30 at the predetermined opening position is shown in FIG. 3, and the opening area of the valve passage 34 throttled by the spherical valve body 30 is 0.4 MPa when passing through the pressure regulating valve 22 in the above example. It was set to trigger a descent. In the processing of the next block 104, it is determined whether or not the measured value of the flow rate in the injection water pipe 12 by the flow meter 16 is smaller than a predetermined value L. That is, during steady operation, the pressure regulating valve 22 is throttled to the above predetermined opening, and the flow rate of sewage in the injection water pipe 12 is in accordance with this predetermined opening as long as no foreign matter is blocked. . Therefore, as long as there is no blockage due to foreign matter, the determination result of flow rate ≧ L is obtained, the determination result of the processing block 104 is No, the process returns to block 102, the pressure adjustment valve 22 is maintained at the set opening degree, and the steady operation is continued. The

処理ブロック104で注入水配管12の流量値≧Lであり、圧力調整弁22の閉塞が生じていないとの判断が継続する限りは、圧力調整弁22はブロック102の処理により得られた所定開度位置(圧力調整弁22は絞り状態)に保持される。この定常運転においては、オゾン発生器24からのオゾンを含有した酸素は注入水配管12に導入され、加圧ポンプ18により加圧され、溶解度の範囲内の気体は注入水中に溶解され、余分な気体は気泡となるが、邪魔板62による撹乱作用により気泡の破砕が行われる。そして、水流混合器20により破砕された微細気泡を含んだ注入水は圧力調整弁22を通過し、被処理水収容槽10に放出せしめられる。そして、圧力調整弁22の通過時の圧力降下により注入水中に溶け込んだ気体は余剰分が気泡となる。被処理水収容槽10に放出された気泡には余剰分としてもともと注入水配管12に含まれていたものと圧力調整弁22の通過時に生じたものとが混在している。そして、被処理水収容槽10に放出される気泡は微細なものとなっている。即ち、注入水配管12にもともと含まれていた気泡は水流混合器20の通過により破砕されており、また、圧力調整弁22はその排出口38が長さの極度に短縮された出口ホーン44を介して被処理水収容槽10に開口しているため、圧力調整弁22の絞り部を通過することにより生じた気泡は狭隘な配管内に実質的に留まることなく直接的に被処理水収容槽10に放出されるため、気泡同士の凝集が起こる余地がなく微細気泡の状態を保つのである。そのため、オゾン及び酸素の混合気泡は配管中を実質的に通らずそのまま実質的に直接に被処理水収容槽10に放出され、微細気泡の状態を維持する。そのため、被処理水収容槽10には浮上速度が低い大量の微細気泡(数〜数10μmの径)が生成せしめれ、微細気泡の浮上速度は遅いため、被処理水収容槽10における汚水中の雑菌との充分な接触時間が得られるため、所望の殺菌効果を得ることができる。そして、気泡が被処理水収容槽10中を浮上する間にオゾンを実質的に使い尽くすことができるため大気中へのオゾンの排出が行われず若しくは排出量が少なくなり、排オゾン設備を省略若しくは排オゾン処理装置を軽微なもので済ませることができ、コスト削減を図ることができる。   As long as it is determined in the process block 104 that the flow rate value of the injection water pipe 12 is ≧ L and the pressure control valve 22 is not blocked, the pressure control valve 22 is kept at the predetermined opening obtained by the process of the block 102. The degree position (the pressure adjusting valve 22 is in the throttle state) is held. In this steady operation, the oxygen containing ozone from the ozone generator 24 is introduced into the injection water pipe 12 and pressurized by the pressurizing pump 18, and the gas within the solubility range is dissolved in the injection water, and excess The gas becomes bubbles, but the bubbles are crushed by the disturbing action of the baffle plate 62. Then, the injected water containing fine bubbles crushed by the water flow mixer 20 passes through the pressure regulating valve 22 and is discharged to the treated water storage tank 10. The surplus gas is dissolved in the injected water due to the pressure drop when passing through the pressure regulating valve 22 to become bubbles. The bubbles released into the water-to-be-treated storage tank 10 include a mixture of what was originally contained in the injection water pipe 12 as an excess and what was generated when the pressure regulating valve 22 passed. And the bubble discharge | released to the to-be-processed water accommodation tank 10 is a fine thing. That is, bubbles originally contained in the injection water pipe 12 are crushed by passing through the water flow mixer 20, and the pressure regulating valve 22 has an outlet horn 44 whose discharge port 38 is extremely shortened in length. Therefore, the bubbles generated by passing through the throttle portion of the pressure regulating valve 22 do not substantially remain in the narrow pipe and are directly treated. Therefore, there is no room for air bubbles to aggregate, and the state of fine bubbles is maintained. For this reason, the mixed bubbles of ozone and oxygen do not substantially pass through the piping, but are directly discharged into the treated water storage tank 10 as they are, and the state of fine bubbles is maintained. Therefore, a large amount of fine bubbles (diameter of several to several tens of μm) having a low floating speed are generated in the treated water storage tank 10 and the floating speed of the fine bubbles is slow. Since sufficient contact time with various germs can be obtained, a desired bactericidal effect can be obtained. Further, since the ozone can be substantially exhausted while the bubbles rise in the treated water storage tank 10, the ozone is not discharged into the atmosphere or the discharge amount is reduced, and the exhaust ozone facility is omitted or The exhaust ozone treatment apparatus can be completed with a small amount, and the cost can be reduced.

定常運転の継続により注入水配管12における最も絞られた部位である圧力調整弁22(弁通路34を絞る球状弁体30の部位)に汚水中の異物による閉塞が生じうるが、異物の閉塞が生ずると流量計16により計測される注入水配管12中の注入水流量は低下し、注入水流量<所定値Lとなる。この場合、図16のブロック104の判断はYesとなり、処理ブロック106に進み、閉塞状態が記憶され、ディスプレイに必要な表示がされ、場合によっては警報を鳴らすなどの処理が行われる。次のブロック108では弁閉塞検出回数N<1か否かが判定され、閉塞発生の当初においてはブロック100によりN=3にセットされていることから、ブロック108での判断はNoであり、ブロック110に流れ、圧力調整弁22をその開度を全開とするべく制御が行われる。即ち、電動モータ26に球状弁体30を図2の矢印f方向に回動すべき信号が送られ、球状弁体30はその弁通路34が2点鎖線34Aにて示すように全開となり、弁通路34の有効開口面積=吸入口・排出口36, 38の開度となる。ブロック112では弁閉塞検出回数Nの現在値から1引かれたものが弁閉塞検出回数Nの新規値とされ、ブロック114では時間待ちタイマに1秒が設定され、電動モータ26への圧力調整弁22の全開信号の供給が継続される。次のブロック116では注入水流量が所定値Lより小さいか否か判別され、ブロック116の判断がNoの場合は圧力調整弁22の全開によって通過流量が増大し、換言すれば、閉塞状態が解消したことを意味する。この場合はブロック118でタイマにより20秒の待機を行い、その後ブロック120で所定流量が確保されているか否か(即ち流量≧L)が確認され、流量≧Lの場合は定常運転に復帰可能と判断し、ブロック122では閉塞検出記憶がリセットされ、ディスプレイに必要な表示がされ、警報が出ていたらそれは解除される。そして、ブロック124では弁閉塞検出回数Nが初期値3に設定され、ブロック126では定常運転時の復帰が行われる。即ち、この時点では圧力調整弁22の球状弁体30は全開位置(弁開口は2点鎖線34Aの状態)にあるが、電動モータ26には球状弁体30を矢印fと反対方向に図2の実線で示す所定開度位置まで回転せしめる信号が送られる。その結果、注入水配管12を絞ることにより所期の圧力降下を惹起せしめる圧力調整弁22の通常動作へ復帰される。   Due to the continuation of the steady operation, the pressure regulating valve 22 (the part of the spherical valve body 30 that restricts the valve passage 34), which is the most restricted part in the injection water pipe 12, may be clogged with foreign matter in the sewage. When it occurs, the injected water flow rate in the injected water pipe 12 measured by the flow meter 16 decreases, and the injected water flow rate <the predetermined value L. In this case, the determination in block 104 of FIG. 16 is Yes, and the process proceeds to processing block 106 where the closed state is stored, a necessary display is displayed, and an alarm is sounded in some cases. In the next block 108, it is determined whether or not the number of valve occlusion detections N <1, and since N = 3 is set by the block 100 at the beginning of the occurrence of the occlusion, the determination in block 108 is No. The control is performed so that the opening degree of the pressure regulating valve 22 is fully opened. That is, a signal for rotating the spherical valve body 30 in the direction of the arrow f in FIG. 2 is sent to the electric motor 26, and the valve passage 34 of the spherical valve body 30 is fully opened as indicated by a two-dot chain line 34A. The effective opening area of the passage 34 is the opening of the inlet / outlet 36, 38. In block 112, a value obtained by subtracting 1 from the current value of the valve blockage detection count N is set as a new value of the valve blockage detection count N. In block 114, 1 second is set in the time waiting timer, and the pressure adjustment valve to the electric motor 26 is set. The supply of the 22 fully open signal is continued. In the next block 116, it is determined whether or not the injected water flow rate is smaller than the predetermined value L. If the determination in block 116 is No, the flow rate increases by fully opening the pressure regulating valve 22, in other words, the blocked state is eliminated. Means that In this case, the timer waits for 20 seconds by the timer in block 118, and then it is confirmed in block 120 whether or not the predetermined flow rate is secured (that is, flow rate ≧ L). At block 122, the occlusion detection memory is reset, the necessary display is made on the display, and if an alarm is issued, it is canceled. Then, in block 124, the valve closing detection count N is set to an initial value 3, and in block 126, a return is made during steady operation. That is, at this time, the spherical valve body 30 of the pressure regulating valve 22 is in the fully open position (the valve opening is in the state of the two-dot chain line 34A), but the electric motor 26 places the spherical valve body 30 in the direction opposite to the arrow f in FIG. A signal for rotating to a predetermined opening position indicated by a solid line is sent. As a result, the pressure regulating valve 22 that causes the desired pressure drop is returned to the normal operation by narrowing the injection water pipe 12.

ブロック116での判断がNOの場合は、圧力調整弁22を全開とするべく電動モータ26に信号を出力してから1秒経過したが、注入水流量は所定値まで達せず、換言すれば圧力調整弁22は開かれず圧力調整弁の閉塞状態が依然解消していないことを意味し、このときはブロック108に戻り、圧力調整弁22を全開とするための電動モータ26への駆動信号を形成するための2回目若しくは3回目の処理が実施され、この処理により流量が所定値Lまで増大するとブロック116の判断がNOとなるため前述のブロック118, 120, 122を通過し、定常運転に復帰する。   If the determination in block 116 is NO, 1 second has passed since the signal was output to the electric motor 26 to fully open the pressure regulating valve 22, but the injected water flow rate did not reach the predetermined value, in other words, the pressure This means that the regulating valve 22 is not opened and the closed state of the pressure regulating valve has not yet been resolved. At this time, the process returns to the block 108 to form a drive signal to the electric motor 26 for fully opening the pressure regulating valve 22. When the flow rate increases to the predetermined value L by this processing, the determination of block 116 becomes NO, so the process passes through the above-described blocks 118, 120, 122 and returns to the steady operation. To do.

圧力調整弁22を全開とするための3回目の操作にも係わらず流量が戻らず閉塞状態が解消しない場合はN=0となっているためブロック108での判断がYESとなり、ブロック128に進み、低流量故障と判断し、必要な表示若しくは警告等を行い、ブロック130では連動運転解除し、ブロック132で各機器への停止信号を出力する。フローチャートにおけるブロック108〜120及びブロック128の部分がこの発明の故障判定手段を構成する。   If the flow rate does not return and the closed state is not resolved despite the third operation for fully opening the pressure regulating valve 22, N = 0, so the determination at block 108 is YES and the process proceeds to block 128. Then, it is determined that the flow rate is low, a necessary display or warning is given, the interlock operation is canceled in block 130, and a stop signal is output to each device in block 132. Blocks 108 to 120 and block 128 in the flowchart constitute failure determination means of the present invention.

図17及び図18はこの発明の別実施形態を示しており、この実施形態においては第1の実施形態における圧力調整弁22が省略され、その代わりに注入水タンク214からの注入水配管212の端部に水流混合器220が直列に二個設けられ、二個の水流混合器220における下流側の水流混合器220が直接若しくは比較的短い出口管221を介し、即ち、実質的に直接に被処理水収容槽210に開口している。水流混合器220の構造は基本的には図6若しくは図14に関連して記載されたものと同一構造であり、相違点を中心に図18について説明すると、各水流混合器220はそれぞれが邪魔板262(邪魔板の自由端縁の形状自体は図7、図10、図11、図15に記載のものと同様直線状をなすか若しくは流路中心に向けて凹んでいる)を備えた8個の筒状部材260を備え、8個の筒状部材260は通しボルト280とナット282とにより直列に(一連に)連結され、最上流から最下流まで筒状部材260が固定された構造となっている。また、水流混合器220は底部に被処理水収容槽210への固定するための脚部283を備えると共に、一端に相互連結用の連結管284が設けられ、連結管284の端部には接続用フランジ286が設けられる。即ち、この実施形態における二つの水流混合器220が接続用フランジ286同士でボルト288及びナット290により直列に連結されている。そのため、オゾン発生器224からのオゾンを混入された、注入水タンク214からの注入水は加圧ポンプ218で加圧後に一連の2個の水流混合器220を通過後に被処理水収容槽210に噴出される。   17 and 18 show another embodiment of the present invention. In this embodiment, the pressure regulating valve 22 in the first embodiment is omitted, and instead of the injection water pipe 212 from the injection water tank 214, FIG. Two water flow mixers 220 are provided in series at the ends, and the downstream water flow mixers 220 of the two water flow mixers 220 are covered directly or through a relatively short outlet pipe 221, that is, substantially directly. The treated water storage tank 210 is opened. The structure of the water flow mixer 220 is basically the same as that described with reference to FIG. 6 or FIG. 14, and FIG. 18 will be described focusing on the differences. 8 provided with a plate 262 (the shape of the free edge of the baffle plate itself is linear or recessed toward the center of the flow path as in FIGS. 7, 10, 11 and 15). Each of the eight cylindrical members 260 is connected in series (in series) by a through bolt 280 and a nut 282, and the cylindrical member 260 is fixed from the most upstream to the most downstream. It has become. Further, the water flow mixer 220 is provided with a leg portion 283 for fixing to the treated water storage tank 210 at the bottom, and is provided with a connecting pipe 284 for mutual connection at one end and connected to the end of the connecting pipe 284. A flange 286 is provided. That is, the two water flow mixers 220 in this embodiment are connected in series by the bolts 288 and the nuts 290 between the connecting flanges 286. Therefore, the injection water from the injection water tank 214 mixed with ozone from the ozone generator 224 is pressurized by the pressure pump 218 and then passes through a series of two water flow mixers 220 and then into the treated water storage tank 210. Erupted.

図17及び図18の実施形態ではオゾンを含有した加圧された注入水は一連の2個の水流混合器220の8×2=16枚の邪魔板262を通過する。第1の実施形態における図6に関連して既に説明したように水流混合器220での圧力損失自体は比較的小さい。しかしながら、二つの水流混合器220の直列配置により所望の数の邪魔板262を設けることで、オゾン含有気泡の所望の微細化が行うことができ、かつ水流混合器220を実質的に直接被処理水収容槽210に開口させることで、長い出口管を使用したとすると起こりうる気泡の相互凝集を起こさせることなく、微細気泡の状態のままで被処理水収容槽210に噴出させることができ、所期の殺菌・消毒性能を得ることができる。   In the embodiment of FIGS. 17 and 18, the pressurized injected water containing ozone passes through 8 × 2 = 16 baffle plates 262 of a series of two water flow mixers 220. As already described in connection with FIG. 6 in the first embodiment, the pressure loss itself in the water flow mixer 220 is relatively small. However, by providing the desired number of baffle plates 262 by the serial arrangement of the two water mixers 220, the desired refinement of the ozone-containing bubbles can be performed, and the water mixer 220 is substantially directly treated. By opening the water storage tank 210, without causing mutual aggregation of bubbles that may occur if a long outlet pipe is used, the water storage tank 210 can be ejected to the treated water storage tank 210 in the state of fine bubbles. The expected sterilization / disinfection performance can be obtained.

夫々邪魔板262を内臓した筒状部材260を直列させボルト280及びナット282により一体に組み立てた図18の連結構造は、異物の詰まりがあった場合に、ボルト280及びナット282を弛緩させることにより水流混合器220の分解を容易に行うことができ、水流混合器のメンテナンス上有利である。   The connection structure of FIG. 18 in which the cylindrical members 260 each incorporating the baffle plate 262 are connected in series and assembled integrally with the bolts 280 and nuts 282 allows the bolts 280 and nuts 282 to be relaxed when foreign matter is clogged. The water flow mixer 220 can be easily disassembled, which is advantageous in terms of maintenance of the water flow mixer.

尚、水流混合器220は2個に限らず、所望の数の水流混合器220を直列配置することができ、また、水流混合器220を1個とし、そこに内臓する邪魔板262を所期の気泡微細化を実現できる枚数(上記例では8枚)に増大させることで、同等の作用効果を奏することができる。   Note that the number of water flow mixers 220 is not limited to two, and a desired number of water flow mixers 220 can be arranged in series, and one water flow mixer 220 is provided, and a baffle plate 262 built therein is intended. By increasing the number of the bubbles to 8 (in the above example, 8) that can realize the bubble miniaturization, the same effect can be obtained.

図1はこの発明の実施形態における微細気泡発生装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a microbubble generator according to an embodiment of the present invention. 図2は図1の微細気泡発生装置における圧力調整弁の概略的断面図である。FIG. 2 is a schematic cross-sectional view of a pressure regulating valve in the fine bubble generator of FIG. 図3は図2のIII方向から見た矢視図であり、注入水配管の絞り状態における球状弁体と弁通路との位置関係を説明するものである。FIG. 3 is an arrow view seen from the direction III in FIG. 2 and explains the positional relationship between the spherical valve element and the valve passage when the injection water pipe is throttled. 図4は微細気泡発生装置において圧力調整弁及び駆動用の電動モータ及び水面から圧力調整弁の配管の部分までよりなる投げ込み型組立体の側面図である。FIG. 4 is a side view of a throwing type assembly including a pressure regulating valve, an electric motor for driving, and a water surface to a piping portion of the pressure regulating valve in the fine bubble generating device. 図5は図4の投げ込み型組立体の正面図である。FIG. 5 is a front view of the throwing type assembly of FIG. 図6は図1における水流混合器の長手方向に沿った断面図である。FIG. 6 is a cross-sectional view along the longitudinal direction of the water flow mixer in FIG. 図7は図6におけるVII−VII線に沿って表される矢視断面図である。FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG. 図8は図6におけるVIII−VIII線に沿って表される矢視図である。FIG. 8 is a view taken along the line VIII-VIII in FIG. 図9は邪魔板とその固定用の筒状部材とから成る組立体の縦断面図(図10のIX−IX線に沿って表される矢視断面図)である。FIG. 9 is a longitudinal cross-sectional view (a cross-sectional view taken along the line IX-IX in FIG. 10) of an assembly including a baffle plate and a cylindrical member for fixing the baffle plate. 図10は図9の組立体の左側面図である。FIG. 10 is a left side view of the assembly of FIG. 図11は図9の組立体の右側面図である。FIG. 11 is a right side view of the assembly of FIG. 図12は図9におけるXII−XII線に沿って表される矢視断面図である。12 is a cross-sectional view taken along the line XII-XII in FIG. 図13は図9におけるXIII−XIII線に沿って表される矢視断面図である。13 is a cross-sectional view taken along the line XIII-XIII in FIG. 図14は別実施形態における水流混合器の長手方向に沿った断面図である。FIG. 14 is a cross-sectional view along the longitudinal direction of a water flow mixer in another embodiment. 図15(イ)(ロ)(ハ)はそれぞれ別実施形態における邪魔板の自由端縁形状を示す図である。FIGS. 15A, 15B and 15C are views showing the free edge shape of the baffle plate in different embodiments. 図16はこの発明の微細気泡発生装置の動作を示すフローチャートである。FIG. 16 is a flowchart showing the operation of the fine bubble generator of the present invention. 図17はこの発明の別の実施形態における微細気泡発生装置の概略構成図である。FIG. 17 is a schematic configuration diagram of a microbubble generator according to another embodiment of the present invention. 図18は図17における水流混合器の詳細側面図である。FIG. 18 is a detailed side view of the water flow mixer in FIG.

符号の説明Explanation of symbols

10, 210…被処理水収容槽(被処理部)
12, 212…注入水配管
14, 214…注入水タンク
16…流量計(検出手段)
18, 218…加圧ポンプ
20, 220…水流混合器
22…圧力調整弁
24, 224…オゾン発生器(酸素含有気体導入手段)
26…電動モータ(電動駆動手段)
28…弁ハウジング
30…球状弁体
32…回転軸
34…弁通路
36…吸入口
38…排出口
40…筐体
44…出口ホーン
46…垂直支柱
60…筒状本体
62, 262…邪魔板
62A…邪魔板の自由端縁
70, 260…筒状部材
72…邪魔板組立体
73…突起
74…切欠
W…液面






10, 210 ... treated water storage tank (treated part)
12, 212 ... Injection water piping
14, 214 ... Injection water tank 16 ... Flow meter (detection means)
18, 218… Pressure pump
20, 220 ... Water flow mixer 22 ... Pressure regulating valve
24, 224 ... Ozone generator (oxygen-containing gas introduction means)
26: Electric motor (electric drive means)
28 ... Valve housing 30 ... Spherical valve body 32 ... Rotating shaft 34 ... Valve passage 36 ... Suction port 38 ... Discharge port 40 ... Housing 44 ... Outlet horn 46 ... Vertical support 60 ... Cylindrical body
62, 262 ... baffle plate 62A ... free edge of baffle plate
70, 260 ... cylindrical member 72 ... baffle plate assembly 73 ... projection 74 ... notch W ... liquid level






Claims (21)

水処理系における被処理部に開口された注入水配管と、注入水配管内における水流中に酸素含有気体を導入する酸素含有気体導入手段と、前記注入水配管中に設置され、酸素含有気体が導入された水流を加圧する加圧ポンプと、注入水配管に配置された水流混合器と、前記注入水配管中に位置された圧力調整弁と、圧力調整弁を開放するべく駆動する駆動手段とを具備して成ることを特徴とする微細気泡発生装置。   An injection water pipe that is opened to a treated part in the water treatment system, an oxygen-containing gas introduction means that introduces an oxygen-containing gas into a water flow in the injection water pipe, and the oxygen-containing gas is installed in the injection water pipe. A pressure pump for pressurizing the introduced water stream, a water flow mixer disposed in the injection water pipe, a pressure regulating valve located in the injection water pipe, and a driving means for driving the pressure regulating valve to be opened; A fine bubble generator characterized by comprising: 請求項1に記載の発明において、前記水流混合器における圧力降下の値より圧力調整弁での圧力降下の値が大きいことを特徴とする微細気泡発生装置。   2. The fine bubble generating device according to claim 1, wherein the pressure drop value at the pressure regulating valve is larger than the pressure drop value at the water flow mixer. 請求項1に記載の発明において、前記駆動手段は、前記圧力調整弁を開閉駆動する電動駆動手段と、前記圧力調整弁の上流における注入水配管に設置され、注入水配管の閉塞状態の有無を検出する検出手段と、前記検出手段により注入水配管の閉塞が有りと検出時に閉塞状態の解消のため前記圧力調整弁を開放するべく電動駆動手段を制御する制御手段とから成ることを特徴とする微細気泡発生装置。   In the invention according to claim 1, the drive means is installed in an electric drive means for opening and closing the pressure regulating valve and an injection water pipe upstream of the pressure adjustment valve, and the presence or absence of a blockage state of the injection water pipe is determined. It comprises detection means for detecting, and control means for controlling the electric drive means to open the pressure regulating valve to eliminate the blockage state upon detection that the injection water pipe is blocked by the detection means. Fine bubble generator. 請求項3に記載の発明において、前記電動駆動手段は被処理部における被処理水の液面より下方に位置されると共に、電動駆動手段及び圧力調整弁及び圧力調整弁への配管を流密収容する筐体を備え、筐体は上端が水面を超えて延出していることを特徴とする微細気泡発生装置。   According to a third aspect of the present invention, the electric drive means is positioned below the surface of the water to be treated in the portion to be treated, and the electric drive means, the pressure adjustment valve, and the piping to the pressure adjustment valve are flow-tightly accommodated. A fine bubble generating device characterized in that the housing has an upper end extending beyond the water surface. 請求項3に記載の発明において、前記制御手段による圧力調整弁の開放に係わらず閉塞状態が解消されない場合に故障と判定する故障判定手段を具備したことを特徴とする微細気泡発生装置。   4. The fine bubble generating apparatus according to claim 3, further comprising a failure determination unit that determines that a failure occurs when the closed state is not resolved regardless of the opening of the pressure regulating valve by the control unit. 請求項5に記載の発明において、前記故障判定手段は所定回数の圧力調整弁の開放操作を行い、所定回数の圧力調整弁の開放操作に係わらず閉塞状態が解消されない場合に故障と判定することを特徴とする微細気泡発生装置。   In the invention according to claim 5, the failure determination means performs a predetermined number of times of opening the pressure regulating valve, and determines that a failure has occurred when the closed state is not resolved regardless of the number of times of opening the pressure regulating valve. A microbubble generator characterized by the above. 請求項1に記載の発明において、前記圧力調整弁の排出口は実質的に直接的に水処理系における被処理部に開口するべく配置されていることを特徴とする微細気泡発生装置。   2. The fine bubble generator according to claim 1, wherein the discharge port of the pressure regulating valve is arranged to directly open to the portion to be treated in the water treatment system. 請求項1に記載の発明において、前記水流混合器は酸素含有気体が導入された水流が通過する筒状の本体と、夫々が筒状本体側に固定され、注入水の流路の途中まで実質的に半径方向に延び、筒状本体の長手方向に沿って間隔をおいて配置された複数の邪魔板とから構成されたことを特徴とする微細気泡発生装置。   In the invention according to claim 1, the water flow mixer has a cylindrical main body through which a water flow into which an oxygen-containing gas has been introduced, and each is fixed to the cylindrical main body side, and substantially in the middle of the flow path of the injected water. A microbubble generator characterized by comprising a plurality of baffle plates extending in the radial direction and arranged at intervals along the longitudinal direction of the cylindrical main body. 請求項8に記載の発明において、前記邪魔板の自由端縁は直線状若しくは流路の中心に向けて凹んだ形状をなしていることを特徴とする微細気泡発生装置。   9. The microbubble generator according to claim 8, wherein the free end edge of the baffle plate has a straight shape or a shape recessed toward the center of the flow path. 被処理水収容槽と、前記被処理水収容槽の底部付近に接続された注入水配管と、注入水配管内における水流中に酸素含有気体を導入する酸素含有気体導入手段と、前記注入水配管中に設置され、酸素含有気体が導入された水流を加圧する加圧ポンプと、加圧ポンプの下流において注入水配管に常態では水流を絞るべく位置された圧力調整弁と、必要時に圧力調整弁を開放するべく駆動する駆動手段とを具備し、圧力調整弁からの絞られた注入水の流れは実質的に直接的に前記被処理水収容槽中に放出されるように配置されたことを特徴とする微細気泡発生装置。   To-be-treated water storage tank, injection water pipe connected near the bottom of the to-be-treated water storage tank, oxygen-containing gas introduction means for introducing oxygen-containing gas into the water flow in the injection water pipe, and the injection water pipe A pressure pump that pressurizes the water stream with the oxygen-containing gas introduced therein, a pressure regulating valve that is normally positioned in the injection water piping downstream of the pressure pump to throttle the water stream, and a pressure regulating valve when necessary. Drive means for driving to release the water, and the flow of the squeezed injected water from the pressure regulating valve is disposed so as to be discharged substantially directly into the treated water storage tank. A feature of a fine bubble generator. 被処理水収容部と、前記被処理水収容部の底部付近に接続された注入水配管と、注入水配管内における水流中に酸素含有気体を導入する酸素含有気体導入手段と、前記注入水配管中に設置され、酸素含有気体が導入された水流を加圧する加圧ポンプと、加圧ポンプの下流において注入水配管に常態では水流を絞るべく位置された圧力調整弁と、必要時に圧力調整弁を開放するべく駆動する駆動手段とを具備し、前記圧力調整弁は被処理水収容槽の水面から所定深さに位置していることを特徴とする微細気泡発生装置。   To-be-treated water storage part, injection water pipe connected near the bottom of the to-be-treated water storage part, oxygen-containing gas introduction means for introducing oxygen-containing gas into the water flow in the injection water pipe, and the injection water pipe A pressure pump that pressurizes the water stream with the oxygen-containing gas introduced therein, a pressure regulating valve that is normally positioned in the injection water piping downstream of the pressure pump to throttle the water stream, and a pressure regulating valve when necessary. And a driving means for driving to open the gas, wherein the pressure regulating valve is located at a predetermined depth from the water surface of the treated water storage tank. 請求項11に記載の発明において、圧力調整弁の駆動のための前記駆動手段は電動式に構成され、圧力調整弁及び電動駆動手段は被処理水収容部における被処理水中に没するように位置され、少なくとも圧力調整弁及び電動駆動手段を流密に包囲する筐体を具備したことを特徴とする微細気泡発生装置。   In the invention according to claim 11, the driving means for driving the pressure regulating valve is configured to be electrically operated, and the pressure regulating valve and the electric driving means are positioned so as to be submerged in the treated water in the treated water storage section. A fine bubble generating apparatus comprising a housing that tightly surrounds at least the pressure regulating valve and the electric driving means. 請求項12に記載の発明において、注入水配管は被処理水収容部における水面の上方から圧力調整弁まで延びており、前記筐体は圧力調整弁及び電動駆動手段に加えて注入水配管における液面やや上方から圧力調整弁まで延びた部分を包囲することを特徴とする微細気泡発生装置。   In the invention described in claim 12, the injection water pipe extends from above the water surface in the treated water storage section to the pressure adjustment valve, and the casing is liquid in the injection water pipe in addition to the pressure adjustment valve and the electric drive means. A microbubble generator characterized in that it surrounds a portion extending from a slightly upper surface to a pressure regulating valve. 請求項1から13のいずれか一項に記載の発明において、前記酸素含有気体はオゾンを含有していることを特徴とする微細気泡発生装置。   14. The fine bubble generating device according to claim 1, wherein the oxygen-containing gas contains ozone. 水処理系における被処理部に開口された注入水配管中に使用され、加圧された流水を撹乱せしめる水流混合器であって、加圧された流水が通過する筒状本体と、筒状本体の長手方向に沿って間隔をおいて配置された複数の邪魔板とを備え、各邪魔板は筒状本体側の固定部から実質的に半径方向に流路の途中まで延びて流路の実質的全幅にわたる自由端縁を形成しており、各邪魔板の前記自由端縁はその全長において直線状をなすか若しくは流路中心に向けて凹んでいることを特徴とする水流混合器。   A water flow mixer that is used in an injection water pipe that is opened in a portion to be treated in a water treatment system and disturbs pressurized flowing water, and a cylindrical main body through which the pressurized flowing water passes, and a cylindrical main body A plurality of baffle plates arranged at intervals along the longitudinal direction of each of the baffle plates, and each baffle plate extends substantially radially from the fixing portion on the cylindrical body side to the middle of the flow path to substantially A water flow mixer characterized in that a free edge extending over the entire width is formed, and the free edge of each baffle plate is linear in its entire length or recessed toward the center of the flow path. 請求項15に記載の発明において、前記複数の邪魔板の各々は筒状本体内における加圧流水の流れ方向における前面において流れ方向における下流側に向けて幾分傾斜していることを特徴とする水流混合器。   The invention according to claim 15 is characterized in that each of the plurality of baffle plates is somewhat inclined toward the downstream side in the flow direction on the front surface in the flow direction of the pressurized flowing water in the cylindrical main body. Water flow mixer. 請求項15若しくは16に記載の発明において、前記邪魔板は加圧流水の流れ方向における前面若しくは後面において複数の溝を形成したことを特徴とする水流混合器。   The water flow mixer according to claim 15 or 16, wherein the baffle plate has a plurality of grooves formed on a front surface or a rear surface in a flow direction of the pressurized flowing water. 請求項15から17のいずれか一項に記載の発明において、前記各邪魔板は筒状本体に挿入される筒状部材に固定され、長手方向に隣接する筒状本体は筒状本体内において端部当接構造をなしていることを特徴とする水流混合器。   The invention according to any one of claims 15 to 17, wherein each baffle plate is fixed to a cylindrical member inserted into the cylindrical main body, and the cylindrical main body adjacent in the longitudinal direction is an end in the cylindrical main body. A water flow mixer characterized by having a partial contact structure. 請求項18に記載の発明において、隣接する筒状部材の対向端面は一方が突起、他方が円周方向に離間した溝を備え、前記突起と溝とは相互に嵌合していることを特徴とする水流混合器。   The invention according to claim 18 is characterized in that the opposing end faces of the adjacent cylindrical members are provided with a groove on one side and the other in the circumferential direction, and the protrusion and the groove are fitted to each other. A water flow mixer. 水処理系における被処理部に開口された注入水配管と、注入水配管内における水流中に酸素含有気体を導入する酸素含有気体導入手段と、前記注入水配管中に設置され、酸素含有気体が導入された水流を加圧する加圧ポンプと、前記加圧ポンプの下流に配置され、加圧された流水が通過する筒状本体の長手方向に沿って間隔をおいて配置された複数の邪魔板を備えた水流混合器とよりなり、前記水流混合器は被処理部に実質的に直接開口していることを特徴とする微細気泡発生装置。   An injection water pipe that is opened to a treated part in the water treatment system, an oxygen-containing gas introduction means that introduces an oxygen-containing gas into a water flow in the injection water pipe, and the oxygen-containing gas is installed in the injection water pipe. A pressurizing pump for pressurizing the introduced water flow, and a plurality of baffle plates arranged downstream from the pressurizing pump and spaced along the longitudinal direction of the cylindrical main body through which the pressurized flowing water passes A microbubble generator characterized by comprising: a water flow mixer comprising: a water flow mixer, wherein the water flow mixer opens substantially directly into the portion to be treated. 請求項15から20に記載の発明において、筒状本体は長手方向に一連に接続された複数筒状部材よりなり、最上流と最下流の筒状部材を固定していることを特徴とする微細気泡発生装置。






The invention according to any one of claims 15 to 20, wherein the cylindrical main body is composed of a plurality of cylindrical members connected in series in the longitudinal direction, and the most upstream and the most downstream cylindrical members are fixed. Bubble generator.






JP2004243123A 2003-08-25 2004-08-24 Microbubble generator Expired - Fee Related JP4854942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004243123A JP4854942B2 (en) 2003-08-25 2004-08-24 Microbubble generator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003299428 2003-08-25
JP2003299428 2003-08-25
JP2004243123A JP4854942B2 (en) 2003-08-25 2004-08-24 Microbubble generator

Publications (2)

Publication Number Publication Date
JP2005095877A true JP2005095877A (en) 2005-04-14
JP4854942B2 JP4854942B2 (en) 2012-01-18

Family

ID=34467098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004243123A Expired - Fee Related JP4854942B2 (en) 2003-08-25 2004-08-24 Microbubble generator

Country Status (1)

Country Link
JP (1) JP4854942B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006033221A1 (en) * 2005-08-31 2006-03-30 Kikuchi Eco-Earth Co., Ltd. Apparatus for creating liquid with fine air bubbles, and device for fining air bubbles, used for the same
JP2007021393A (en) * 2005-07-19 2007-02-01 Hitachi Ltd Water treatment plant using fine bubble
JP2007136256A (en) * 2005-11-14 2007-06-07 Asahi Tec Corp Ozone treatment device
JP2008149038A (en) * 2006-12-20 2008-07-03 Matsushita Electric Works Ltd Microbubble generator
JP2009114059A (en) * 2006-12-11 2009-05-28 Opt Creation:Kk Apparatus and method for producing nanobubble liquid
JP2010536553A (en) * 2007-08-23 2010-12-02 チョン ヘン ジョ Anion generating water purification apparatus and treatment method thereof
JP2010284585A (en) * 2009-06-11 2010-12-24 Kao Corp Fine air bubble generator
JP2013121414A (en) * 2011-12-09 2013-06-20 Fujidenoro Co Ltd Carbonated spring generating device
US8726918B2 (en) * 2005-09-23 2014-05-20 Sadatoshi Watanabe Nanofluid generator and cleaning apparatus
JP2015087050A (en) * 2013-10-30 2015-05-07 ホシザキ電機株式会社 Ice machine
JP2017221926A (en) * 2016-06-17 2017-12-21 株式会社アスプ Generation device for gas-containing liquid, and treatment mechanism for gas-containing liquid
JP2017225959A (en) * 2016-06-24 2017-12-28 株式会社アスプ Gas-containing liquid generation device
CN112604594A (en) * 2020-11-19 2021-04-06 衡阳鸿宇化工有限责任公司 Aluminum trichloride feeding device capable of preventing materials from scattering and using method thereof
CN114404846A (en) * 2021-12-16 2022-04-29 蚌埠瑞祥消防机电设备有限公司 Novel fire engine
KR20230042323A (en) 2020-07-29 2023-03-28 닛폰세이테츠 가부시키가이샤 Sonication device and fine bubble supply method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437074A (en) * 1977-08-29 1979-03-19 Nobuko Asayama Closed serpentine reactor
JPH08112587A (en) * 1994-10-17 1996-05-07 F Tex:Kk Fine air bubble generator
JPH1066850A (en) * 1996-08-29 1998-03-10 O H L Ryutai Kogaku Kenkyusho Solubility regulating method of continuous water passing-type gas-dissolving apparatus and continuos water passing-type gas-dissolving apparatus for execution thereof
JPH11319529A (en) * 1998-05-08 1999-11-24 Nishigaki Pump Seizo Kk Gas absorbing apparatus
JP2001096298A (en) * 1999-09-29 2001-04-10 Kawai Musical Instr Mfg Co Ltd Equipment for wafer cleaning treatment
JP2001259667A (en) * 2000-03-15 2001-09-25 Kyowa Eng Kk Contaminated water treating method
JP2001300276A (en) * 2000-04-24 2001-10-30 Isao Endo Bubble generating device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437074A (en) * 1977-08-29 1979-03-19 Nobuko Asayama Closed serpentine reactor
JPH08112587A (en) * 1994-10-17 1996-05-07 F Tex:Kk Fine air bubble generator
JPH1066850A (en) * 1996-08-29 1998-03-10 O H L Ryutai Kogaku Kenkyusho Solubility regulating method of continuous water passing-type gas-dissolving apparatus and continuos water passing-type gas-dissolving apparatus for execution thereof
JPH11319529A (en) * 1998-05-08 1999-11-24 Nishigaki Pump Seizo Kk Gas absorbing apparatus
JP2001096298A (en) * 1999-09-29 2001-04-10 Kawai Musical Instr Mfg Co Ltd Equipment for wafer cleaning treatment
JP2001259667A (en) * 2000-03-15 2001-09-25 Kyowa Eng Kk Contaminated water treating method
JP2001300276A (en) * 2000-04-24 2001-10-30 Isao Endo Bubble generating device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021393A (en) * 2005-07-19 2007-02-01 Hitachi Ltd Water treatment plant using fine bubble
US8091867B2 (en) 2005-08-31 2012-01-10 Kikuchi Eco-Earth Co., Ltd Apparatus for producing microbubble liquid and device for atomizing air bubbles using the same
JPWO2006033221A1 (en) * 2005-08-31 2008-05-15 株式会社菊池エコアース Fine bubble liquid generator and bubble refiner used therefor
WO2006033221A1 (en) * 2005-08-31 2006-03-30 Kikuchi Eco-Earth Co., Ltd. Apparatus for creating liquid with fine air bubbles, and device for fining air bubbles, used for the same
CN101267876B (en) * 2005-08-31 2012-03-28 菊池爱可阿斯株式会社 Device for creating liquid with fine air bubbles, and device for fining air bubbles, used for the same
US8726918B2 (en) * 2005-09-23 2014-05-20 Sadatoshi Watanabe Nanofluid generator and cleaning apparatus
JP2007136256A (en) * 2005-11-14 2007-06-07 Asahi Tec Corp Ozone treatment device
JP2009114059A (en) * 2006-12-11 2009-05-28 Opt Creation:Kk Apparatus and method for producing nanobubble liquid
JP4481342B2 (en) * 2006-12-11 2010-06-16 株式会社オプトクリエーション Nano bubble water production apparatus and production method
US9416329B2 (en) 2006-12-11 2016-08-16 Opt Creation, Inc. Apparatus and process for production of nanobubble liquid
JP2008149038A (en) * 2006-12-20 2008-07-03 Matsushita Electric Works Ltd Microbubble generator
JP2010536553A (en) * 2007-08-23 2010-12-02 チョン ヘン ジョ Anion generating water purification apparatus and treatment method thereof
JP2010284585A (en) * 2009-06-11 2010-12-24 Kao Corp Fine air bubble generator
JP2013121414A (en) * 2011-12-09 2013-06-20 Fujidenoro Co Ltd Carbonated spring generating device
JP2015087050A (en) * 2013-10-30 2015-05-07 ホシザキ電機株式会社 Ice machine
JP2017221926A (en) * 2016-06-17 2017-12-21 株式会社アスプ Generation device for gas-containing liquid, and treatment mechanism for gas-containing liquid
JP2017225959A (en) * 2016-06-24 2017-12-28 株式会社アスプ Gas-containing liquid generation device
KR20230042323A (en) 2020-07-29 2023-03-28 닛폰세이테츠 가부시키가이샤 Sonication device and fine bubble supply method
CN112604594A (en) * 2020-11-19 2021-04-06 衡阳鸿宇化工有限责任公司 Aluminum trichloride feeding device capable of preventing materials from scattering and using method thereof
CN114404846A (en) * 2021-12-16 2022-04-29 蚌埠瑞祥消防机电设备有限公司 Novel fire engine

Also Published As

Publication number Publication date
JP4854942B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JP4854942B2 (en) Microbubble generator
KR101594086B1 (en) Nanosized bubble and hydroxyl radical generator, and system for processing contaminated water without chemicals using the same
KR100931987B1 (en) Water treatment apparatus for purifing waste water using micro-bubbles
JP2007021393A (en) Water treatment plant using fine bubble
KR101835271B1 (en) Ozone treatment system and, water treatment system including the same
JP6617281B2 (en) Water treatment equipment
KR101219892B1 (en) Hybrid apparatus for treating of non-biodegradable water in the river
US20130082006A1 (en) Systems and methods for control of a gas or chemical
JP2002346351A (en) Gas dissolving device
KR101197001B1 (en) Water purification System using the micro bubble in river
US20110272831A1 (en) Wastewater treatment system
JP2008104962A (en) Water purification device
JP2011056498A (en) Apparatus and system for generating high-concentration dissolved water
KR102156229B1 (en) Easy-to-repair pollution water purification system with improved efficiency of air discharge and micro bubble
JP2014155910A (en) Water purifier using hydraulic power
JP2007330894A (en) Activated sludge treatment apparatus
JP2008012511A (en) Water purifying device, and water-ozone mixing device
KR20190110310A (en) Upright single stage pump assembly for generating micro bubble
WO2008140139A1 (en) Micro bubble occurrence nozzle
KR101586649B1 (en) The apparatus of twister vortex with three effect
KR101206667B1 (en) Flotation system in river
JP2016209800A (en) Excess sludge weight loss device
KR101208753B1 (en) Water purification apparatus of closed waterarea in river
KR100795592B1 (en) Resource saving pump system for processed water at sewage treatment plant
JP6650560B2 (en) Water treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070703

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4854942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees